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ABSTRACT

Causal inference typically assumes centralized access to individual-level data.
Yet, in practice, data are often decentralized across multiple sites, making central-
ization infeasible due to privacy, logistical, or legal constraints. We address this
problem by estimating the Average Treatment Effect (ATE) from decentralized
observational data via a Federated Learning (FL) approach, allowing inference
through the exchange of aggregate statistics rather than individual-level data. We
propose a novel method to estimate propensity scores by computing a federated
weighted average of local scores with Membership Weights (MW)—probabilities
of site membership conditional on covariates—which can be flexibly estimated
using parametric or non-parametric classification models. Unlike density ratio
weights (DW) from the transportability and generalization literature, which either
rely on strong modeling assumptions or cannot be implemented in FL, MW can
be estimated using standard FL algorithms and are more robust, as they support
flexible, non-parametric models—making them the preferred choice in multi-site
settings with strict data-sharing constraints. The resulting propensity scores
are used to construct Federated Inverse Propensity Weighting (Fed-IPW) and
Augmented IPW (Fed-AIPW) estimators. Unlike meta-analysis methods, which
fail when any site violates positivity, our approach leverages heterogeneity in
treatment assignment across sites to improve overlap. We show that Fed-IPW
and Fed-AIPW perform well under site-level heterogeneity in sample sizes,
treatment mechanisms, and covariate distributions. Both theoretical analysis and
experiments on simulated and real-world data highlight their advantages over
meta-analysis and related methods.

1 INTRODUCTION

The Average Treatment Effect (ATE) is a key causal estimand used to quantify the effect of
a treatment on an outcome and is commonly employed as the primary measure of efficacy in
evaluating new therapies, including vaccines, before regulatory approval (Polack et al., 2020). In
Randomized Clinical Trials (RCTs), treatment assignment is randomized, ensuring that the observed
association between treatment and outcome reflects a causal effect. Under this design, the ATE can
be consistently estimated using a simple Difference-in-Means (DM) estimator (Splawa-Neyman,
1990), which can be further refined through covariate adjustment to reduce variance (FDA,
2023; EMA, 2024; Lei & Ding, 2021). However, RCTs are often expensive, time-consuming,
or infeasible. In such cases, estimating treatment effects from observational data becomes the
only viable alternative (Hernán, 2018; Hernán & Robins, 2006). Although such real-world data is
abundant, drawing causal inferences from it is challenging due to confounding covariates, rendering
the unadjusted DM estimator biased (Grimes & Schulz, 2002). Adjusting for confounders is thus
essential (VanderWeele, 2019). This can be done by predicting counterfactual outcomes before
averaging the differences (the G-formula plug-in estimator, Robins, 1986). Another approach is
to weight individuals according to their treatment probability, emulating a randomized trial. For
instance, the Inverse Propensity Weighting (IPW) estimator (Rosenbaum & Rubin, 1983) relies
on estimating the propensity score—the probability of treatment given covariates. Doubly robust
estimators such as the Augmented IPW (AIPW) (Bang & Robins, 2005) combine weighting with
outcome modeling to remain consistent as long as either model is correctly specified.
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Larger datasets improve the precision of treatment effect estimates, especially for underrepresented
subgroups. Yet real-world data is typically decentralized—spread across hospitals, companies, or
countries—making aggregation difficult, particularly in healthcare where privacy regulations, data
ownership, and governance issues impede centralization. Federated Learning (FL) (Kairouz et al.,
2021) offers a solution to train models across distributed data without sharing individual-level data.
While FL has been largely applied to prediction tasks, its extension to causal inference remains
limited. This problem is especially challenging in observational studies, where differences in co-
variate distributions and treatment assignment mechanisms across sites create multiple sources of
heterogeneity that must be addressed without sharing raw data, while achieving results comparable
to centralized analyses—an issue that remains largely unsolved.

Contributions. We propose federated (A)IPW estimators for decentralized observational data, mov-
ing beyond the aggregation of local ATE estimates used in meta-analysis (Riley et al., 2023). At the
core of our approach is a flexible, primarily non-parametric strategy for federating propensity scores.
Unlike prior methods that fit a single global parametric model via parameter averaging (Xiong et al.,
2023) or federated gradient descent (Guo et al., 2025), we construct a global propensity score as a
mixture of locally estimated models. This involves (1) local estimation of propensity scores at each
site—accommodating heterogeneity in treatment assignment and flexibility in model choice—and
(2) aggregation into a global score using Membership Weights (MW), i.e., the probability of site
membership given covariates. MW can be estimated in a federated manner using flexible, poten-
tially non-parametric classification models, ensuring both robustness and communication efficiency.
In contrast, transferring Density Ratio Weights (DW) from the transportability and generalization
literature to our setting requires strong modeling assumptions, as they are otherwise incompatible
with FL constraints. Using our federated propensity scores, we build the Federated IPW (Fed-IPW)
and its augmented variant (Fed-AIPW), derive their variances, and show they achieve equal or lower
variance than meta-analysis estimators.

Our approach is particularly advantageous when overlap between treatment groups is poor or absent
within sites. In such scenarios, cross-site collaboration becomes crucial, as combining sites increases
overall overlap and enables treatment effect estimation that may be infeasible locally. Indeed, when
treatment assignment mechanisms differ substantially—such as when one site treats a subgroup ab-
sent elsewhere—the combined dataset achieves markedly greater overlap, allowing treatment effects
to be estimated that would otherwise be poorly identified in isolation. Additionally, our framework
naturally accommodates heterogeneity in sample sizes, treatment policies, covariate distributions,
and violations of positivity. Numerical experiments on simulated and real data confirm our theoret-
ical findings and highlight the method’s practical benefits.

Related work. Federated causal inference is still nascent. Khellaf et al. (2025) estimate federated G-
formula ATE estimates across multiple RCTs by fitting parametric outcome models at each site via
FL, achieving lower variance than DM. In observational settings, Vo et al. (2022) propose a federated
Bayesian approach using Gaussian processes with a shared covariance kernel, but it requires sharing
the first four moments of the data, limiting scalability and efficiency. Guo et al. (2025) learn a global
propensity score via consensus voting over parametric parameters, retaining only sites meeting a
shared specification. In contrast, our method assumes no common propensity score: each site may
fit its own model.

To address site heterogeneity, Xiong et al. (2023) use a logistic propensity model with shared and
site-specific parameters, federating only the common ones. Yin et al. (2025) fit a global model
adjusting for covariates and site membership but limit heterogeneity to a site-specific scalar. By
contrast, our method makes no structural assumptions, enabling fully nonparametric estimation with
heterogeneous local models and relaxing the need for local overlap at each site.

A related body of work focuses on generalizing causal findings from multi-site source populations
to a target population. Han et al. (2025) use density ratio weighting of local ATEs to adjust for co-
variate shift but assume homogeneous nuisance functions across sites and rely on meta-analysis of
aggregate statistics. Guo et al. (2024) extend this idea by applying density ratio weights to aggregate
local propensity scores to construct a target-specific score, which requires density estimation within
each treatment arm at each site—demanding large sample sizes per arm for stable estimates. In
both cases, non-parametric density ratio estimation is infeasible under FL constraints, as it requires
sharing raw data or detailed covariate representations (e.g., kernel evaluations or high-dimensional
histograms). In contrast, our MW-based approach leverages flexible parametric or non-parametric
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Figure 1: Graphical model for multi-site observational data.

supervised models (e.g., logistic regression, neural networks, gradient-boosted trees) for which fed-
erated training is already established, operating without sharing raw data, potentially at lower sample
complexity, with full support for heterogeneous nuisance functions, and allowing the natural inclu-
sion of external control arms.

2 PRELIMINARIES

2.1 ATE ESTIMATORS FROM CENTRALIZED MULTI-SITE OBSERVATIONAL DATA

In this section, we recall the key components of ATE estimation in a centralized multi-site set-
ting. Following the potential outcomes framework (Rubin, 1974; Splawa-Neyman, 1990), we
consider random variables (X,H,W, Y (1), Y (0)), where X → Rd represents patient covari-
ates, H → [K] indicates site membership, W → {0, 1} denotes the binary treatment, and Y (1)
and Y (0) are the potential outcomes under treatment and control, respectively. We assume that
the Stable Unit Treatment Values Assumption (SUTVA) holds, so that the observed outcome is
Y = WY (1) + (1 ↑ W )Y (0), and that the potential outcomes are uniformly bounded. In
the centralized setting, we observe n =

∑
K

k=1 nk observations of independently and identi-
cally distributed (i.i.d.) tuples (Hi, Xi,Wi, Yi)i→1,...,n ↓ P

↑n, with nk =
∑

n

i=1 1{Hi=k} the
number of observations in site k. We aim to estimate the ATE defined as the risk difference
ω = E [Y (1)↑ Y (0)] = E [E [Y (1)↑ Y (0) | H]], where the expectation is taken over the popula-
tion P . To be able to identify the ATE, we assume unconfoundedness (standard in causal inference)
and further consider Assumption 2, which is specific to the multi-site setting.

Assumption 1 (Unconfoundedness). (Y (0), Y (1)) ↔↔ W | X .

Assumption 2 (Ignorability on sites). (Y (0), Y (1)) ↔↔ H | X .

Robertson et al. (2021) refer to Assumption 2 as the no center-outcome association condition. It
can be stated as a testable null hypothesis requiring that, for every treatment level w and any pair
of centers (k, k↓), E[Y | X,W = w,H = k] = E[Y | X,W = w,H = k↓]. Combined with
Assumption 1, this ensures that X forms a sufficient set of covariates for confounding adjustment.
Our setting is depicted in the graphical model in Figure 1, highlighting that we remove any direct
effect of the site on the outcome.

We define µw(x) = E [Y | X = x,W = w] for w → {0, 1}, and let ω(x) = µ1(x) ↑ µ0(x) =
E[Y (1)↑ Y (0) | X = x] be the Conditional Average Treatment Effect (CATE). The oracle propen-
sity score is denoted by e(x) = P(W | X = x), and we consider the weak (global) overlap
assumption (Wager, 2024).

Assumption 3 (Global overlap). Oglobal = E
[
(e(X)(1↑ e(X)))↔1

]
< +↗.

Assumption 3 is crucial for propensity score-based estimators, as it states that every region of the
covariate space has a non-zero probability of receiving both treatments. A lower value of Oglobal

indicates that these probabilities lie further away from 0 and 1, which corresponds to better overlap.
For further insights on overlap, see Li et al. (2018a;b), and for a “misoverlap” metric, refer to Clivio
et al. (2024).

With Assumptions 1, 2 and 3, the ATE is identifiable as ω = E
[
WY

e(X)↑
(1↔W )Y
1↔e(X)

]
(see Appendix A.1).

Throughout the paper, we denote oracle ATE estimators, which assume knowledge of the nuisance
components e, µ0, µ1, by a superscript ↗. We define the Oracle multi-site centralized estimators as
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follows:

ω̂↗IPW =
1

n

n∑

i=1

ωIPW(Xi; e), ω̂↗AIPW =
1

n

n∑

i=1

ωAIPW(Xi; e, µ1, µ0), (1)

where ωIPW(Xi; e) = WiYi

e(Xi)
↑

(1↔Wi)Yi

1↔e(Xi)
and ωAIPW(Xi; e, µ1, µ0) = µ1(Xi) ↑ µ0(Xi) +

Wi(Yi↔µ1(Xi))
e(Xi)

↑
(1↔Wi)(Yi↔µ0(Xi))

1↔e(Xi)
. These oracle estimators are unbiased and asymptotically nor-

mal.
Theorem 1. Under Assumptions 1, 2 and 3, we have

↘
n(ω̂ ↑ ω) ≃ N (0, V ) with






VIPW = E
[
Y (1)2

e(X)

]
+ E

[
Y (0)2

1↔e(X)

]
↑ ω2,

VAIPW = V [ω(X)] + E
[(

(Y↔µ1(X))2

e(X)

)]
+ E

[(
(Y↔µ0(X))2

1↔e(X)

)2
]
.

The above asymptotic variances align with those in the single-site setting (Hirano et al., 2003),
as detailed in Appendix A.2. However, in practice, the propensity score and outcome models are
typically unknown and must be estimated from data. This creates a challenge in the decentralized
setting, where centralizing data to compute µ1, µ0, and e is not feasible. Therefore, the estimators
in Definition 1 need to be adapted to this setting. Importantly, the (non-oracle) AIPW estimator is
inherently doubly robust, remaining consistent as long as either the outcome or the propensity score
model is correctly specified (Chernozhukov et al., 2018).

2.2 META-ANALYSIS ESTIMATORS

We now turn to a decentralized setting in which the K sites cannot share individual-level data. A
natural baseline for estimating the ATE across sites is a two-stage meta-analysis approach (Burke
et al., 2017), wherein each site independently estimates the relevant nuisance parameters and com-
municates only the resulting ATE estimates for aggregation. In this setting, we need the following
assumption.
Assumption 4 (Local overlap). ⇐k → [K],Ok = E

[
(e(X)(1↑ e(X)))↔1

| H = k
]
< +↗.

Assumption 4 is much stronger than global overlap (Assumption 3), as it must hold at every site.
Denoting by ek(x) = P(W = 1 | X = x,H = k) the oracle local propensity score at site k, we
can define the oracle meta-analysis estimators as follows:

ω̂meta→

IPW =
K∑

k=1

nk

n
ω̂ (k)IPW, ω̂meta→

AIPW =
K∑

k=1

nk

n
ω̂ (k)AIPW, (2)

where ω̂ (k)IPW = 1
nk

∑
nk

i=1 ωIPW(Xi; ek) and ω̂ (k)AIPW = 1
nk

∑
nk

i=1 ωAIPW(Xi; ek, µ1, µ0) are the local
estimators at site k. While alternative aggregation weights—such as the inverse variance of local
estimates—can be considered, they produce, in our setting, biased estimates of the global ATE
ω =

∑
K

k=1 εkωk, where εk = P(H = k) and ωk = E[Y (1) ↑ Y (0) | H = k] is the local ATE.
This bias appears whenever the ωk differ, which commonly occurs when covariate distributions vary
across sites and treatment effects are heterogeneous (i.e., depend on covariates), see (Berenfeld et al.,
2025).
Theorem 2. Under Assumptions 1, 2 and 4, the oracle meta-analysis estimators are unbiased for
the ATE with asymptotic variances

V meta→

IPW =
K∑

k=1

εkV
(k)
IPW + V [ωH ] , V meta→

AIPW =
K∑

k=1

εkV
(k)
AIPW + V [ωH ] ,

with within-site variance




V (k)
IPW= E

[
Y (1)2

ek(X) | H = k
]
+ E

[
Y (0)2

1↔ek(X) | H = k
]
↑ ω2

k

V (k)
AIPW = V [ω(X) | H = k] + E

[(
(Y↔µ1(X))2

ek(X)

)2
| H = k

]
+ E

[(
(Y↔µ0(X))2

1↔ek(X)

)
| H = k

]
,

and V [ωH ] = V [E [Y (1)↑ Y (0) | H]] the between-sites variance of the local ATEs.
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This result is proved in Appendix A.3. A key limitation of meta-analysis estimators is their
reliance on Assumption 4, which is fragile and often violated—for instance, when a site applies
a deterministic treatment policy (treating all patients or only a subgroup). In such cases, these
estimators are ill-defined, yielding biased ATE estimates. To address this, we propose a federated
approach that constructs the global propensity score e as a weighted combination of local scores ek,
enabling valid inference even without local overlap.

3 FEDERATED ESTIMATORS VIA PROPENSITY SCORE AGGREGATION

3.1 ORACLE FEDERATED ESTIMATORS

As discussed before, existing federated causal inference methods often rely on restrictive
assumptions—such as a common propensity score across sites (Guo et al., 2025), site differences
limited to intercept shifts (Yin et al., 2025), or predefined shared structures (Xiong et al., 2023). In
practice, treatment assignment frequently varies across sites due to differences in norms, resources,
or clinical practices. To properly account for this heterogeneity, the global propensity score must be
expressed as a weighted combination of the site-specific scores (see Appendix A.4). A first choice
of weights are the density ratio weights (DW) ϑDW

k
:

e(x) =
K∑

k=1

εk
fk(x)

f(x)︸  
=ω

DW
k

(x)

ek(x), (3)

where fk and f are the covariate densities locally and globally. Similar weights are used in
transportability methods that reweight data to match a target population (Han et al., 2023; 2025;
Guo et al., 2024), though here the objective is to recover the global propensity score across the
super-population defined by the K participating sites. Unfortunately, DW estimation in a federated
setting requires modeling the fk’s, which entails strong distributional assumptions and becomes
challenging in high dimensions.

Instead, we propose the Membership Weights (MW) ϑMW
k

:

e(x) =
K∑

k=1

P(H = k | X = x)︸  
= ϑMW

k
(x)

ek(x), (4)

which represent the probability of site membership given the covariates. Unlike DW, MW do not re-
quire explicit density modeling and can be estimated directly via federated parametric (e.g., logistic
regression, neural networks) or non-parametric (e.g., gradient-boosted trees) classification models,
providing a flexible, communication-efficient alternative and making it the preferred choice for fed-
erated settings. We refer to Section 3.2 for more details on the federated estimation of MW and its
advantages over DW.

Equations 3 and 4 enable combining locally estimated propensity scores ek into a global propensity
score using globally learned weights ϑk(x). Building on this decomposition, we define our oracle
Federated IPW and AIPW estimators (Fed-(A)IPW). We define the Oracle federated estimators as
follows:

ω̂ fed
→

IPW =
K∑

k=1

nk

n
ω̂ fed(k)IPW , ω̂ fed

→

AIPW =
K∑

k=1

nk

n
ω̂ fed(k)AIPW, (5)

where ω̂ fed(k)IPW = 1
nk

∑
nk

i=1 ωIPW(Xi; e) and ω̂ fed(k)AIPW = 1
nk

∑
nk

i=1 ωAIPW(Xi; e, µ1, µ0) rely on the
global propensity score e(X) =

∑
K

k=1 ϑk(X)ek(X).

Theorem 3 (proved in Appendix A.5) establishes that, in the oracle setting, Fed-(A)IPW estimators
attain the same efficiency as their centralized counterparts.
Theorem 3. Under Assumptions 1, 2, and 3, the oracle federated estimators (Equation 5) are iden-
tical to the oracle centralized estimators (Equation 1).
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Theorem 4 (proved in Appendix A.6) further shows that even when local overlap (Assumption 4)
holds, federated estimators have lower variance than meta-analysis estimators.
Theorem 4. Under Assumptions 1, 2 and 4, we have:

V[ω̂↗IPW] = V[ω̂ fed
→

IPW] ⇒ V[ω̂meta→

IPW ], V[ω̂↗AIPW] = V[ω̂ fed
→

AIPW] ⇒ V[ω̂meta→

AIPW],

with equality when the local propensity scores are identical across sites.

This variance reduction arises for two reasons. First, decomposing e as a weighted sum of ek’s
marginalizes over H | X , eliminating unnecessary adjustment for site membership and thereby
reducing variance. Second, our federated approach improves overlap compared with meta-analysis,
as formalized below.
Theorem 5 (Overlap improvement). 0 ⇒ Oglobal ⇒

∑
K

k=1 εkOk.

Theorem 5 (proved in Appendix A.7) shows that global overlap is always at least as good as the worst
local overlap. Even when local overlap holds, sites with poor overlap benefit from the federated
approach because the global score e(x) is more bounded away from 0 and 1 than the local scores
{ek(x)}k→[K]. Notably, sites with poor individual overlap can even improve the overall overlap of
the federated population, as illustrated in the following example.
Example. Let K = 2 with Xi = 1 in both sites, P(Hi | Xi) = 0.5, e1(Xi) = 0.99 and
e2(Xi) = 0.01, leading to e(Xi) =

∑2
k=1 0.5 ⇑ ek(Xi) = 0.5. Local overlaps are poor,

O1 = O2 = (0.99⇑ 0.01)↔1
⇓ 101, whereas the global overlap is Oglobal = (0.5⇑ 0.5)↔1 = 4—

the optimal value achieved in a randomized trial with 50% treatment probability. This illustrates how
heterogeneity in treatment assignments can enhance global overlap and enable more robust causal
inference.

3.2 FEDERATED ESTIMATION

We now move beyond oracle estimators and describe how to implement our Fed-(A)IPW estimators
in a practical federated learning setting. Constructing the global score propensity score requires
two steps, which can be executed in parallel: each site k estimates and shares a local propensity
score êk(x); and the sites collaboratively estimate federated weights {ϑ̂k(x)}k→[K]. Fed-AIPW
adds a third step to train outcome models µ̂0, µ̂1 via federated learning. We detail how to estimate
{êk(x), ϑ̂k(x)}k and µ̂0, µ̂1 below.

Local propensity scores. Each ek can be estimated using any probabilistic binary classifier, either
parametric (e.g., logistic regression or neural networks) or non-parametric ( (e.g., generalized ran-
dom forests, Lee et al., 2010). A key advantage of our approach is flexibility: sites can use different
estimation methods tailored to local data or computational constraints. It also does not require As-
sumption 4: local scores may approach 0 or 1 provided the global score remains bounded away
from these extremes.This, in particular, enables the integration of external control arms (FDA, 2023;
EMA, 2023), where some sites have ek(X) = 0 for all control patients yet still contribute to the
global analysis.

Federated weights: density ratio vs. membership. Parametric density ratio weights ϑDW
k

(x) =

εk
fk(x)
f(x) can be implemented in a one-shot fashion by sharing local density parameters with the

server, which then reconstructs the global mixture and computes the weights. A common choice is
to assume parametric covariate distributions (say, Gaussian), estimate (µ̂k, !̂k) locally, and transmit
them once to the server. This requires to communicate O(Kd2) parameters and is highly sensitive
to model misspecification—an issue that becomes critical in high dimensions. Nonparametric den-
sity estimation would relax these assumptions but is statistically inefficient and does not yet have
practical federated implementations.

In contrast, our membership weights ϑMW
k

(x) = P(H = k | X = x) can be learned with any prob-
abilistic multiclass classifier trained federatively—for example, logistic regression for simplicity
and interpretability, or neural networks to capture complex nonlinearities. Such models are readily
supported by modern FL algorithms and software libraries. Using the standard FedAvg algorithm
(McMahan et al., 2017) requires exchanging TKP floats (training rounds ⇑ sites ⇑ model param-
eters), which is feasible for models of practical size and a large number of sites. Non-parametric

6
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Fed-MW (logistic)Oracle Pool Fed-DW Meta-SW True ATEIPW AIPWFed-MW (NN)

(a) No local overlap (b) Poor local overlap (c) Good local overlap

Figure 2: Synthetic data: DGP A (top) and DGP B (bottom).

classifiers like random forests (Hauschild et al., 2022) and gradient-boosted trees (Li et al., 2020)
have also been adapted to the federated setting.

Outcome models. To construct the doubly robust Fed-AIPW estimator, µ0, µ1 are trained federa-
tively, as in Khellaf et al. (2025). As for MW, standard FL algorithms and librairies can be used to
train a wide range of parametric and non-parametric supervised learning models.
Remark (Missing values). Our approach can naturally accommodate missing data. Local propensity
scores can be estimated consistently with logistic regression or random forests (Jiang et al., 2020;
Josse et al., 2024). For membership weights, constant imputation combined with federated random
forests provides a consistent solution (Le Morvan et al., 2021), whereas density ratio weights would
require adapting more complex federated EM algorithms (Dieuleveut et al., 2021; Marfoq et al.,
2021). Finally, doubly robust estimators with missing data can be obtained via non-parametric
federated outcome models (Mayer et al., 2020).

4 EXPERIMENTS

Synthetic data. We consider K = 3 sites and d = 10 covariates. Two data-generating processes
(DGPs) are used. In DGP A, each site k independently samples nk = 650 individuals from a site-
specific multivariate Gaussian distribution N (µk,!k). In DGP B, a total of n = 4000 individuals
are first drawn from a bimodal Gaussian mixture and then assigned to sites according to a multi-
nomial logistic model based on their covariates. We vary within-site overlap to mimic different
practical scenarios: No local overlap (O2 = +↗, the second site has no treated individuals), Poor
local overlap (O2 ⇓ 107), and Good local overlap (O2 ⇓ 4.6). The outcome models µ1, µ0 are
shared across sites and specified as polynomial functions with interactions. For comparison, we also
generate data consistent with the setting in Xiong et al. (2023) (Figure 3). All results are averaged
over 800 simulation runs; full details are provided in Appendix C.

We evaluate our proposed Fed-IPW and Fed-AIPW using the MW weights estimated either via
federated multinomial logistic regression (well specified in DGP B) or via a two-layer Neural Net-
work (NN). We compare these methods against several competitors: Fed-IPW and Fed-AIPW

with the alternative DW weights based on Gaussian density estimation (well specified in DGP A);
the Centralized Oracle (Def. 1); meta-analysis IPW/AIPW with sample-size weighting (Meta-
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Fed-MW (logistic)Oracle Pool Fed-DW Meta-SW IPW AIPWFed-MW (NN)Pool 1S-IVW

Figure 3: Comparison to Xiong et al. (2023) (IPW). Figure 4: AIPW estimates on Traum-
abase.

SW) (Def. 2); and the one-shot inverse-variance weighted IPW estimator (1S-IVW) of Xiong et al.
(2023), evaluated under favorable conditions with shared propensity-score parameters across sites.
For all estimators, propensity scores are fit via logistic regression and outcome models via linear
regression, implying misspecification in the latter.

Figures 2a–2c (top: DGP A; bottom: DGP B) summarize the results under the three overlap regimes.
Before discussing each setting, we highlight several general observations. First, Fed-IPW-DW is
unbiased only under DGP A, where the Gaussian specification holds, and exhibits bias under DGP
B. By contrast, Fed-IPW-MW adapts across data-generating processes: with logistic membership
weights it is unbiased in DGP B, and with a more flexible neural network classifier it is unbiased
for both DGP A and DGP A, reflecting the greater modeling flexibility of MW relative to DW’s
restrictive density specification. Second, Fed-AIPW enjoys its doubly robust property and remains
unbiased across all overlap levels by double robustness; despite misspecified linear outcome models,
accurate propensity estimation ensures consistency. Finally, Fed-IPW typically attains lower vari-
ance than the centralized oracle IPW, consistent with well-documented efficiency gains from using
estimated propensity scores (Hirano et al., 2003).

In the No local overlap setting (Figure 2a), meta-analysis estimators are undefined because one
site has no treated individuals. Our federated estimators remain unbiased under both DGPs, as
Assumption 3 holds (global overlap Oglobal ⇓ 6.22). In the Poor local overlap setting (Figure 2b),
site 2 exhibits weak overlap, leading to bias and instability in meta-analysis estimators, including
Meta-AIPW, as both the propensity scores and local outcome models are inaccurate. This issue is
mitigated in the global dataset (see Figure 5 in the Appendix), allowing our federated estimators
to remain reliable. In the Good local overlap setting (Figure 2c), all methods are unbiased, but
federated estimators achieve the smallest variance.

Figure 3 considers a setting where all local propensity scores share a common subset of 5 of 10
logistic regression coefficients with data generated from DGP B. This setup matches the assump-
tions of the 1S-IVW method of Xiong et al. (2023), which relies on prior knowledge of the shared
parameters to aggregate them—an assumption not required by our method. Fed-MW remains unbi-
ased and attains the lowest variance, matching that of 1S-IVW, even without access to the additional
information about shared parameters.

Additional simulations provided in Appendix E examine scenarios with more sites (Table 4), non-
parametric estimation (Table 5), and local propensity model misspecification (Table 6), further con-
firming the robustness of our approach.

Real data. We analyze the multi-site Traumabase cohort (Mayer et al., 2020; Colnet et al., 2024)
to estimate the effect of tranexamic acid on mortality across K = 14 centers. The local datasets
are highly imbalanced in site sizes (106 to 2,092 patients) and treatment arms (e.g., site 11: 4
treated vs. 121 controls); there are 17 covariates and n = 8,248 patients in total, of whom 638
were treated. Covariates are standardized federatively by sharing site means and variances. We
focus on AIPW estimators: local propensities ek are estimated via logistic regression; outcome

8
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models µ1, µ0 are trained with FedAvg logistic regression (5,000 rounds, 1 local epoch, step size
ϖ = 0.1); MW are learned with a FedAvg neural network (one hidden layer, 128 units), while
DW are based on Gaussian density estimation. Competitors include Meta-SW (same local models,
computed only on sites with enough treated units—where the number of treated observations ex-
ceeds the covariate dimension) and a centralized AIPW benchmark obtained using the R package
grf’s probability_forest function (Tibshirani et al., 2018) on the pooled data. Empirical
confidence intervals are constructed from 150 bootstrap resamples.

Figure 4 shows that our federated estimators closely match the centralized benchmark and ex-
hibit lower variance than Meta-SW, which in this application departs from the centralized esti-
mate. Among federated methods, Fed-MW is closest to the nonparametric centralized estima-
tor—reflecting its more flexible modeling of propensities and membership—whereas Fed-DW is
less stable, likely due to noisy per-site covariance estimates for a 17-dimensional Gaussian (⇓ 172

parameters) in small sites.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

We propose a theoretically grounded framework for federated causal inference that leverages mem-
bership weights to construct valid pseudo-populations across silos. These weights, estimated via
flexible parametric or nonparametric models, improve overlap and yield more stable ATE estimates,
without sharing raw data. Our framework accommodates heterogeneous local propensity score es-
timation strategies, supports external control arms, and remains robust to even extreme local treat-
ment–control imbalances. Although sufficiently large per-site datasets are still needed—particularly
in high-dimensional settings—our approach is especially well suited to a moderate number of large
silos, where FL most effectively increases effective sample size.

Promising avenues for future work include principled handling of site effects (i.e., relaxing As-
sumption 2) and extending our framework to CATE estimation. While the ATE remains central in
econometrics, biomedicine, and public policy, considering CATE is important for moving towards
personalization. Our work lays a foundation for federated CATE estimation: most learners (T-, S-,
X-, and R-learners) rely on nuisance quantities such as propensity scores, and our federated estima-
tion framework could be incorporated into these methods, although further work is needed to assess
its formal properties and practical performance.

9
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