
Fishers for Free? Approximating the Fisher Information Matrix
by Recycling the Squared Gradient Accumulator

YuXin Li 1 Felix Dangel 1 Derek Tam 1 Colin Raffel 1

Abstract
The diagonal of a model’s Fisher Information Ma-
trix (the “Fisher diagonal”) has frequently been
used as a way to measure parameter sensitivity.
Typically, the Fisher diagonal is estimated via
squared sampled gradients of the model’s likeli-
hood with respect to its parameters, averaged over
a few hundred or thousand examples – a process
which incurs nontrivial computational costs. At
the same time, adaptive gradient methods like the
ubiquitous Adam optimizer compute a moving
average of the squared gradient over the course of
training. This paper therefore explores whether
an approximation of the Fisher diagonal can be
obtained “for free” by recycling the squared gradi-
ent accumulator that has already been computed
over the course of training. Through a compre-
hensive set of experiments covering five applica-
tions of the Fisher diagonal, we demonstrate that
the “Squisher” (Squared gradient accumulator as
an approximation of the Fisher) consistently per-
forms similarly to the Fisher diagonal while out-
performing baseline methods. Additionally, we
clarify the exact differences between the Squisher
and the Fisher diagonal and provide empirical
quantification of their respective impact.

1. Introduction
The Fisher Information Matrix (FIM, Fisher, 1922) is a
fundamental concept in statistics, capturing how much in-
formation an observable random variable carries about an
unknown parameter. In machine learning, the FIM has
been widely used in optimization, particularly in Natural
Gradient Descent (NGD, Amari, 1998). Unlike standard
gradient-based methods, which update parameters using
the Euclidean gradient, NGD leverages the geometry from

1University of Toronto & Vector Institute. Correspondence to:
YuXin Li <lyx.li@mail.utoronto.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

the statistical manifold of likelihoods and scales updates
according to the parameter space’s curvature, informing us
about the “steepness” or “flatness” of the objective func-
tion at a given point in the parameter space (Karakida et al.,
2019). This has made the FIM a valuable tool for training
neural networks, improving stability and convergence speed
(Karakida & Osawa, 2020).

Beyond optimization, recent work has explored the use of
the FIM’s diagonal (the “Fisher diagonal”) as a measure
of parameter sensitivity (Ly et al., 2017), including appli-
cations in model sparsification (Theis et al., 2018), sparse
training (Sung et al., 2021), task similarity measurement
(Achille et al., 2019), continual learning (Kirkpatrick et al.,
2017), and model merging (Matena & Raffel, 2022; Daheim
et al., 2024). These applications leverage the fact that the
diagonal elements of the Fisher reflect each parameter’s
impact on the model output, when considering parameters
to be independent, providing a principled approach to un-
derstanding and modifying neural nets.

Despite its utility, computing the Fisher diagonal introduces
nontrivial computations beyond those for training. While
these costs are typically comparable to training on a few
hundred or a few thousand examples, the Fisher diagonal
requires computing, squaring, then summing per-example
gradients on sampled labels. Doing so efficiently is non-
trivial in most deep learning frameworks. While there exist
specialized solutions (Dangel et al., 2020; Osawa et al.,
2023), practitioners often resort to sequential gradient com-
putations (i.e. with a “batch size of one”), which sacrifices
parallelization opportunities. Additionally, computing the
Fisher diagonal requires access to training data that might
not be available – for example, trained models are frequently
released without their associated training data. We suspect
that these factors can hinder the adoption of methods that
require computing the Fisher diagonal – for example, Fisher
Merging (Matena & Raffel, 2022) is not implemented in the
ubiquitous mergekit library (Goddard et al., 2024), as it
does not support merging methods that require computing
gradients or accessing external data.

At the same time, modern neural networks are typically
trained using adaptive gradient methods such as Adam
(Kingma & Ba, 2014) that make use of an accumulator vari-

1

Fishers for Free?

Standard Fisher
1

N

N∑
n=1

Ep(y|xn,θ)

[
ĝnĝ

⊤
n

] Empirical Fisher
1
N

∑N
n=1 gng

⊤
n

Diagonal Fisher
1
N

∑N
n=1 g

2
n

Joint Fisher
1
N
Ep(y|Xn,θ)

[
(N ĝ)(N ĝ)⊤

]
ĝ = 1

N

∑
n ĝn

Joint empirical Fisher
1
N
(Ng)(Ng)⊤

g = 1
N

∑
n gn

Joint diagonal Fisher
1
N

(∑N
n=1 gn

)2

Squared grad. accumulators
v(t) = αv(t−1) + (1− α)(

1
N

∑N
n=1 g

(t)
n

)2

Squisher
Nv(t)

Undo
scale

Moving
average

Empirical
likelihood

Extract
diagonal

Joint
likelihood

Square
then
sum

Sum
then

square

Figure 1. The arrows represent various approximations of the Fisher Information Matrix. The central idea of the paper is highlighted
through the recycling symbol. Namely, we show that squared gradient accumulators can be used to approximate the Fisher diagonal
(details in Section 2). Terms in blue stem from using a loss function with mean reduction (1/NLsum), and should be omitted when using
sum reduction (Lsum). The per-sample gradients gn and “would-be” gradients ĝn are defined in Equations (3) and (5).

able to store an exponential moving average of the squared
gradient over training steps. The squared gradient accumu-
lator is at least superficially similar to the Fisher diagonal
in the sense that both compute some kind of average of
squared gradients. The fact that such accumulator variables
are available “for free” (i.e. without requiring any additional
computation) at the end of training, combined with the afore-
mentioned inconveniences of computing the Fisher, raises
a natural question for applications that use the Fisher as a
notion of parameter importance:

Can we recycle an optimizer’s squared gradient
accumulator to approximate the Fisher diagonal
for free?

The superficial similarities of the Fisher diagonal and
squared gradient accumulator suggest this could be trivially
possible, and indeed, past work like the paper introducing
Adam (Kingma & Ba, 2014) asserts without evidence that
the squared gradient accumulator “is an approximation to
the diagonal of the Fisher information matrix”. However, a
closer look reveals important subtleties. Our contribution is
to rigorously assess and empirically validate these nuances:

• We discuss the non-trivial connections between the
Fisher diagonal and squared gradient accumulators
from adaptive optimizers, highlighting important mod-
ifications that are necessary to successfully use them
in place of the Fisher (Section 2).

• We empirically validate the Squisher (squared gra-
dient accumulator in place of the Fisher) across six
settings spanning five key applications.We find that
the Squisher achieves comparable performance to the
Fisher diagonal and consistently outperforms the base-
line across all settings (Section 3). This motivates the
Squisher as a practical and efficient alternative that
eliminates the computational costs and inconvenience

of Fisher-based methods without sacrificing effective-
ness.

• We investigate the Squisher’s limitations and trade-offs,
providing a deeper understanding of when and why it
succeeds (Section 4).

On the whole, our work comprehensively establishes the
connections between the squared gradient accumulator and
the Fisher diagonal, paving the way for broader adoption of
Fisher-based techniques in deep learning.

2. Background & Motivation
Here we provide background on, and connect, the Fisher
diagonal and squared gradient accumulators (Figure 1).

2.1. The Fisher Information Matrix and its Variants

Standard Fisher Information Matrix For simplicity, we
first consider an unscaled loss of the form

Lsum(θ) :=

N∑
n=1

ℓ(f(xn,θ), yn), (1)

where f(·,θ) is a neural network with parameters θ that
processes a data point xn into a prediction which is then
scored by comparison with its label yn using a criterion
function ℓ. Also define the per-sample gradient gn :=
∇θℓ(f(xn,θ), yn). Later, we will add back the more com-
mon scaling and consider L(θ) = 1/NLsum(θ). The most
common loss functions in machine learning, like square or
softmax cross-entropy loss, permit the loss in Equation (1)
to be interpreted as a negative log likelihood for a random
variable y representing a target (Martens, 2020), and we can
define a per-example likelihood

p(y | x,θ) ∝ exp (−ℓ(f(x,θ), y)) . (2)

2

Fishers for Free?

Note the relation to the per-sample gradient when y = yn
and x = xn

−∇θ log p(yn | xn,θ)
(2)
= gn . (3)

The standard Fisher Information Matrix (FIM) is

Fstd(θ) :=

N∑
n=1

Eŷn∼p(y|xn,θ)

[
ĝnĝ

⊤
n

]
(4)

with “would-be” gradients

ĝn := −∇θ log p(ŷn | xn,θ) = ∇θℓ(f(xn,θ), ŷn) (5)

that require drawing labels ŷn from the model’s likelihood.

Empirical Fisher Information The empirical FIM re-
places the model’s likelihood with the empirical likelihood
implied by the data, p(y | xn,θ) → δ(y − yn). It consists
of per-sample gradients which do not require sampling:

F emp
std (θ) :=

N∑
n=1

Eŷn∼δ(y−yn)

[
ĝnĝ

⊤
n

]
=

N∑
n=1

gng
⊤
n . (6)

While past work has argued against using the empirical FIM
in second-order methods like NGD (Kunstner et al., 2019;
Thomas et al., 2020), it nevertheless remains popular in
applications where the FIM is being used as a measure of
parameter importance (e.g. Matena & Raffel, 2022; Theis
et al., 2018; Sung et al., 2021; Achille et al., 2019, inter alia)
due its lower computational costs. We therefore primarily
focus on the empirical FIM in this work.

Diagonals Our discussion so far was concerned with
Fisher information matrices, which are quadratic in the num-
ber of model parameters and therefore prohibitively large in
most deep learning applications. Hence, many applications
only compute and use the diagonal of the FIM. Note that for
a matrix that is a sum of rank one matrices, A =

∑
i viv

⊤
i ,

which is the case for all the Fisher flavors we previously dis-
cussed, the diagonal is diag(A) =

∑
i v

2
i where the square

is applied elementwise. This leads to simple expressions for
the standard diagonal Fisher:

diag(Fstd(θ)) =

N∑
n=1

Eŷn∼p(y|xn,θ)

[
ĝ2
n

]
and the empirical diagonal Fisher:

diag(F emp
std (θ)) =

N∑
n=1

g2
n (7)

where the square is elementwise.

2.2. Gradient Accumulators

Training deep neural networks is an ill-conditioned and non-
convex optimization problem (Dauphin et al., 2014; Saari-
nen et al., 1993). The size of typical datasets used in neural
network training also necessitates stochastic optimization
where different randomly sampled batches of data are used
at each training step (LeCun et al., 2002; Robbins & Monro,
1951). Consequently, most optimizers used in neural net-
work training incorporate some mechanism to provide adap-
tivity to noise and differences in parameter sensitivity (i.e.
differences in per-parameter gradient scale). One common
approach is to approximate the average squared gradient
for each parameter over the training steps. This squared
gradient estimate can then be used e.g. to normalize each
parameter update by a smoothed estimate of the gradient
magnitude.

Specifically, we focus on optimizers with a squared gradient
accumulator that takes the form of an exponential moving
average (EMA, Roberts, 1959) of squared gradients:1

v(t) = αv(t−1) + (1− α)

(
1

N

N∑
n=1

g(t)
n

)2

(8)

where α is a hyperparameter and g
(t)
n is the gradient vector

for training example n at training step t. This accumula-
tor mechanism, first introduced in 2012 through concur-
rent developments of RMSProp (Tieleman & Hinton, 2012)
and Adadelta (Zeiler, 2012), has become a fundamental
technique for adapting learning rates to stabilize training
dynamics. Apart from being used in the ubiquitous Adam
optimizer (Kingma & Ba, 2014) and its derivatives (AdamW
(Loshchilov, 2017), NAdam (Dozat, 2016), RAdam (Liu
et al., 2020), AdamP (Heo et al., 2021), etc.), it is also in-
cluded in FTRL (McMahan & Streeter, 2012), AMSGrad
(Reddi et al., 2018), QHM (Ma & Yarats, 2019), LAMB
(You et al., 2020), and many others (Schmidt et al., 2021).
In this work, we focus primarily on Adam and AdamW,
which represent the most commonly used optimizers in con-
temporary deep learning research.

2.3. The Squisher

Joint Fisher Note that both the standard and empirical
FIMs in Equations (4) and (6) require per-datum (would-
be) gradients to be squared then accumulated. This is in
contrast to the squared gradient accumulator of Equation (8),
which first aggregates the per-datum gradients, then squares
them. Lin et al. (2024) proposed a new Fisher matrix which
has a sum-then-square structure that is more compatible
with the structure of squared gradient accumulators. Instead
of modeling the label as single random variable y, they

1Here, we have already included a scaling factor of 1/N in the
loss and gradient, as we will later use this scenario in practice.

3

Fishers for Free?

consider a likelihood for a random vector of labels y =
(y1, y2, . . . , yN) jointly from inputs X = (x1, . . . ,xN) via

p(y | X,θ) =

N∏
n=1

p(yn | xn,θ) .

Their joint Fisher information matrix is

Fjoint(θ) := Eŷ∼p(y|Xn,θ)

[
ĝĝ⊤] (9)

with “would-be” gradients ĝ = −∇θ log p(ŷ | X,θ) =

−
∑N

n=1 ∇θ log p(ŷn | xn,θ) =
∑N

n=1 ĝn and ŷn = [ŷ]n.
As for the standard case, their joint empirical Fisher infor-
mation matrix follows by replacing the model’s likelihood
over the joint labels with the likelihood implied by the data,
p(y | X,θ) →

∏N
n=1 δ(yn − yn), which gives

F emp
joint (θ) := Eŷ∼

∏N
n=1 δ(yn−yn)

[
ĝĝ⊤] = gg⊤ (10)

with the empirical gradient g = −
∑N

n=1 ∇θ log p(yn |
xn,θ) =

∑N
n=1 ∇θℓ(f(xn,θ), yn) = ∇θLsum(θ). The

diagonal joint empirical FIM follows as

diag(F emp
joint (θ)) = g2 =

(
N∑

n=1

gn

)2

.

The key properties of the joint Fisher matrices in Equa-
tions (9) and (10) is that they are squares of sums, and not
sums of squares. This provides a theoretical motivation
that the square of aggregated gradients indeed corresponds
to the diagonal of a Fisher information matrix. In fact,
Lin et al. (2024) show that the joint and standard Fisher
coincide, Fjoint(θ) = Fstd(θ), and hence that both views—
standard and joint—lead to the same underlying Fisher.

Handling mini-batching Note that the joint Fisher’s dis-
tribution considers a vector of random variables whose size
equals the data set. When using only a subset of data, say
a mini-batch XB = (x1, . . . ,xB), we can consider the
mini-batch version of the joint Fisher, Fjoint(θ, B), which is
defined in terms of the marginal distribution p(yB | XB ,θ)
with yB = (y1, . . . , yB). Lin et al. (2024) show that
N/BFjoint(θ, B) is an unbiased estimation of Fjoint(θ). This
property allows us to estimate the Fisher on a larger data
set (as would be done when using the standard Fisher in
applications) from gradients evaluated on a smaller amount
of data (as would be done by an optimizer based on mini-
batch gradients). Importantly, this estimation is unbiased if
we sample labels from the model’s likelihood. This ensures
that mini-batching itself does not introduce bias in Fisher
estimation. However, when labels are replaced with their
empirical counterparts (e.g., ground truth labels), the result-
ing estimator becomes biased. Hence we can think of the
standard and joint empirical Fishers as two different biased

approximations of the same underlying Fisher. When using
batches, we can simply replace N by B in all expressions
that follow.

Handling averaged loss functions So far, we have as-
sumed an unscaled loss (1) in our discussion of Fishers.
However, most implementations use an average loss

L(θ) := 1

N

N∑
n=1

ℓ(f(xn,θ), yn) =
1

N
Lsum(θ) . (11)

Note that we cannot absorb the factor 1/N into the loss func-
tion ℓ and define ℓscaled = 1/Nℓ to reduce Equation (11) to
the form of Equation (1), because only ℓ, but not ℓscaled,
corresponds to a probability density via Equation (2). There-
fore, we will keep the 1/N factor separate and use the RHS
of Equation (11), which means we can re-use the standard
Fisher matrices that are defined in terms of the unscaled loss
Lsum and scale them by 1/N. Rescaling the joint empirical
Fisher matrix from Equation (10), we get

1

N
gg⊤ =

1

N
N∇θL(θ) (N∇θL(θ))⊤

= N∇θL(θ)(∇θL(θ))⊤ .

In the diagonal Fisher case, we have

N∇θL(θ)2 = N

(
1

N

N∑
n=1

gn

)2

. (12)

In practise, re-scaling is often unnecessary as many applica-
tions are invariant under scaling the Fisher (Section 3).

Recycling the squared gradient accumulator The term
in the parenthesis on the RHS of Equation (12) is exactly the
quantity whose EMA is computed by the squared gradient
accumulator of Equation (8). This leads us to a clear path
for using the Squisher, i.e. the squared gradient accumulator,
as an approximation of the Fisher. Specifically, compared
to the Fisher (i.e. the diagonal of the empirical FIM, as com-
monly used as a measure of parameter importance), the
Squisher squares the average gradient over a training batch
rather than computing the sum of gradients over an arbi-
trary collection of datapoints. The Squisher therefore more
closely relates to the diagonal of the joint empirical FIM. In
addition, the squaring of the average gradient introduces a
factor of N difference in scale as in Equation (12).

Separately, the Squisher is computed using an EMA of mini-
batch gradients. The EMA coefficient α is typically tuned
to improve training convergence and therefore might not
reflect the best value for approximating the Fisher. For ex-
ample, the default value of α in Adam (where it is referred
to as β2) is 0.999, which results in v(t) containing nontrivial
contributions from a long history of gradients – the time

4

Fishers for Free?

constant, i.e. the number of steps to reach a rescaling of
1− 1/e ≈ 63%, is about 10,000 steps. Averaging over such
a long history both introduces contributions from gradients
computed with respect to “old” parameter values and also
results in a biased estimate of the corresponding joint em-
pirical Fisher computed over all of the data the model has
been trained on (Lin et al., 2024).

3. Experiments
The above discussion reveals a clear way to relate the
squared gradient accumulator to a Fisher, but this relation
involves various nontrivial approximations. We therefore
turn to exploring whether these approximations are prob-
lematic through an empirical study covering a wide range
of six settings where the Fisher is used, which we outline
below. We emphasize that our goal is not to show that either
the Fisher or the Squisher is “better” across all of these
settings, but rather to test whether or not the approximations
made in formulating the Squisher result in differences in
performance compared to using the Fisher itself. To ensure
reliable results, we base all of our experiments on prior im-
plementations. In most cases, these implementations used
either Adam or AdamW for optimization and therefore lent
themselves straightforwardly to using the Squisher. We
additionally always compare to a “Fisher-free” baseline,
i.e. a method that does not involve computing the Fisher
and therefore no additional computational costs (like the
Squisher). Our high-level results are shown in Figure 2;
complete fine-grained results are provided in Appendix A.1.

Naming: As the empirical diagonal standard Fisher
from Equation (7) is the standard choice as a notion
of parameter importance in many applications (Matena
& Raffel, 2022; Theis et al., 2018; Sung et al., 2021;
Achille et al., 2019), we will drop all prefixes and simply
refer to it as the “Fisher” from now on.

3.1. Fisher Merging

Model merging aims to cheaply combine individual models
into a single model that inherits their capabilities (Utans,
1996; Singh & Jaggi, 2020). Fisher merging (Matena &
Raffel, 2022) formulates merging as maximizing the joint
likelihood of the individual models’ posterior distributions
over parameters. To do so, Fisher merging uses the Laplace
approximation (MacKay, 2003), where the Fisher is the
precision matrix of a Gaussian approximation to this poste-
rior. Fisher Merging then uses a closed-form solution to the
likelihood maximizing problem:

θ̂ =

(
M∑
i=1

Fi

)−1(M∑
i=1

Fiθi

)
(13)

where Fi and θi are the Fisher and parameters of model i
out of M models being merged. Equation (13) corresponds
to parameter averaging where parameters with higher cor-
responding values in the Fisher are given a higher weight
when averaging. Noting that Equation (13) is invariant
to rescaling all Fi by the same constant, using either the
Squisher (Nv(t)) or the squared gradient accumulator (v(t))
as Fisher proxies yields the same merge.

Setup We directly follow Tam et al. (2024) and merge
eight variants of T5-Large-LM-Adapt (Raffel et al., 2020;
Lester et al., 2021) that were fine-tuned on text datasets that
have been shown to produce performant multitask models
(Zhou et al., 2022). Performance is measured as the aver-
age accuracy of the merged model on held-out data from
the eight datasets used to fine-tune the individual models.
As Fisher-free baseline, we use simple parameter averag-
ing (Utans, 1996; Wortsman et al., 2022). For further exper-
imental details, please see Tam et al. (2024, Section 6.2).

Results Average performance of the Fisher, Squisher, and
unweighted parameter averaging are shown in Figure 2.
Overall, we found Squisher merging performed consider-
ably better than Fisher merging. We don’t interpret this
to mean that the Squisher is “better”, but rather that it is
due to the inherent instability in multitask merging (Tam
et al., 2024; Yadav et al., 2024; Ilharco et al., 2022). Since
both the Fisher and Squisher work significantly better than
the Fisher-free baseline, we conclude that both provide a
reliable estimate of parameter importance. Additionally,
we found that Squisher merging performance could suffer
if the fine-tuned models were not fully trained, likely be-
cause the squared gradient accumulator had not observed
sufficient training steps. We explore this factor further in
Appendix A.2.

3.2. Model Merging by Uncertainty-Based Gradient
Matching (UBGM)

Daheim et al. (2024) uncover that “gradient mismatch”
arises when merging models that fall in disparate regions
of the loss landscape, potentially leading merged models
to fall in high-loss areas, thereby degrading merging per-
formance. Daheim et al. (2024) therefore aim to mitigate
gradient mismatch by aligning parameter updates with the
optimization trajectories of the individual models. Specif-
ically, given a base model with weights θ0 and Fisher F0,
and M fine-tuned models with weights θi and Fishers Fi

for i ∈ {1, . . . ,M}, the parameters of the merged model θ̂
are given by

θ̂ = θ0+

(
F0 +

M∑
i′=1

Fi′

)−1(M∑
i=1

(F0 + Fi)(θi − θ0)

)
.

5

Fishers for Free?

45

50

55

60

A
ve

ra
ge

 a
cc

ur
ac

y

Fisher Merging

93

94

A
ve

ra
ge

 a
cc

ur
ac

y

UBGM Merging

56

58

60

62

64

66

A
cc

ur
ac

y

Fisher Pruning

70

75

80

85

A
ve

ra
ge

 A
cc

ur
ac

y

FISH Mask

10

20

30

40

50

M
R

R
 (

×
10

0
)

Task Embedding

55

60

65

70

75

80

A
cc

ur
ac

y

Continual Learning

Fisher Squisher Fisher-free baseline

Figure 2. Performance of the Fisher, our proposed Squisher (i.e. using the squared gradient accumulator in place of the Fisher), and an
applicable Fisher-free baseline across all of the settings we consider. Across all settings, the Squisher performs comparably to the Fisher
and outperforms the Fisher-free baseline.

As with Fisher merging, the Squisher simply replaces Fi

with the corresponding model’s squared gradient accumula-
tor at the end of training.

Setup We exactly replicate the setup of Daheim et al.
(2024) and consider the experiments focused on merging
fine-tuned variants of RoBERTa (Liu et al., 2019) on four
standard text classification tasks. As for Fisher merging, we
measure performance in terms of average accuracy on the
individual tasks. Daheim et al. (2024) use AdamW for fine-
tuning, and we re-use their squared gradient accumulator
without modification. Further experimental details are pro-
vided in Daheim et al. (2024, section 4.3). Like the previous
merging setting, we use parameter averaging as baseline.

Results High-level results are shown in Figure 2. In the
UBGM Merging setting, we found that the Squisher per-
formed similarly to Fisher. Interestingly, parameter averag-
ing is a relatively strong Fisher-free baseline in this setup,
though both Fisher- and Squisher-based UBGM merging
outperform it slightly. Therefore, we consider their perfor-
mance to be comparable in both settings.

3.3. Fisher Pruning

Pruning aims to convert a standard neural network into a
“sparse” network where most of the weights are zero (LeCun
et al., 1989; Hassibi & Stork, 1992). Theis et al. (2018)
formulate pruning as eliminating the parameters that least
impact the loss. Given a neural net trained to convergence
at θ⋆, the optimal perturbation θ̃ = θ⋆ + δ(i), such that
[θ̃]i = 0 with minimal increase (ρ) of the loss is given by

δ(i) =
−[θ]iF (θ⋆)−1ei
[F (θ⋆)−1]i,i

, ρ(δ(i)) =
[θ⋆]2i

2[F (θ⋆)−1]i,i
,

with ei the canonical i-th basis vector. Assuming a di-
agonal Fisher produces the pruning statistics ρ(δ(i)) =
[θ⋆]2i [F (θ⋆)]i,i/2. Theis et al. (2018) then retain the param-
eters corresponding to the k leading pruning statistics.

Setup We base our Fisher pruning experiments on the
re-implementation of Lubana et al. (2020). Specifically, we

focus on an experiment described in Section 5.3 of Lubana
et al. (2020), which involves pruning a VGG-13 (Simonyan,
2014) network trained on CIFAR-100 (Krizhevsky et al.,
2009). Lubana et al. (2020) originally used vanilla stochastic
gradient descent for training; we therefore modified the
implementation to use Adam and tuned hyperparameters to
ensure comparable results. Since Fisher pruning retains the
top-k parameters, it is insensitive to global rescaling and we
can therefore use the squared gradient accumulator as-is for
the Squisher. As a Fisher-free baseline, we consider pruning
parameters at random.

Results We present the results for pruning 75% of the
model parameters (i.e. reducing the model to 25% of its
original size) in Figure 2 and include additional results for
25% and 50% in Appendix A.1. Across all pruning levels,
we find that Squisher pruning slightly underperforms Fisher
pruning but performs much better than baseline pruning
with a random mask.

3.4. FISH Mask

Sung et al. (2021) consider sparse training and fine-tuning,
i.e. updating only a small subset of a model’s parameters
during training. They propose FISH Mask, which uses the
Fisher to choose which parameters to update during training.
Specifically, the k parameters to update are selected based
on their importance measured by the Fisher diagonal:

{[θ]i | [F (θ)]i,i ≥ sort(diag(F (θ)))k}.

With the Squisher, we instead update only those parameters
with the k largest values in the squared gradient accumulator.
As with Fisher pruning, we use random masking as Fisher-
free baseline.

Setup We focus on the BERT-Large (Devlin et al., 2019)
fine-tuning setting described in Section 4.1 of Sung et al.
(2021), which uses the FISH mask to reset parameters
of fine-tuned models back to the pre-trained values (i.e.
their values before fine-tuning). Specifically, 50% of the
model’s weights are masked, and the remaining 50% are
reset to their pre-trained values rather than retaining their

6

Fishers for Free?

fine-tuned values. Fine-tuned, masked models are sepa-
rately trained and evaluated on nine datasets from the GLUE
benchmark (Wang et al., 2018). Full details are available
in Sung et al. (2021).

Results As shown in Figure 2, the Fisher and Squisher
attain extremely similar performance when used in the FISH
Mask setting. Combined with our previous finding for prun-
ing, this result suggests that the squared gradient accumula-
tor provides a reliable way to rank parameter importance.

3.5. Task Embedding

The Task2Vec embedding represents tasks as points in a
vector space in which the distance aims to capture task
similarity (Achille et al., 2019). Task2Vec embeddings are
computed using the Fisher of a model trained on a given task
and averaging the values across parameter “groups” (e.g.
weight matrices). This vector approximates how sensitive
different parameters are to some particular task. Task2Vec
has been shown to be useful for predicting task similarities,
such as semantic or taxonomic relations, and for determin-
ing which tasks are best suited for knowledge transfer (Vu
et al., 2020), i.e. whether training on task a before training
on task b can improve performance on task b. Specifically,
the cosine similarity between task vectors Fa and Fb is

dsim(Fa,Fb) = dcos
(
(Fa + Fb)

−1Fa, (Fa + Fb)
−1Fb

)
and is used to predict task transferability, i.e. tasks with more
similar task vectors are predicted as being more amenable
to knowledge transfer. Since cosine distance is invariant
to rescaling, to use the Fisher we simply replace Fa and
Fb with the squared gradient accumulators from the corre-
sponding models.

Setup We consider the setting from Vu et al. (2020), who
use Task2Vec to predict task transferability for intermediate-
task training (Phang et al., 2018; Pruksachatkun et al., 2020).
Specifically, Vu et al. (2020) experiment with predicting
the best intermediate task for fine-tuning BERT (Devlin
et al., 2019) on a wide range of datasets. We focus on
the 22 classification, regression, and question-answering
datasets. Since the original fine-tuned models were not
released by Vu et al. (2020), we re-fine-tuned BERT on
each dataset using the AdamW optimizer. As a Fisher-free
baseline, we use the simple and effective heuristic of ranking
datasets in terms of their size (because larger datasets tend to
be more beneficial for intermediate-task transfer (Vu et al.,
2020)). We evaluate each ranking method based on its mean
reciprocal rank (Voorhees et al., 1999) which measures how
a given embedding method tends to rank the best dataset for
intermediate-task transfer.

Results As seen in Figure 2, the Squisher-based task em-
bedding produced a better mean reciprocal rank than the
Fisher-based one; both outperformed the dataset size heuris-
tic. This trend held across both classification/regression and
question-answering datasets. This confirms that the squared
gradient accumulator’s values can be used as a reliable mea-
sure of task similarity.

3.6. Elastic Weight Consolidation

Continual learning faces the challenge of catastrophic for-
getting, where artificial neural networks forget previously
learned tasks when training on new tasks. Elastic Weight
Consolidation (EWC, Kirkpatrick et al., 2017) aims to mit-
igate catastrophic forgetting by using the Fisher to avoid
changes to model parameters that have a high influence on
the performance of previously seen tasks. Specifically, EWC
introduces a regularization term that rescales the squared
difference between the current parameter value θ and the
learned values from the previous task(s) θ̂ by the Fisher F
from the previous task:

LEWC(θ) =
λ

2
(θ − θ̂)⊤F (θ − θ̂) . (14)

Setup We focus on task-incremental learning for this
study, since EWC has been shown to have poor perfor-
mance on domain- and class-incremental learning (van de
Ven & Tolias, 2019). Task-incremental learning happens
when the context identity is known during training, and
the model must incrementally learn a set of distinct tasks
(Ruvolo & Eaton, 2013). We consider three standard bench-
marks for this setting: split MNIST, a split of the origi-
nal MNIST dataset into five contexts with two digits each
(Shin et al., 2017); permuted MNIST, an additional variant
of MNIST transformed by applying a fixed, random pixel
permutation to each task (Zenke et al., 2017); and split CI-
FAR100, similarly split into ten contexts with ten classes
each (Krizhevsky, 2009). We use an MLP with 478,410
parameters for split MNIST, a larger MLP with 2,126,100
parameters for Permuted MNIST, and a 5-layer CNN with
393,088 parameters for split CIFAR-100. For each proto-
col, we replaced the Fisher with the Squisher in the EWC
regularizer.

Unlike in previous settings, rescaling the Squisher does
change the learning behavior in this setting as it modifies
the regularization strength. For EWC, we found that scaling
the Squisher computed on batches of size B by N provided
best performance, where N is the data set size on which the
original Fisher was computed. Although we lack a formal
theoretical justification, this serves as a useful heuristic, i.e.,
one can start with setting λSquisher = NλFisher, and sweep
over parameters around this value in a grid search. In prac-
tice, when training EWC from scratch, λFisher is unknown
and must be tuned regardless, so using the Squisher does

7

Fishers for Free?

not introduce any additional tuning burden. We discuss
the importance of adjusting the scaling in Section 4. As
a Fisher-free baseline, we incrementally train the model
without regularization.

Results When used in EWC for continual learning, we
find that the Squisher performs slightly better than the Fisher
across all three continual learning setups (Figure 2 shows
results for CIFAR100; results for other protocols are avail-
able in Appendix A.1). Using either the Squisher or the
Fisher worked significantly better than using no parameter-
wise rescaling (i.e. the identity matrix instead of the Fisher
in Equation (14)), suggesting again that the Squisher does
capture a reliable notion of parameter importance.

3.7. Summary

Across all of the diverse experimental settings we consider,
replacing the Fisher with the Squisher had little impact on
performance. While performance degraded marginally in
Fisher pruning, it improved in Fisher merging, and was
almost identical for the other settings.

In all cases, both the Fisher and Squisher significantly out-
performed relevant Fisher-free baselines. This validates that
the approximations made when going from the Fisher to the
Squisher do not significantly impact performance – at least
when using diagonal approximations, as is common practise.
More broadly, we can confirm that the Squisher meaning-
fully reflects the importance of a model’s parameters to a
similar extent to the Fisher.

We want to emphasize that our goal is not to claim that
Squisher is inherently superior or inferior to Fisher. The
performance differences are problem-dependent and influ-
enced by training trajectories, but overall remain small rela-
tive to baseline performance. These differences are largely
attributable to noise within the setting, rather than any fun-
damental distinction between the two approaches. This is
further explained in Appendix A.2.

3.8. Runtime Analysis

The central motivation of this paper is to obtain Fishers for
free. The time required to compute the Fisher varies with
the model, dataset, and experimental setting; corresponding
runtimes are reported in Table 1. In contrast, computing the
Squisher incurs virtually no cost, as it simply involves load-
ing pre-computed values and, in the case of EWC, applying
a scaling factor. Across all settings, Squisher’s runtime re-
mains below 0.1 seconds, and under 1 second for EWC. A
detailed breakdown of computation costs across datasets is
provided in Appendix A.3.

Table 1. Time (in seconds) it took to calculate the Fisher for the
settings considered. The Squisher is for free, up to the cost of
loading the pre-computed optimizer statistics from disk.

SETTING TIME (S)

FISHER MERGING 2.93 · 104
UBGM 4.36 · 102
FISHER PRUNING 2.52
FISH MASK 6.98 · 102
TASK EMBEDDING 5.19 · 104
EWC 1.25 · 103

4. Ablation Experiments
When relating the squared gradient accumulator to the
Fisher in Section 2.3, we highlighted various approxima-
tions made. Although our results from Section 3 confirm
that these approximations generally do not harm perfor-
mance, we would still like to untangle each of their impacts.

To do so, we run a series of ablation experiments in the
continual learning setting from Section 3.6. We chose con-
tinual learning as it was the only setting where results were
dependent on appropriately rescaling the Squisher.2

Squared gradient accumulator without rescaling To
measure the importance of rescaling the squared gradient
accumulator (as described in Section 2.3), we measure per-
formance when using the squared gradient accumulator di-
rectly without tuning the λ term in Equation (14). As can be
seen in Table 2, not tuning the value and using the default
from Fisher provides suboptimal results.

Changing the exponential moving average From the re-
sults of Fisher merging, we observed that Squisher’s perfor-
mance could degrade if the fine-tuned models were not fully
trained, likely because the squared gradient accumulator
had not been exposed to enough training steps. We address
this effect by reducing β2 in Adam, which decreases the
emphasis on past squared gradients and places more weight
on recent gradients. The optimal setting aligns with the
default AdamW value of 0.999, while performance degra-
dation was observed at 0.95. Importantly, our intent is not
to tune β2 for Squisher; rather, we examine whether any
standard optimizer hyperparameters can serve as drop-in
approximations for the Fisher. We recommend using the β2

that best supports optimization. Notably, even with unusu-
ally low values of β2, the Squisher continued to outperform
the baseline, highlighting that Squisher remains effective as
long as conventional training settings are used.

2Note that some of the ablation conclusions do not hold for
split MNIST, likely due to the simplicity of the setting.

8

Fishers for Free?

Table 2. Results from the ablation experiment settings, averaged
over 5 trials.

FISHER SQUISHER
SQUISHER

β2 = 0.95 JOINT
W/O NORM.

SPLITM 99.59 98.59 98.85 98.66 99.46
PERMM 94.55 94.47 92.05 93.37 95.59
SPLITC 75.96 75.30 61.53 72.80 75.38

Diagonal joint empirical FIM The squared gradient accu-
mulator uses a moving average of gradients over the course
of training, whereas FIMs compute an explicit sum of gradi-
ents at the end of training. To measure the importance of this
difference, we explicitly square the sum of per-example gra-
dients (i.e. we turn off the moving average in the Squisher),
shown in Table 2 as JOINT. We see that its performance
values are close to FISHER, suggesting the joint Fisher is a
useful approximation.

5. Related Work
To the best of our knowledge, there has been no prior
work investigating whether the squared gradient accumu-
lator can reliably be used as a measure of parameter im-
portance in place of the Fisher. However, there has been
ongoing research on more directly connecting adaptive op-
timizers to second-order optimization. One such example
is IVON (Shen et al., 2024), an extension of Adam that
approximates the Hessian via weight perturbations. Notably,
similar to our goal, IVON demonstrates that its accumulated
statistics can serve as a substitute for the FIM in model
merging tasks. However, unlike this work, using IVON’s
statistics involve a nontrivial deviation from what is cur-
rently standard practice for training neural networks.

Similarly, the AdaFisher optimizer (Gomes et al., 2024)
replaces Adam’s second-moment estimation with a novel
block-diagonal approximation of the FIM. This approach
yields improved performance, emphasizing the richness of
the FIM compared to the squared gradient moving average.
As with IVON and the Squisher, recycling the statistics
produced by AdaFisher or FAdam could yield a similarly
effective replacement for the Fisher.

FAdam is another optimizer that leverages the empirical
FIM (Hwang, 2024). The authors reinterpret the second-
order moment in Adam through the lens of the diagonal
Fisher, and propose a modified optimizer to address its limi-
tations. While their work offers valuable insights into the
relationship between natural gradient methods and adaptive
optimization, it lacks a full theoretical proof and compre-
hensive empirical analysis.

BackPACK (Dangel et al., 2020) is a library that enables effi-

cient computation of per-sample gradients and second-order
quantities like the empirical Fisher diagonal by extending
the backward pass of neural networks. While more efficient
than naı̈ve for-loop approaches, it still introduces additional
overhead, requires code changes, and lacks full architectural
support. For instance, it does not support layer normaliza-
tion. As a result, the for-loop approach remains common
in Fisher-based methods. In contrast, the Squisher intro-
duces no extra cost or code modifications, as it reuses the
squared gradient accumulator already present in optimiz-
ers like Adam (Kingma & Ba, 2014), making it universally
supported without these limitations.

6. Conclusion
In this paper, we present a novel technique, the Squisher,
that serves as a free approximation for the diagonal Fisher in
various Fisher-based methods. The Squisher uses gradient
accumulators that are readily available during training to
provide an estimate of the Fisher, thereby alleviating the
costs associated with calculating the Fisher. We motivate
this by formulating the empirical Fisher as a joint Fisher,
and hence show its parallels with gradient accumulators.
We implement the Squisher as a direct replacement for the
Fisher in settings where only the relative importance of pa-
rameters matters, and apply a rescaling term in contexts
where the magnitude of values is consequential. We show
that the Squisher had comparable performance to the Fisher
across five settings, and had significant improvements from
the baselines. We further discuss the impact of the approxi-
mations we made by considering several variants.

In future work, we can explore advanced optimizers
which use gradient accumulators that approximate the non-
diagonal Fisher, and whether that leads to better perfor-
mance. Another direction is to maintain a moving average
of the Fisher over time, analogous to the exponential moving
average used in adaptive optimizers, rather than computing
it at a single post-training point. Although impractical dur-
ing real training, it may be interesting to explore whether
it offers better approximations for the true Fisher. By re-
ducing the computational burden of Fisher-based methods,
this work advances the democratization of deep learning
research. Furthermore, it is currently not common practice
to share optimizer weights. However, we hope this will en-
courage the community to share full training configurations,
hyperparameters, and optimizer state dicts, fostering more
reproducible and inclusive machine learning research.

Acknowledgements
Resources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Insti-

9

Fishers for Free?

tute. We would like to thank Reviewer WT93 for helping
us formalize the equivalence between the standard and joint
Fisher. This clarification strengthens our motivation to in-
terpret the standard empirical Fisher and Squisher as two
distinct empirical approximations of the same underlying
Fisher information.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji,

S., Fowlkes, C. C., Soatto, S., and Perona, P. Task2vec:
Task embedding for meta-learning. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 6430–6439, 2019.

Amari, S.-I. Natural gradient works efficiently in learning.
Neural Computation, 10(2):251–276, 1998.

Daheim, N., Möllenhoff, T., Ponti, E., Gurevych, I., and
Khan, M. E. Model merging by uncertainty-based gradi-
ent matching. In The Twelfth International Conference
on Learning Representations, 2024.

Dangel, F., Kunstner, F., and Hennig, P. BackPACK: Pack-
ing more into backprop. In International Conference on
Learning Representations (ICLR), 2020.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-
guli, S., and Bengio, Y. Identifying and attacking the
saddle point problem in high-dimensional non-convex op-
timization. Advances in Neural Information Processing
Systems, 27, 2014.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics, 2019.

Dozat, T. Incorporating nesterov momentum into adam,
2016. ICLR Workshop.

Fisher, R. A. On the mathematical foundations of theoret-
ical statistics. Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Math-
ematical or Physical Character, 222(594-604):309–368,
1922.

Goddard, C., Siriwardhana, S., Ehghaghi, M., Meyers, L.,
Karpukhin, V., Benedict, B., McQuade, M., and Solawetz,

J. Arcee’s mergekit: A toolkit for merging large language
models. arXiv preprint arXiv:2403.13257, 2024.

Gomes, D. M., Zhang, Y., Belilovsky, E., Wolf, G., and
Hosseini, M. S. Adafisher: Adaptive second order
optimization via fisher information. arXiv preprint
arXiv:2405.16397, 2024.

Hassibi, B. and Stork, D. Second order derivatives for
network pruning: Optimal brain surgeon. In Advances in
Neural Information Processing Systems (NIPS), 1992.

Heo, B., Chun, S., Oh, S. J., Han, D., Yun, S., Kim, G., Uh,
Y., and Ha, J.-W. Adamp: Slowing down the slowdown
for momentum optimizers on scale-invariant weights,
2021.

Hwang, D. Fadam: Adam is a natural gradient optimizer us-
ing diagonal empirical fisher information. arXiv preprint
arXiv:2405.12807, 2024.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururangan, S.,
Schmidt, L., Hajishirzi, H., and Farhadi, A. Editing mod-
els with task arithmetic. arXiv preprint arXiv:2212.04089,
2022.

Karakida, R. and Osawa, K. Understanding approximate
fisher information for fast convergence of natural gradient
descent in wide neural networks. Advances in neural
information processing systems, 33:10891–10901, 2020.

Karakida, R., Akaho, S., and Amari, S.-i. Universal statistics
of fisher information in deep neural networks: Mean
field approach. In The 22nd International Conference
on Artificial Intelligence and Statistics, pp. 1032–1041.
PMLR, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. 2009.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, University
of Toronto, 2009.

Kunstner, F., Hennig, P., and Balles, L. Limitations of
the empirical fisher approximation for natural gradient
descent. Advances in Neural Information Processing
Systems, 32, 2019.

10

Fishers for Free?

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
Advances in neural information processing systems, 2,
1989.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. Effi-
cient backprop. In Neural networks: Tricks of the trade,
pp. 9–50. Springer, 2002.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Lin, W., Dangel, F., Eschenhagen, R., Bae, J., Turner, R. E.,
and Makhzani, A. Can we remove the square-root in adap-
tive gradient methods? a second-order perspective. In
International Conference on Machine Learning (ICML),
2024.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the variance of the adaptive learning rate
and beyond. In International Conference on Learning
Representations, 2020.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Lubana, E. S., Trivedi, P., Hougen, C., Dick, R. P., and Hero,
A. O. Orthoreg: Robust network pruning using orthonor-
mality regularization. arXiv preprint arXiv:2009.05014,
2020.

Ly, A., Marsman, M., Verhagen, J., Grasman, R. P., and
Wagenmakers, E.-J. A tutorial on fisher information.
Journal of Mathematical Psychology, 80:40–55, 2017.

Ma, J. and Yarats, D. Quasi-hyperbolic momentum and
adam for deep learning. In International Conference on
Learning Representations, 2019.

MacKay, D. J. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

Martens, J. New insights and perspectives on the natural
gradient method, 2020.

Matena, M. S. and Raffel, C. A. Merging models with fisher-
weighted averaging. In Advances in Neural Information
Processing Systems, 2022.

McMahan, H. B. and Streeter, M. Adaptive bound optimiza-
tion for online learning and stochastic optimization. In
International Conference on Machine Learning (ICML),
2012.

Osawa, K., Ishikawa, S., Yokota, R., Li, S., and Hoefler, T.
Asdl: A unified interface for gradient preconditioning in
pytorch, 2023.

Phang, J., Févry, T., and Bowman, S. R. Sentence encoders
on stilts: Supplementary training on intermediate labeled-
data tasks. arXiv preprint arXiv:1811.01088, 2018.

Pruksachatkun, Y., Phang, J., Liu, H., Htut, P. M., Zhang,
X., Pang, R. Y., Vania, C., Kann, K., and Bowman, S. R.
Intermediate-task transfer learning with pretrained mod-
els for natural language understanding: When and why
does it work? arXiv preprint arXiv:2005.00628, 2020.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1), 2020.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. In International Conference on
Learning Representations, 2018.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, 1951.

Roberts, S. Control chart tests based on geometric moving
averages. Technometrics, 42(1), 1959.

Ruvolo, P. and Eaton, E. ELLA: An efficient lifelong learn-
ing algorithm. In Dasgupta, S. and McAllester, D. (eds.),
Proceedings of the 30th International Conference on Ma-
chine Learning, volume 28 of Proceedings of Machine
Learning Research, pp. 507–515, Atlanta, Georgia, USA,
17–19 Jun 2013. PMLR.

Saarinen, S., Bramley, R., and Cybenko, G. Ill-conditioning
in neural network training problems. SIAM Journal on
Scientific Computing, 14(3), 1993.

Schmidt, R. M., Schneider, F., and Hennig, P. Descend-
ing through a crowded valley-benchmarking deep learn-
ing optimizers. In International Conference on Machine
Learning, 2021.

Shen, Y., Daheim, N., Cong, B., Nickl, P., Marconi, G. M.,
Bazan, C., Yokota, R., Gurevych, I., Cremers, D., Khan,
M. E., et al. Variational learning is effective for large
deep networks. arXiv preprint arXiv:2402.17641, 2024.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay, 2017.

Simonyan, K. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

11

Fishers for Free?

Singh, S. P. and Jaggi, M. Model fusion via optimal trans-
port. Advances in Neural Information Processing Systems,
33, 2020.

Sung, Y.-L., Nair, V., and Raffel, C. Training neural net-
works with fixed sparse masks. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Tam, D., Bansal, M., and Raffel, C. Merging by matching
models in task parameter subspaces. Transactions on
Machine Learning Research, 2024.

Theis, L., Korshunova, I., Tejani, A., and Huszár, F. Faster
gaze prediction with dense networks and fisher pruning.
arXiv preprint arXiv:1801.05787, 2018.

Thomas, V., Pedregosa, F., van Merriënboer, B., Manzagol,
P.-A., Bengio, Y., and Roux, N. L. On the interplay
between noise and curvature and its effect on optimiza-
tion and generalization. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2020.

Tieleman, T. and Hinton, G. Lecture 6.5—rmsprop: Divide
the gradient by a running average of its recent magnitude,
2012. Coursera: Neural Networks for Machine Learning.

Utans, J. Weight averaging for neural networks and local re-
sampling schemes. In AAAI-96 Workshop on Integrating
Multiple Learned Models, 1996.

van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning, 2019.

Voorhees, E. M., Tice, D. M., et al. The trec-8 question
answering track evaluation. In TREC, volume 1999, pp.
82, 1999.

Vu, T., Wang, T., Munkhdalai, T., Sordoni, A., Trischler, A.,
Mattarella-Micke, A., Maji, S., and Iyyer, M. Exploring
and predicting transferability across nlp tasks. arXiv
preprint arXiv:2005.00770, 2020.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
2018.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time. In
International Conference on Machine Learning, 2022.

Yadav, P., Tam, D., Choshen, L., Raffel, C., and Bansal,
M. Ties-merging: Resolving interference when merging

models. Advances in Neural Information Processing
Systems, 36, 2024.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. In International Conference on Learning
Representations, 2020.

Zeiler, M. D. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence, 2017.

Zhou, J., Lin, Z., Zheng, Y., Li, J., and Yang, Z. Not all
tasks are born equal: Understanding zero-shot generaliza-
tion. The Eleventh International Conference on Learning
Representations, 2022.

12

Fishers for Free?

A. Appendix
A.1. Full Results

We show the full results of all six settings as described in Section 3.

Fisher Merging

Table 3. FISHER and SQUISHER represent the corresponding performance of the original and proposed method. LINEAR is the unweighted
averaging baseline.

DATASET FISHER SQUISHER LINEAR

COSMOS QA 61.0 50.7 39.4
PAWS 50.7 50.4 48.0
QASC 73.7 85.9 77.1
QUAIL 57.2 60.7 43.2
QUARTZ 54.6 61.1 59.3
ROPES 12.6 36.1 45.1
SOCIAL IQA 68.7 61.0 48.0
WIKI QA 50.1 58.1 27.6

AVERAGE 53.6 58.0 48.5

Model Merging by Uncertainty-Based Gradient Matching

Table 4. FISHER refers to the accuracies using the original method, while SQUISHER represents the accuracies achieved with our proposed
estimation technique, and LINEAR is the unweighted averaging baseline. AVERAGE is the direct average across datasets, while TRUE

AVERAGE takes into account the number of data samples per dataset.

DATASET FISHER SQUISHER LINEAR

IMDB 93.67 94.48 94.32
YELP 97.05 97.23 96.73
RT 89.68 89.02 89.02
SST2 93.58 92.78 93.35
AMAZON 95.97 96.47 95.97

AVERAGE 93.99 94.00 93.88
TRUE AVERAGE 95.91 96.40 95.92

Fisher Pruning

Table 5. Pruning is applied to achieve three different target percentages, with each prune percentage–method pair averaged over five seeds.
FISHER, SQUISHER, and RANDOM represent the accuracy of their respective pruning methods.

METHOD FISHER SQUISHER RANDOM

25% 67.0 66.7 65.9
50% 66.9 65.9 64.0
75% 64.8 63.9 58.8

13

Fishers for Free?

FISH Mask

Table 6. GLUE test results with BERT-Large using a FISH mask with a sparsity of 0.50%. FISHER, SQUISHER, and RANDOM represent
the accuracy of their respective masking methods.

TASK FISHER SQUISHER RANDOM

COLA 56.5 58.8 33.5
MNLIm 85.2 85.5 80.0
MNLImm 85.7 85.8 81.3
MRPC 85.5 85.9 76.8
QNLI 93.4 93.1 84.4
QQP 87.3 87.1 83.1
RTE 67.1 65.0 60.6
SST-2 92.5 92.3 88.9
STS-B 88.1 87.9 70.1

AVG 82.4 82.3 73.2

Task Embedding We note that because many intermediate datasets produce similar results, the rankings can be noisy.
Since we fine-tuned our own models, our rankings did not exactly match those of Vu et al. (2020), but the scores attained
were qualitatively similar.

Table 7. We report the average rank ρ and NDCG as defined in the original paper, where average rank is the rank assigned to the best
source, and NDCG measures the overall ranking quality. We also report Mean Reciprocal Rank (average of the reciprocals of ranks
associated with the source) to align with the convention that higher is better, as used in other settings. In-class refers to ranking within the
specific task group, and all-class refers to ranking across all datasets, with the number of datasets in each group included in brackets.

METRIC FISHER SQUISHER DATASIZE

classification/regression

IN-CLASS (10)
ρ 4.6 3.8 4.8
NDCG 82.0 84.7 81.7
MRR 0.421 0.468 0.136

ALL-CLASS (21)
ρ 9 6.7 11.6
NDCG 82.5 85.9 75.0
MRR 0.312 0.261 0.105

question & answering

IN-CLASS (10)
ρ 5.3 4.5 7.4
NDCG 86.3 84.0 84.4
MRR 0.460 0.563 0.319

ALL-CLASS (21)
ρ 8 5.8 10.8
NDCG 88.4 86.1 85.1
MRR 0.350 0.301 0.154

14

Fishers for Free?

Elastic Weight Consolidation

Table 8. Results from all protocols and scenarios. Note that EWC performs poorly in the class setting (van de Ven & Tolias, 2019).
FISHER, SQUISHER, and RANDOM represent the accuracy of their respective continual learning methods.

SCENARIO FISHER SQUISHER BASELINE

SPLIT MNIST
TASK 99.59 98.59 95.93
DOMAIN 65.75 69.87 56.63
CLASS 19.21 19.29 19.87

PERMUTED MNIST
TASK 94.55 94.47 78.17
DOMAIN 94.61 92.32 80.18
CLASS 48.25 29.64 46.73

SPLIT CIFAR100
TASK 75.96 75.30 61.82
DOMAIN 18.79 20.16 16.01
CLASS 5.82 5.98 5.88

A.2. Evaluating the difference in performance between the Fisher and the Squisher

The results in Figure 2 show that it is not consistently the case that either the Fisher or the Squisher performs better. This
inconsistency arises due to several layers of approximation. Furthermore, the Squisher relies on a history of gradients, while
the Fisher does not. Given that Adam accumulates gradient statistics over time (Kingma & Ba, 2014), it is reasonable to
expect that the performance of models using the Squisher depends on how long the model has been trained before extracting
the optimizer weights. We illustrate this effect in the two settings with the largest performance gap between the two methods.

Model Merging For Fisher merging, Squisher outperformed Fisher. However, the results reported in this paper are based
on the “final model” setting, where all datasets are trained for the same number of epochs without early stopping. An
alternative approach, suggested by Tam et al. (Tam et al., 2024), is to merge using the “best model”, i.e. merging checkpoints
corresponding to the highest individual accuracy.

Table 9. Effect of training time for Fisher merging.

FISHER SQUISHER
FINAL BEST FINAL BEST

COSMOS QA 61.0 62.4 50.7 31.5
PAWS 50.7 52.0 50.4 55.8
QASC 73.7 81.1 85.9 71.7
QUAIL 57.2 55.7 60.7 41.7
QUARTZ 54.6 59.6 61.1 56.7
ROPES 12.6 39.8 36.1 41.9
SOCIAL IQA 68.7 60.2 61.0 48.6
WIKI QA 50.1 61.0 58.1 92.5

AVERAGE 53.6 59.0 58.0 55.1

The results show that Squisher merging performance can suffer if the fine-tuned models are not fully trained, likely because
the squared gradient accumulator had not been computed over sufficiently many training steps. As shown, under the best
model setting, the Fisher tends to perform better, but the Squisher performs better when final model is used. This indicates
that the merging outcome is sensitive to the specific checkpoints selected, making the comparison between the Squisher and
the Fisher unstable. This variability is also reflected in the performance across individual datasets, which differs significantly
without a consistent pattern favoring one method over the other.

One possible explanation for the Squisher performing better in the final model setting is that model parameters fluctuate
more during early training, making the optimizer-derived Squisher less reliable at that stage. As training progresses and the
optimizer statistics stabilize, the Squisher becomes more effective, yielding better merged accuracy.

15

Fishers for Free?

Model Pruning For this setting, the number of training epochs before pruning was varied, in other words, the number of
epochs over which the Adam weights are accumulated. Previously, the model was trained for 15 epochs prior to pruning.
Here, we present results for training with only 10 epochs. The results are averaged over 5 runs to illustrate the scale of
variance relative to the model’s accuracy.

Table 10. Effect of training time for Fisher pruning.

FISHER SQUISHER
EPOCHS TRAINED 15 10 15 10

ACCURACY 64.8 64.0 63.9 64.3
STD. DEV. 0.1 0.7 0.3 0.6

Similar to Fisher merging, changing the time trained changes which method performs better. Therefore, this supports the
claim that we cannot definitively conclude which method is superior, as the results exhibit considerable variability. But
overall, the variation remains small relative to baseline performance and the experimental results thoroughly validate the
Squisher as a zero-cost drop-in replacement for the Fisher.

A.3. Runtime Results

All results are reported in seconds. The Fisher merging and FISH Mask was trained using NVIDIA TITAN Xp, while the
other settings were trained on A6000.

Fisher Merging

Table 11. Time it took to calculate the Fisher for each fine-tuned model to be merged. The individual times were added together to find
total runtime cost for Fisher merging.

DATASET RUNTIME

COSMOS QA 4597.096425
SOCIAL IQA 6034.254711
PAWS 8914.329607
QUAIL 2105.062686
WIKI QA 3635.845571
QUARTZ 522.851436
QASC 1498.499418
ROPES 1957.923106

TOTAL 29265.86296

16

Fishers for Free?

Model Merging by Uncertainty-Based Gradient Matching

Table 12. Time it took to calculate the Fisher for each fine-tuned model to be merged. The individual times were added together to find
total runtime cost for UBGM merging.

DATASET RUNTIME

IMDB 88.251802
AMAZON 298.730116
YELP 30.893116
ROTTEN TOMATOES 9.417264
SST2 8.584630

TOTAL 435.876928

Fisher Pruning

Table 13. Time it took to calculate the Fisher, averaged across 5 seeds. A pruning percentage of 75 was used for this runtime comparison,
but the timing remains the same across other pruning levels, since the Fisher is computed on the unpruned model, which is identical
regardless of the pruning percentage.

SEED RUNTIME

0 2.53115
1 2.524477
7 2.439246
42 2.578159
1234 2.529666

AVERAGE 2.5205396

FISH Mask

Table 14. Runtime for computing the Fisher for each task. Since the same model is used across tasks, the runtime remains similar due to
consistent model size and computational cost.

TASK RUNTIME

COLA 87.106167
MNLI 86.589986
MRPC 88.242970
QNLI 87.799851
QQP 86.861222
RTE 87.250311
SST2 87.427422
STSB 86.988816

TOTAL 698.266745

17

Fishers for Free?

Task Embedding

Table 15. Time it took to calculate the Fisher for each task. The individual times were added together to find total runtime for this setting.

DATASET RUNTIME

BOOLQ 328.932541
COMQA 2635.093401
CQ 1150.859747
DROP 3724.807116
DUORC-P 6306.916961
DUORC-S 2546.056582
HOTPOTQA 8348.362174
NEWSQA 3798.16761
SQUAD-1 920.5654031
SQUAD-2 1370.587094
WIKIHOP 5012.5946521
COLA 91.747407
STS-B 61.246726
WNLI 7.841009
MNLI 4030.210978
MRPC 39.255162
QNLI 1073.207344
QQP 3818.912368
RTE 26.929389
SST-2 697.788316
SCITAIL 245.605103
SNLI 5666.327469

TOTAL 51902.01455

Continual Learning

The time it took to calculate the Fisher after each context is tracked for all three protocols. TOTAL indicates the cumulative
time required to compute the Fishers across all contexts.

Table 16. Runtime for Split MNIST (in seconds)

CONTEXT RUNTIME

1 83.543847
2 78.777524
3 83.420858
4 85.942129

TOTAL 331.684358

18

Fishers for Free?

Table 17. Runtime for Permuted MNIST (in seconds)

CONTEXT RUNTIME

1 1695.310917
2 1699.445545
3 1697.167719
4 1701.106478
5 1689.534109
6 1687.297443
7 1662.508294
8 1686.655048
9 1696.493132

TOTAL 15215.518690

Table 18. Runtime for Split CIFAR-100 (in seconds)

CONTEXT RUNTIME

1 138.255250
2 137.803834
3 137.137637
4 136.980094
5 138.475646
6 139.223644
7 138.512695
8 140.716222
9 139.287938

TOTAL 1246.392960

19

