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Abstract
This study focuses on the emergence of reasoning
abilities in large language models (LLMs). While
LLMs have shown remarkable capabilities in com-
plex reasoning tasks, the exact origin of this abil-
ity and its relationship to pre-training and fine-
tuning stages remain unclear. Previous research
has explored in-context learning but has not fully
addressed reasoning abilities such as logical rea-
soning or math deduction. The paper proposes in-
vestigating reasoning in LLMs through reasoning
over knowledge graphs. The experiments demon-
strate the importance of the pre-training sequence
in enabling effective reasoning. The findings sug-
gest that LLMs acquire reasoning abilities during
pre-training rather than fine-tuning. Furthermore,
training LLMs with next-token prediction enables
them to aggregate relevant reasoning paths and
derive new conclusions. The empirical results sup-
port the explanation of LLMs predicting unseen
facts using a path ranking algorithm.

1. Introduction
Recently, significant advancements have been observed
in large language models (LLMs), exemplified by GPT4
(Bubeck et al., 2023), which have demonstrated remarkable
capabilities in performing intricate reasoning tasks involv-
ing known or given facts. These tasks include first-order
logical reasoning and solving mathematical word problems.
Nevertheless, the precise timing in the training process and
the manner in which this reasoning ability emerges remains
uncertain. It is unclear whether the reasoning ability origi-
nates from the pre-training phase or the instruction tuning
phase, and how LLMs acquire the skill of reasoning from
the relatively simple objective of predicting the next word.

LLMs are renowned for acquiring astonishing capabilities
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through extensive pre-training. In-context learning is one
such capability, where LLMs learn to follow given demon-
strations during inference. While several studies have at-
tempted to explain in-context learning using either Bayesian
inference (Jiang, 2023; Hahn & Goyal, 2023; Xie et al.,
2022; Wang et al., 2023) or gradient descent (von Oswald
et al., 2022; Dai et al., 2022; Akyürek et al., 2022; Li et al.,
2023), few studies focus on elucidating the emergence of rea-
soning ability—the capacity to draw novel conclusions from
existing knowledge. Prystawski & Goodman (2023) pro-
pose that the chain-of-thought technique is effective when
the training data exhibits localized structure with respect
to dependencies between variables. However, their experi-
ments equate reasoning to conditional probability estimation
of boolean variables with intermediate variables, which can
be considered overly abstract compared to real-world rea-
soning processes such as logical reasoning or mathematical
deduction.

In this paper, we aim to comprehend the development of
reasoning ability in LLMs by examining a straightforward
yet general case of reasoning: reasoning over knowledge
graphs. A knowledge graph stores facts in the form of triples
(e1, r, e2), where e1 and e2 represent entities connected by
the relationship r. Knowledge graphs can be incomplete,
lacking certain relations between existing entities. These
missing relations can typically be inferred from the known
facts stored in the knowledge graph, often employing logical
rules. For instance, the relation (A, isGrandChildof,
C) can be derived from the triples (A, isSonOf, B) and (B,
isSonOf, C).

We can consider the pre-training corpus of LLMs as a natu-
ral language serialization of an extensive knowledge graph.
Subsequently, instruction tuning allows for direct responses
to human-provided queries. Remarkably, without explicitly
encoding reasoning rules, LLMs can accurately deduce pre-
viously unseen facts from known ones to answer a given
query. In our experiments, we find that the construction of
the pre-training sequence plays a crucial role. Pre-training
is most effective when we serialize the knowledge graph as
”chains” of steps or random walk paths on the graph. On
the other hand, pre-training on disconnected factual sen-
tences leads to significantly inferior reasoning ability. Our
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experimental results also suggest that the reasoning ability
of LLMs predominantly stems from pre-training rather than
fine-tuning.

By training LLMs with the next-token prediction objective,
the models are expected to learn the marginal distribution of
text sequences. However, when provided with appropriate
training data in the form of text sequences, we hypothesize
that LLMs are capable of aggregating pertinent reasoning
paths to derive new conclusions. Empirical evidence sup-
ports our hypothesis, as the predicted distributions of LLMs
on unseen facts closely align with the predicted distribution
obtained through the path ranking algorithm (Lao et al.,
2011) — a weighted aggregation of all potential reasoning
paths.

2. Problem setting
Consider a knowledge graph G = {(ei1, ri, ei2)}ni=1 consist-
ing of n triples, such that ri(ei1, e

i
2) for all i. LetR denote

the set of all possible relations and E denote the set of all
entities. Let C(e) denote all the children of e. i.e. the set
of e′ ∈ E such that r(e, e′) for some r ∈ R. Let Cr(e)
denote all the children of e with relation r. i.e. the set of
e′ ∈ E such that r(e, e′). Our goal is to predict a set of
unseen triples T = {(ej1, rj , e

j
2)}mj=1, ej1, e

j
2 ∈ E , rj ∈ R,

by training a Transformer based generative language model
from scratch on the given knowledge graph G.

To translate a triple into a sentence, we consider assigning
k templates τ1r , τ

2
r , ..., τ

k
r to each relation r ∈ R. Then

each time when we sample a triple, we randomly translate
it into a sentence using one of the templates. For example,
the triple (e1, locatedIn, e2) can be translated to “e1 is
located in e2” or “e2 is where e1 is situated”.
We consider two ways of translating the entities into natural
language. One is to translate the entity into its meaning-
ful name directly. To avoid learning spurious correlations
through the lexical form of the entity names, we also con-
sider adding each entity as a new token to the Transformer.

3. Pre-training v.s. fine-tuning
We consider two ways of constructing pre-training data:

• Randomly sample l ∼ U [1, Lmax] triples from the
knowledge graph G.

• Randomly sample a start entity e ∼ U(E), then per-
form random walk on G from e by sampling the next
node using e′ ∼ U(C(e)).

We use Lmax to denote the maximum number of sentences
in a paragraph and U(·) to denote the uniform distribution.
Then we translate each triple into a sentence and concatenate

all the sentences to become a paragraph. The paragraphs
are then concatenated together and separated by the special
end-of-sequence token to form text chuncks of the same
length. The training loss would be the normal next-token
prediction loss (we denote the language model parameters
by θ):

LLM (θ) =
∑
t

logPθ(wt+1|w1:t)

To create an instruction-tuning dataset, we first curate a set
of logical reasoning rulesH for each relation in the test set.
For example, a rule h ∈ H can be h : (e1, locatedIn,
e2) ← (e1, neighborOf, e3) ∧ (e3, locatedIn, e2).
Let H[r] denote the set of rules that implies relation r.
Here we only consider logic rules with conjunctive form:
∀{ei}li=0 ⊂ E , r(e0, el) ← r1(e0, e1) ∧ r2(e1, e2) ∧ ... ∧
rl(el−1, el). We abbreviate such rule by h = [r1, r2, ..., rl].
In this case, each rule can be achieved by some random walk
paths. Note the logic rules may not always hold, but they
should be a good representation of the correct reasoning
paths most of the time.

Based on these rules, we construct instruction-tuning
examples in the form of a binary query followed by a
valid reasoning path and a binary answer. For example,
“Oceania is the continent where Palau
is situated. True or False? Palau is
located in Micronesia. Oceania is the
continent where Micronesia is situated.
So Oceania is the continent where Palau
is situated. True.” We manually create some
negative queries to balance the training and testing label.

To empirically verify whether pre-training or instruction tun-
ing is more important to the emergence of reasoning ability,
we use the hardest version (S3) of the Countries knowledge
graph (Bouchard et al., 2015). The COUNTRIES dataset
contains 2 relations (locatedIn and neighborOf) and
227 entities, including countries, regions, and subregions.
It is carefully designed to test logical rule learning and rea-
soning capabilities. The test set contains unseen queries of
the form (Egypt, locatedIn, ?), and the answer is the
corresponding region Africa. The location information
of the neighboring countries of the testing countries and
the location information of neighbors of the neighboring
countries are also removed from the knowledge graph.

To test the reasoning ability of the pre-trained language
model, we format the test triples as sentence completion
tasks. For example, the triple (e1, locatedIn, e2) will
be translated to the prompt “e1 is located in”. If the
completion is a subregion of the ground truth answer (e.g.
South Africa to Africa), we will also count it as a
correct prediction.

To test the reasoning ability of the instruction-tuned lan-
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guage model, we turn the test triples into binary queries
of the form “Oceania is the continent where
Palau is situated. True or False?”. For
each triple, we create two positive queries and two negative
queries.

We manually create a small set of logical rules for reasoning
the locatedIn relation as follows:

[locatedIn, locatedIn]

[neighborOf, locatedIn]

[neighborOf, locatedIn, locatedIn]

[neighborOf, neighborOf, locatedIn]

[neighborOf, neighborOf, locatedIn,
locatedIn]

In Table 1, we show the dev and test accuracy of a GPT-
style language model trained with different pre-training and
fine-tuning strategies. The model we use has the same ar-
chitecture as the 124M version GPT2 (Radford et al., 2019),
and adopts the same tokenizer. Results show that direct
fine-tuning without any pre-training performs significantly
worse than pre-training with random walk data without any
instruction-tuning. The pre-trained models also perform
significantly better after being fine-tuned with instruction
data. This shows that the reasoning ability of language
models comes from unsupervised pre-training instead of
fine-tuning.

In terms of the pre-training strategy, we can see that random
walk performs significantly better than random sampling,
both before and after fine-tuning. This suggests that how
the pre-training sequences are constructed is crucial and
would affect the final reasoning ability of the model. It can
also be observed that the models perform much better when
we translate the entities into new tokens instead of their
real names. This is likely because the information of each
entity is well separated and concentrated into one new token
instead of diffused into several different tokens.

4. Reasoning mechanism
We also investigate how language models reason by looking
deeper into the predicted distributions. As shown in Table 1,
the sampling of pre-training sequences is very important
for reasoning. So we hypothesize that language models’
appeared reasoning ability is aggregating the seen reasoning
paths in the training set. For example, when the model tries
to complete the query “e1 is located in”, it recalls the
most possible reasoning paths starting from e1 and ending
with locatedIn. It aggregates the probability of these
reasoning paths leading to different answers as the predicted
probability of each answer.

We assume that the model only selects paths that follow
proper logic rules. We define the probability of following a
specific logic rule h ∈ H between e1 and e2 to be the sum
of the probability of all possible reasoning paths from e1 to
e2 following the rule h:

P (e2|e1, h) =

{
1e1=e2 if h = ∅∑

e′∈Cr1
(e1)

P (e′|e1, r1)P (e2|e′, h′) if h ̸= ∅

where 1 is the inidcator function, h = [r1, r2, ..., rl]
and h′ = [r2, r3, ..., rl]. For a uniform random walk,
P (e′|e1, r1) = 1/|C(e1)|. The simplest way of aggregating
the probabilities of following different rules is by summing
them together:

Ps(e2|e1, r) =
∑

h∈H[r]

P (e2|e1, h) (1)

We also consider assigning a different weight to each rule
and aggregating the probabilities of different rules by a
weighted sum:

Pw(e2|e1, r) =
∑

h∈H[r]

w(h)P (e2|e1, h) (2)

To learn the weight for each rule, we adopt a similar method
as the Path Ranking algorithm (Lao et al., 2011). We view
the probability of following each rule P (e2|e1, h) as a fea-
ture and then sample some positive and negative triples from
the graph to train a logistic regression model for a target
relation r ∈ R. Here the positive triple (e1, r, e2) mean
r(e1, e2) holds while for the negative triple r(e1, e2) does
not hold. The loss function of the logistic regression is:

Lr(w) = −
∑
i

[yi ln pi + (1− yi) ln (1− pi)] + λ|w|

where pi = ePw(e2|e1,r)

1+ePw(e2|e1,r) and yi = 1r(e1,e2). λ|w| is a
regularization term, and we can take any appropriate norm
on w.

Note that we can obtain a similar triple probability by
prompting the language model with the natural language
translation of e1 and r. We denote this probability by
Pθ(e2|e1, r). To compare Ps, Pw, and Pθ, we first nor-
malize them over all the entities E and then compute the KL
divergence between them for each testing triple.

In Table 2, we can see the KL divergence between the ag-
gregated path distribution and the language model predicted
distribution is significantly lower when pre-trained with
random walk data. This verifies our hypothesis that the
language model is aggregating the reasoning paths probabil-
ities seen in the pre-training. Since the pre-training sequence
distribution of the random walk data matches the assumed
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Entity translation Pre-training Instruction-tuning Dev Test

Meaningful name

Random sample ✗ 67.2 58.7
Random walk ✗ 100 95.8

✗ ✓ 93.8 79.2
Random sample ✓ 97.9 90.6
Random walk ✓ 100 95.6

New tokens
Random sample ✗ 95.8 83.3
Random walk ✗ 95.8 95.8

✗ ✓ 87.5 83.3

Table 1. Accuracy on Countries (S3) knowledge graph.

Entity translation Pre-training Instruction-tuning KL[Ps, Pθ] KL[Pw, Pθ]

New tokens Random sample ✗ 3.59 ± 1.60 2.10 ± 1.77

Random walk ✗ 0.52 ± 0.32 0.29 ± 0.17

Table 2. KL divergence between language model prediction (Pθ) and aggregated paths (Ps, Pw), averaged over the Countries (S3) test set.
The standard deviations are also reported.

random walk distribution in path aggregation, the random
walk pre-trained model produces a similar distribution as
the aggregated distributions. We can also observe that the
weighted aggregation matches the language model distribu-
tion better than the unweighted aggregation. This shows that
the language model is able to focus on the more evidential
rules instead of the unimportant ones.

5. Conclusion
In conclusion, this study delved into the emergence of rea-
soning abilities in large language models (LLMs), with a
particular focus on reasoning over knowledge graphs. The
findings shed light on the origins of LLMs’ remarkable
reasoning capabilities, showcasing the importance of pre-
training in acquiring these skills. The construction of the
pre-training sequence, such as organizing it as ”chains” or
random walks on the graph, was found to significantly im-
pact the effectiveness of reasoning. Importantly, the study
revealed that LLMs reason over known facts by aggregating
relevant reasoning paths.
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