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Abstract

We study representation alignment in neural forecasters using anchor-based, geometry-
agnostic relative embeddings that remove rotational and scaling ambiguities, enabling ro-
bust cross-seed and cross-architecture comparisons. Across diverse periodic, quasi-periodic,
and chaotic systems and a range of forecasters (MLPs, RNNs, Transformers, Neural ODE/
Koopman, ESNs), we find consistent family-level patterns: MLPs align with MLPs, RNNs
align strongly, Transformers align least with others, and ESNs show reduced alignment on
several chaotic systems. Alignment generally tracks forecasting accuracy—higher similarity
predicts lower multi-step MSE—yet strong performance can occur with weaker alignment
(notably for Transformers). Relative embeddings thus provide a practical, reproducible
basis for comparing learned dynamics.

Keywords: dynamical systems, relative representations, latent representations, forecast-
ing

1. Introduction

Neural forecasters are widely used for modeling time-evolving processes, making it essential
to understand how they represent dynamics internally and whether those representations
align with human goals. Dynamical systems theory—from Poincaré to modern hyperbolic
dynamics—provides the basis for this study [1; 23]. Canonical benchmarks such as the
Lorenz-63 attractor [14], logistic map [17], Hopf oscillators, the double pendulum, and
reduced-order cylinder wakes [3] span periodic, quasi-periodic, and chaotic regimes. Models
ranging from reservoir computers [21] and RNNs [27; 10] to Transformers [26], latent ODEs
[5], and Koopman autoencoders [15] are routinely evaluated on these systems, situating our
work within the data-driven forecasting tradition rooted in nonlinear time-series analysis
[25]. Yet latent spaces are unstable across seeds and architectures (rotations, scalings,
geometry shifts), complicating cross-model comparisons (Appendix Figure 3).

Comparing learned dynamics therefore requires robust alignment tools. RSA [12], Pro-
crustes [9], and CKA [11] are influential but can be geometry-dependent, brittle across runs,
or impose restrictive mapping assumptions. Structured alternatives include topological con-
jugacy [2], anchor-based relative representations [18], atlas-style latent-space merging [6],
stitching across modalities and policies [20; 22|, and topology/spectral refinements [8; 7],
alongside landmark-based alignments [16] and product-space decompositions [4]. We adopt
relative, anchor-based, geometry-agnostic embeddings that remove rotational/scaling free-
doms and yield reproducible alignment across seeds, architectures, and systems (Figure
3). This quantifies “representational families,” reveals systematic patterns across MLPs,
RNNs, Transformers, and ESNs, and provides a practical signal correlated with forecasting
accuracy—including cases where high accuracy coexists with low alignment.
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2. Method

Representational alignment framework Following Sucholutsky et al. [24], a represen-
tational alignment experiment specifies data, systems, measurements, embeddings, and a
stmilarity metric.

Data We generate multistep trajectories from seven canonical systems spanning peri-
odic, quasi-periodic, and chaotic dynamics in continuous or discrete time: Lorenz—63 (3D
chaotic ODE), stable limit cycle (2D), double pendulum (4D Hamiltonian chaos), Hopf
normal form (2D), logistic map (1D), a fluid cylinder-wake dataset using the top three
POD coefficients [3], and a weakly coupled 6D skew-product built from chaotic founders
(Lorenz—63/Réssler/Chen) with parameter jitter and unidirectional coupling (see [13]).
Each system provides independent train/val/test trajectories of length T (z-scored per chan-
nel using train statistics).

Systems: encoder—decoder forecasters Given an input window x;_j11.4 € RLxd the
model predicts the next H states Xyi1.0+17 € RT*? via Xy 10400 = wgd(P@ (qbge (Xt—L+1:t))),
with encoder ¢y, : RE*d  RF latent propagator Pg : R¥ — RF, and decoder g RF —
RH>d We instantiate Pg as: (a) identity (one-shot MLP); (b) RNN propagators, includ-
ing (i) a standard latent GRU update z;;1 = GRUg(z) and (ii) an autoregressive GRU
forecaster where the hidden state is updated based on both the previous state and the
model’s own decoded output; (c) causal Transformer; (d) Neural ODE integrated for H
steps; (e) linear Koopman update z;1 = Kz for H steps. As a reservoir baseline, we use
an echo-state network with fixed sparse reservoir and ridge-regression readout (no BPTT).
Measurements: latent representations Training a given architecture with different

seeds or swapping architectures yields a family of encoders {gzﬁé‘z_z)}f:l whose latent spaces

need not align. For each input window, we take z = ¢g, (X¢—r+1:¢) € RF as the measurement.
Embeddings: anchor-based relative embeddings Let V ¢ RE*? be a finite dataset
of input windows and A = {a;}/>, C V anchors. For encoder ¢y, and similarity sim :
RF x R¥ — R (we use cosine), define the absolute embedding

Taps(X) = (sim(gb(x), o(ar)),...,sim(o(x), ¢(am)))

We z-score each coordinate across V to obtain the relative embedding

rrel(x) = (rl(x), e ,rm(x)),

Ti(X) _ Sim(¢(x)) ¢(az)) — Mg '

We fix K = 80 to balance variance (see Appendix C for details).

Similarity metrics between two autoencoders We quantify alignment between two
autoencoders V) and ¢ by computing the cosine similarity of their relative embeddings
on a held-out dataset V. Let r0)(x) denote the relative embedding of input x under encoder
). The alignment score is

o Ly (00,5 (x))
T Z;} e )]z [+ (o)

This measure captures how consistently the two encoders place samples in relative position
to a shared set of anchors.

0




EMBEDDING ALIGNMENT IN NEURAL DYNAMICAL SYSTEM FORECASTERS

3. Results

Relative representations provide a common basis across architectures. Figure 1
illustrates that anchor-based relative embeddings reduce geometric arbitrariness (rotations,
scalings) in latent spaces, making cross-architecture comparisons more interpretable. With
colors indicating distinct model labels, the relative space clarifies similarities and differences
across models in a common coordinate system.

Model-model alignment structure. Cross-model similarity in Figure 1 (pairwise align-
ment heatmaps; cosine similarity of relative embeddings) reveals consistent family struc-
ture across systems: (i) in all systems, the MLP family (plain MLP, Koopman-MLP,
Neural-ODE-MLP) forms a cluster; (ii) the RNN family (GRU, autoregressive GRU, Koop-
man—GRU, Neural-ODE-GRU) is well-aligned in all systems ezcept the Logistic Map, where
alignment weakens; (iii) the ESN baseline exhibits noticeably lower alignment in Lorenz,
Double Pendulum, and the random skew-product; (iv) the Transformer family tends to align
less with other families—most prominently in Double Pendulum and Lorenz—suggesting a
different inductive bias in how context is summarized for forecasting. Overall, these patterns
indicate that architectural choices induce reproducible representational geometries within
families, while some dynamics (e.g., Logistic Map) challenge specific families (RNNS).
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Figure 1: Trajectories, embeddings, and cross-model alignment. Columns show six
systems: Lorenz, double pendulum, random skew, POD (cylinder wake), limit
cycle, and Hopf. Rows: (top) training trajectories in state space; each gray shade
denotes a distinct input trajectory; (second) absolute latent embeddings from each
forecaster; (third) relative latent embeddings after anchor-based standardization
(visualized with PCA; we plot the first 2 or 3 components, depending on the
system); (bottom) cosine-similarity heatmaps between relative embeddings for all
forecaster pairs, averaged over five seeds. Relative embeddings reduce geometric
variability across models, making alignment directly comparable across systems.

Performance versus alignment. Figure 2a relates test performance to alignment with
the true system on Lorenz, a chaotic and widely used benchmark; results for the other
systems are in the appendix. We observe family-specific training trajectories. RNNs begin
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Figure 2: Alignment correlates with forecasting performance. (a) Test MSE versus
representational similarity with the Lorenz system across all tuned models during
training. Lines of the same color correspond to different seeds of the same model;
opacity decreases as training progresses. Models with higher alignment generally
achieve lower error. A random baseline error of 1.25 (untrained model predictions
averaged over 20 seeds) is marked for reference. (b) Each point represents a
trained model used in hyperparameter tuning. Main panel: validation loss versus
representational similarity aggregated across all individual models shown in the
right inset. A consistent positive correlation indicates that relative-embedding
alignment provides a useful proxy for forecasting quality.

with comparatively high alignment and remain stable through training, while their test er-
ror decreases steadily. MLPs start with lower alignment that increases as training proceeds,
tracking improvements in error; this manifests as transparent (early) points moving towards
higher similarity and lower MSE. Transformers display lower and more variable alignment
across seeds (including Koopman- and ODE-augmented variants), yet often achieve compet-
itive or superior forecasting error—frequently surpassing the MLP family and often rivaling
GRU variants. This underscores that high alignment is helpful but not strictly necessary for
strong forecasting: Transformers can realize good accuracy with a representational geometry
that aligns less to the ground-truth relative space.

To probe robustness beyond training trajectories, we aggregate models generated dur-
ing hyperparameter tuning (each point is a trained model used in the tuning process) in
Figure 2b. Within several architectures we observe a positive association between repre-
sentational similarity and forecasting accuracy, though the strength of this association is
family- and system-dependent.

4. Discussion and conclusion

Anchor-based relative embeddings offer a geometry-agnostic, stable basis for comparing
neural forecasters across seven canonical systems and diverse architectures. Anchor-based
relative embeddings provide a geometry-agnostic and stable basis for comparing neural
forecasters across architectures and dynamical regimes. Alignment typically correlates with
forecasting accuracy yet admits family-specific exceptions (notably Transformers), making
it a complementary audit signal to validation error. Future work should probe noise, partial
observability, and targeted interpretability to explain family-level differences.
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Appendix A. Experimental setup

Dynamical systems. Seven systems as above; splits are disjoint in initial conditions, and
channels are z-scored using train statistics.

Models and training. We evaluate encoder—decoder forecasters of the form:

(1) MLP-MLP, (2) GRU-GRU, (3) autoregressive GRU-autoregressive GRU, (4) Trans-
former—Transformer. Architectures (1), (3), and (4) are additionally tested with latent
propagation via Neural ODEs or Koopman operators. As a non-gradient baseline, we in-
clude an echo-state network (ESN) with fixed sparse reservoir and ridge-regression readout.
We optimize with Adam and early stopping on validation MSE (patience 20); model widths,
dropout, and k are given in the appendix.

Evaluation. Forecast accuracy is reported as MSE averaged over the H-step horizon (H =
50). Representational alignment is measured with ages on a held-out set of windows using
K =80 shared anchors.

ut data Latent embedding
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Figure 3: Overview of forecasting and representational alignment. En-
coder—propagator—decoder forecasters take an input window of L past states
Xi—r+1:t, €mbed it into a latent vector z, and decode a prediction of the next
H states Xy 1.4+ . To compare different models, we compute absolute latent em-
beddings from data, transform them into anchor-based relative embeddings, and
quantify alignment between models (e.g. Model A vs. Model B) using represen-
tational similarity scores.

Appendix B. Dynamical systems

We assess our models on seven representative systems. Unless noted otherwise, each system
provides 20 trajectories for training, 20 for validation and 20 for testing, with T=500 time



steps per trajectory. All channels are z-scored using statistics from the training split; no
external noise is added.

Lorenz—63 (3-D chaotic ODE). & =o(y —z), y =x(p — 2) —y, 2 = zy — Bz, with
o =10, p = 28, 3 = 8/3. Initial states are sampled from [—20,20]3 and integrated with
Dormand—Prince (RK45) at At = 0.01. Its compact phase space and positive Lyapunov
exponent (= 0.91) make it a classical multi-step-forecast benchmark.

Stable limit cycle (2-D radial-spiral ODE). 7 = u(R —7), 0 = w, (z,y) =
(rcosf, rsinf), with p = 1, R = 1, w = 1. Trajectories start from r¢ ~ U[0,20] and
0o ~U|0, 27]; integration uses RK45 with A¢ = 0.01.

Double pendulum (4-D Hamiltonian chaos). Two unit-mass, unit-length links
move under gravity g = 9.81. Angles are initialised in [—20°,20°] and angular velocities in
[—1,1]. Dynamics are solved with RK45 at At = 0.01. Energy conservation and a Lyapunov
exponent of = 1.5 test a model’s ability to capture chaotic yet nearly conservative motion.

Hopf normal form (2-D near-critical oscillation). & = px — wy — (22 +y?)z, ¥ =
wx + py — (22 + y?)y, with u = 0, w = 1. Starting points (zg, yo) ~U[—2,2]? spiral onto a
unit-radius limit cycle; At = 0.01 with RK45.

Logistic map (1-D near-onset discrete chaos). x;11 = 3.57x4(1 — x;) with xg ~
U(0,1); sequences of length T=>500 are recorded at an effective step At = 0.1.

Fluid wake behind a cylinder (POD coefficients; d = 3). We adopt the three
leading Proper-Orthogonal-Decomposition coefficients from [3] (Re = 100, Strouhal ~ 0.16).
We supply 10 trajectories per split, each of T=500 snapshots sampled at At = 0.2; only
z-score normalisation is applied.

Skew-product of 3-D chaotic founders (6-D weakly coupled ODE). Following
[13], select two founders from {Lorenz—63, Rossler, Chen}, jitter parameters by multiplica-
tive log-normal noise (logs ~ N(0,0.15%), sign preserved), and couple them in a skew-
product: the first 3-D system z € R? drives the second y € R? via a weak injection into
the first response coordinate. Writing & = f,(z;p,) and ¥ = fi(y; pp) for the founders with
jittered parameters,

&= faw;pa), U= folyim) +eerzr, €=0.05, e =(1,0,0)".
Founder templates and nominal seeds:

Lorenz—63: & =o(y—x), y=x(p—2)—y, 2Z2=2xy—pPz
(0,p,8) = (10,28,3), 0= (1,1,1)

Rossler: 2 = —y — 2z, y = x + ay,
Z2=b+ z(x —¢); (a,b,¢) =(0.2,0.2,5.7), xo = (0.1,0,0),

Chen: t =a(y—z), y=(c—a)x—zz+cy, 2Z=uxy—bz,
(a,b,¢) = (35,3,28), w0 = (—10,0,37).

A single skew system is sampled once per dataset; train/val/test splits then differ only
by initial conditions. Initial states jitter the concatenated founder seeds zy = [z¢;yo] with
i.i.d. Gaussian noise of scale 0.1. Trajectories are integrated with DOP853 at the dataset
step At (absolute tolerance 1078, relative 107%). We discard an initial warm-up fraction
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Figure 4: Anchor ablation and baseline. (Blue) Alignment vs. number of anchors K
lines show mean over 30 repeats. Stabilization occurs for K > 16; we choose
K = 80 (vertical marker) for the main experiments. (Orange) Random baseline
with disjoint anchor sets across spaces, yielding near-zero alignment.

(default 10%) and keep the next T steps. Runs are rejected if any state is non-finite,
the radius exceeds 10°, or the summed channel variance falls below 107%; on rejection we
resample once.

Appendix C. Anchor ablations

Computation. We compute the relative embedding

() = (r1(z), ..., rm(2)), 7ri(z) = Sim(éb(x),(ﬁ(az‘)) - ui,

where q; is the i-th anchor, y; and o; are the mean and standard deviation of sim (¢(-), ¢(a;))
over V, and sim is the similarity used in the main text.

Choice of K anchors. We estimate alignment as a function of the number of anchors K.
For each K € {1,2,3,4,5,6,8,16,32,64,80, 128,512,800,999} we repeat the procedure 30
times with fresh random anchor draws. Estimates stabilize for K > 16; we set K = 80 to
balance variance and compute time 4.

Random baseline (disjoint anchors). As a control, we re-estimate alignment using
disjoint anchor sets across the two spaces. This collapses alignment to near zero, confirming
the necessity of shared anchors [19].

Appendix D. Alignment in different parameter settings

See Figure 6.



Appendix E. Alignment during training of the tuned models
See Figure 5.
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Appendix F. Model performances
See Figure 7
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Figure 7: Tuned model performance by dataset. For each dataset, box—and—whisker
plots compare models: boxes span the interquartile range (25th—75th percentiles),
whiskers extend to 1.5 x IQR, and points beyond are outliers. The orange line
marks the median, and the green marker denotes the mean.

Appendix G. Cross-model similarity for logistic map

Additional results complementing Figure 1 are shown in Figure 8.
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Figure 8: Cross-Model Similarity of Logistic Map.

Appendix H. Compute resources

All experiments were conducted on RAVEN HPC system, equipped with Intel Xeon IceLake-
SP processors and NVIDIA A100 GPU nodes interconnected via NVLink.
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