
Deep Graph Mating

Yongcheng Jing1 Seok-Hee Hong1 Dacheng Tao2

1University of Sydney 2Nanyang Technological University
{yongcheng.jing,seokhee.hong}@sydney.edu.au, dacheng.tao@ntu.edu.sg

Abstract

In this paper, we introduce the first learning-free model reuse task within the
non-Euclidean domain, termed as Deep Graph Mating (GRAMA). We strive to
create a child Graph Neural Network (GNN) that integrates knowledge from pre-
trained parent models without requiring re-training, fine-tuning, or annotated labels.
To this end, we begin by investigating the permutation invariance property of
GNNs, which leads us to develop two vanilla approaches for GRAMA: Vanilla
Parameter Interpolation (VPI) and Vanilla Alignment Prior to Interpolation (VAPI),
both employing topology-independent interpolation in the parameter space. How-
ever, neither approach has achieved the anticipated results. Through theoretical
analysis of VPI and VAPI, we identify critical challenges unique to GRAMA, in-
cluding increased sensitivity to parameter misalignment and further the inherent
topology-dependent complexities. Motivated by these findings, we propose the
Dual-Message Coordination and Calibration (DuMCC) methodology, comprising
the Parent Message Coordination (PMC) scheme to optimise the permutation ma-
trices for parameter interpolation by coordinating aggregated messages, and the
Child Message Calibration (CMC) scheme to mitigate over-smoothing identified in
PMC by calibrating the message statistics within child GNNs. Experiments across
diverse domains, including node and graph property prediction, 3D object recog-
nition, and large-scale semantic parsing, demonstrate that the proposed DuMCC
effectively enables training-free knowledge transfer, yielding results on par with
those of pre-trained models.

1 Introduction

The remarkable progress made in deep neural networks has resulted in a growing number of pre-
trained models being made publicly available for the purpose of performance reproducibility and
further development [64, 12, 27, 23, 61, 24]. As such, there is a mounting interest in the community
on the reusability of existing pre-trained neural networks for the sake of strengthening performance,
reducing model size, or alleviating training efforts, with abundant inspiring works proposed [16, 42,
46, 40, 47, 45, 63, 67]. Despite the growing interests in model reuse, current research endeavors have
predominantly focused on the Euclidean domain, which are specifically designed to handle image
data with regular grid structures [39, 64, 34, 12, 51, 14, 22].

On the other hand, the study of reusing pre-trained Graph Neural Networks (GNNs) to tackle non-
Euclidean and irregular graph data is still in its early stage and remains limited in scope. Almost
all existing research on GNN reuse is established upon non-Euclidean Knowledge Distillation (KD)
pioneered by Yang et al. [60], where a favourable student GNN is learned from a single pre-trained
teacher [11, 49, 9, 66, 29]. Subsequent research has extended the scope of Yang et al. [60] from a
single-teacher to a multi-teacher context, introducing the novel task of non-Euclidean Knowledge
Amalgamation (KA) [25, 15, 36]. However, all these existing approaches to GNN reuse necessitate
resource-intensive re-training of the student model, imposing substantial computational burdens and

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Graph-Centric Model Reuse Tasks Multi-model Reuse Annotation Free Training/Fine-tuning Free
Knowledge Distillation [60, 11, 49, 9, 66, 29] × × ×
Knowledge Amalgamation [25, 15, 36]

√ √
×

Deep Graph Mating (GRAMA)
√ √ √

Table 1: Comparison of various model reuse tasks in the non-Euclidean domain, tailored for GNNs.

memory costs. This challenge from re-training is particularly pronounced when dealing with large
models and large-scale graphs [31, 7, 37, 20, 8, 26, 17].

In this paper, we strive to push the boundaries of resource-efficient GNN reuse by introducing the
first training-free model reuse task in the non-Euclidean domain, termed as Deep Graph Mating
(GRAMA). Our objective is to derive a child GNN, without re-training or fine-tuning, from pre-trained
parent GNNs, each possessing unique knowledge from different datasets, all while operating without
access to human-annotated labels—a common constraint in using publicly available models. The
child model born from GRAMA is expected to seamlessly integrate the diverse expertise of its parent
models in a completely learning-free manner. A comparative analysis of GRAMA with existing
non-Euclidean model reuse approaches is presented in Tab. 1. As a pilot study of this novel task, this
paper focuses on homogeneous GRAMA scenarios with identical parent architectures, and sets the
stage for future investigations into the more complex cross-architecture heterogeneous GRAMA.

To achieve the ambitious goals of GRAMA, we first investigate the permutation invariance property
of GNNs to establish correspondence between neurons in pre-trained models. This investigation
guides the development of two vanilla methods: Vanilla Parameter Interpolation (VPI) and Vanilla
Alignment Prior to Interpolation (VAPI). VPI involves straightforward linear interpolation of parent
GNN parameters, while VAPI incorporates data-independent parameter matching before interpolation.
However, the performance of both VPI and VAPI has not been as promising as expected. By analysing
the mechanisms underlying these methods, we have identified and theoretically demonstrated unique
challenges associated with GRAMA, including increased susceptibility to parameter misalignment
and topology-dependent complexity in GNNs. These findings underscore the necessity for tailored
methods that are specifically adapted to GRAMA.

To this end, we introduce the Dual-Message Coordination and Calibration (DuMCC) methodology,
specifically tailored for GRAMA to incorporate the topological characteristics of graphs. DuMCC
consists of two distinct schemes: Parent Message Coordination (PMC) and Child Message Calibration
(CMC). PMC seeks to identify optimal permutation matrices for parameter matching in a topology-
aware manner, by coordinating aggregated messages from parent GNNs. Although PMC shows
promising results, our empirical and theoretical analyses indicate that the child GNN derived from
this coordination is more prone to over-smoothing. To mitigate this issue, we propose the CMC
scheme, which calibrates the message statistics of the child GNN using a specialised, learning-free
message normalisation (LFNorm) layer, drawing on the statistics of the parent GNNs. Together, these
two schemes contribute to a training-free and label-free GRAMA process, enabling the derivation of
child GNNs that effectively embody the knowledge from their pre-trained parent models.

In summary, our contribution is a novel non-Euclidean model reuse paradigm that allows for the
creation of a student GNN, which integrates the capabilities of pre-trained parent GNNs without
requiring human-annotated labels or re-training. We evaluated our proposed approach on seven
benchmarks across various tasks, including node/graph classification, object recognition, and large-
scale indoor semantic segmentation, and across five different GNN architectures: Graph Convolutional
Network (GCN) [30], GraphSAGE [13], Graph Attention Network (GAT) [48], Graph Isomorphism
Networks (GIN) [56], and Dynamic Graph CNN (DGCNN) [53]. Experimental results demonstrate
that the generated child GNN is competent to handle the pre-trained tasks of parent models. We also
present a discussion of the limitations, highlighting potential future research directions that can be
explored based on GRAMA.

2 Related Work

This section briefly reviews topics relevant to GRAMA, including existing GNN reuse techniques and
model merging, which, while conceptually akin to GRAMA, is confined to the Euclidean domain.
Extended related work is provided in Appendix A.

2



Non-Euclidean Model Reuse. Recent advancements in graph-centric intelligence have led to
the widespread availability of pre-trained models for reproducibility. Despite their availability,
the exploration of their reuse for downstream tasks, particularly in the non-Euclidean domain,
is still in its infancy. Existing research primarily revolves around knowledge distillation (KD)
[60, 9, 66, 11, 49, 29] and knowledge amalgamation (KA) [25, 15, 36], aimed at single-GNN and
multi-GNN reusing, respectively. In particular, the foundational KD research [60] introduced a
method specifically designed for GNNs that conserves local structural integrity. The scheme was
later expanded by KA [25] to adapt to multi-teacher settings without the need for labels, thereby
enhancing GNN reuse capabilities. Extending these concepts, this paper launches GRAMA, a new
GNN reuse paradigm that further boosts resource efficiency by obviating the need for re-training.

Model Merging. Recent years have seen a surge in interest in merging the weights of CNNs or
transformers into a single model [54, 43, 1, 19, 44, 57, 33, 59, 35, 62, 38, 2, 21]. Model merging is
typically categorised into two types: fine-tuned model merging and variably initialised model merging
[33, 44]. Merging models fine-tuned from the same initialisation is generally straightforward as
these models often reside within the same error basin, allowing for simple weight interpolation [54].
Conversely, merging models from different initialisations is more challenging due to the randomness
in network channels and components [33, 43, 1]. A key issue is aligning neurons between models
to establish correspondences before weight interpolation. To address this issue, Git Re-basin [1]
proposes to minimise the L2 distance between weight vectors. Singh and Jaggi [43] propose an
Optimal Transport Fusion (OTFusion) method that uses the Wasserstein distance to align weight
matrices prior to performing parameter fusion. The subsequent work [19] extends the application of
OTFusion to Transformer-based architectures, aiming to enhance efficiency and performance through
fusion. Also, Liu et al. [35] approach the challenging task of model fusion as a graph matching
problem, incorporating second-order parameter similarities for improved fusion performance.

Addressing the fusion of pre-trained models trained on disparate tasks, Stoica et al. [44] develop ZipIt!,
a novel method that utilises a “zip” operation for layer-wise fusion based on feature redundancy,
creating a versatile multi-task model without additional training. More recently, Xu et al. [57]
present the Merging under Dual-Space Constraints (MuDSC) framework. This approach optimises
permutation matrices by mitigating inconsistencies in unit matching across both weight and activation
spaces, targeting effective model fusion in multi-task scenarios. Furthermore, Jordan et al. [28]
introduce REPAIR, a method that tackles the issue of variance collapse by rescaling the hidden units
in the interpolated network to restore the statistical properties of the original networks.

However, model merging has not yet been explored within the context of GNNs. This paper introduces
GRAMA, the first formulation for weight space model merging tailored for the non-Euclidean domain.
It represents the initial investigation into merging GNNs, addressing the unique challenges that arise
with graph tasks.

3 Motivation and Problem Definition

In this section, we begin by introducing Knowledge Amalgamation (KA), the sole existing task in
multi-GNN reuse, exploring its inherent limitations, and present our novel GRAMA paradigm for
resource-efficient multi-model reuse with practical applications in real-world scenarios.

To the best of our knowledge, KA represents the only multi-model reuse task in the non-Euclidean
domain. KA is defined in the literature as follows: its objective is to learn a single, compact student
GNN that integrates the diverse expertise of pre-trained teacher GNNs, without accessing human
annotations [25]. Despite the promising performance, KA is inherently limited by its resource-
intensive nature, requiring the re-training of a student GNN to amalgamate knowledge from existing
GNNs. Furthermore, while KA ostensibly operates without ground-truth labels, it instead relies on
soft labels generated by teachers, making it susceptible to the misclassification errors of teachers.

To mitigate these constraints of KA, this paper proposes:
Task 3.1 (Deep Graph Mating). Deep Graph Mating (GRAMA) is a fully learning-free model reuse
task where a child GNN is derived from pre-trained parent GNNs without re-training or fine-tuning,
integrating their expertise without requiring human-annotated labels.

In aggregate, GRAMA advances beyond KA by eliminating the need for any training or label
dependency, paving the way for more widespread and versatile model reuse applications. Given the

3



novelty and complexity of GRAMA, our initial investigation in this paper is confined to scenarios
where pre-trained GNNs possess identical architectures yet are trained on separate datasets, termed
as homogenous GRAMA. We reserve the exploration of more challenging heterogeneous GRAMA
scenarios, where pre-trained parent models either have diverse architectures or are designed for
different domain tasks, as a topic for future studies, potentially incorporating solutions like partial
GRAMA inspired by the work of Stoica et al. [44].

The applications of homogenous GRAMA are especially crucial in contexts where full data access
for training is restricted due to privacy concerns and regulatory requirements. This is common in
sectors like healthcare or retail, where organisations operate across different regions, each gathering
data that cannot be centrally aggregated due to local privacy regulations. The proposed homogenous
GRAMA paradigm enables the seamless integration of knowledge from these isolated datasets, thereby
safeguarding against the risks of privacy violations and the disclosure of sensitive data.

4 Vanilla Methodologies and Challenge Pre-analysis

4.1 Two Vanilla GRAMA Methods

Vanilla Parameter Interpolation (VPI). To achieve the ambitious goal of GRAMA outlined in
Sect. 3, the initial naïve approach employs vanilla weight averaging [50, 54]. This method involves
a straightforward linear interpolation of weights Wa and Wb from two pre-trained GNNs: W (`) =

αW
(`)
a + (1− α)W

(`)
b , where α represents the interpolation weight and W (`) denotes the network

weights at layer `.

However, the vanilla averaging approach requires the pre-trained models to share a portion of their
training trajectory and remain sufficiently close in the parameter space [33], typically achieved by
fine-tuning from the same initial model. This is not applicable in our GRAMA context, where parent
GNNs are trained on distinct datasets. This mismatch leads to empirically poor performance for
GRAMA, as observed in our experiments.

Vanilla Alignment Prior to Interpolation (VAPI). To address this issue in vanilla interpolation,
previous research in the Euclidean domain, based on the conjecture of the permutation invariance
property of typical neural networks1, proposes aligning the neurons between pre-trained models
by permuting parameter matrices before performing linear interpolation [1]. The alignment and
interpolation process can be formulated as:

W (`) = αW (`)
a + (1− α)P (`)W

(`)
b (P (`−1))T , P (`) ∈ P∗, (1)

where P∗ =
[
P (`)

]
`∈[L]

represents the set of all permutation matrices P (`) for each layer ` of the
GNN. Here, [L] refers to the set of indices corresponding to all layers in the GNN.

However, to apply Eq. 1 to GNN-based GRAMA, it is essential to first discuss whether the permuta-
tion invariance property extends to GNNs. This property has been extensively studied in existing
literature for various architectures [10, 5, 43, 1, 33, 19], including multi-layer perceptrons (MLPs),
convolutional neural networks (CNNs), and Transformers. Supported by these prior studies, and
given that GNNs are fundamentally built upon MLPs [58, 30], we propose:

Conjecture 4.1 (Permutation Invariance in GNNs). Permutation invariance for parameters in GNNs
exists if and only if there exists a set of permutation matrices P (`) for each layer ` such that applying
these permutations to the parameters does not alter the outcome of graph-based learning task,
regardless of the structure of the adjacency matrix.

A key subsequent issue involves searching the optimal permutation matrix P∗ for GNNs. One
possible data-independent solution is to minimise the L2 distance between the weight vectors of the
pre-trained models by solving a sum of bilinear assignments problem, similar to weight matching
techniques described in [1]. This method, which does not consider data distributions, could be
adapted as a baseline vanilla method for our GRAMA task in the non-Euclidean domain, which is
evaluated in our experiments.

1Neurons in each layer of neural networks can be permuted without altering network functionality [10, 1].

4



4.2 Challenges Towards GRAMA

However, we empirically observed that even the Vanilla Alignment Prior to Interpolation method
yielded unfavourable results for our GRAMA task. To elucidate the underlying cause of this phe-
nomenon, we theoretically demonstrated that GNNs typically exhibit greater sensitivity to parameter
mismatches than neural networks in the Euclidean domain:
Lemma 4.1 (Amplified Sensitivity of GNNs to Parameter Misalignment). GNNs exhibit greater
sensitivity to mismatches in parameter alignment compared to CNNs, amplified by the degree of
connectivity and heterogeneity of the node features in the graph topology.

A complete theoretical proof of Lemma 4.1 is provided in Appendix G.1. Here, we present only
the final formulation of the approximated output changes resulting from weight perturbations due to
mismatching, based on Taylor series approximation:

∆Fi ≈ σ′
 ∑

j∈N (i)

W ·Xj

 · ∑
j∈N (i)

ε ·Xj , (2)

where ∆Fi refers to the change in output at node i due to the perturbations ε in the weights W , and
σ′ represents the derivative of the activation function. Xj denotes the features of the nodes within
the neighbourhood N (i) of node i. Detailed, model-specific formulations of Eq. 2 are provided in
Sect. B of the appendix.

Eq. 2 implies that the effect of ε can be exacerbated by the potentially large and diverse neighbour-
hoodsN (i), thereby making the output highly sensitive to changes in W . In other words, the effect of
weight perturbation can vary dramatically based on the node’s connectivity and the characteristics of
its neighbours. Such variability leads to significant and less predictable changes in output, illustrating
the particular vulnerability of GNNs to parameter mismatches.

The integration of Eq. 1 with Lemma 4.1 and Eq. 2 further gives rise to the following conjecture:
Conjecture 4.2 (Topology-dependent Complexity in GNNs). The identification of optimal permu-
tation matrices P∗ for GNNs presents increased complexity compared to the Euclidean domain,
contingent upon the topological characteristics inherent to each graph.

Conjecture 4.2 highlights the essential need for developing GRAMA methods that are specifically
tailored to accommodate the unique topologies of graphs, motivating the design of the proposed
approach in Sect. 5.

5 Proposed Approach: Dual-Message Coordinator and Calibrator

5.1 Overview

Motivated by Conjecture 4.2, we introduce in this section the proposed Dual-Message Coordina-
tion and Calibration (DuMCC) methodology, which is specifically designed to harness the unique
topological features of input graphs for achieving GRAMA without relying on human annotations.

The proposed DuMCC is composed of two strategic schemes. In particular, the first Parent Message
Coordination (PMC) scheme effectively integrates topological information by deriving optimal
permutation matrices from layer-specific aggregation results. However, both empirical and theoretical
analyses reveal a reduction in node feature variance in child GNNs, suggesting that models derived
through this coordination are more susceptible to over-smoothing compared to their parent GNN
counterparts.

To address this issue, we further propose the Child Message Calibration (CMC) scheme as our second
strategic component. This scheme aims to maintain message variance consistency from the parent
models, ensuring the retention of feature diversity essential for robust GNN performance. Further
elaboration on each component is provided in subsequent sections.

5.2 Parent Message Coordination Scheme

Motivated by Conjecture 4.2, which highlights the significance of incorporating topology information
in the GRAMA process, we propose a Parent Message Coordination (PMC) scheme for identifying

5



optimal topology-aware permutation matrices P∗ described in Eq. 1. Unlike the vanilla method
of VAPI in Sect. 4 that minimises the distance between weight vectors without considering the
input graphs’ topologies, PMC optimises P∗ by leveraging the topology information embedded in
aggregated messages from two pre-trained parent GNN models.

Assume we have two pre-trained parent GNNs, denoted by Ga and Gb, both sharing identical
architectures. Their corresponding weight matrices are denoted by Wa and Wb, respectively. To
establish correspondence between neurons in Wa and Wb as described in Eq. 1, our PMC optimises
the permutation matrix P (`) at layer ` by aligning the aggregated messages of the two parent GNNs.
To align with the notations [1, 33] used in model merging within the Euclidean domain, the associated
optimisation process can be formulated as follows:

P (`) = arg min
P (`)∈P∗

∑
i

∥∥ Agg
j∈N (i)

φ
(
W (`−1)

a ;X
(`−1)
j,a , eij

)
− P (`) · Agg

j∈N (i)

φ
(
W

(`−1)
b ;X

(`−1)
j,b , eij

)∥∥2, (3)

where φ denotes the message function that encodes both node features X and edge features e, and
Agg represents the message aggregation function that accumulates incoming messages from φ, acting
on each node i. N (i) denotes the set of neighbours of node i. The minimisation problem in the form
of Eq. 3 can be typically transformed into a maximisation problem to maximise an inner product (as
derived from expanding Eq. 3), thereby fitting it within the framework of a standard linear assignment
problem, as also done in the works of [1, 33, 35, 44].

Eq. 3 is based on the rationale that aggregated messages inherently encapsulate essential graph
topologies, and that structurally similar GNNs typically generate analogous aggregated messages
when tasked with similar graph operations and topologies. As such, through Eq. 3, P∗ can be
determined in a topology-aware manner, matching aggregated messages to reflect the topological
characteristics of the graphs. Here, we clarify that while our approach involves passing the graph
data to the pre-trained model to capture the graph-specific topological characteristics by utilising
X , it requires only a single forward pass of the unlabelled graph data to extract messages for
alignment—eliminating the need for iterative training or ground-truth labels. Subsequently, child
GNNs can be derived through linear parameter interpolation.

Despite the encouraging performance, we observe that the child GNN, derived from the proposed
PMC, exhibits a reduction in the variance of node embeddings. We conjecture that this reduction
stems from an averaging effect, which may smooth out the distinctive features captured by each
parent model, particularly when these models have learned different structural aspects of the graph:
Lemma 5.1 (Variance Reduction in Interpolated Graph Embeddings). The variance of the graph
embeddings in an interpolated child GNN is typically smaller than the variances of the embeddings
from the individual pre-trained parent GNNs.

The full proof of Lemma 5.1 is detailed in Appendix G.2, providing evidence of feature homogeni-
sation within child GNNs. In the context of GNNs, we further explore and establish the following
proposition:
Proposition 5.1 (Increased Susceptibility to Over-Smoothing in Child GNNs). Interpolated child
GNNs exhibit increased susceptibility to over-smoothing compared to their parent networks, as
measured by Dirichlet energy.

The detailed proof of Proposition 5.1 is provided in Appendix G.3, utilising the quantitative over-
smoothing measurement based on Dirichlet energy [41], where a lower value indicates greater
homogeneity or smoothness among node features. In particular, our theoretical analysis in Ap-
pendix G.3 demonstrates that:

E(X`) ≤ max
(
E(X`

a), E(X`
b)
)
, (4)

where E(X`) denotes the Dirichlet energy for the node features X` at layer ` of the child GNN.

In GRAMA, the parameter α is typically set to 0.5 to ensure unbiased knowledge integration from
both pre-trained models. This setting promotes a balanced contribution from each model and prevents
any bias toward the characteristics of one over the other. As detailed in Appendix G.3, with α
at this level, the Dirichlet energy of the interpolated child GNN, E(X`), significantly decreases

6



0.7 0.8 0.9
Parent GNN A

0.70

0.75

0.80

P
ar

en
t G

N
N

 B

0.441

0.428

0.444

0.416

0.428

0.476

0.434

0.444

0.438 0.452

0.452

0.444
0.439

0.446

0.430

0.441

0.434

0.429

0.455

0.452

0.487

0.444

0.470

0.441

0.433

0.445

0.455

0.425

0.433

0.422

0.42

0.44

0.46

0.48

C
hi

ld
 G

N
N

 (P
M

C
)

Figure 1: Comparison of Dirichlet en-
ergies between pre-trained parent GNNs
and the corresponding child from PMC.

compared to the Dirichlet energies of the individual par-
ent models, indicating a higher susceptibility to over-
smoothing.

Corresponding to this theoretical analysis, empirical ev-
idence is presented in Fig. 1, where 60 parent models are
pre-trained on distinct partitions of the ogbn-products
dataset with different random seeds. Additional imple-
mentation details are provided in the appendix. Fig. 1 fur-
ther demonstrates the increased smoothing effect, which
can potentially diminish the model’s expressive power
and discriminative capability.

5.3 Child Message Calibration Scheme

To mitigate the over-smoothing issue identified in Proposition 5.1, one potential solution involves
leveraging established methods designed to address over-smoothing, such as PairNorm [65] and
residual connections [32]. However, to the best of our knowledge, all these existing solutions typically
require re-training the model. This requirement contradicts the fundamental principle of our GRAMA
approach, which aims for training-free model reuse.

To address this issue, we introduce a Child Message Calibration (CMC) scheme designed to refine the
message statistics of the obtained child GNN without the need for re-training or ground-truth labels.
Central to this scheme is our Learning-Free Message Normalisation (LFNorm) layer specifically
tailored for our GRAMA task, inspired by [28]. This layer is intended to enhance the discriminative
power and representational capacity of the child GNN by promoting a more diverse node feature
distribution.

According to Proposition 5.1, while the shift in mean node features is typically less problematic than
variance reduction, it is noted in [6] that mean statistics in GNNs also carry vital graph structural
information. Therefore, our approach aims to simultaneously refine both mean and variance statistics
in the child GNN, ensuring a comprehensive enhancement of topological representation.

Towards this end, we first process the raw graph through the parent GNNs to compute the target
message mean and variance intended for alignment in the child GNN. Subsequently, we integrate
the LFNorm layer into the child GNN to refine the message statistics using the derived mean and
variance from the parent models:

m̃ij =

√
Var(ma

ij) + Var(mb
ij)

2
·
(
mij − µN (i)

σN (i)

)
+

E(ma
ij) + E(mb

ij)

2
, (5)

where mij = φj∈N (i)(W
(`−1);X

(`−1)
j , eij) represents the messages from node j to node i, as

specified in Eq. 3. In this setup, m̃ij denotes the statistically calibrated message within the child
GNN, while µN (i) and σN (i) represent the mean and standard deviation, respectively, of the messages
directed to node i in the child GNN.

Eq. 5 ensures that the normalised messages in the interpolated child model maintain a balanced
representation of central tendencies from both pre-trained parent models. This method effectively
reduces the risk of over-smoothing in child GNNs by preserving essential topological statistics from
the parent models.

A more detailed algorithmic procedure is outlined in Alg. 1. In practice, we find that incorporating
a single LFNorm layer and aligning the overall message mean and variance of the parent GNNs is
typically sufficient to achieve favourable performance while minimising computational costs.

6 Experiments

We evaluate the performance of DuMCC across seven benchmarks spanning five GNN architectures.
More ablation studies and sensitivity analyses, additional results and implementation details, as well
as more visualisations, are detailed in Secs. D and E of the appendix.

7



Algorithm 1 The proposed Dual-Message Coordinator and Calibrator (DuMCC) for GRAMA.
Input: Pre-trained Parent GNNs Ga and Gb, interpolation factor α.
Output: Child GNN G that integrates the expertise of Ga and Gb in a learning-free manner.

// Parent Message Coordination
foreach layer ` from 1 to L do

Extract weights W (`)
a from Ga; Extract weights W (`)

b from Gb
// Compute permutation matrix for current layer with aggregated messages

P (`) ← arg min
P (`)∈P∗

∑
i
‖ Agg
j∈N (i)

φ
(
W (`−1)

a ;X
(`−1)
j,a , eij

)
− P (`) · Agg

j∈N (i)

φ
(
W

(`−1)
b ;X

(`−1)
j,b , eij

)
‖2

// Interpolate weights for current layer
W (`) ← αW

(`)
a + (1− α)P (`)W

(`)
b (P (`−1))T

end

G ← {W (`)}L`=1

// Child Message Calibration
foreach layer ` from (L− n) to L do

foreach edge (i, j) in the graph do
// Compute the messages in Ga and Gb

ma
ij ← φj∈N (i)(W

(`−1)
a ;X

(`−1)
j,a , eij); mb

ij ← φj∈N (i)(W
(`−1)
b ;X

(`−1)
j,b , eij)

// Compute the message for G
mij ← φj∈N (i)(W

(`−1);X
(`−1)
j , eij)

// Compute the scale and shift parameters

β ←
√(

Var(ma
ij) + Var(mb

ij)
)
/2; γ ←

(
E(ma

ij) + E(mb
ij)
)
/2

// Learning-free message calibration for G
m̃ij ← β

(
(mij − µN (i))/σN (i)

)
+ γ

end
foreach node i in the graph do

// Aggregate the calibrated messages and update features
X`

i ← Aggj∈N (i)m̃ij

end
end

Table 2: Multi-class molecule property prediction results for
parent GNNs, each pre-trained on disjoint partitions of the
ogbn-arxiv and ogbn-products datasets [18].

Methods Re-
train?

ogbn-arxiv ogbn-products
Dataset A Dataset B Dataset C Dataset D

Parent GCN A [30] - 0.7193 0.5516 N/A N/A
Parent GCN B [30] - 0.6564 0.7464 N/A N/A
Parent GraphSAGE C [13] - N/A N/A 0.7982 0.7308
Parent GraphSAGE D [13] - N/A N/A 0.7626 0.7904
KA [25] (Section 3)

√
0.7150 0.6687 0.7973 0.7775

VPI [54] (Section 4) × 0.3486 0.4361 0.6568 0.6546
VAPI [1] (Section 4) × 0.6140 0.5752 0.5425 0.5779
Ours (w/o CMC) × 0.6531 0.5957 0.7374 0.7414
Ours (w/ CMC) × 0.6645 0.6382 0.7647 0.7515

Implementation Details. Detailed
dataset descriptions and statistics are
provided in Appendix C. For multi-
class classification tasks on ogbn-
arxiv [17], ogbn-products [4], and
ModelNet40 [55], we adopt the
dataset partition strategy widely used
in model merging within the Eu-
clidean domain [1, 28]. Specifically,
each dataset is randomly split into two
disjoint subsets: the first subset com-
prises 20% of the data with odd labels
and 80% with even labels, while the
second subset is arranged vice versa.
For the semantic segmentation task on S3DIS [3], we train the two parent models using Areas 1, 2,
3 and Areas 2, 3, 4, 6, respectively, with Area 5 designated for testing, as also done in [32]. In the
multi-label classification task on ogbn-proteins [17], one parent model is trained on nodes with odd
labels and the other on nodes with even labels. Implementation follows the official codes provided
by the Deep Graph Library (DGL) [52] and the original authors, including detailed architectures
and hyperparameter settings. We set the interpolation factor α in Eq. 1 to 0.5 for all experiments,
with a sensitivity analysis provided in Sect. D of the appendix. For models originally equipped with

8



(a) KA [25] (b) VPI [54] (c) VAPI [1] (d) Ours (w/o CMC) (e) Ours (w/ CMC)

Figure 2: The t-SNE visualisations of various methods on a subset comprising the first 10 classes of
ogbn-arxiv. Additional visualisations for the remaining classes are available in Appendix E.

Methods Re-train? Dataset I Dataset J
Parent DGCNN I [53] - 0.9159 0.8151
Parent DGCNN J [53] - 0.8862 0.9275
KA [25] (Section 3)

√
0.9250 0.9283

VPI [54] (Section 4) × 0.4518 0.4096
VAPI [1] (Section 4) × 0.6538 0.5482
Ours (w/o CMC) × 0.8326 0.8088
Ours (w/ CMC) × 0.8920 0.8574

Table 4: Results of the point cloud classification
task on ModelNet40 [55] using DGCNN, with
two parent models trained on disjoint partitions.

Near Far
KA VPI VAPI Ours

Figure 3: Visualisations of feature space struc-
tures, depicted by the distances between the red
point and all other points.

normalisation layers, we recompute the running mean and running variance for the student GNN. In
particular, the recomputation of statistics is performed concurrently with that of the LFNorm layer
for the child GNN in CMC. More implementation details are elaborated in Sect. E of the appendix.

Comparison Methods. Considering the limited exploration of multi-GNN reuse in existing literature,
we focus our comparison of the proposed DuMCC approach on the training-dependent KA [25] and
training-free VPI [54] and VAPI [1] methods, as introduced in Sect. 4. Furthermore, in Sect. E of the
appendix, we also provide the results of retraining a child model using combined parent datasets with
ground-truth labels, which establish an upper bound for GRAMA’s performance.

Node Property Prediction. Tab. 2 presents the results for the multi-class node classification task.
The proposed DuMCC framework, as shown in the table, achieves a more balanced performance
across all datasets. It notably outperforms the parent models on datasets that were not used for their
training. Additionally, the last two lines of Tab. 2 detail an ablation study on the proposed CMC
scheme, demonstrating its ability to enhance performance beyond PMC. While our method slightly
lags behind KA in performance, KA involves a complex re-training process, whereas our approach is
completely training-free. A sample t-SNE visualisation of the results is provided in Fig. 2.

We further show in Tab. 3 the results of multi-label molecule property prediction. Notably, our
approach slightly outperforms KA in Tab. 3, underscoring the limitations of KA discussed in Sect. 3.
These limitations stem from KA’s reliance on soft labels produced by the teacher GNNs, making it
vulnerable to their misclassification errors. Furthermore, we explore the potential of multi-model
GRAMA by concurrently reusing three pre-trained node classification GNNs, as discussed in Sect. F
of the appendix.

Graph Property Prediction. Tab. 3 also presents results for the graph classification task using GAT
architectures. The proposed DuMCC demonstrates enhanced equilibrium in performance relative to
the parent models. Notably, DuMCC slightly outperforms KA on ogbg-molbace, further illustrating

Table 3: Results for multi-label node classification and graph classification, indicating KA’s vulnera-
bility to misclassification errors from pre-trained models.

Architectures GIN [56] Architectures GAT [48]
Methods Parent E Parent F KA Ours Methods Parent G Parent H KA Ours

ogbn-proteins 0.7478 0.7222 0.7215 0.7341 ogbg-molbace 0.7247 0.4067 0.6135 0.6296
ogbg-molbbbp 0.4681 0.6366 0.6446 0.5275

9



Table 5: Results of the 3D semantic segmentation task on the S3DIS dataset [3], with detailed
per-class results provided. Architecture details can be found in Sect. E of the appendix.

Methods Re-
train?

Structural Elements
ceiling floor wall beam column window door mean

Parent DGCNN K [53] - 0.9655 0.9947 0.9355 0.0079 0.0557 0.4529 0.1430 0.5079
Parent DGCNN L [53] - 0.9529 0.9927 0.9546 0.0573 0.0661 0.3555 0.1335 0.5018
KA [25] (Section 3)

√
0.9580 0.9943 0.9003 0.0681 0.1835 0.5154 0.7048 0.6178

VPI [54] (Section 4) × 0.6909 0.9871 0.3612 0.0000 0.0044 0.0000 0.0037 0.2925
VAPI [1] (Section 4) × 0.5338 0.8766 0.6825 0.0382 0.0046 0.0284 0.0019 0.3094
Ours (w/o CMC) × 0.9804 0.9967 0.9186 0.0302 0.0000 0.0008 0.0752 0.4289
Ours (w/ CMC) × 0.9695 0.9962 0.9290 0.1466 0.0004 0.0344 0.1047 0.4544

Methods Re-
train?

Furniture Others Overall
table chair sofa bookcase board mean clutter mean

Parent DGCNN K [53] - 0.7182 0.7746 0.0216 0.4980 0.4022 0.4829 0.6515 0.8181
Parent DGCNN L [53] - 0.7447 0.9255 0.1301 0.5267 0.1774 0.5009 0.6038 0.8174
KA [25] (Section 3)

√
0.7358 0.8649 0.0295 0.5377 0.4211 0.5178 0.6844 0.8382

VPI [54] (Section 4) × 0.0159 0.2802 0.0019 0.0135 0.0001 0.0623 0.4188 0.4791
VAPI [1] (Section 4) × 0.0117 0.1984 0.0142 0.1235 0.0025 0.0701 0.2326 0.5060
Ours (w/o CMC) × 0.5953 0.8485 0.0015 0.1160 0.0009 0.3125 0.5279 0.7497
Ours (w/ CMC) × 0.6351 0.8089 0.0086 0.2867 0.0182 0.3515 0.5274 0.7676

that KA is vulnerable to the errors of pre-trained models. In contrast, our approach does not rely on
soft labels, thus avoiding this limitation.

3D Object Recognition and Semantic Parsing. Tab. 4 and Fig. 3 illustrate the quantitative results
and qualitative visualisations for the point cloud classification task, respectively. The proposed
DuMCC outperforms model I on dataset J and model J on Dataset I without requiring re-training.
Moreover, Tab. 4 demonstrates that our approach significantly outperforms two vanilla methods.
Fig. 3 further illustrates the structure of the feature space, revealing that our method produces
semantically similar structures to those achieved by KA with re-training. We also show in Tab. 5 the
results for the large-scale indoor semantic segmentation task. Our method notably surpasses other
learning-free GNN reuse methods VPI and VAPI. Further qualitative and quantitative results across
various dataset splits and network architectures are provided in Sect. E of the appendix.

7 Conclusions and Limitations

In this paper, we explore a novel GRAMA task for learning-free GNN reuse. The child model from
GRAMA is expected to functionally merge knowledge from pre-trained parent models. Uniquely,
GRAMA establishes the first paradigm in GNN reuse that operates entirely without re-training or fine-
tuning, while also eliminating the need for ground-truth labels. To this end, we start by developing two
vanilla GRAMA approaches, which reveal specific challenges inherent to GRAMA. These challenges
motivate us to develop a DuMCC framework for topology-aware model reuse, leveraging a parent
message coordination scheme followed by child message calibration. Experiments on node- and
graph-level tasks across various domains demonstrate the effectiveness of the proposed approach for
annotation-free knowledge transfer without additional learning.

Despite its strengths, the proposed DuMCC is primarily designed for homogeneous GRAMA, as
discussed in Sect. 3. Currently, the framework does not support cross-architecture heterogeneous
GRAMA, where parent models have different architectures, such as a combination of GCN and
GraphSAGE. Additionally, it does not handle scenarios where parent models address tasks at differ-
ent levels, such as node-level versus graph-level tasks—another aspect of heterogeneous GRAMA.
These limitations primarily arise from the absence of direct correspondence between the differing
architectural layers of the parent models, an issue we plan to explore in our future work. We will
also explore the possibility of a fully data-independent GRAMA scheme and investigate broader
applications beyond training-free model reuse, such as its use as a pre-processing step to facilitate
graph-based knowledge amalgamation. Further discussions on limitations and potential solutions are
provided in Sect. H of the appendix.

10



Acknowledgement

This research / project is supported by the National Research Foundation, Singapore, and Cyber
Security Agency of Singapore under its National Cybersecurity R&D Programme and CyberSG
R&D Cyber Research Programme Office, as well as Australian Research Council Discovery Project
DP190103301.

Any opinions, findings and conclusions or recommendations expressed in these materials are those
of the author(s) and do not reflect the views of National Research Foundation, Singapore, Cyber
Security Agency of Singapore as well as CyberSG R&D Programme Office, Singapore.

References
[1] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models

modulo permutation symmetries. In ICLR, 2023.

[2] Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

[3] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and
Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In CVPR, 2016.

[4] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme
classification repository: Multi-label datasets and code, 2016.

[5] Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in
deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss
landscape. arXiv preprint arXiv:1907.02911, 2019.

[6] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A
principled approach to accelerating graph neural network training. In ICML, 2021.

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In ICML, 2020.

[8] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan.
One trillion edges: Graph processing at facebook-scale. Proceedings of the VLDB Endowment,
2015.

[9] Xiang Deng and Zhongfei Zhang. Graph-free knowledge distillation for graph neural networks.
In IJCAI, 2021.

[10] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In ICLR, 2022.

[11] Kaituo Feng, Changsheng Li, Ye Yuan, and Guoren Wang. Freekd: Free-direction knowledge
distillation for graph neural networks. In KDD, 2022.

[12] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. IJCV, 2021.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[14] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. TPAMI, 2022.

[15] Yunzhi Hao, Yu Wang, Shunyu Liu, Tongya Zheng, Xingen Wang, Xinyu Wang, Mingli Song,
Wenqi Huang, and Chun Chen. Attribution guided layerwise knowledge amalgamation from
graph neural networks. In ICONIP, 2023.

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning Workshop, 2015.

11



[17] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec.
Ogb-lsc: A large-scale challenge for machine learning on graphs. In NeurIPS Datasets and
Benchmarks, 2021.

[18] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[19] Moritz Imfeld, Jacopo Graldi, Marco Giordano, Thomas Hofmann, Sotiris Anagnostidis, and
Sidak Pal Singh. Transformer fusion with optimal transport. In ICLR, 2024.

[20] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph
condensation for graph neural networks. In ICLR, 2022.

[21] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In ICLR, 2023.

[22] Yongcheng Jing. Efficient representation learning with graph neural networks. PhD thesis,
2023.

[23] Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan, Mingli Song, Xinchao Wang, and
Dacheng Tao. Learning graph neural networks for image style transfer. In ECCV, 2022.

[24] Yongcheng Jing, Xinchao Wang, and Dacheng Tao. Segment anything in non-euclidean domains:
Challenges and opportunities. arXiv preprint arXiv:2304.11595, 2023.

[25] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Amalgamating
knowledge from heterogeneous graph neural networks. In CVPR, 2021.

[26] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Meta-aggregator:
Learning to aggregate for 1-bit graph neural networks. In ICCV, 2021.

[27] Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep
graph reprogramming. In CVPR, 2023.

[28] Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair:
Renormalizing permuted activations for interpolation repair. In ICLR, 2023.

[29] Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan-Sheng Foo. On representation
knowledge distillation for graph neural networks. arXiv preprint arXiv:2111.04964, 2021.

[30] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[31] Guohao Li, Matthias Müller, Guocheng Qian, Itzel C Delgadillo, Abdulellah Abualshour, Ali
Thabet, and Bernard Ghanem. Deepgcns: Making gcns go as deep as cnns. TPAMI, 2021.

[32] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In ICCV, 2019.

[33] Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey. arXiv preprint arXiv:2309.15698, 2023.

[34] Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xiaojun Chang, Xiaodan Liang, and Gang
Wang. Knowledge distillation via the target-aware transformer. In CVPR, 2022.

[35] Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep
neural network fusion via graph matching with applications to model ensemble and federated
learning. In ICML, 2022.

[36] Haibo Liu, Di Zhang, Liang Wang, and Xin Song. Multi-teacher local semantic distillation
from graph neural networks. In ADMA, 2023.

[37] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, Dongrui Fan, Shirui Pan, and Yuan
Xie. Survey on graph neural network acceleration: An algorithmic perspective. In IJCAI, 2022.

12



[38] Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. In
NeurIPS, 2022.

[39] Yu Pan, Ye Yuan, Yichun Yin, Zenglin Xu, Lifeng Shang, Xin Jiang, and Qun Liu. Reusing
pretrained models by multi-linear operators for efficient training. In NeurIPS, 2023.

[40] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[41] T Konstantin Rusch, Michael Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. SAM Research Report, 2023.

[42] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[43] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In NeurIPS, 2020.

[44] George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy
Hoffman. Zipit! merging models from different tasks without training. In ICLR, 2024.

[45] Xiu Su, Shan You, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. Bcnet: Searching
for network width with bilaterally coupled network. In CVPR, 2021.

[46] Xiu Su, Shan You, Jiyang Xie, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu.
Searching for network width with bilaterally coupled network. TPAMI, 2022.

[47] Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei Wang, Chen Qian, Changshui Zhang,
Xiaogang Wang, and Chang Xu. Vitas: Vision transformer architecture search. In ECCV, 2022.

[48] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[49] Can Wang, Zhe Wang, Defang Chen, Sheng Zhou, Yan Feng, and Chun Chen. Online adversarial
distillation for graph neural networks. arXiv preprint arXiv:2112.13966, 2021.

[50] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. In ICLR, 2020.

[51] Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual
intelligence: A review and new outlooks. TPAMI, 2021.

[52] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep learning on
graphs. In ICLR Workshop, 2019.

[53] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. TOG, 2019.

[54] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, 2022.

[55] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In CVPR, 2015.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[57] Zhengqi Xu, Ke Yuan, Huiqiong Wang, Yong Wang, Mingli Song, and Jie Song. Training-free
pretrained model merging. In CVPR, 2024.

[58] Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. In ICLR, 2023.

13



[59] Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. In ICLR, 2024.

[60] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge
from graph convolutional networks. In CVPR, 2020.

[61] Jingwen Ye, Zunlei Feng, and Xinchao Wang. Flocking birds of a feather together: Dual-step
gan distillation via realer-fake samples. In VCIP, 2022.

[62] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. arXiv preprint arXiv:2311.03099,
2023.

[63] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928, 2016.

[64] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In CVPR, 2018.

[65] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In ICLR, 2020.

[66] Sheng Zhou, Yucheng Wang, Defang Chen, Jiawei Chen, Xin Wang, Can Wang, and Jiajun Bu.
Distilling holistic knowledge with graph neural networks. In ICCV, 2021.

[67] Xiatian Zhu, Shaogang Gong, et al. Knowledge distillation by on-the-fly native ensemble. In
NeurIPS, 2018.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation discussions are provided in Sect. 7.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: The full set of assumptions and a complete proof are provided in Appendix G.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information to reproduce the experiments is provided in Appendix E.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [Yes]
Justification: The code and model are provided in the supplementary material.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Implementation details are elaborated in Sect. E of the appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The statistical analysis is provided in Appendix E.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computer resources needed are detailed in Sect. E of the appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Potential societal impacts of the work are discussed in Appendix I.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

18

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper studies GNN reuse for resource-efficient graph representation
learning and thereby, to our knowledge, poses no such risk.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The existing assets are cited and properly respected with the discussions
provided in Appendix C.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

19

paperswithcode.com/datasets


Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details of the code and model are provided in the supplementary material.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20


	Introduction
	Related Work
	Motivation and Problem Definition
	Vanilla Methodologies and Challenge Pre-analysis
	Two Vanilla Grama Methods
	Challenges Towards Grama

	Proposed Approach: Dual-Message Coordinator and Calibrator
	Overview
	Parent Message Coordination Scheme
	Child Message Calibration Scheme

	Experiments
	Conclusions and Limitations

