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Abstract

We develop a framework for capturing the instru-
mental value of data production processes, which
accounts for two key factors: (a) the context of
the agent’s decision-making; (b) how much data
or information the buyer already possesses. We
“micro-found” our data valuation function by es-
tablishing its connection to classic notions of sig-
nals and information design in economics. When
instantiated in Bayesian linear regression, our
value naturally corresponds to information gain.
Applying our proposed data value in Bayesian lin-
ear regression for monopoly pricing, we show that
if the seller can fully customize data production,
she can extract the first-best revenue (i.e., full sur-
plus) from any population of buyers, i.e., achiev-
ing first-degree price discrimination. If data can
only be constructed from an existing data pool,
this limits the seller’s ability to customize, and
achieving first-best revenue becomes generally
impossible. However, we design a mechanism
that achieves seller revenue at most log(κ) less
than the first-best, where κ is the condition num-
ber associated with the data matrix. As a corol-
lary, the seller extracts the first-best revenue in the
multi-armed bandits special case.

1. Introduction
Trading data forms an ever-growing segment in today’s
digital economy. Advances in machine learning motivate
companies to apply data-driven approaches to solve a grow-
ing variety of problems, ranging from personalized market-
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ing (Goldsmith & Freiden, 2004) to data-hungry applica-
tions such as natural language processing (Kang et al., 2020)
and self-driving (Ni et al., 2020). These applications high-
light the demand for high-quality labeled data, a demand
that a growing number of data sellers wish to meet. Start-up
companies such as Scale AI, Parallel Domain, Dataloop, and
V7 compete with established companies, such as Acxiom,
Oracle, and Nielsen, in this growing arena, underlying the
importance of formal analyses of buying and selling data.

Like physical goods and systems, data has both instrumen-
tal value and intrinsic value at the same time. For example,
the New York Times (NYT) as a news source has its own
intrinsic value, containing major up-to-date news. However,
serving as a Corpus for a particular machine learning task
like retrieval augmented generation (RAG) (Lewis et al.,
2020), its value towards improving the performance of the
task is instrumental. The fundamental difference between
instrumental vs. intrinsic value is widely studied in philoso-
phy. Citing the widely accepted definitions from Beardsley
(1965): X has instrumental value means X is conducive to
something that has intrinsic value. In the above example of
NYT data, its instrumental value to a RAG task depends on
the extra values it adds and, crucially, depends on what data
the buyer already has. For instance, when the RAG system
already has the data from other substitutable news sources
(e.g., the Washington Post, Wall Street Journal, etc.), the
NYT data’s instrumental value will become smaller, despite
holding the same intrinsic value. This is also the reason
that most economic activities, including the sale of data, are
based on items’ instrumental values, as illustrated by Foster
(1981): “The instrumental efficiency of the economic pro-
cess is the criterion of judgment in terms of which, and only
in terms of which, we may resolve economic problems”.
To our knowledge, there is no notion of such instrumental
data value in current literature; this is what we embark on
studying in this work.

Data sold by commercial companies falls into two situ-
ations, which we dub perfect customization and limited
customization. Perfect customization can offer data labels
for any feature directions specified by the buyer, whereas
limited customization can only curate data based on some
pre-collected dataset, hence has limited flexibility. For ex-
ample, a company that wishes to develop a model for image
classification can either [perfect customization] submit its
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most desirable set of unlabelled images and buy labels for
these images from the data seller, or [limited customiza-
tion] purchase a labeled dataset of useful, though possibly
not the most desirable images.

1.1. Our Contributions

In the paper, we first characterize valid valuations in Sec-
tions 2 and 3 and then present a concrete application, say,
mechanism design for data pricing, in Section 4. We sketch
our contributions as follows.

A new notion for data’s instrumental value. We first
introduce a general framework to quantify the instrumental
value of data which closely relates to a generalized notion
of Bregman Divergence, inspired by Frankel & Kamenica
(2019). Our notion rests on a deep duality relation between
the measure of parameter uncertainty and the measure of
data value. We show that, when instantiated in Bayesian
linear regression, our value corresponds precisely to the nat-
ural notion of information gain of the new data, relative to
existing data. This special form of data instrumental value
offers a useful basis for practitioners since the Bayesian
linear model is a widely studied foundational model, and
has been proven to be a good approximation when we do
not have specific knowledge about the underlying model
structure. Quoting Besbes & Zeevi (2015), linearity offers
the greatest robustness under misspecification. Following
this spirit, we use this particular valuation form to demon-
strate our insights. Notably, our instrumental data value
crucially differs from Data Shapley (Ghorbani & Zou, 2019)
and its variants. Data Shapley captures a data point’s ex-
pected contribution to an ML task, whereas our data value
captures a dataset’s marginal contribution beyond existing
data, hence more naturally captures the dataset’s economic
value. Another strong advantage is that our new data val-
uation can be computed with only one model retraining,
hence much more practical to compute in reality (see more
detailed discussions in Section 2.3).

The power of perfect data customization. With the in-
troduced measure of data instrumental value, we next turn
to its application to selling data. When the seller can cus-
tomize data production for buyers, we show that there exists
a pricing mechanism that achieves first-best revenue; that
is, it extracts full welfare, hence leaves no surplus for buy-
ers. This result highlights a fundamental difference between
selling data and selling physical goods. Specifically, when
selling goods, the power of customization is limited, at most
through randomized allocation, leading to buyers’ utility
linearity (in allocation probabilities). However, for selling
data, there is significantly more power of customization
by producing various (high-dimensional and non-linear)
derivatives of data. Such rich “data allocation” space is the
fundamental reason for the first-best revenue extraction. It

also hints at the potential concerns of highly-screwed (to-
wards seller) surplus distribution on data markets and calls
for future government regulation.

Approximate optimality for selling data under limited
customization. When the seller has limited customiza-
tion ability and can only curate data derivatives from a
pre-collected dataset, we exhibit a novel data-selling mecha-
nism based on the SVD decomposition of the data matrix
and show that it almost extracts full welfare, up to a small
constant which relates to the condition number of the data
matrix of the to-be-sold dataset. Therefore, under this mech-
anism, buyers can only enjoy at most a constant amount of
surplus.

1.2. Related Works

Our work is closely related to the literature on valuing data
and information (Ghorbani & Zou, 2019; Jia et al., 2019;
Frankel & Kamenica, 2019; Schoch et al., 2022), and selling
data and information (Admati & Pfleiderer, 1988; Babaioff
et al., 2012; Xiang & Sarvary, 2013; Bergemann & Bonatti,
2015; Hörner & Skrzypacz, 2016; Kastl et al., 2018; Chen
et al., 2019; Segura-Rodriguez, 2021; Liu et al., 2021a; Chen
et al., 2022). Due to the space limit, we discuss these and
more related works thoroughly in Appendix A.1.

2. An Instrumental Value of Data Production
and its Micro-foundation

In this section, we introduce a new way to quantify the
instrumental value of a Data Production Process (DPP),
which captures a DPP’s expected value for a certain task.
Its formulation is fundamentally different from the widely
studied Data Shapley (Roth, 1988; Ghorbani & Zou, 2019;
Jia et al., 2019), which quantifies the value of a realized
dataset, hence can usually be evaluated only by accessing
the realized data. In contrast, our developed value for DPPs
can be evaluated with just the knowledge about how the
data are produced, but without the need to truly access the
realized data. Additionally, the developed valuation function
is relative to prior information as well as the user’s context,
hence it is possible in our definition that high-quality data
may have low value to certain user if the user already has
sufficient prior knowledge or if the user cares about a context
that is not reflected in the data.

Our new data valuation function is rooted in a few classic
subjects, including Bayesian regression, decision-making
and the economic value of information, which we now elab-
orate on.
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2.1. The Context: Bayesian Regression and Data
Production

Our valuation function for DPP is based on the context of a
fundamental statistical learning problem — i.e., estimating
parameters of a generic regression problem y = fβ(x) + ϵ,
where fβ(·) is a function parameterized by β. Here, x ∈ Rd

is the feature vector and ϵ is some zero-mean random noise,
capturing the measuring error. Let tuple (x, y) denote a
generic data point whereas {(xi, yi)}ni=1 denote a dataset
with n points. A core challenge in studying the value of
a data production procedure1 is that the value needs to be
well-defined not only for the process of simply producing
data records {(xi, yi)}ni=1, but also for any post-processing
of the data. For instance, instead of directly giving away all
data records {(xi, yi)}ni=1, the seller could also just produce
a single averaged feature x̄ = 1

n

∑n
i=1 xi and its corre-

sponding label ȳ = 1
n

∑n
i=1 yi. More general statistics

could include weighted data combinations, some moments
of the data, or even beyond, which all carry information
about the underlying parameter β. This motivates us to
consider the following general notion of a data production
process.

Definition 2.1 (Data Production Process (DPP)). A data
production process (DPP) is described by a data generating
distribution gβ(D), which produces realized data D with
probability gβ(D) under parameter β. When β is clear from
context, we simply use g to denote this DPP.

Example 1 (Examples of DPPs). Consider a linear model
y = ⟨x, β⟩ + ϵ with uninformative Gaussian prior β ∼
N (0, I2). A learner would like to purchase data to predict
⟨x, β⟩ for x = (1, 1). A simple example of DPPs — de-
scribed by two feature directions x1 = (1, 3), x2 = (3, 1) —
simply produces response variables via model y = ⟨x, β⟩+ϵ
along feature direction x1, x2: for example, y1 = −1 and
y2 = 1. In this case, x1, x2 specified a DPP whereas the
realized y1, y2 are the data D with data generating distribu-
tion gβ({y1, y2}) = E(y1−⟨x1, β⟩)E(y2−⟨x2, β⟩), where
E(·) is the noise distribution.

Besides directly producing data y1, y2 for directions x1, x2,
one could also produce the data ȳ for feature direction
x̄ = x1+x2

2 using DPP, which illustrates the rich space
of DPPs. Perhaps more interestingly, we could also de-
sign a DPP that produces data y⊥ = y1 − y2 for direction
x⊥ = x1 − x2. This DPP is of no interest to the learner
above since x⊥ is orthogonal to the learner’s interested direc-
tion x. Nevertheless, the realized y⊥ does carry information
about β and hence may be of interest to other users with
a different context x′. Such careful curation of DPPs is a

1Data production has the same meaning as data generation or
curation. We choose to use the term “production” mainly to em-
phasize the active generation of data, especially for the economic
purpose of data sales.

salient feature of data sale that is intrinsically different from
classic pricing problems of physical goods (Myerson, 1981).
As we show later, it gives data sellers the power to tailor
their data production to be useful only for one particular
buyer but of little use to others, hence increasing sellers’
power of price discrimination.

In principle, a DPP g can be an arbitrary data production
process and does not even need to be related to the under-
lying regression model y = fβ(x) + ϵ so long as it carries
information about β (e.g., a fully informative DPP could
even directly reveal β). However, throughout this paper and
similar to Example 1, we will mostly think of g as being cu-
rated from certain data records {(xi, yi)}ni=1, for example,
either as the full or partial list of {(xi, yi)}ni=1 or as some
statistics (e.g., mean, variance, moments, etc.) computed
using these data records. This more realistically captures
how data is generated and stored in most ML problems, and
also is more intuitive to think about. In these situations, the
randomness of the data production process g inherits from
the model’s noise ϵ and possibly extra randomness the data
owner may add (see Example 4 for more details). Our valu-
ation will be able to capture the value of all these variants.
Throughout the paper, we assume the data-generating dis-
tribution gβ(D) is publicly known (though β is unknown);
the DPPs in Example 1 are all described by varied feature
directions or their functions.

As in standard Bayesian regression, we assume the data
buyer possesses a prior distribution q over the parameter
β and aims to further improve his prior q by purchasing
additional data. In reality, q can be a strong prior estimated
from much data that the buyer already has, or can be a weak
prior as an uninformative distribution. In either situation,
additional data can help to refine the prior q, forming the
posterior p. Hence, a data buyer can use the realized data D
produced by DPP g to update his belief about β as follows2

Distribution of data: P(D) =

∫
β

q(β) · gβ(D)dβ = g ◦ q

(1)
Posterior updates from realized data D:

p(β | q,D) ∝ q(β) · gβ(D) for each β. (2)

For instance, how the data producing distribution gβ(D)
and posterior update p(β | q,D) lead to variance reduction
in Example 1 can be calculated as follows.
Example 2 (Example 1 Continued). If we produce data ȳ,
the variance of the to-be-predicted variable ⟨x, β⟩ reduces
from 2 to 2

17 , same as fully revealing original data records
{(x1, y1), (x2, y2)}. However, if we only reveal (x⊥, y⊥),
the variance remains 2. Notably, these improvements can

2This is also known as the convolution of the parameter distri-
bution q(β) and model gβ .
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all be calculated without knowing the realized data. This
will be useful for selling DPPs since it means the value of a
DPP can be quantified without seeing the realized data. This
resolves the concern that data will lose its value after being
seen, say the seller can reveal x̄ or x⊥ for advertisement.

For brevity, we refer to the posterior as p when q,D are clear
from the context. We sometimes consider the situation with
null data production, i.e., g = ∅, where no Bayes update
happens and p(· | q, ∅) = q.

Finally, for our theory, we need a natural generalization of
Bregman divergence to concave functionals over (continu-
ous) distributions in order to accommodate the continuous
parameter space for β (Cilingir et al., 2020).

Definition 2.2 (Concave Functionals and Generalized Breg-
man Divergence (cf. Definition B.1)). We say functional
F (·) is concave if for any λ ∈ [0, 1], we have

F (λp+ (1− λ)q) ≥ λF (p) + (1− λ)F (q).

Moreover, we say∇F (·) is its (functional) superdifferential
if

F (q) + ⟨∇F (q), p− q⟩ ≥ F (p),

for any probability distributions p and q. The generalized
Bregman divergence induced by functional F is defined as

DF (p, q) = F (q)− F (p) + ⟨∇F (q), p− q⟩.

2.2. The Value for a Data Production Process and its
Micro-Foundation

Throughout, we assume the Bayesian regression model
y = fβ(x) + ϵ and any designed DPP g are publicly known.
Our goal is to develop and characterize a class of valua-
tion function that captures the instrumental value of g to a
particular task.

Our proposed valuation is rooted in a fundamental micro-
economic problem of Bayesian decision-making (BDM).
Recall that a standard BDM problem is described by a utility
function u : A× Y → R where u(a, y) is the utility under
action a ∈ A and a random state of the world y ∈ Y that
captures uncertainty in the decision making. As an example,
in a simple production decision problem, u(a, y) could be
ay − a2 where a is the number of products to be produced,
y is the price of the products (often a random variable that
needs to be predicted), and a2 captures the production costs
for producing a amount. Our following definition of a con-
textual variant of the above problem simply says that the
random variable y can be context-dependent.

Definition 2.3 (Contextual Bayesian Decision Making
(CBDM)). A CBDM problem is a tuple ⟨u, y[x] = fβ(x) +
ϵ⟩ where the utility function u : A × Y → R represents
a standard BDM problem and y[x] follows a distribution
specified by context x under response model y = fβ(x) + ϵ.

Note that CBDM simply enriches standard BDM by allow-
ing the decision to depend on some particular context x,
which then allows the decision maker to have a more fine-
grained distribution estimation y[x] of the random state y.
For instance, still in the above production decision prob-
lem, the context x could be the demographic feature of a
certain population, and y[x] is the to-be-predicted price tar-
geting this particular population. Similarly, we may predict
E[y[x]] = fβ(x) for some other tasks in an average manner.

Knowing the context x, the data buyer can improve his
decision-making by purchasing data produced by DPP g
to refine his estimation of β (hence refine the prediction of
y) from his prior belief q(β) to posterior p(β|D, q). In a
fully Bayesian world, such data should always increase the
decision maker’s utility, and this utility increase in expec-
tation is a natural candidate for the value of the DPP g for
the given CBDM problem. This motivates us to study the
following valuation function of data.

Definition 2.4 (Valuation Functions of a DPP). Suppose
the regression model y = fβ(x) + ϵ and data production
process gβ(D) are public. Then a valuation function for
realized data D has format val(D; q, x) that depends on
the buyer’s prior belief q of β and the decision context x.

Consequently, V(g; q, x) = ED∼g◦qval(D; q, x) is called
the instrumental valuation function for DPP g. Moreover,
we call cost(q, x) = val(∨; q, x) the cost of uncertainty
where g = ∨ denotes the fully informative DPP that directly
produces data D = β (hence before seeing the data, the
belief about the to-be-seen D’s distribution is the prior q =
g ◦ q).

A few remarks are worthwhile to mention about Defini-
tion 2.4. For simplicity, we wish to minimize the valuation
functions val’s dependence on various quantities. However,
its dependence on q, x is essential. First, val’s dependence
on prior q is natural because what the buyer originally knows
affects the value of newly acquired data. More valuable data
are those that significantly shift the buyer’s prior, whereas
the data that does not change it much is less valuable. Sec-
ond, the dependence on the decision context x is also natural
since if the data isn’t informative to the particular decision
context x, it won’t have much value for the buyer regardless
of how informative it may be to estimate the directions of β
that is not useful for improving prediction of fβ(x).3 Finally,
the cost function is simply the value of the most informa-
tive DPP, which helps the buyer to pin down parameter β
precisely so that the only uncertainty in his decision-making
is the inevitable noise ϵ from nature.

Now that we propose a format of the valuation function

3For instance, if fβ(x) = ⟨x, β⟩, then accurate estimation of
β alone any subspace orthogonal to x will not be useful for the
buyer’s decision-making with context x.
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V(g; q, x). However, obviously, not all such functions should
be considered “valid” valuation functions. For instance,
negative valued ones or those which decrease as g become
more informative are clearly not reasonable candidates for
data valuation. Hence, the true scientific question is what
kind of functions V(g; q, x) could be considered as “valid”
data valuation functions. To answer this question, we resort
to Bayesian decision-making in order to “microfound” valid
V(g; q, x)s.

Definition 2.5. [Valid Value Functions and Cost
of Uncertainty] A valuation function V(g; q, x) =
ED∼g◦qval(D; q, x) is valid if and only if its correspond-
ing val(D; q, x) function can be expressed as follows
for some contextual Bayesian decision-making problem
⟨u, y[x] = fβ(x) + ϵ⟩:

val(D; q, x) = E
β∼p(·|q,D)→y∼fβ(x)+ϵ

[u(a∗(p); y)−u(a∗(q); y)],

(3)
where β ∼ p(·|q,D) → y ∼ fβ(x) + ϵ denote a process
of producing y by first drawing β ∼ p and then drawing
y ∼ fβ(x) + ϵ; a∗(q) is the optimal action a when the
decision maker’s distribution belief about parameter β is q,
or formally optimal action under parameter distribution q:
a∗(q) = argmaxa∈A Eβ∼q→y∼fβ(x)+ϵu(a, y).

Analogously, we can define a coupled valid cost of uncer-
tainty function, and we postpone it to Appendix B.2 for
interested readers.

In other words, a valuation function V(g; q, x) is valid
if there exists a CBDM problem ⟨u, y[x] = fβ(x) + ϵ⟩
that “microfounds” it in the sense that its corresponding
val(D; q, x) can be written as the utility difference between
the more informed (by extra data D) optimal action a∗(p)
and original uninformed action a∗(q), in expectation over
the randomness of the state y = fβ(x) + ϵ where parameter
β is generated by posterior p. In a fully Bayesian world, this
is precisely how much the realized data D helps to increase
the decision maker’s expected utility.

Definition 2.5 captures valid data valuation functions from
a micro-economic perspective. However, these definitions
are not very helpful for us to verify whether any given
V, val, cost functions are valid since it may be gener-
ally difficult to uncover the underlying CBDM problem
⟨u, y[x] = fβ(x) + ϵ⟩. Next, we offer some results that
offer alternative yet equivalent characterizations of these
functions as well as their connections. These characteriza-
tions are properties of these functions themselves, hence are
much easier to verify. We leave analogous proposition for
cost(·, ·) to Proposition B.4 in Appendix B.2.

Proposition 2.6 (Characterization of Valid Valuation Func-
tions (see Proposition B.3 for details)). A valuation function
val is valid if and only if it satisfies the following properties
simultaneously: (1) No value for null data, (2) Positivity

and (3) Invariance to data acquisition orders.4

Our first main result establishes a connection between val

(hence also V) and cost.

Theorem 2.7. A valid data valuation val(D; q, x) and cost
of uncertainty cost(q, x) are coupled if and only if val is
a generalized Bregman divergence (Definition 2.2) of cost
in the following sense

val(D; q, x) = cost(q, x)−cost(p, x)+⟨∇cost(q, x), p−q⟩,

where p(·|q,D) defined in Equation (2) is the posterior of
β and ∇cost(·) any superdifferential of cost defined in
Definition 2.2.

The theorem highlights the fundamentality of Bregman di-
vergence, a commonly used concept in statistical learning
and online learning (Banerjee et al., 2005; Gutmann & Hi-
rayama, 2011; Raskutti & Mukherjee, 2015), in the valu-
ation of data and cost of uncertainty. That is, any valid
candidate of data valuation functions must correspond to the
Bregman divergence of some concave function that captures
the cost of uncertainty. Notably, since machine learning
training typically involves minimizing some divergence, our
results to some extent justify the choice of the loss function.
As we will see below, the selection of entropy reduction is
not only due to its ease of optimization but also because it
corresponds to a certain preference.

2.3. Comparisons to Data Shapley

Data Shapley (Ghorbani & Zou, 2019; Wang et al., 2024)
is another common valuation method, yet often overstates
valuation. Originating from cooperative game theory, Data
Shapley allocates value to each datum in an existing dataset.
It computes an expectation over exponentially many (hence
intractable generally) possible scenarios as follows: ϕi ∝∑

S⊂D−{i}
val(S∪{i};q,x)−val(S;q,x)

(|D|−1
|S| )

. Our previous result

characterizes what valuation function val is “valid”. Theo-
rem 2.7 proves that any natural val is the Bregman diver-
gence of some concave function, which also matches most
choices in practice. More importantly, our valuation only
relies on val(D; q, x) and val(D ∪ {i}; q, x) (since it is
the marginal value) hence is much easier to compute in prac-
tice since it only requires to evaluate val(D ∪ {i}; q, x) by
retraining the model one more time with the additional data
i. Moreover, our valuation method can be applied to any
transformations of the dataset as well (so long as the DPP
allows us to update parameters), so it could be applicable
more broadly than Data Shapley.

We now illustrate our motivation for considering marginal
contribution, while not averaging over all possible data coali-

4It means the total expected value of data is invariant to the
order of data acquisition.
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tions. Suppose a company hopes to buy a new confidential
dataset to fine-tune its large language model; it only needs
to consider the status before and after fine-tuning. How-
ever, Data Shapley gives some weight to the value of a
virtual model trained by part of the original data and the
new dataset. Considering many of these hypothetical situ-
ations will usually overestimate the instrumental value of
the new dataset and twist the corresponding data pricing.
This inconsistency arises from ignoring the timeline when
each dataset is collected. The following example illustrates
why the Shapley Value usually overestimates. In fact, in its
extreme, suppose a seller resells a repetitive data/dataset i
which is already in the buyer’s training data pool, this same
dataset will nevertheless have a non-zero Shapley value,
whereas it will have 0 instrumental value in our setting as
it’s useless for updating the prior.

Example 3 (The comparison between V(·; ·, ·) and Data
Shapley). Assuming β has a prior N (0, 1) and data fol-
lows N (β, 1), we hope to formulate the entropy reduction
associated with the second datum which is 1

2 log(
3
2 ). Here,

the first datum reduces the posterior variance from 1 to 1
2

and the second one reduces it from 1
2 to 1

3 . By choosing val
as negative entropy, V = 1

2 log(
3
2 ) but ϕ2 = log 3

4 , showing
Data Shapley overestimates valuation in this scenario.

Here, we use entropy reduction associated with KL di-
vergence as a valid val(·; ·, ·). KL divergence is com-
monly applied in training machine learning models, like
VAE (Kingma, 2013) and GAN (Goodfellow et al., 2014).
Nonetheless, our instrumental value is also legitimate for
some other widely-used loss functions like L2 loss.

Data Shapley corresponds to a uniform distribution (Ghor-
bani & Zou, 2019), and some paper tries other distributions
like Beta distributions (Kwon & Zou, 2021) to capture vari-
ous facets of data valuation. Our instrumental value can be
regarded as a kind of limitation of Shapley value that we use
a Dirac delta distribution, merely focusing on S = D− {i}.
It precisely describes the realistic gains from new data with
computational tractability and has potential applications in
the data market, like valuing data used for fine-tuning. We
visualize the advantages of instrumental value with some
numerical experiments in Appendix B.3.

3. The Canonical Data Valuation Function for
Linear Regression & Entropy

Section 2 introduced a general characterization for the value
of data and its associated cost of uncertainty. In this section,
we instantiate this framework in a fundamental Bayesian
regression problem (i.e., linear regression) with perhaps the
most widely used cost of uncertainty function (i.e., entropy),
and develop closed-form characterization for the DPP val-
uation function V(·; ·, ·) in this case. This focus on a linear

regression problem is due to multiple reasons. First, the
linear model is arguably the most fundamental model and
has been proven to be very useful under uncertainties and
misspecification (Besbes & Zeevi, 2015). Second, multiple
recent works have shown that data’s valuations are often
“transferable” in the sense that when the same sets of data
are evaluated under different learning models (e.g., linear
regression or ML methods), their relative value order of-
ten does not change much though the absolute value may
change (Schoch et al., 2022; Jia et al., 2021). Finally, in
domains such as causal inference and clinical healthcare, lin-
ear models serve as effective approximations of real-world
dynamics and provide valuable insights for future method-
ological developments. Given these, the valuation under
the linear regression model serves as a useful basis for any
future analysis of data valuations, hence, we term them the
canonical valuation function.

Let us start by recalling the classic Bayesian linear re-
gression problem, which assumes that label y is produced
by the following linear model y = ⟨x, β⟩ + ϵ, where
ϵ ∼ N (0, σ(x)2) is a zero-mean Gaussian noise.

The Bayesian linear regression framework shares a similar
sentiment with Thompson sampling (Agrawal & Goyal,
2013). It not only holds high value in machine learning
theory but also finds extensive practical applications in real
life, like drug monitoring (Ammad-Ud-Din et al., 2017;
van den Elsen et al., 2019).

Notably, here we allow the variance σ(x) to also depend on
the context x. We also assume β follows a Gaussian prior
N (µq,Σq). One of the most widely adopted cost of uncer-
tainty functions is the Shannon entropy (Shannon, 1948), or
differential entropy for continuous distributions. We con-
veniently refer to both as “entropy” and defer its standard
definition to Appendix C. It is easy to verify that entropy
is a valid cost of uncertainty over ⟨x, β⟩ and measures the
confidence in the estimation. One natural question, hence,
is what is the associated data valuation function coupled
with entropy? Our following result provides a closed-form
characterization.

With the structure of Bayesian linear regression, we may
write out exactly V(·; ·, ·) in the Bayesian linear regression
setting in the following theorem.

Theorem 3.1. [The Canonical Valuation of DPPs] In clas-
sic Bayesian linear regression, the valuation function for
any data production process g coupled with Entropy is the
following function:

V(g; q, x) = E
D∼g◦q

[
1

2
log(xTΣqx)−

1

2
log
(
xTΣp(·|D,q)x

)]
,

(4)
where g ◦ q is the data distribution as in Equation (1), p is
the posterior distribution over β ∈ Rd as in Equation (2),
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and Σp = Eβ∼p(β−µp)(β−µp)
T is its covariance matrix.

Theorem 3.1 offers a closed-form expression (coinciding
with information gain) for the valuation of any data produc-
tion process g, associated with entropy in linear regression
— due to their fundamentality, we call the V(g; q, x) function
in Equation (4) the canonical valuation function for DPPs.

So far, we have been working with the most general data
production process g. Next, we’re going to instantiate our
characterization in Theorem 3.1 with a concrete, perhaps
the most straightforward, data production process — that
is, a collection of data records {(xi, yi)}ni=1 produced by
the model y = ⟨x, β⟩+ ϵ. In this case, the data production
procedure is completely determined by the data matrix X ∈
Rn×d with its i-th row as xT

i , hence denoted as gX . The
realized data is the realized response variable values Y =
(y1, . . . , yn)

T . This concrete DPP allows us to derive a
closed-form valuation function for these data records.

Corollary 3.2. [The Canonical Valuation of Producing
Data Records] For any data records {(xi, yi)}ni=1 gen-
erated by the linear regression model y = ⟨x, β⟩ + ϵ,
let X ∈ Rn×d denote the design matrix. The canoni-
cal valuation of this DPP procedure, denoted as gX , is
characterized in closed form as follows: V(gX ; q, x) =
1
2 log(x

TΣqx)− 1
2 log(x

T (Σ−1
q +XTΣ−1X)−1x), where

Σ = diag{σ(x1)
2, ..., σ(xn)

2}.

4. Optimal Pricing of Data Production under
Canonical Valuations

In this section, we use the developed closed-form charac-
terization for canonical valuations of DPPs in Section 3 to
study a natural optimal pricing problem for selling DPPs.
While the choice of valuation functions generally may be
domain-dependent, the goal of this section is to showcase a
natural economic application of the newly developed valua-
tion functions of DPPs. We study how to sell data produc-
tion processes (DPPs) to a machine learner (henceforth, the
buyer).

We consider the following standard mechanism design
framework, albeit being instantiated in our DPP pricing
setup with fundamentally different utility functions and al-
location rules. Specifically, the buyer would like to estimate
E[y[x]] = ⟨x, β⟩. The β here is the to-be-estimated pa-
rameter by the buyer. For simplicity, we assume the buyer
initially has no knowledge about the model parameter β;
formally, the buyer’s initial belief q = N (0, Id) about β is
a standard d-dimensional Gaussian.5 The buyer would like
to buy data from the seller to refine his Bayesian posterior
belief about β, which is quite common in management sci-

5Our results can be generalized to general Gaussian prior (same
for every buyer), but with more complex notations.

ence (Liu et al., 2021b) and clinical trials (Berry, 2006). As
a salient realistic feature of data pricing, we always assume
the seller can only generate data of form ŷ = ⟨x̂, β⟩ + ϵ
where ϵ ∼ N (0, σ(x̂)2) — that is, data are noisy responses
for examined feature direction x̂. Moreover, as a natural
statistical assumption, the larger the length ∥x∥ of x is, the
larger the noise’s magnitude is. Hence we assume the noise’s
variance scales with ∥x∥, or formally, σ(x) = σ( x

∥x∥ )∥x∥ as
widely adopted in statistical literature (Linnet, 1990; Kumar
& Klefsjö, 1994; Bland & Altman, 1996; Wang & Mauldon,
2006).6 Certainly, data are limited (which is why it has
value). To capture its scarcity, we assume the seller is lim-
ited to producing at most n data points of the above form,
and the production has no cost.7

Prior-free mechanism design and performance bench-
mark. While q is public knowledge, the decision context
x ∈ Rd is the buyer’s private information, also conven-
tionally referred to as the buyer type, which is unknown to
the seller. Unlike Bayesian mechanism design, we study
prior-free mechanism design, which is known to be noto-
riously more challenging (Hartline et al., 2020; Hartline
& Johnsen, 2021) but much more practical due to being
free of assumptions on the seller’s prior knowledge and on
how buyer type is generated (Goldberg & Hartline, 2001;
Devanur & Hartline, 2009). In this case, the performance
benchmark is the “first-best” revenue, i.e., the revenue when
perfectly knowing buyer type x and producing n data points
based on x.

It turns out that solutions to this mechanism design question
crucially hinge on the seller’s power of customizing data
production. We consider the following two natural settings.

• Perfect Customization: here, the seller has the flexi-
bility to produce data for any direction x. Given such
flexibility, the benchmark of the first-best is to pro-
duce n responses for the buyer’s type x (assumed to
be known in the benchmark) and then charge the buyer
his value for this DPP. We denote this particular DPP
as gn[x] which produces responses yi = ⟨x, β⟩ + ϵi
for i = 1, · · · , n. Hence, the benchmark revenue here
is simply the buyer type x’s value for gn[x], which is
V(gn[x]; q, x).

• Limited Customization: here the seller has an ex-
isting set of data records {(xi, yi)}ni=1. Regardless of
which buyer type x is, the highest possible buyer value
the seller can produce is to give all the data to the buyer.
We denote this particular DPP as gX , which is deter-

6Otherwise, we only need to consider the length corresponding
to the minimum relative noise in the direction, and this direction
collapses to such a point.

7Another interpretation is that the data scarcity, i.e., at most n
data points, reflects the production cost.
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mined by their data matrix X and simply produces all
their labels {yi}ni=1. Hence, the benchmark revenue
for buyer type x is V(gX ; q, x).

Convenient Notations. If any mechanism achieves ex-
pected revenue that is additively within α of the benchmark
described above for every buyer type x, we say this is an
α-regret mechanism.8 A 0-regret mechanism is simply the
mechanism that achieves the in-hindsight optimality. In
this section, we always have q = N (0, Id). For notational
convenience, we will instead write the above value function
as V(g;x) (only) in this section by ignoring q. Moreover,
only the buyer knows his own type x, whereas the seller has
no information at all about x. Hence, naturally, the buyer
may misreport his type as some x̂, not necessarily equal
to x, whenever this is more beneficial. We will always use
g[x̂] to denote the seller-designed DPP for a buyer report
x̂. Like classic mechanism design, we say a mechanism is
incentive-compatible (IC) if each buyer with type x finds
it optimal to report x truly. A mechanism is individually
rational (IR) if no buyer type has a negative expected utility.

4.1. The Power of Perfect Data Customization:
Achieving the First Best

Our main result under perfect data customization is a sur-
prisingly positive result showing that it is possible to have
a 0-regret mechanism for selling DPPs that achieves the
first-best in hindsight. Notably, such a full surplus charge
has been shown to be impossible in classic item allocation
problems (Myerson, 1981; Hartline et al., 2020; Hartline &
Johnsen, 2021). This is fundamentally due to the different
valuation functions in the two settings, as a function of al-
located data. Our result demonstrates the surprising power
of price discrimination brought by the special valuation of
data as well as the flexibility of data customization.

Figure 1. Timing line for perfect data customization.

Theorem 4.1. With perfect data customization, the follow-
ing Mechanism 1 with DPP g[x̂] = gn[x̂] and payment
t(x̂) = 1

2 log(
σ(x̂)2+n
σ(x̂)2 ) for any buyer reported type x̂ is IC,

IR and 0-regret.

Theorem 4.1 shows that the optimal allocation is to produce
n responses for type x. The key challenge is to find the
optimal payment rule. As type x is high-dimensional, tradi-
tional methods (Myerson, 1981) have become agnostic. We

8In online algorithm design, additive loss from the optimal in
hindsight is often denoted as “regret” whereas multiplicative loss
is called “competitive ratio”.

Algorithm 1 An Optimal Mechanism under Perfect Data
Customization

Input: buyer’s report x̂
Seller charges buyer t(x̂) = 1

2 log(
σ(x̂)2+n
σ(x̂)2 )

Seller produces n responses for the same x̂: ŷi = ⟨x̂, β⟩+
ϵi, and reveals {ŷi}ni=1 to the buyer.

conclude that the payment rule for allocation g[·] must have
the following form that t(x) =

∫ x

x0
∇yV(g[y]; s) | y=s · ds+

t(x0).

Compared with the well-known results of single-dimension
in Myerson (1981), there are two main differences consid-
ering a multi-dimensional type. First of all, we need to
generalize the derivation of a one-dimensional function to
the gradient computation in the case of higher dimensions.
Second, when calculating the payment rule t(·), the integral
result is required to be independent of the initial starting
point and the integral path we choose. In our situation, it
means that no matter what x0 and the path from it to the final
x we choose, the result of the integral should be the same.
These conditions constrain the application scenarios of the
extended method for multi-dimensional mechanism design,
as we only need monotonicity for the single-dimensional
situation. Nevertheless, the proof will elaborate that our
definition of instrumental value satisfies all these conditions
endogenously, highlighting the importance of our frame-
work of instrumental value and suggesting its broad range
of applications.

4.2. Selling Existing Data Records with Limited
Customization

We now turn to the situation when the seller has n data
points {(xi, yi)}ni=1 at hand and can only process this ex-
isting dataset and sell it to the buyer, where Σ(X) =
diag{σ(x1)

2, ..., σ(xn)
2} and Y = (y1, ..., yn)

T . The de-
sign matrix X is public knowledge, but the buyer does not
observe the corresponding responses Y . In practice, for ex-
ample, in clinical trials, information about the subject group
is usually known, but the evaluation of the drug’s effective-
ness needs to be purchased. Sellers in real-world scenarios
usually disclose data quality. We model it by Σ(X), which
represents the measurement error or the specifications of the
experimental instruments, such as their precision. We first
note that while our benchmark here is the buyer’s maximum
possible value V(gX ;x), this benchmark is impossible to
obtain due to not knowing the buyer’s type, since if the
seller indeed reveals all these data records to every buyer,
then every buyer type would want to misreport his type to
be some x̂ that has the smallest V(gX ; x̂). Hence, some data
processing based on {(xi, yi)}ni=1 is necessary to achieve
price discrimination and get the mechanism close to the
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benchmark V(gX ;x) for every x. Indeed, it turns out that
in this case, perhaps as expected, there is no 0-regret mech-
anism. However, surprisingly, we nevertheless show that
there is an IC and IR mechanism with small constant regret.

Figure 2. Timing line for limited data customization.

Theorem 4.2. When the type space is continuous, there is
no 0-regret mechanism under limited customization.

Theorem 4.3. The regret of the following SVD mech-
anism under limited data customization is at most
log(κ((

√
Σ(X))−1X)), where κ((

√
Σ(X))−1X) is the

square root of the ratio between the largest and the smallest
singular values of XTΣ(X)−1X .

Algorithm 2 The SVD Mechanism
Input: buyer’s report x̂, seller’s design matrix X
Normalize (X,Y ) ← ((

√
Σ(X))−1X, (

√
Σ(X))−1Y )

and announce normalization

Perform SVD over X , obtaining X = U

[
S

0(n−d)×d

]
V

where S = diag{λ1, . . . , λd}

Let L denote the left inverse of X where L = U

[
S−1

0

]
V

Define the mapping b(·) : Rd → Rn where b(x̂) = Lx̂
∥Lx̂∥

Output: g[x̂] = (b(x̂)TX, b(x̂)TY ), t(x̂) =
1
2 log(x̂

T x̂)− 1
2 log(x̂

T (I +XT b(x̂)b(x̂)TX)−1x̂).

Theorem 4.3 gives an illustration of the ability of price dis-
crimination under limited customization. Unlike perfect
customization, the seller cannot achieve the first-best rev-
enue in all cases. In other words, the worst-case distance
between optimal revenue and the first-best revenue is strictly
positive, which implies that limited customization limits the
level of market unfairness. However, even though the buyer
could get a non-zero consumer surplus, it is still small, and
he still suffers inequality against the seller.

The following results further show that for certain X , the
seller can achieve the first-best revenue and 0-regret, high-
lighting the potential unfairness in the data market even
under limited customization.

Corollary 4.4. When the seller has isotropic data, i.e., all
singular values of XTΣ(X)−1X are the same, there exists
a mechanism that satisfies both IC and IR, and achieves
0-regret.

At the same time, if the private types of the buyer, which are
public knowledge, have certain structures, it’s also possible
for the seller to achieve the first-best revenue. For example,

we find a new information structure called multi-armed
bandits setting (cf. Appendix D.2) which also leads to
0-regret for the seller. Therefore, we know that whether
0-regret is achievable depends on the information leakage.
In Corollary 4.4, since every direction confers equal value, it
discloses the buyer’s willingness to pay. In the MAB setting,
the intuition is that other directions provide no information,
discouraging the buyer from submitting untruthful reports
and naturally leading to price discrimination.

5. Conclusion and Discussion
Compared to a dataset’s intrinsic value, the instrumental
value better captures its economic value in the market. This
paper first introduces a principled way to quantify a dataset’s
instrumental value, and then studies how to apply this valu-
ation to a data pricing problem. The designed mechanism
illustrates the surprising power of data customization, which
may help data sellers to do first-degree price discrimination,
leaving zero surplus to buyers. Even under limited data
customization, the flexibility of selling any derivatives or
statistics from an existing dataset already gives the seller
significant power to discriminate against buyers. These re-
sults hint at a potential need for regulations in order to foster
a sustainable data market. On the technical side, our data
valuation’s connection to the value of information (Frankel
& Kamenica, 2019) may be of independent interest. More-
over, our designed mechanisms for multi-dimensional buyer
preference, particularly the mechanism based on the sin-
gular value decomposition, may be of both theoretical and
practical interest.

Several open questions are worth future investigation. Is
it feasible to explicitly resolve the mechanism design chal-
lenge under dissimilar information flows? Our data valua-
tions are derived from linear regression; how transferable
are they to data valuations under other learning models?
Previous works have shown that Data Shapley often has
a similar order when computed using different ML mod-
els (Jia et al., 2021; Schoch et al., 2022). Moreover, given
that we have demonstrated the potentially high-skewed sur-
plus allocation between the seller and buyer, how should
regulatory authorities step in (Mas-Colell et al., 1995; Jehle,
2001) to sustain market efficiency? What would be the im-
plications of multiple sellers operating in the market, or if
it were a perfectly competitive market? We leave these in-
triguing follow-up questions as potential avenues for future
research.
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Appendix for “An Instrumental Value for Data Production and its Application to Data Pricing”

A. Omitted Details in Section 1
A.1. Related Works

Valuating data and information: The paper is related to existing works for valuating data and information. The existing
literature has been extensively focused on Shapley value (or variants thereof) for valuing data (Schoch et al., 2022; Ghorbani
& Zou, 2019; Jia et al., 2019), which is a principled way to “fairly” attribute (Roth, 1988) the contribution of each data
point/set to an ML task. This is why the Shapley value is an average contribution, averaged over all other possible training
situations. Later works also realize that equal-weight average may not be ideal for ML tasks, hence proposed variants of
Data Shapley that prioritize some training situation in the average (e.g., beta-Shapley (Kwon & Zou, 2021)). Recently, Guo
et al. (2025) considers how to value data in human-AI decision-making. In contrast, our data value is instrumental and is to
quantify a dataset’s marginal contribution. Hence, the meaning of this value is not to average over many possible training
situations but instead to look at a marginal increase over the previous best training situation. Contemporaneously, Choe et al.
(2024) uses a gradient-based data valuation for large language models, and we stem from Bayesian regression.

Selling data: For existing works on selling data, Segura-Rodriguez (2021) studies selling data to a buyer who wishes to
minimize the quadratic loss of an estimate. The biggest difference that separates our work from this work is the buyer’s
private type. In our case, we assume the features of the observations that the buyer wishes to obtain labels for are unknown
to the seller. On the other hand, Segura-Rodriguez (2021) assumes the buyer’s features are known a priori, but the type
of label the buyer wishes to estimate is the unknown private type. For instance, if a production company purchases data
from Nielsen, our work corresponds to the setting that the TV show the company is producing is its private type and is
unknown to Nielsen, whereas Segura-Rodriguez (2021) assumes the TV show itself is known, but Nielsen does not know
if the production company wants to predict the show’s ratings or the show’s audience demographics. The difference in
the information structure leads to fundamental differences between our work and theirs, both in terms of the proposed
mechanisms and in terms of the theoretical analyses. Chen et al. (2022) studies the problem of selling data to a machine
learner, using a costly signaling step to ensure that the buyer can accurately evaluate the quality of the data purchased. Our
work eschews the step but leverages the properties of instrumental value in the Bayesian linear regression setting. Chen et al.
(2019) values the data based on the model that the buyer learns from the data. Agarwal et al. (2019) studies a two-sided
data market with multiple data buyers and sellers, in which the buyers compete with one another by bidding for data. The
latter two works, however, assume that the buyer’s learned model is observable by the seller, which avoids the complication
introduced by the private type considered in our work.

Selling information: Our work is also related to the long line of work on selling information (Babaioff et al., 2012; Hörner
& Skrzypacz, 2016; Admati & Pfleiderer, 1988; Kastl et al., 2018; Xiang & Sarvary, 2013; Bergemann & Bonatti, 2015;
Liu et al., 2021a) and we refer interested readers to Bergemann & Bonatti (2019) for a survey of these works. Of these
works, Babaioff et al. (2012) studies the optimal one-round revelation mechanisms for selling signals, assuming that the
buyer’s type space is discrete and finite, and Chen et al. (2020) extends the problem setting to one where the buyer also has
finite budget. Bergemann et al. (2018) and later work Bergemann et al. (2022) focuses on the optimal sales of Blackwell
experiments under the assumption that the buyer’s type space is finite. Hartline et al. (2020); Hartline & Johnsen (2021)
study optimal type-prior independent approximation multiplicative factor, whereas we focus on the corresponding addictive
factor and pave the way for prior-independent mechanism design in an addictive manner.

There is also a rich body of literature on active learning (Freund et al., 1997; Settles, 2009), studying the effect of data
sequence. However, active learning studies how to select sequential data and train models to maximize accuracy, whereas
our paper studies how to define a valid data valuation function that captures downstream users’ utilities. We approach this
study from a utilitarian perspective, and our value corresponds to information gain only in a very canonical special case.

B. Omitted Details in Section 2
B.1. Omitted Details in Section 2.1

We now give omitted algebra details of Example 1.

Example 4 (Examples of DPPs). Consider a linear model y = ⟨x, β⟩ + ϵ. A learner would like purchase data to predict
y = ⟨x, β⟩ for x = (1, 1). A simple example of DPPs — described by two feature directions x1 = (1, 3), x2 = (3, 1) —
simply produces response variables corresponding to the given x1, x2: y1 = ⟨x1, β⟩+ ϵ1 = −1 and y2 = ⟨x2, β⟩+ ϵ2 = 1.
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In this case, D = {y1, y2} is the realized data which is produced by data production process gβ(D) = Pϵ(y1 − ⟨x1, β⟩) ·
Pϵ(y2 − ⟨x2, β⟩). Hence the DPP here is fully described by two feature directions x1, x2. The realized data D = {y1, y2},
together with the knowledge of DPP g, can help the learner to refine the estimation of β.

Instead of directly producing data y1, y2 for directions x1, x2, one could also produce the data D = ȳ = y1+y2

2 for feature
direction x̄ = x1+x2

2 using DPP with gβ(ȳ) = Pϵ1,ϵ2(ȳ − ⟨x̄, β⟩) where the probability density is over the randomness of
both noise terms ϵ1, ϵ2. Notably, this DPP is subtly different from directly generating the response y = ⟨x̄, β⟩+ ϵ because ȳ
has a smaller variance than y, despite having the same mean, hence is strictly more informative. Indeed, to produce data
D = y = ⟨x̄, β⟩+ ϵ, the data owner would need to add extra noise to ȳ = y1+y2

2 in order to match its distribution. This
illustrates the rich space of DPPs.

Perhaps more interestingly, we could also design a DPP that produces data y⊥ = y1 − y2 = −2 for direction x⊥ =
x1 − x2 = (−2, 2). This DPP is of no interest to the buyer above since x̄ ⊥ x, but nevertheless its realized data D = y⊥

carries information about β and hence may be of interest to other buyers.

Suppose the learner has an uninformative Gaussian prior β ∼ N (0, I) and the noise in response variable follows the
standard Gaussian N (0, 1). Then the data generating function gβ(y) for a DPP (x) that produces data y = ⟨x, β⟩ + ϵ
is gβ(y) = 1√

2π
exp(−(y − ⟨x, β⟩)2/2). If we produce data ȳ = y1+y2

2 as the average response variable for x1, x2,

the posterior of β prescribed in Equation (2) can be calculated as N (0,

[
9/17 −8/17
−8/17 9/17

]
) and the variance of the

to-be-predicted variable ⟨x, β⟩ reduces from 2 to 2
17 , same as fully revealing original data records {(x1, y1), (x2, y2)}.

However, if we only reveal (x⊥, y⊥), the posterior is N ((2/5,−2/5),
[

3/5 2/5
2/5 3/5

]
) and the variance remains 2. Notably,

these improvements can all be calculated without knowing the realized data. This will be useful for selling DPPs since it
means the value of a DPP can be quantified without seeing the realized data. This resolves the concern that data will lose its
value after being seen.

We here give a rigorous definition of concave functionals and generalized Bregman divergence in Definition 2.2.
Definition B.1. Let B denote the domain of parameter β and consider functional F : ∆(B)→ R that maps the space of
probability distributions over B to a real value. We say functional F (·) is concave if for any pair of distributions p, q ∈ ∆(B)
and any λ ∈ [0, 1], we have

F (λp+ (1− λ)q) ≥ λF (p) + (1− λ)F (q).

Moreover, we say ∇F (·) is its (functional) superdifferential if for any p, q ∈ ∆(B) we have

F (q) + ⟨∇F (q), p− q⟩ ≥ F (p).

The generalized Bregman divergence induced by functional F is defined as

DF (p, q) = F (q)− F (p) + ⟨∇F (q), p− q⟩.

B.2. Omitted Details in Section 2.2

Next, we are ready to give more details on the characteristics of val(·; ·, ·) and cost(·, ·).
Definition B.2 (Valid Cost of Uncertainty (Definition 2.5 Continued)). Relatedly, the corresponding cost(q, x) =
val(∨; q, x) is called a valid cost of uncertainty function. Moreover, in this case, we say the val(∨; q, x) and cost(q, x)
are coupled (since they correspond to the same CBDM).
Proposition B.3 (Characterization of Valid Valuation Functions). A valuation function val is valid if and only if it satisfies
the following properties simultaneously

1. No value for null data: val(∅; q, x) = 0 for any prior q;

2. Positivity: val(D; q, x) ≥ 0 for any realized data D and any prior q over parameter β;

3. Invariance to data acquisition orders: The expected value of data is invariant to the order of data acquisition. Formally,
given any prior q over β and any two data production process g1 and g2, let p1 = p(·|q,D1) and p2 = p(·|q,D2) be
the posteriors updated by realized data D1 and D2 respectively. Then, we have

ED1,D2 [val(D1; q, x) + val(D2; p1, x)] = ED1,D2 [val(D2; q, x) + val(D1; p2, x)].
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(a) Scatter plot between instrumental value
and Data Shapley.

(b) Correlation of instrumental value and
Random Shapley with Data Shapley.

(c) Computation time of instrumental value,
Data Shapley and Random Shapley.

Figure 3. Comparison between instrumental value, Data Shapley and Random Shapley.

The first two properties are both natural. The third property indicates that the order of obtaining data from two data
production processes should not change the total expected value of these two DPP. This is also a natural property for any
valid valuation function. Interestingly, it turns out that these three properties suffice to guarantee the validity of val in the
sense of Definition 2.5 and Equation (3).

The following proposition offers a characterization for the validity of a cost of uncertainty function cost(q, x).

Proposition B.4. A cost of uncertainty function cost(q, x) is valid if and only if it satisfies the following properties
simultaneously

1. 0 cost under certainty: when the prior q degenerates to a Dirac delta distribution over β, the cost of uncertainty is 0,
i.e., cost(δβ , x) = 0 for any x.

2. Concavity: cost(q, x) is concave in q for any x.

The first property is obvious from the definition. To see the second property intuitively, let q = λq1 + (1− λ)q2 for some
λ ∈ [0, 1] and beliefs q1, q2, and consider the following situation. Suppose there is some data informing the buyer that β is
drawn either from distribution q1 (with probability λ) or from q2 (with probability 1− λ). If the buyer must make a decision
prior to observing the signal, his cost of uncertainty is cost(λq1 + (1− λ)q2). If the buyer is allowed to make a decision
after observing the signal, his expected cost of uncertainty would be λcost(q1) + (1− λ)cost(q2), which by concavity
is no greater than that for when he is not allowed to observe the signal. Thus, concavity is a natural formalization of the
intuition that having more information on the parameter distribution will not increase the cost of uncertainty (in this case,
the additional information is the signal pinning down whether β is drawn from q1 or q2). What is surprising, however, is that
these two natural properties suffice to pin down any valid functions for the cost of uncertainty.

B.3. Omitted Details in Section 2.3

B.3.1. NUMERICAL STUDY

We conducted numerical experiments using Python 3.9.15 on a server equipped with dual Intel(R) Xeon(R) Platinum 8260
CPUs. We use entropy reduction as an illustrative example of val(·; ·, ·). We first show that the instrumental value has
a high correlation with Data Shapley, hinting at consistent underlying economic intuition between them. Since the time
complexity of computing Data Shapley is exponential to the size of the dataset, we choose n = 10 and the dimension d = 5.
We randomly generate D with some mean and variance. Then, we randomly sample x of interest with some other mean
and variance. We assume q = N (0, 1). We sample 1000 trials in parallel and observe in Figure 3(a) that Data Shapley is
generally larger (around twice) than the instrumental value which agrees with our theory. In the meanwhile, they share
a high correlation, say 0.8650, implying consistent economic intuition. This phenomenon inspires us to study whether
we can use instrumental value to approximate Data Shapley. When we calculate the empirical Data Shapley using the
mean of 102 samples, we call it Random Shapley. In this case, we obtain almost the same correlation of 0.8645. However,
the average computing time is 0.1380, 0.0002 and 0.0218 for Data Shapley, instrumental value and Random Shapley

15



An Instrumental Value for Data Production and its Application to Data Pricing

respectively, showing the great potential of instrumental value for computational traceability and offering a new perspective
for calculating Data Shapley.

Next, we empirically study the time complexity of instrumental value, Data Shapley and Random Shapley, as well as the
promising potential of using instrumental value to approximate Data Shapley instead of Random Shapley. We now range
size n from 5 to 15. For Random Shapley, we set the sample size to 2n

n and it has a similar correlation with Data Shapley as
instrumental value as shown in Figure 3(b). Nonetheless, the instrumental value has a great advantage in computation time.
We detail the average computing time in Table 1. It enjoys polynomial time complexity with respect to size n while Data
Shapley and Random Shapley suffer from exponential curse. See Figure 3(c) for reference. Therefore, instrumental value
has promising application prospects in the industrial sector. It is also of independent interest to implement our valuation on
real-world data platforms.

Size Instrumental Value Data Shapley Random Shapley

5 0.000129 0.003475 0.001134
6 0.000130 0.007387 0.002147
7 0.000116 0.012579 0.003002
8 0.000180 0.030939 0.006260
9 0.000202 0.060909 0.010930

10 0.000202 0.130378 0.020986
11 0.000195 0.273053 0.039111
12 0.000215 0.560476 0.072644
13 0.000240 1.120840 0.134825
14 0.000227 2.280680 0.253490
15 0.000239 4.566204 0.474172

Table 1. Average computing time among three valuations.

C. Omitted Details in Section 3
We would like to give the concrete definition of “entropy” here.

Definition C.1 (Differential Entropy (Thomas & Joy, 2006)). The differential entropy h(Z) of a continuous random variable
Z with density µ(z) is h(Z) = −

∫
z∈S

µ(z) log(µ(z))dz, where S is the support of the random variable Z.

D. Omitted Details in Section 4
D.1. Omitted Details in Section 4.1

For simplicity, we use V(x, x̂) to represent V(g[x̂];x) when easy to infer from context. Let’s consider a wider range of DPPs
that the seller can add man-made noise ϵ′ ∼ N (0, δ(x)2) when revealing y. That is to say, the seller will reveal (x, y + ϵ′)
rather than (x, y). After that, we are going to show that adding no noise, i.e., δ(x) = 0, can lead to 0-regret and it’s definitely
what the seller will choose.

Concerning the definition of V(·; ·, ·) in Equation (4), we can establish a lemma exhibiting the concrete instrumental value of
data in detail.

Lemma D.1. If the seller gives the buyer n data points, it holds that the instrumental value of data for the buyer is

V(x, x̂) = V(gn[x̂];N (0, Id), x) =
1

2
log
(
xTx

)
− 1

2
log

(
xT

(
I +

nx̂x̂T

σ(x̂)2 + δ(x̂)2

)−1

x

)
.

By revelation principle (Gibbard, 1973; Holmström, 1978; Myerson, 1979), we know that any social choice function
implemented by an arbitrary mechanism can be implemented by an incentive-compatible-direct-mechanism with the same
equilibrium outcome. Therefore, we focus on mechanisms that satisfy incentive-compatibility (IC) constraint and at least
one optimal mechanism belongs to this subclass. In the context of our model, incentive-compatibility constraint means that
the buyer has the motivation to report his own private type truthfully considering the allocation rule g[·] and payment rule

16



An Instrumental Value for Data Production and its Application to Data Pricing

t(·). To ensure the buyer is motivated to purchase data, we further impose individual rationality (IR) constraints. It means
that a rational buyer only participates in a transaction when his expected revenue is no less than zero. Formally, the IC and
IR constraints for a mechanism (g[·], t(·)) are

IR V(x, x) ≥ t(x) for all x,
IC V(x, x)− t(x) ≥ V(x, x̂)− t(x̂) for all x, x̂.

In other words, IC constraint means that truthful reporting is a dominant strategy for the buyer and he has no incentive
to report a wrong type as there are no benefits by doing so. IR constraint gives the buyer a reason to join the market and
motivates the transaction as his expected utility is non-negative.

Since we assume σ(x) = σ( x
∥x∥ )∥x∥, it is evident that we could solely consider the direction of the type, rather than its

length. This can be achieved by substituting x and x̂ with x
∥x∥ and x̂

∥x̂∥ , respectively. We then have

V(x, x̂) = V(
x

∥x∥
,

x̂

∥x̂∥
).

We thus restrict our attention to types with a unit norm, i.e. Sd−1 = {x : ∥x∥ = 1}, which is equivalent to considering
a general space in Rd−1. Inspired by the method in Myerson (1981), we have the following lemma when x has multiple
dimensions.

Lemma D.2. For any payment rule satisfying the IC constraint, it holds that

∇t(x) = ∇yV(x, y) | y=x.

Therefore, it leads to the following form of payment rule that

t(x) =

∫ x

x0

∇yV(s, y) | y=s · ds+ t(x0) =
1

2
log(

σ(x)2 + δ(x)2 + n

σ(x)2 + δ(x)2
) + C,

and it’s independent of the selection of x0 and the path of integration.

Therefore, for any δ(x), we have the corresponding optimization problem for optimal mechanism, that is

max
C,δ(·)

Ext(x) = Ex[C +
1

2
log(

σ(x)2 + δ(x)2 + n

σ(x)2 + δ(x)2
)]1(IR holds),

where

1(IR holds) = 1(C +
1

2
log(

σ(x)2 + δ(x)2 + n

σ(x)2 + δ(x)2
) +

1

2
log(xT (I +

nxxT

σ(x)2 + δ(x)2
)−1x) ≤ 0).

Though information gain is a widely used metric, our analysis method can be extended to a wider family of instrumental
values as long as keeping the concavity property as what log(·) does. We add the following remark, inspired by f -
divergence (Rényi, 1961), to show how to generalize our results.
Remark D.3. The method can be easily extended to any V(·, ·) function following the form

V(x, x̂) = f(
xTx

xT (I + x̂x̂T

(σ(x̂)2+δ(x̂)2)/n )
−1x

),

where f(·) is a concave function, and the results remain valid when t(x) is of the form

t(x) = C + f(
σ(x)2 + δ(x)2 + n

σ(x)2 + δ(x)2
).

With the characteristics of t(·), we can conclude that when the seller is embedded with the ability of perfect customization,
she can obtain the first-best revenue and leave zero consumer surplus to the buyer, say Theorem 4.1. It reflects the price
discrimination scenario in the data market and shows corresponding unfairness which is quite different than the situation in
other markets.
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D.2. Omitted Details in Section 4.2

Let us recall what data the seller has. The seller produces n data points {(xi, yi)}ni=1 consisting dataset (DPP resp.) D (gX

resp.). Here, yi = xT
i β + ϵ, where ϵ follows a normal distribution with mean 0 and variance σ(xi)

2. For simplicity, let
X ∈ Rn×d denote the design matrix of the whole dataset and Y the corresponding responses. We use Σ(X) to represent the
noise covariance matrix, i.e. Σ(X) = diag{σ(x1)

2, ..., σ(xn)
2}.

In this particular type of information flow, the buyer will not experience as much unfairness as the one in the situation
described in Section 4.1. This implies that offering customization options may have negative consequences for society, and
raises questions about how to regulate market power in the data market. However, it is important to note that the buyer’s
surplus will be bounded from above by a constant unrelated to the buyer’s type x, which means that in a monopolized
market, buyers will likely find it difficult to attain high surplus.

Similar to Section 4.1, we only consider mechanisms that satisfy both IC and IR constraints, that is,

IR V(x, x) ≥ t(x) for all x,
IC V(x, x)− t(x) ≥ V(x, x̂)− t(x̂) for all x, x̂.

As we discussed before, if it’s impossible to achieve the first-best revenue, i.e., 0-regret, in this subclass of mechanisms,
there won’t exist a mechanism achieving the first-best revenue among all unconstrained mechanisms.

However, as demonstrated by Theorem 4.3, even though the seller cannot achieve the first-best revenue, the buyer’s surplus
is also upper bounded by a constant relative only to the pre-produced X , rather than his personal type x. It is important to
note that the buyer may have varying consumer surpluses for different personal types, while the union of upper bounds
holds for all types x.The proof of Theorem 4.3 leads directly to the following corollary about the seller that she can achieve
within an additive factor of log(κ) of the first-best revenue.

Corollary D.4. For any pre-produced dataset X , there exists a mechanism in which the expectation of the seller’s revenue
is at most log(κ((

√
Σ(X))−1X)) less than the first-best revenue.

Now, let’s give the definition of multi-armed bandits setting in our data pricing scenario.

Definition D.5. We call a setting having a form of multi-armed bandits if every type vector x is a member of the standard
basis of a d-dimensional Euclidean space Rd. In other words, only one component of x is one and the others are all zeros.

It is closely related to multi-armed bandits, the famous machine learning model. In multi-armed bandits, observations of
rewards of one arm contain no information about rewards of other arms. In the data pricing, the multi-armed bandits setting
means that data points associated with type x involve no information about other types. Using a geometric perspective, it
illustrates that the information corresponding to different types is orthogonal. Now, we have a corollary in which the seller
can obtain the first-best revenue.

Corollary D.6. In the multi-armed bandits (MAB) setting, there exists a mechanism that satisfies both IC and IR, and
achieves the first-best revenue, i.e., 0-regret.

Together with Theorem 4.3, Corollaries 4.4 and D.6 show that the quantity of the consumer surplus not only depends on
the concrete properties of the dataset X , but probably related information contained in the structure of the buyer’s private
types as well. In light of the universal Theorem 4.3, insofar as the diverse directions of data hold distinct values for the
buyer, the seller harbors a motivation to induce the buyer, possessing a greater willingness to pay, to disclose his authentic
type. To devise a truthful mechanism, the seller must relinquish some charge in specific instances to attain the maximum
expected revenue. Notwithstanding, as per Corollary 4.4, if each direction is isotropic, then it will confer equal value to the
buyer. Hence, it discloses the buyer’s willingness to pay, which is pivotal for the seller to implement price discrimination. It
illuminates the crucial point of mechanism design in the data market, where the seller’s focus is not on the buyers’ individual
type, but rather on their willingness to pay. Corollary D.6 however highlights the role of information leakage. In the context
of multi-armed bandits, data from other arms provides no information then no benefit to the buyer, dissuading the buyer
from untruthful reports, creating a natural case of price discrimination.

E. Omitted Proof in Section 2
The proofs for Proposition 2.6, Proposition B.4, and Theorem 2.7 are closely related.
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For the only if direction, i.e. showing that the desiderata imply the existence of some corresponding decision-making
problem, all three results share the same underlying constructed instance. As such, we organize our proof by first introducing
a series of propositions and lemmas that will be essential for the proof, and then justifying the results by combining these
results.

We introduce two concepts, measure of information and measure of uncertainty, which serve as the statistical analog to
Definition 2.5 and are crucial to formally establishing the results in Section 2.

Definition E.1. Any functional d(µ, ν) : ∆(Y)×∆(Y)→ R is a measure of information and any H(µ) : ∆(Y)→ R
is a measure of uncertainty. We say d and H are coupled if for any signaling scheme s, we have E[d(µ(s), µ)] =
E[H(µ)−H(µ(s))], where µ(s) denotes the posterior distribution given by Bayes rule after observing the signal s.

The conditions imposed in Propositions 2.6 and B.4 can then be similarly defined as follows.

Definition E.2. We say a measure of information d satisfies no value for the null data dubbed null-information if
d(µ, µ) = 0 for all µ ∈ ∆(Y), positivity if d(µ, ν) ≥ 0 for all µ, ν ∈ ∆(Y), and invariance to data acquisition dubbed
order-invariance if for any pair of signaling schemes πs1 and πs2 , the expected information gain is independent of the
order in which the signals s1 and s2 are observed, i.e.

Es1,s2 [d(µ(s1), µ) + d(µ(s1 ∩ s2), µ(s1))] = Es1,s2 [d(µ(s2), µ) + d(µ(s2 ∩ s1), µ(s2))].

Definition E.3. We say a measure of uncertainty H satisfies 0 cost under certainty dubbed null-uncertainty if H(gβ) = 0
for any β and concavity if H is a concave functional over ∆(Y).

For the rest of the proof, we heavily make use of the notions d and H , for they directly measure the distance between
distributions or the uncertainty within some distribution. Compared with the economic formulation in Section 2, these
notions are easier to manipulate mathematically. We begin by first showing d should be the Bregman divergence of H .

We use µ, ν in Lemma E.4 to emphasize that the result holds for generic distributions µ, ν ∈ ∆(Y), not necessarily those
induced by some belief over the parameter space and a suitable model g.

Lemma E.4. Let d(µ, ν) denote some measure of distance between distributions µ, ν ∈ ∆(Y). Let H(ν) denote a measure
of information that satisfies null-uncertainty and concavity. Then the following two statements are equivalent

1. d satisfies null-information, positivity, order-invariance, and is coupled with H .

2. d is a Bregman divergence of H .

We can further refine the results by focusing on distributions that can be expressed as some gq which is the convolution of
the prior q and DPP gβ . In other words, q is some belief over β and gβ the model itself.

Proposition E.5. For any l and measure of information d that satisfies null-information and order-invariance, let H(gq) =∫
q(β)d(gβ , gq)dβ. Then H is coupled with d and satisfies null-uncertainty.

Before discussing the implications, we strengthen Proposition E.5 via the following corollary.

Corollary E.6. For any d that satisfies null-information, positivity, and order-invariance, there is a unique measure of
uncertainty H(gq) =

∫
q(β)d(gβ , gq)dβ that satisfies null-uncertainty, concavity, and is coupled with d.

These results show that once the measure of information d is determined, not only can the parametric form of H can
be expressed explicitly, but the form itself is further unique, even in Bayesian regression settings where the response is
continuous. With the properties on d and H laid out, we take a step back and demonstrate that the value of information val

and the cost of uncertainty cost share similar properties, despite their original motivations as decision-making problems.

Proposition E.7. Let val be the value of information and cost the cost of uncertainty of a contextual decision-making
problem. We know (1) val satisfies null-information, positivity, and order-invariance, (2) cost satisfies null-uncertainty
and concavity, and (3) val and cost are coupled.

Proposition E.7 combined with Lemma E.4 show that the value of information is the Bregman divergence defined with
respect to the cost of uncertainty in any contextual decision-making problem associated with A, u, and x, showing that
Bregman divergences are intrinsically linked to decision-making.
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Proposition E.8. For any model g and measure of uncertainty H that satisfies null-uncertainty, and concavity, letting d be
the Bregman divergence H induces, there is some decision-making problem in the direction x where the cost of uncertainty
cost(q, x) = H(gq) and the value of information val(D; q, x) = d(gp, gq), where p is the posterior induced by D.

Proposition E.8 stipulates that as long as the concave functional H satisfies the conditions in Definition E.3, then the
functional and its Bregman divergence correspond to the value of information and the cost of uncertainty in a decision-
making problem.

We now discuss the proofs for Proposition 2.6, Proposition B.4, Theorem 2.7.

Proof of Proposition 2.6. The if direction, that is, any val must satisfy null-information, positivity, and order-invariance is
proven by Proposition E.7. We then consider when val satisfies the properties. Since the definition does not limit the choice
of possible data D, for any p that can be induced by q, we can devise a corresponding dataset that induces p. Consequently,
we can construct some measure of information d via value of data val. By Corollary E.6, we can explicitly write out a
corresponding H coupled with d and, by extension, a corresponding cost that is coupled with val. By Proposition E.8,
cost and val are then the cost of information and value of uncertainty for some decision-making problems.

Proof of Proposition B.4. The if direction, that is, any cost must satisfy null-uncertainty and concavity is proven by
Proposition E.7. We then consider when cost satisfies both properties. Note that cost can be written as some measure of
uncertainty H and, by Proposition E.8, there exists a corresponding d and, consequently, a corresponding val.

Proof of Theorem 2.7. The only if direction, that is, val must be a Bregman divergence of H , is implied by Lemma E.4
and the fact that val and cost are coupled by Proposition E.7. The if direction is established by Corollary E.6, which shows
the uniqueness of cost that couples with val, and Proposition E.8, which constructs a suitable decision-making problem
for which val and cost are valid.

E.1. Proof of Lemma E.4

We begin by showing the first statement implies the second.

Let Ω denote the space of probability distributions and τ ∈ ∆(Ω). Well-known result in Bayesian persuasion tells us that if
Eµ∼τ [µ] = ν, then there must be a signaling scheme π that induces the distribution τ 9.

Since Es[d(ν(s), ν)] = Es[H(ν(s)) − H(ν)], Eµ∼τ [d(µ, ν) − H(ν) + H(µ)] = 0 for all distributions τ such that
Eµ∼τ [µ] = ν.

We now show d(µ, ν)−H(ν) +H(µ) is linear in µ for any ν. For convenience, we use the following shorthand notation

γ(µ; ν) = d(µ, ν)−H(ν) +H(µ).

Let µ be an arbitrary distribution that can be induced from ν by some signaling scheme and assume there exists some
constant C and measure ∆ such that µ = ν +C∆, where C is an arbitrary yet sufficiently large constant that ensures ν ±∆
are both valid distributions. Note that C must exist for any ∆ as µ can be written as the posterior of ν under some signaling
scheme, implying that µ must be absolutely continuous with respect to ν. Consider then two possible posteriors. Consider
first τ1, which assigns probability mass 1

2 to both ν +∆ and ν −∆. Since Eµ∼τ1 [µ] = ν, we have

γ(ν +∆; ν) = −γ(ν −∆; ν).

Then consider τ2, which assigns probability 1
1+C and C

1+C to ν +C∆ and ν −∆, respectively. Since the expectation of the
distribution is again ν, We have

Cγ(ν −∆; ν) + γ(ν + C∆; ν) = 0 =⇒ γ(ν + C∆; ν) = −Cγ(ν −∆; ν) = Cγ(ν +∆; ν).

Take ∥∆∥ → 0 and we know γ(ν+C∆; ν) = Cγ(ν+∆; ν) for all C > 0 and all directions ∆ may take. Therefore, γ(µ; ν)
must be linear in µ and thus can be written as an affine function. Moreover, note that γ(ν; ν) = 0 by direct calculation.

9Since Eµ∼τ [µ] = ν and probability measures are non-negative, µ must be absolutely continuous w.r.t. ν. We then take π = µ
ν

, which
is well defined by absolute continuity and integrates to 1 by the fact that Eµ∼τ [µ] = ν.
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There then must exist a functional f(ν) such that

d(µ, ν)−H(ν) +H(µ) = γ(µ; ν) = ⟨f(ν), µ⟩ =⇒ d(µ, ν) = H(ν)−H(µ) + ⟨f(ν), µ− ν⟩.

Moreover, by positivity, we know that

d(µ, ν) = H(ν)−H(µ) + ⟨f(ν), µ− ν⟩ ≥ 0

for all pairs of distributions. By definition of superdifferentials, the bound necessarily implies f(ν) must be a superdifferential
of H , and hence d(µ, ν) is the Bregman divergence of H . In other words, the first statement implies the second.

We now show the second statement implies the first. Let ∇H denote an arbitrary and fixed superdifferential of H and
d(µ, ν) = H(ν)−H(µ) + ⟨∇H(ν), µ− ν⟩. By the property of superdifferential and the fact that H is concave, d satisfies
positivity. Note that for any signaling scheme πs : Y → S, we have Es[ν(s)] = ν, and thus

Es[d(ν(s), ν)] = Es[H(ν)−H(ν(s))] + ⟨∇H(ν),Es[ν(s)− ν]⟩ = Es[H(ν)−H(ν(s))],

showing d and H are coupled. Additionally, d easily satisfies null-information, as d(ν, ν) = H(ν)−H(ν) + ⟨∇H(ν), ν −
ν⟩ = 0. Thus, all that remains is to show d satisfies order invariance. Recalling we have already shown d and H are coupled,
for any signals s and s′, we have

Es,s′ [d(ν(s), ν) + d(ν(s ∪ s′), ν(s))]

= Es,s′ [H(ν)−H(ν(s)) +H(ν(s))−H(ν(s ∪ s′))]

= Es,s′ [d(ν(s
′), ν) + d(ν(s ∪ s′), ν(s′))],

(5)

thereby completing the proof. □

E.2. Proof of Proposition E.5

Consider two direct signals πs1 and πs2 where with a slight abuse of notation we let πs2 denote the fully informative
signaling scheme, that is,

πs2(β
′) = 1{β = β′},

which directly tells the buyer the underlying parameter β. We thus have

Es2 [d(gq(s2), gq)] = E[d(gβ , gq)] =
∫

q(β)d(gβ , gq)dβ = H(gq).

Consider first the case where s1 is observed after s2. As πs1 cannot further alter the probability distribution, due to
πs2 being fully informative, we know q(s1 ∩ s2) = q(s2). Using the fact that d satisfies null-information, we have
Eq[d(gq(s1∩s2), gq(s2))] = 0 for all possible realizations of the signals s1, s2, which in turn implies

Eq[d(gq(s2), gq) + d(gq(s1∩s2), gq(s2))] = H(gq).

We now consider the case where the fully informative s2 is observed after s1. Again exploiting the fact that q(s1 ∩ s2) =
q(s2), for any realized signal s1

Eq[d(gq(s1∩s2), gq(s1))] = Eq[d(gβ , gq(s1))] = H(gq(s1)).

As d satisfies order-invariance, we have

Es1,s2,β [d(gq(s1), gq) + d(gq(s1∩s2), gq(s1))] = Es1,s2 [Eq[d(gq(s2), gq) + d(gq(s1∩s2), gq(s2))]]

= Es1,s2 [H(gq)] = H(gq).

By direct expansion and linearity of expectation, we also know that

Es1,s2,β [d(gq(s1), gq) + d(gq(s1∩s2), gq(s1))] = Es1 [d(gq(s1), gq)] + Es1 [H(gq(s1))].

In other words, for any signaling scheme πs1 and signal s1, we have

Es1 [d(gq(s1), gq)] = Es1 [H(gq)−H(gq(s1))],

which shows that d and H are coupled. □
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E.3. Proof of Corollary E.6

We first show that the proposed H satisfies concavity. Note that for any parameter β we have

H(gβ) = d(gβ , gβ) = 0,

since d satisfies null-information. For concavity, let q1 and q2 be two arbitrary and fixed measures over the distribution
of β and let c ∈ (0, 1) be an arbitrary scalar. Let q = cq1 + (1− c)q2 be the convex combination of q1 and q2. It is easy
to see that there exists a signaling scheme πs1 that induces q1 with probability c and q2 with probability 1− c. Applying
Proposition E.5, we know H is coupled with d, and thus

Es1 [H(gq)−H(gq(s1))] = Es1 [d(gq(s1), gq)] ≥ 0

by positivity of d. We then know H is concave by noting Es1 [H(gq(s1))] = cH(gq1) + (1 − c)H(gq2). Applying
Proposition E.5 again, we know that H further satisfies null-uncertainty and is coupled with d.

All that remains is to show that H is unique. Again consider some fully informative signal πs2 . Let Ĥ be an arbitrary
measure of information that satisfies null-uncertainty, concavity, and is coupled with d. By null-uncertainty of Ĥ , for any
distribution q

Ĥ(gq)− Es2 [Ĥ(gq(s2))] = Ĥ(gq).

Moreover, as Ĥ and d are coupled

Ĥ(gq)− Es2 [Ĥ(gq(s2))] = Es2 [d(gq(s2), gq)] =

∫
q(β)d(gβ , gq)dβ = H(gq).

In other words, the proposed H is unique as Ĥ(gq) = H(gq) for arbitrary q, completing the proof. □

E.4. Proof of Proposition E.7

We begin by proving the second statement. Showing cost satisfies null-uncertainty is straightforward as we directly plug in
the definition. Let q1 and q2 denote two arbitrary and fixed distributions over β and let q = cq1 + (1− c)q2 be an arbitrary
convex combination of the two. Directly writing out the expectations, we know Egq [u(a; y)] = cEgq1

[u(a; y)] + (1 −
c)Egq2

[u(a; y)] for any action a and thus

cEgq1
[u(a∗(q1); y)] + (1− c)Egq2

[u(a∗(q2); y)]

≥cEgq1
[u(a∗(q); y)] + (1− c)Egq2

[u(a∗(q); y)]

=Egq [u(a
∗(q); y)].

Moreover, also by directly writing out the expectations,

cEgq1
[u(a∗(δβ); y)] + (1− c)Egq1

[u(a∗(δβ); y)] = Egq [u(a
∗(δβ); y)].

Combining the two shows that cost(q) is concave in q, completing the proof for the second property.

We then show the third property holds. Let q be some arbitrary belief over β and, for convenience, D an arbitrary dataset
given. Let p be the posterior induced by the dataset. We have

ED[cost(q, x)− cost(p, x)]

= ED

[
Egq [u(a

∗(δβ); y)− u(a∗(q); y)]− Egp [u(a
∗(δβ); y)− u(a∗(p); y)]

]
.

Notice that ED[p] = q by Bayes’ theorem. Therefore

ED

[
Egq [u(a

∗(δβ); y)]− Egp [u(a
∗(δβ); y)]

]
= 0,

and thus
ED[cost(q, x)− cost(p, x)] = ED

[
Egp [u(a

∗(p); y)]− Egq [u(a
∗(q); y)]

]
.
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We now turn our attention back to val. Notice that

ED[val(D; q, x)] = ED[Egp [u(a
∗(p); y)− u(a∗(q); y)]].

Focus on the term u(a∗(q); y). As the optimal action is taken over the distribution q, its value for any specific y is
independent of the realized value of D. Therefore, again using Bayes’ rule to derive, we have

ED[Egp [u(a
∗(q); y)]] = Eq[u(a

∗(q); y)],

recalling that q is the prior distribution. Noting that taking the expectation of the term above over D does not affect its value.
Therefore

ED[val(D; q, x)] = ED[Egp [u(a
∗(p); y)− u(a∗(q); y)]]

= ED

[
Egp [u(a

∗(p); y)]− Egq [u(a
∗(q); y)]

]
= ED[cost(q, x)− cost(p, x)]

completing our proof of the third property, as we have now shown val and cost are coupled.

Finally we focus on the first property. Null-information and positivity are straightforward by definition of val. Furthermore,
as val and cost are coupled, similar to Equation (5), we know that val also satisfies order invariance, completing the proof
of the first property. □

E.5. Proof of Proposition E.8

Let the action set A be a subset of all possible distributions over Y and consider the following utility function

u(a; y) =

{
H(a)− ⟨∇H(a), a⟩+ ⟨∇H(a), δy⟩ if a is strictly positive at y
−∞ otherwise,

where δy is the Dirac measure defined at y and ∇H follows its definition in Definition 2.2. An immediate consequence of
the construction is that for any model l and parameter β

Ey∼gβ [u(a; y)] =

∫
u(a; y)gβ(y)dy

= (H(a)− ⟨∇H(a), a⟩)
∫

gβ(y)dy +

∫
⟨∇H(a), δy⟩ · gβ(y)dy

= H(a)− ⟨∇H(a), a⟩+ ⟨∇H(a), gβ(y)⟩
= H(a) + ⟨∇H(a), gβ − a⟩+H(gβ)

= d(gβ , a),

where for the second to last equality we use the fact that H satisfies null-uncertainty and the last equality leverages the fact
that d is the Bregman divergence with respect to H . We then know that for any q

Ey∼gq [u(a; y)] =

∫
u(a; y)gq(y)dy

=

∫ (∫
q(β)gβ(y)dβ

)
u(a; y)dy

=

∫
q(β)

(∫
gβ(y)u(a; y)dy

)
dβ

=

∫
q(β)d(gβ , a)dβ

= Eq[d(gβ , a)].
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Consider then two beliefs over Y , induced by beliefs over β, denoted p and q, such that q is absolutely continuous with
respect to p. The actions p and q then satisfy

Egp [u(p; y)− u(q; y)] = Ep[d(gβ , p)− d(gβ , q)]

= Ep[H(gq)−H(gβ) + ⟨∇H(gq), gβ − q⟩
−H(gp) +H(gβ)− ⟨∇H(gp), gβ − p⟩]

= Ep[H(gq)−H(gp) + ⟨∇H(gq), p− q⟩]
= H(gq)−H(gp) + ⟨∇H(gq), p− q⟩ = d(p, q) ≥ 0,

where for the third equality we use the linearity of ⟨∇H(gp), gβ − p⟩ in gβ and recall that p = Ep[gβ ] by definition. In
other words, for any belief p, the buyer’s utility can only be harmed by moving from p to some belief q that is absolutely
continuous with respect to p. Moreover, by the construction of u(a; y), we know that it is impossible for any q that is not
absolutely continuous with respect to p to be near optimal, as otherwise there exists some y for which u(q; y) = −∞.

Consequently, for any belief p, the action p maximizes the expected utility Egp [u(a; y)]. Recalling the definition of the value
of information, we thus have

val(D; q, x) = Egp [u(a
∗(p); y)− u(a∗(q); y)] = d(p, q),

where p is the posterior induced by D. In other words, d(p, q) is a value of information for the contextual decision-making
problem associated with A, x, and u. By Proposition E.7, it is then coupled with the cost of uncertainty of the same
decision-making problem. Since H is coupled with d and satisfies null-uncertainty and concavity, by Corollary E.6 it is
unique, and thus H is the cost of uncertainty for the problem with A, x, and u. □

F. Omitted Proof in Section 3
F.1. Proof of Theorem 3.1

We first state that entropy leads to a qualified candidate of the value function, and then we derive its closed form.

We focus on E[y[x]] = ⟨x, β⟩. There are two reasons we use it rather than y. First, the composition of u(·; ·) and the
expectation operator won’t influence the existence of u and then the existence of V(·; ·, ·) as ϵ is white noise. Second, in
reality, people always focus on fβ(x) rather than the one with uninformative noise ϵ. So, the entropy of predicting fβ(x),
namely, ⟨x, β⟩ makes more sense in practice.

We are now going to show that entropy can generate a valid value function. Note that we can view g as a signal
transforming our belief over β. The model l for E[y[x]] is then E[y[x]] = ⟨β, x⟩. Consider the measure of information
d(p, q) = DKL(p||q).

By Corollary E.6, the unique measure of uncertainty corresponding to d is

H(gq) =

∫
q(β)DKL(gβ ||gq)dβ.

In this case, letting gq denote the prior belief over E[y[x]] = ⟨x, β⟩ and associating with the posterior p = p(· | q,D), by
definition of coupling between H and d, we have

ED∼gq [d(gp, gq)] = ED∼gq [H(gq)−H(gp)]

= ED∼gq

[∫
q(β)DKL(gβ , gq)dβ

]
− ED∼gq

[∫
p(β)DKL(gβ , gp)dβ

]
.

24



An Instrumental Value for Data Production and its Application to Data Pricing

We focus on the terms involving q and gq , as the case for p and gp is similar. Notice that∫
q(β)DKL(gβ , gq)dβ

= −
∫ ∫

q(β)l(E[y[x]];x, β) log(gq(E[y[x]]))d(E[y[x]])dβ

+

∫ ∫
q(β)l(E[y[x]];x, β) log(l(E[y[x]];x, β))d(E[y[x]])dβ

= h(fq(x)) + Eβ∼q

[∫
l(E[y[x]];x, β) log(l(E[y[x]];x, β))d(E[y[x]])dβ

]
,

where the last line comes from the direct observation that

h(fq(x)) = −
∫ ∫

q(β)l(E[y[x]];x, β) log(gq(E[y[x]]))d(E[y[x]])dβ.

Similarly, recalling the definition of h(fp(x)), we know that

ED∼gq [d(gp, gq)] =ED∼gq [h(fq(x))− h(fp(x))]

+ Eβ∼q

[∫
l(E[y[x]];x, β) log(l(E[y[x]];x, β))d(E[y[x]])dβ

]
− Eβ∼p

[∫
l(E[y[x]];x, β) log(l(E[y[x]];x, β))d(E[y[x]])dβ

]
.

Observe that in the model we defined,
∫
l(E[y[x]];x, β) log(l(E[y[x]];x, β))d(E[y[x]]) is independent of the value of β,

and thus the latter two terms cancel out. Moreover, as we will soon discuss in the proof of Theorem 3.1, in the special case
of Gaussian distribution, h(fp(x)) is affected by only the feature matrix, but not necessarily the realized labels. In other
words, when D = {(xi, yi)}ni=1, ED∼gqh(fp(x)) only depends on {x1, ..., xn} and we have that

h(fq(x))− h(fp(x)) = d(gp, gq),

where d(gp, gq) is the measure of information defined in Definition E.1 that serves as the value of information of some
decision-making problem. Therefore, we can have the following formal definition which coincides with information gain in
Bayesian regression.
Definition F.1 (Information Gain). For a buyer type x, a valid value, i.e., the information gain from g is

V(g; q, x) := ED[h(fq(x))− h(fp(x))],

where h(fq(x)) and h(fp(x)) are the entropy of his prior and posterior distributions over E[y[x]] and p depends on both q
and D.

Note that V(·; ·, ·) is exactly the expected value of D to the buyer when he makes the purchase. The fact that V(·; ·, ·) is the
buyer’s ex-ante value of data is crucial, as it is impossible for the buyer to ascertain exactly the data’s value to him prior to
observing D and updating his belief. It justifies the choice of information gain and we list its detailed concept and closed
form under Bayesian linear regression which provides some convenience for optimal mechanism design in Sections 4.1
and 4.2.

Information gain is a concept commonly used in statistical learning literature, whose applications range from experiment
design (Beck et al., 2018), to bandits (Vakili et al., 2021), and to feature selection (Azhagusundari et al., 2013). As we show
in the sequel, it also has the desirable property that it is invariant to scaling of the feature vector x, ensuring that the value of
data depends on x only through its direction.

As we have shown differential entropy yields a valid value function, it’s time to derive the concrete form in Theorem 3.1.
We first state the following lemma.
Lemma F.2 (Label’s Prior Entropy). The entropy of the buyer’s prior distribution over E[y[x]] is

h(fq(x)) =
1

2
log(|xΣqx

T |) + d

2
(1 + log(2π)),

where we use Σq to denote the covariance of the prior distribution over β.
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Proof. We begin by stating the following basic facts on the entropy of Gaussian random vectors.

Fact F.3 (Entropy of Gaussian Random Vectors (Example 8.1.2 Thomas & Joy (2006))). For any Gaussian random vector
Z ∈ Rd where Z ∼ N (m,Σ), it holds that

h(Z) =
1

2
log(|Σ|) + d

2
(1 + log(2π)).

We know that E[y[x]] = ⟨x, β⟩ where β enjoys prior variance Σq. As we recall that E[y[x]] integrates over a zero-mean
random noise N (0, σ2), the prior belief that the buyer holds over E[y[x]] is that it has variance xΣqx

T . Applying Fact F.3
completes the proof.

With Lemma F.2 and Fact F.3 in hand, we can similarly derive h(fp(x)) by substituting the prior variance with posterior
variance. Then Definitions C.1 and F.1 lead to Theorem 3.1 directly. □

F.2. Proof of Corollary 3.2

Since the prior is N (µq,Σq), after observing {(xi, yi)}ni=1, with calculations using Equation (2), we know the variance
matrix of the posterior of β is (Σ−1

q +XTΣ−1X)−1. To be specific,

p(β | q,D) ∝ exp(−1

2
βTΣ−1

q β) ∗ exp(−1

2
(Y −Xβ)TΣ−1(Y −Xβ)).

Note that it’s independent of {y1, ..., yn} so we can get rid of the expectation over them. Then, Equation (4) yields
Corollary 3.2 immediately. □

Note that val(·; ·, ·) here only depends on the design matrix X but not the realized y. Hence, we can get rid of ED∼g◦q in
such a case.

G. Omitted Proof in Section 4
G.1. Omitted Proof in Section 4.1

Readers may wonder why we use V(gn[x]; q, x) as the benchmark revenue. We assume without loss of generality, the buyer
with type x prefers the associated data-generating process, ceteris paribus. It equals to n+σ(x̂)2

n+σ(x)2 ≥ ⟨x, x̂⟩
2. Taking union

bound over n, a sufficient condition is σ(x̂)
σ(x) ≥ |⟨x, x̂⟩|. Besides, in practice, buyers may lack information on σ and it’s only

revealed after data production processes. Therefore, there is no motivation for buyers to misreport based on σ. Note that this
assumption is not necessary but only for a concise presentation. Otherwise, there exists a mapping φ : Rd → Rd such that
φ(x) is type-x buyer’s favorite direction. Composing φ(·) with the instrumental value function V(·, ·) yields an equivalent
mechanism design problem.

Additionally, from Corollary 3.2, we know that only the design matrix will influence V rather than response variable values.

G.1.1. PROOF OF LEMMA D.1

Since we have Theorem 3.1, we only need to calculate the posterior distribution of β. For data g[x̂] = (x̂, {ŷi}ni=1), using
Bayesian Formula, it holds that

P(βp | N (0, Id), (x̂, {ŷi}ni=1)) ∝ N (0, Id) ∗ P(x̂, {ŷi}ni=1 |β)

∝ exp(−1

2
∥β∥2) ∗ exp(−

n∑
i=1

1

2

(ŷi − x̂Tβ)2

σ(x̂)2 + δ(x̂)2
)

∝ exp(−1

2
(βT (Id +

nx̂x̂T

σ(x̂)2 + δ(x̂)2
)β)),

considering only the quadratic terms of β. It is because that ϵ and ϵ′ are independent and Var(ϵ+ ϵ′) = σ2 + δ2. From now
on, we omit the prior q = N (0, Id) when easy to infer from the context for simplicity.
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Therefore, we have that the variance of the posterior distribution of β is

Var(βp | g[x̂]) = Σp = (Id +
nx̂x̂T

σ(x̂)2 + δ(x̂)2
)−1,

and Theorem 3.1 leads to what we need. □

G.1.2. PROOF OF LEMMA D.2

Now, we are going to prove Lemma D.2. With IC constraint, it holds that

V(x, x)− t(x) ≥ V(x, x̂)− t(x̂) for all x, x̂.

Rearranging the algebra items leads to t(x̂)− t(x) ≥ V(x, x̂)− V(x, x). Now, we change the placement of x and x̂, it holds
that t(x̂)− t(x) ≤ V(x̂, x̂)− V(x̂, x). Combining the two parts, we have

V(x, x̂)− V(x, x) ≤ t(x̂)− t(x) ≤ V(x̂, x̂)− V(x̂, x).

Then, dividing by x̂− x and letting x̂ converge to x results in ∇t(x) = ∇yV(x, y) | y=x.

Now, we calculate the gradient of V(·, ·). We have the following equations.

∇yV(x, y) | y=x = −1

2
∇y log(x

T (I +
nyyT

σ(y)2 + δ(y)2
)−1x)

= −1

2
∇y log(1−

xT yyTx

(σ(y)2 + δ(y)2)/n+ 1
) | y=x

= −1

2
(1− xT yyTx

σ(y)2+δ(y)2

n + 1
)−1[

2xT yx
σ(y)2+δ(y)2

n + 1
−

2σ(y)
n ∇σ(y) + 2 δ(y)

n ∇δ(y)
(σ(y)

2+δ(y)2

n + 1)2
] | y=x

= −1

2

σ(x)2+δ(x)2

n + 1
σ(x)2+δ(x)2

n

(
2x

σ(x)2+δ(x)2

n + 1
+

2σ(x)/n∇σ(x) + 2δ(x)/n∇δ(x)
((σ(x)2 + δ(x)2)/n+ 1)2

).

The first equation comes from the definition V(·, ·) while the third equation comes from the derivation of multi-variant
functions. When we replace y with x, we have the last equation since ∥x∥2 = xTx = 1. As for the second equation, we
need the following lemma.
Lemma G.1 (Sherman-Morrison-Woodbury Formula (Sherman & Morrison, 1950)). Let A and B be nonsingular m×m
and n× n matrices, respectively, and let U be m× n and V be n×m. Then

(A+ UBV )−1 = A−1 −A−1UB(B +BV A−1UB)−1BV A−1.

Taking A = I , U = y, V = yT and B = n
σ(y)2+δ(y)2 in Lemma G.1 leads to the second equation.

Since x ∈ {x : ∥x∥ = 1}, it holds that x · dx = 0. Then, it holds that

t(x) = C +

∫ x

x0

∇yV(s, y) | y=s · ds

= C +

∫ x

x0

−1

2

(σ(s)2 + δ(s)2)/n+ 1

(σ(s)2 + δ(s)2)/n

2σ(s)/n∇σ(s) + 2δ(s)/n∇δ(s)
((σ(s)2 + δ(s)2)/n+ 1)2

· ds

= C +
1

2
log(

(σ(x)2 + δ(x)2)/n+ 1

(σ(x)2 + δ(x)2)/n
),

with a little abuse of the constant C.

The first equation is straightforward however we need to check if it’s independent of the path of integration. The second
and third equations are some calculations. It’s easy to see that the construction of t(x) satisfies the condition in (Jehiel
et al., 1999) that the field is conservative. Therefore, the value is irrelevant to the path of integration and the payment rule
is well-defined. The proof suggests that our method has greater verifiability compared to other methods, such as cycle
monotonicity (Lavi & Swamy, 2007), as well. □
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G.1.3. PROOF OF THEOREM 4.1

From Lemma D.2, we know that the form of optimal payment rule is t(x) = C + 1
2 log(

σ(x)2+δ(x)2+n
σ(x)2+δ(x)2 ).

Now, we need to calculate the indicator function of the IR constraint that

1(C +
1

2
log(

σ(x)2 + δ(x)2 + n

σ(x)2 + δ(x)2
) +

1

2
log(xT (I +

nxxT

σ(x)2 + δ(x)2
)−1x) ≤ 0) = 1(C ≤ 0).

It is because that

xT (I +
nxxT

σ(x)2 + δ(x)2
)−1x = xT (I − n

σ(x)2 + δ(x)2 + n
xxT )x

= 1− n

σ(x)2 + δ(x)2 + n

=
σ(x)2 + δ(x)2

σ(x)2 + δ(x)2 + n
.

The first equation comes from Lemma G.1 with A = I , U = x, V = xT and B = n
σ(x)2+δ(x)2 . The second equation comes

from ∥x∥ = 1 while the last equation is from simple algebra calculation.

Therefore, the optimal C is zero for any x and the payment rule is exactly

t(x) =
1

2
log(

σ(x)2 + δ(x)2 + n

σ(x)2 + δ(x)2
).

As for δ(·), we will show that the optimal solution is 0 too. Since log(x+n
x ) is a decreasing function with respect to x for

any fixed n, taking δ(·) = 0 leads to the optimality.

Then, for any type x, adding no noise and charging 1
2 log(

n+σ(x)2

σ(x)2 ) are the optimal solution to the optimization problem D.1
if the distribution of type is δx where δ(·) is the Dirac delta function. However, since the solution is optimal to any type
x, it’s also the optimal solution to the general optimization problem D.1 as long as satisfying the IC constraint which is
guaranteed by Lemma D.2.

Combining the above parts leads to our theorem and finishes our proof. □

G.2. Omitted Proof in Section 4.2

G.2.1. PROOF OF THEOREM 4.2

Recall that the value of the data g[x̂] is

V(x, x̂) =
1

2
log(|xVar(βq)x

T |)− 1

2
log
(∣∣xVar(βp | g[x̂])xT

∣∣) .
Similar to the argument presented in Section 4.1, we make the assumption that the variance of the prior belief regarding β is
Id, without loss of generality. We also assume that the seller can attain the first-best revenue and we will demonstrate a
contradiction in due course. To achieve the first-best revenue, since the buyer reveals their report after the seller produces
the data, the seller must disclose all data in some condition for any report x̂ in order to prevent loss of information and
charge the corresponding information gain. For instance, let us assume that the type is represented by a two-dimensional
vector denoted by x = (a, b)T , where a, b ∈ [1, 2]. Hence, each data point assists in predicting each component of β. The
first-best revenue implies that the payment rule is precisely t(x̂) = V(x̂, x̂) and the buyer will derive no consumer surplus.
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Now, we are ready to calculate the exact form of t(·). We first calculate the posterior distribution of β. It holds that

P(β | N (0, Id), g
X) ∝ N (0, Id) ∗ P(X,Y |β)

∝ exp(−1

2
∥β∥2) ∗ exp(−1

2
(Y −Xβ)TΣ−1(Y −Xβ))

∝ exp(−1

2
∥β∥2) ∗ exp(−1

2
βTXTΣ−1Xβ)

∝ exp(−1

2
βT (I +XTΣ−1X)β)

The first line comes from the Bayesian formula and the following lines are simple algebra calculations. Recall that Σ is a
mapping from X . Therefore, it holds that Var(βp | gX) is

Var(βp | gx) = (I +XTΣ−1X)−1.

With the posterior distribution in hand, it holds that

t(x̂) =
1

2
log(x̂T x̂)− 1

2
log(x̂T (I +XTΣ−1X)−1x̂).

Besides, the value of data is

V(x, x̂) =
1

2
log(xTx)− 1

2
log(xT (I +XTΣ−1X)−1x).

Therefore, the extra surplus of reporting x̂ is

V(x, x̂)− t(x̂) =
1

2

[
log(xTx)− log(xT (I +XTΣ−1X)−1x)− log(x̂T x̂) + log(x̂T (I +XTΣ−1X)−1x̂)

]
.

In order to satisfy the IC constraint, we need to prove that t(x̂) is a constant for any x̂. However, since the type space
is continuous, it holds that XTΣ−1X should be a constant times identity matrix. However, X can be determined by the
following optimization problem

X = argmax
X

Ext(x) = argmax
X

Ex
1

2
log(xTx)− 1

2
log(xT (I +XTΣ−1X)−1x).

Therefore, there exists some prior distribution for type x, Dirac delta distribution for example, that XTΣ−1X isn’t a constant
times identity matrix which leads to a contradiction. With the continuity of V(·, ·), there exists a continuous distribution
leading to contradiction as well.

Therefore, it means that our assumption that the seller can achieve the first-best revenue is wrong and it ends our proof. □

G.2.2. PROOF OF THEOREM 4.3

For any design matrix X , as the proof of Theorem 4.2, the total surplus of the buyer and the seller is no larger than
V(x, x) = 1

2 log(x
Tx) − 1

2 log(x
T (I + XTΣ−1X)−1x). Therefore, we only need to construct a mechanism satisfying

IC and IR constraints that for any type x, the seller’s revenue is no smaller than V(x, x)− log(κ((
√

Σ(X))−1X)). More
generally, we allow the seller to manipulate her data by adding some noise as in Section 4.1 or doing linear combination as
in Algorithm 2. However, the data-generating process must be pellucid and known by both the seller and the buyer which is
demanded by mechanism design problems. The result can directly lead to Theorem 4.3.

Since κ((
√
Σ(X))−1X) is the square root of the condition number or the ratio between the largest and the smallest singular

values of XTΣ(X)−1X , if XTΣ(X)−1X is not full-rank, Theorem 4.3 is right trivially. So, we only need to consider the
situation that XTΣ(X)−1X is full-rank. As X is a n× d matrix, it means that n ≥ d for sure. It means that in order to
separate buyers with different personal types, the seller needs at least some amount of data to achieve price discrimination.
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For simplicity, we use X to replace (
√

Σ(X))−1X . For any dataset, we can transform (X,Y ) to
((
√
Σ(X))−1X, (

√
Σ(X))−1Y ) so that the noise distribution is indeed N (0, I). It’s just for readers’ understanding

and transforming back leads to the original Theorem 4.3.

The key challenge in our setting is caused by the fact that x, the buyer’s private type, is continuous. A difficulty caused
by continuity is ensuring incentive compatibility. While it is easy to deter buyers from scaling their feature vector when
reporting (e.g. rescale all reported features on the seller’s end prior to allocation and pricing), stopping buyers from rotating
the reported feature vector is much harder. As the data design matrix X is not equally informative in all directions in the
feature space, by rotating the reported feature vector, the buyer could act as if he did not gain much information from
purchasing the data. At the same time, slightly rotating the reported direction could still lead to significant information gain
from the buyer due to the small angle between his true private type and his reported type. We visualize the impact of rotating
the reported type in Figure 4.

actual	𝑥

reported	�̂�	

the	amount	of	information	
on	each	direction	in	ℝ!

Figure 4. Visualization of the effect of reporting the rotated private type in R2. The ellipse represents the amount of information that X
contains on each direction in R2. Long-dash-dot-dot line denotes the buyer’s private type x and dash line the buyer’s report x̂.

Intuitively, the radius of the ellipse in Figure 4 roughly measures the amount of information that X contains on each direction
in the parameter space R2. While the buyer’s true type, depicted in long-dash-dot-dot line in Figure 4, benefits the most if
he were to report truthfully, by reporting x̂, visualized by the dash line, the buyer could lead the seller to believe that he
gains less information from the data purchased, thereby potentially reducing the price the seller charges. Moreover, when
the angle between x̂ and x is sufficiently small, the buyer would still gain sufficient information from untruthful reporting,
while potentially paying less.

To deter buyers from rotating their report, we propose the SVD mechanism, whose hallmark is performing Singular Value
Decomposition (SVD) over the buyer’s feature matrix X to obtain

X = U

[
S

0(n−d)×d

]
V,

where S = diag{λ1, . . . , λd}, 0(n−d)×d ∈ R(n−d)×d is a matrix filled with zeros, and U ∈ Rn×n, V ∈ Rd×d are unitary
matrices. In particular, {λ1, .., λd} are singular values of X , we define X’s condition number as κ(X) = maxi λi

mini λi
. We also
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obtain the left-inverse of X , L = U

[
S−1

0

]
V , such that

LTX = V T
[
S−1 0

]
UTU

[
S−1

0

]
V = I.

Geometrically speaking, U and V are rotation matrices that help orthogonalize different components. The entries in the
diagonal matrix S, λi, are the singular values that dictate the amount of information contained in a specific direction in Rd.
Particularly, for the multi-armed bandits setting we deferred to Corollary D.6, λi equals to

√
ni where ni is the number of

observations at the i-th component. Intuitively speaking, the larger λi is, the more information X contains in the particular
direction.

Recall that we have the SVD mechanism in Algorithm 2 and let’s provide a high-level description of the algorithm.
Performing SVD over X recovers the amount of information the seller’s data contains on directions in Rd. In particular,
these directions are given by the row vectors of V , and form an orthonormal basis of the Rd parameter space. Using the
results of SVD, the mechanism constructs projection operator L and normalizes the projection of x̂, b(x̂). The allocation
and payment rules are constructed using the projection b(x̂) according to the penultimate line in Algorithm 2.

As the payment rule never charges more than the buyer’s information gain whenever he is truthful, the mechanism is
individually rational, which we formalize in the following lemma.

Lemma G.2. The mechanism satisfies individual rationality (IR).

Proof. For any truthful buyer, the payment t(x̂) = t(x) = V(x, x) is exactly his value of the received data g[x].

Proving that the mechanism is incentive-compatible is more involved. Intuitively, projecting the reported type x̂ along L as
opposed to X normalizes the amount of information gained in each direction. Recall that performing SVD over X yields
U, S−1, V , from which L is constructed. Previously, we showcased that the diagonal entries in S correspond to the amount
of information X has in a particular direction. Conversely, the entries in S−1 normalizes the amount of information X has
along the direction. Projecting x̂ over L then uses the values in S−1 to normalize the information the buyer may gain in a
particular direction. As opposed to the ellipse we observe in Figure 4, the information g[·] provides for each direction now
better resembles a circle, and the buyer is thus discouraged from untruthful reports, as doing so would not alter his payment
significantly. We formalize the intuition in the following lemma.

Lemma G.3. The mechanism satisfies incentive compatibility (IC).

Proof. We need to prove that the buyer’s utility is maximized when he reports truthfully, namely for all x̂ ∈ X

V(x, x̂)− t(x̂) ≤ V(x, x)− t(x).

Recall by construction of t(·) that V(x, x) = t(x) and t(x̂) = V(x̂, x̂). Thus, we only need to show that V(x̂, x) ≤ V(x̂, x̂).
We first note that the payment rule t(·) is scale-invariant. Indeed, for any x̂ ∈ X and c ≥ 0, we have

t(cx̂) =
1

2
log(x̂T x̂) + c− 1

2
log
(
x̂T
(
I−1 +XT b(x̂)b(x̂)TX

)−1
x̂
)
− c = t(x̂),

as we note that b(x̂) is also scale invariant. It is then without loss of generality to assume that ∥x∥ = ∥x̂∥.

Expanding both V(x̂, x) and V(x̂, x̂), we know that proving IC is equivalent to showing

xT (I +XT b(x̂)b(x̂)TX)−1x ≥ x̂T (I +XT b(x̂)b(x̂)TX)−1x̂,

as we recall the logarithmic function log(·) is monotonic and note that the matrix I +XT b(x̂)b(x̂)TX is positive definite.

Define the shorthand f(x, x̂) = xT (I +XT b(x̂)b(x̂)TX)−1x, which is a strongly convex quadratic function. Observe that
proving the inequality holds for any pair x, x̂ can be reduced to showing that for any x̂, the induced quadratic function
f(x, x̂) is minimized by x̂ over the set {x ∈ Rd : ∥x∥ = ∥x̂∥}, as we recall it is without loss of generality to focus the set of
vectors with the same length as x̂.
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By first order condition of strongly convex functions, we need to show that ∂f(x,x̂)
∂x | x=x̂ = 0. Since we restrict ourselves to

the set {x ∈ Rd : ∥x∥ = ∥x̂∥}, we only need to prove that x̂T (I +XT x̂x̂TX)−1y = 0 for any y such that x̂T y = 0. By
Sherman-Morrison (Lemma G.1), we have

(I +XT b(x)b(x)TX)−1 = I − XT b(x)b(x)TX

1 + b(x)TXXT b(x)
.

Clearly x̂T Iy = x̂T y = 0. Additionally, we know that

x̂TXT b(x)b(x)TXy =
1

∥Lx̂∥2
x̂XTLx̂x̂TLTXy =

1

∥Lx̂∥2
x̂XTLx̂x̂T y = 0,

as x̂T y = 0 and LTX = I . We then know that

x̂ = argmin
x∈{x∈Rd:∥x∥=∥x̂∥}

f(x, x̂)

for any x̂ and consequently, V(x̂, x) ≤ V(x̂, x̂), completing the proof.

Finally, we show that the mechanism achieves near-optimal revenue with at most log(κ(X)) loss. Note that the maximum
revenue is no greater than the social welfare for any IR mechanism. Moreover, selling all data maximizes information
gain, and by extension, social welfare. Then, for any private type x, a trivial upper bound over the revenue is V(gX ; q, x),
which holds for all possible choices of g[·]. Recall that we dub this revenue, V(gX ; q, x), the first-best revenue, as it is the
maximum revenue that any potential non-IC mechanism can extract from a buyer with private type x.

We now show that the gap between the revenue achieved by our mechanism and this theoretical upper bound is always no
greater than a problem-dependent constant.

Theorem G.4. The SVD mechanism achieves revenue no less than V(gX ; q, x) − log(κ(X)) for any buyer with private
feature x, where we recall κ(X) = λmax(X)/λmin(X) is the ratio between the largest and the smallest singular values of
X .

Proof. Recall that we use X to replace (
√

Σ(X))−1X for simplicity. By Lemma G.3, our mechanism is truthful, and any
buyer with private type x would report truthfully. Recalling the construction of t(·), our goal is to then bound the difference
between V(x, x) and V(gX ; q, x) which, by definition of V(·, ·), is equivalent to showing

1

2
log(xT (I +XT b(x)b(x)TX)−1x)− 1

2
log(xT (I +XTX)−1x) ≤ log(κ(X)). (6)

Moreover, examining Inequality (6), we know it is further without loss of generality to assume that ∥x∥ = 1. By construction,
b(x) is invariant to the scaling of x. The effect of scaling x then cancels out in the left-hand side.

Let us begin with the first term on the left-hand side of Inequality (6). Expanding (I +XT b(x)b(x)TX)−1 by Sherman-
Morrison, we have

xT (I +XT b(x)b(x)TX)−1x = 1− xTXT b(x)b(x)TXx

1 + b(x)TXXT b(x)
.

Focus on the enumerator first. Recalling b(x) = Lx
∥Lx∥ where L is the left inverse of X , for the enumerator we have

xTXT b(x)b(x)TXx =
1

∥Lx∥2
xTXTLxxTLTXx =

1

∥Lx∥2
xTxxTx =

1

∥Lx∥2
.

As for the denominator, again recalling b(x) = Lx
∥Lx∥ , we have

1 + b(x)TXXT b(x) = 1 +
1

∥Lx∥2
xTLTXXTLx =

1

∥Lx∥2
(∥Lx∥2 + xTLTXXTLx)

=
1

∥Lx∥2
xT (LTL+ I)x.
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Additionally, note that L = U

[
S−1

0

]
V with U and V being orthonormal matrices, we have

LTL = V T
[
S−1 0

]
UTU

[
S−1

0

]
V = V T (S−1S−1)V = V T diag

(
1

λ2
1

, . . . ,
1

λ2
d

)
V,

as we recall S = diag(λ1, . . . , λd) and is diagonal. We then easily know

xT (LTL+ I)x = xTV T diag
(
1 + λ2

1

λ2
1

, . . . ,
1 + λ2

d

λ2
d

)
V x

and therefore
xT (I +XT b(x)b(x)TX)−1x = 1− 1

xTV T diag
(

1+λ2
1

λ2
1

, . . . ,
1+λ2

d

λ2
d

)
V x

. (7)

We now turn our attention to xT (I + XTX)−1x. Applying Woodbury matrix identity (i.e. Lemma G.1), we know
(I +XTX)−1 = I −XT (I +XXT )−1X . Since XT (I +XXT )−1X = V T diag

(
λ2
1

1+λ2
1
, . . . ,

λ2
d

1+λ2
d

)
V as we recall the

SVD for X , we have

xT (I +XTX)−1x = 1− xTV T diag
(

λ2
1

1 + λ2
1

, . . . ,
λ2
d

1 + λ2
d

)
V x. (8)

Combining Equation (7) and Equation (8), we have

xT (I +XT b(x)b(x)TX)−1x

xT (I +XTX)−1x
=

1

1−
∑d

i=1
λ2
i

1+λ2
i
(V x)2i

1− 1∑d
i=1

1+λ2
i

λ2
i

(V x)2i


=

∑d
i=1

1
λ2
i
(V x)2i

(
∑d

i=1
(1+λ2

i )

λ2
i

(V x)2i )(
∑d

i=1
1

1+λ2
i
(V x)2i )

≤

∑d
i=1

1
λ2
i
(V x)2i

(
∑d

i=1
1
λ2
i
(V x)2i )

2
≤ κ(X)2,

(9)

where (V x)i denotes the i-th component of the d-dimensional vector V x. Here, the first inequality holds due to the
Cauchy-Schwarz inequality while the second inequality holds because the numerator is no larger than 1

mini λ2
i

and the

denominator is no less than 1
maxi λ2

i
. Plugging Equation (9) back into Inequality (6) completes the proof.

With the argument that X is full column-rank, it holds that κ(X) = λmax(X)/λmin(X) is as same as the square root of the
condition number or the ratio between the largest and the smallest singular values of XTX . Therefore, Theorem G.4 leads
to the following results that there exists a mechanism that the seller can achieve at least V(gX ; q, x)− log(κ(X)) for any
type x which leads to what we need directly. Transforming X back to

√
Σ(X))−1X ends our proof. □

It means that for any mechanism if the seller’s exceptional revenue is less than ExV(g
X ; q, x)− log(κ(

√
Σ(X))−1X)) or

the seller’s surplus is larger than log(κ(
√

Σ(X))−1X)), the seller will have the motivation to change to the SVD mechanism
in order to gain more revenue. Therefore, since the seller is rational, Theorem 4.3 holds.

We conclude Appendix G.2.2 with the following remarks. Firstly, we note that there exists a sharper, yet harder to interpret
bound, for Theorem G.4. If we define

f(λ1, ..., λd) = max
y

∑d
i=1

1
λ2
i
y2i

(
∑d

i=1
1+λ2

i

λ2
i

y2i )(
∑d

i=1
1

1+λ2
i
y2i )

,

then the SVD mechanism achieves revenue no less than V(gX ; q, x) − 1
2 log(f(λ1, ..., λd)) for any buyer with private

feature x, as Equation (9) is exactly bounded by the function. On the other hand, it means that the buyer can enjoy
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only 1
2 log(f(λ1, ..., λd)) surplus at most. Besides, the condition number of the seller’s feature matrix is commonly

found in statistical learning literature and is closely related to concentration bounds in the Bayesian linear regression
setting (Wasserman, 2004), thus we believe the unfairness between seller and buyers characterized in Theorem 4.3 is easier
to interpret.

G.2.3. PROOF OF COROLLARY 4.4

Now, we are ready to show that the seller can achieve the first-best revenue even if the buyer reports his type later when the
data is isotropic.

Since every singular value of XTΣ(X)−1X is the same, it holds that κ(XTΣ(X)−1X) = 1 with the definition of κ(·).
Therefore, Theorem 4.3 tells us that the buyer can only enjoy no more than log(κ(XTΣ(X)−1X)) surplus which is 0 under
this situation. □

This once again demonstrates that the crucial factor is the buyers’ willingness to pay, rather than their personal types.
Given isotropic data, the seller possesses precise information regarding every buyer’s willingness to pay. Accordingly, it is
straightforward for her to implement price discrimination, which is manifested by the first-best revenue.

G.2.4. PROOF OF COROLLARY D.6

To better interpret the proposed SVD mechanism, we show that in the Mult-Armed Bandit (MAB) setting, it reduces to an
intuitive mechanism with the first-best revenue. Consider a d-armed bandit setting where for any j ∈ [d], arm j’s reward is a
random variable independent of other arms’ rewards.

The seller’s data consists of measurements on each of the d-arms and the buyer’s private type x ∈ Rd is a member of the
standard basis of the d-dimensional Euclidean space Rd, namely x ∈ X = {e1, . . . , ed}. Similarly, the seller’s dataset’s
features are all members of d-dimensional standard basis.

We can thus demonstrate that the SVD mechanism can be simplified to a straightforward and comprehensible mechanism,
wherein the seller conveys to the buyer the average reward for the arm in question. It is not arduous to establish that this
mechanism attains the first-best revenue, as the average reward constitutes the most accurate estimate for the reward of the
buyer’s queried arm, given the seller’s dataset. We provide a formal articulation of this proposition in the ensuing lemma.

Lemma G.5. In the MAB setting, the SVD mechanism reduces to the following

X[x̂] =
1√

|{xi : xi = x̂}|

∑
d∈{xi:xi=x̂}

d, t(x̂) = V(gX[x̂]; q, x̂) = V(x̂, x̂), (10)

where we use X[·] to denote the part of the design matrix the seller will keep and the seller forms g[·] correspondingly.
Moreover, the mechanism is IC, IR, and achieves the first-best revenue.

Proof. We can manually perform SVD over X to show that in this case, a suitable choice for V is the d-dimensional
identity matrix Id and S = diag{

√
|{xi : xi = e1}|, . . . ,

√
|{xi : xi = ed}|}, namely, S is the diagonal matrix where each

diagonal entry corresponds the number of measurements on that particular arm. Here U is a conforming matrix ensuring
that X = USV , and the SVD mechanism reduces to Equation (10).

We divide the rest of our proof into three parts, beginning with IR, then IC, and ending with showing that the mechanism
achieves the first-best revenue.

IR The individual rationality is directly implied by Lemma G.2.

IC The incentive compatibility is directly implied by Lemma G.3.

First-best revenue We note that

V(gX ; q, x) = h(fq(x))− h(fp(x)|gX) = h(fq(x))− h(fp(x)|g[x]) = V(gX[x]; q, x)

by chain rule of conditional entropy and the fact that any data point different from x is a measurement of a random variable
independent of the buyer’s private y which is the label corresponding to x, and hence leads to an information gain of zero.
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Note that the posterior fp(x) may come from different datasets and we explicitly give the conditions X and X[x] to make it
clarified. From the inequality, we know that for any possible private type x, the information gain that the buyer obtains from
receiving g[x] equals the information gain that he obtains from observing the entire dataset, gX . Moreover, when the buyer
reports his type truthfully, he is charged exactly that amount. Thus, the revenue achieved by the mechanism is the highest
among all IR (and potentially non-IC) mechanisms.

As Lemma G.5 shows, in the multi-armed bandits (MAB) setting, the SVD mechanism can achieve the first-best revenue
which means that the consumer surplus is 0. Therefore, we finish our proof. □

This highlights a fundamental distinction between the data market and traditional markets for tangible goods. In the data
market, the value of a dataset varies significantly among buyers. As in the multi-armed bandit setting, buyers derive no
utility from obtaining data about a different arm. Consequently, buyers have no incentive to misreport their valuations,
which enables the seller to effortlessly attain the highest possible revenue.
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