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Abstract

Contrastive learning has shown promise in deep graph clustering, but current methods have
notable limitations. Positive sample effectiveness is heavily influenced by data augmen-
tation, risking semantic drift and improper pair selection. Moreover, negative pairs lack
reliability, disregarding crucial clustering information. To address these issues, the authors
proposed Cluster-guided Contrastive Graph Clustering Network (CCGCN). It employs a
unique Siamese encoder architecture, creating two distinct graph views without complex
augmentations, enhancing positive sample discriminative quality. Negative samples are se-
lected from cluster centers for improved reliability. An objective function encourages intra-
cluster cohesion and inter-cluster separation. Initially evaluated on six datasets, we expand
to 12 graph and 2 non-graph datasets in our study, aiming to validate and generalize the
method’s effectiveness through reproducibility and additional experiments 1

1 Reproducibility Summary

1.1 Scope of Reproducibility

This research focuses on assessing the reproducibility of the paper titled "Cluster-guided Contrastive Graph
Clustering Network" [(Yang et al., 2023)] with the aim of validating the claims made in the paper. The specific
assertions being investigated are as follows (1)Proposal of a Discriminative Positive Sample Extraction
Mechanism (DPS), the paper claims the introduction of a positive sample extraction mechanism (DPS) that
is more discriminative. (2) Proposal of unshared Siamese encoder to prevent Semantic Drift, the paper asserts
the proposal of an unshared Siamese encoder as a strategy to prevent inappropriate graph augmentation
that could lead to semantic drift. (3)Proposal of an algorithm for constructing Reliable Negative Samples
(RNS), the paper puts forth a claim about a proposed algorithm for constructing more reliable negative
samples (RNS).

1.2 Methodology

The authors shared their PyTorch code, which was subsequently modified for two primary purposes: first,
to expand the experiments to include additional graph & non graph datasets, and second, to perform the
ablation study. All experiments, including both the original and extended ones, were conducted on Google
Colab, utilizing the T4 GPU for computational acceleration. The total time required for the entire set of
experiments amounted to approximately 20 hrs.

1.3 Results

The study achieved comparable results to the original paper when evaluating performance on existing
datasets. However, in the ablation study, although the results did not precisely match to those obtained by
the authors, they followed the same trend. Furthermore, we extended the experiments to include additional

1Our GitHub : https://anonymous.4open.science/r/Rep_CCGC-BB93/README.md

1



Under review as submission to TMLR

graph & non graph datasets and assessed the model’s generalizability and performance by performing hy-
perparameter sensitivity and cross validation studies. We have discussed in detail the problems and solution
that are faced when extending to non graph datasets.

1.4 What was Easy

The approach outlined in the paper was presented in a clear and concise manner, facilitating the straightfor-
ward implementation of the provided code. Despite the GitHub repository from the authors containing code
for only one dataset, the implementation process was easily extended to accommodate additional datasets.
Minor adjustments to the code were sufficient for this extension.

1.5 What was difficult

Recreating some of the experiments in the ablation study posed challenges, as it necessitated the replacement
of portions of the existing code with components from other papers. We also faced difficulties while extending
the paper by applying the model to non graph datasets, due to computational restraints.

1.6 Communication with the original authors

Efforts were made to reach out to the authors of the original paper. However, despite these attempts, no
response was received from the authors.

2 Introduction

Contrastive learning has demonstrated notable success in the realm of deep graph clustering by leveraging
constructed pairs to unveil the requisite feature distribution for effective clustering. Despite its effectiveness,
existing methods exhibit two notable drawbacks.

• The effectiveness of positive samples in contrastive learning for deep graph clustering is strongly
influenced by the choice of data augmentation methods. Inappropriately applied data augmentation
can result in semantic drift [Lee et al. (2021)] and lead to improper selection of positive pairs.

• The negative pairs created are not sufficiently reliable to disregard important clustering information.

The authors proposed Cluster-guided Contrastive Graph Clustering Network (CCGCN) employs a unique
Siamese encoder with unshared weights between the sibling networks. This design creates two distinct
views of the graph without resorting to complex graph augmentations like node or edge perturbations,
thereby avoiding potential issues of semantic shift. By leveraging high-confidence clustering information, the
model selects positive pairs from the same clusters in the two views, enhancing the discriminative quality of
positive samples. Additionally, negative samples are chosen from the centers of other clusters, contributing
to increased reliability in negative sample selection.
Finally, an objective function is employed to bring samples from the same cluster closer together while
simultaneously pushing away samples from different clusters. The efficacy of this approach was initially
evaluated on six datasets in the original paper. In our study, we have extended this comparison to a total
of 12 graph and 2 non graph datasets, broadening the scope of the assessment.
In this reproducibility study we aim to validate the authors claim on the effectiveness of their proposed
method by reproducing the authors results, and to provide insights to the genralizability of their approach
by performing additional experiments.

3 Scope of Reproducibility

The authors present a novel deep graph clustering approach that employs contrastive learning. In their work,
they make the following proposals,
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• Discriminative Positive Sample Extraction Mechanism (DPS):

– Claim: DPS is more discriminative compared to traditional positive sample extraction mecha-
nisms.

– Implication: The proposed DPS method enhances the quality of positive samples, leading to
improved performance in graph clustering tasks.

• Unshared Siamese Network for Embedding:

– Claim: Creating two embeddings via an unshared Siamese network is superior to traditional
data augmentation methods and helps avoid semantic drift.

– Implication: The use of unshared Siamese networks for embedding prevents semantic drift, offer-
ing advantages over conventional data augmentation techniques and resulting in more effective
graph clustering.

• Reliable Negative Samples (RNS):

– Claim: The proposed method of Reliable Negative Samples constructs more reliable negative
samples, contributing significantly to the learning process.

– Implication: Generating reliable negative samples enhances the informativeness of the training
data, improving the model’s ability to distinguish between different graph clusters.

To substantiate their claims, we conducted two primary experiments.

1. Experiment 1 : Performance comparison
The performance of CCGCN was compared over 6 datasets and the reproduced results were
compared to that obtained by the authors. The evaluation of the methods was based on four
metrics namely accuracy, Normalized Mutual Information, Adjusted Rand Index and F1.

2. Experiment 2 : Ablation study
In the second experiment, we conducted an ablation study to evaluate the effectiveness of each
component in their proposed approach. The study involved systematically replacing parts of their
existing method with standard methods. Since the authors did not share the code and details for
this experiment, we independently implemented and tried to reproduce the ablation study.

The following section discusses the methodology employed in this study to validate the paper. This in-
cludes details about reproducing Experiment 2, the adjustments made to the code and the rationale behind
extending the evaluation to additional datasets. Through these efforts, we aim to validate the robustness
and applicability of the proposed approach, contributing to a more comprehensive understanding of its
performance.

4 Methodology

To reproduce the results in experiment 1 we relied on the code provided by them, we reproduced experiment
1, which demonstrated the enhanced efficacy of CCGCN in comparison to alternative models, the detailed
code for Experiment 1 was obtained from their GitHub repository2.
To validate the claims we primarily performed an ablation study, through which we discussed the effectiveness
and contributions of DPS , RNS & the unshared Siamese encoder. Although the authors didn’t share the
code for Experiment 2, we managed to replicate a substantial part of it by modifying and expanding the
codebase and leveraging the resources cited in the original paper.
Additionally to the original paper, we applied this model to non graph datasets, to assess its performance
and robustness on different type of data.

2GitHub repository of the authors: https://github.com/xihongyang1999/CCGC/tree/main
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4.1 Model Description

4.1.1 Distinct sample view construction

Table 1: List of Notations

Notation Description
G = {X, A} Undirected graph
N Number of nodes
K Number of classes
V = {v1, v2, . . . , vN } Set of nodes
ϵ Set of edges
X ∈ RN×D Attribute matrix
A ∈ RN×D Adjacency matrix
di =

∑
(vi,vj )∈ϵ

aij Degree

D = diag(d1, d2, . . . , dN ) ∈ RN×N Degree matrix
L̄ = I − D̄−1/2ĀD̄1/2 Symmetric normalized graph Laplacian matrix

In the proposed architecture in fig 1,
we see that the authors are inspired by
SCGC Liu et al. (2022) adopted a sim-
ilar approach, by embedding nodes into
the latent space. To achieve this, they
constructed two distinct sample views
through the implementation of parame-
ter unshared Siamese encoders
Prior to encoding, neighbour information
aggregation is performed by using Lapla-
cian filter Cui et al. (2020), this filtering
process is essential for capturing the local and global structure of the graph.

X̄ = (I − L̄)T · X (1)

X̄ is a representation of the attribute feature after a smoothing process. Let t denote the number of layers in
the Laplacian filter.The encoding of X̄ is carried out using unshared Siamese encoders. The output of this
encoding process results in two distinct views, represented as Ev1 and Ev2. These views capture different
representations of the input X̄.

Ev1 = Encoder1(X̄), Ev2 = Encoder2(X̄). (2)

The encoders are designed to have the same architecture but unshared learnable parameters thus avoiding
semantic drift. Subsequently Ev1 and Ev2 are normalised using l2 norm.

Ev2 = Ev1

∥Ev2∥2
Ev2 = Ev1

∥Ev2∥2
(3)

4.1.2 Pseudo label construction

The authors propose cluster guided contrastive learning, i.e, clustering by mining the high-confidence clus-
tering information. Views of the 2 embeddings are fused together and K means clustering is performed on
the fused view.

E = Ev1 + Ev2

2
CONFi = e∥Ei−Cp∥2

(4)

Cp{p = 1, 2...} denotes the center of the high confidence cluster which contains the ith sample. Thus high
confidence index are calculated where hi denotes the hth

i sample belonging to the top τ high confidence
sample set.

4.1.3 Discriminative Positive Sample Construction Strategy & Reliable Negative Sample
Construction Strategy

DPS was designed to increase the discriminitave capabilities of the model, corresponding nodes of high
confidence indices are selected in the two views. the selected nodes are grouped into K disjoint clusters in
their respective views ie, Bv1

p {p = 1, 2..} & Bv2
q {q = 1, 2..}. The constructed clusters are the "high confidence

clusters" with pseudo label, these are used to further construct positive samples. Thus, pseudo labels are
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utilized.
The centers of the high confidence cluster are calculated and these are used to create the negative samples,
this method increases the reliability of the created negative samples.

4.1.4 Objective loss Functions

The proposed objective loss function contains two part namely, positive loss and negative loss. The positive
loss is constructed between the normalized cross-view positive sample embeddings

Lpos = 1
K

K∑
p=1

np∑
i=1

∥Bv1
p[i,:] − Bv2

p[i,:]∥2 (5)

Bv1
p[i,:] & Bv2

p[i,:] denotes i-th normalized node embedding in the p-th cluster of the first and second view & np

is number of high-confidence samples in the p-th cluster
Negative loss is the cosine similarity between different centers of the high confidence embeddings, here Cv1

p

is is the p-th high-confidence center in the first view.

Lneg = 1
K2 − K

K∑
p=1

k∑
q=1

Cv1
p , Cv2

q

∥Cv1
p ∥2 · ∥Cv2

q ∥2
(6)

The total loss formulated is,
L = Lpos + α · Lneg (7)

α is the trade off between positive and negative loss.

4.2 Datasets

Table 2: Dataset Information

Dataset Samples Dimension Edges Classes

Presented in paper:
CORA 2708 1433 5278 7

CITESEER 3327 3703 4552 6
BAT 131 81 1038 4
EAT 399 203 5994 4
UAT 1190 239 13599 4

AMAP 7650 745 119081 8
Extended:

ACM 3025 1870 13128 3
DBLP 4057 334 3528 4
AMAC 13752 767 24586 10
TEXAS 183 1703 162 5
WISC 251 1703 257 5

PUBMED 19717 500 44324 3

Table 2 presents the statistical summary
of the datasets3 used in the study. The
code provided by the authors was de-
signed for a single dataset, employing
files in the ’.allx’, ’.ally’ & ’.graph’ for-
mats—all of which are pickled NumPy
files. However, the datasets acquired
from the internet had a different file for-
mat, specifically in ".npy" format.
Consequently, we developed our own data
loader function to accommodate these
datasets with the ".npy" format, address-
ing the variation in data file formats

across different sources.

Table 3: Non graph dataset Information

Dataset Samples Dimension Type Classes

USPS 9298 256 Image 10
REUT 10000 2000 Text 4

In addition to these traditional graph
datasets, we were also able to generalize
and assess the performance on non -
graph datasets such as USPS & REUT,
though we encountered numerous chal-
lenges in their application, which we
have discussed in section 6.0.1.

4.3 Hyperparameters

The two major hyperparameters which affected the results were α and τ . α controls the trade-off between
positive and negative losses. Through our study, we agree with the author that the variation of α generally

3data were obtained from https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering
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has minor impact on the final results as compared to τ .

Table 4: Hyperparameter Selection after
grid search

Dataset α τ

CORA 1 0.7
CITESEER 0.5 0.7

AMAP 0.1 0.65
UAT 0.5 0.65
EAT 10 0.65
BAT 10 0.7

The parameter τ serves as a critical threshold in the
analysis, delineating the ’top τ high-confidence sample
set’ where samples with confidence levels surpassing this
cutoff are included in the high-confidence clustering in-
dex.
In the paper, authors have mentioned that when τ < 50%,
the discriminative capacity of the network is limited
due to a few numbers of positive samples. When
τ > 70%, the overconfidence pseudo labels would eas-
ily lead the network to confirmation bias Arazo et al.
(2020).We have performed a detailed sensitivity analy-
sis of the model on the given parameters in the section
5.3.

4.4 Experimental setup and code

To replicate experiment 1, we utilized the code supplied by the authors. However, certain adjustments
were necessary in the data loader function to facilitate the execution of the experiment across all datasets.
Details regarding the selection of hyperparameters for each dataset can be found in Table 4.

To conduct the ablation study, we undertook the task of modifying the author’s code independently,
creating a substantial portion of the functions ourselves.Our contributions to the code can be accessed on
our GitHub repository.
The application of the model to non-graph datasets posed the greatest challenges. Since these datasets
lacked an adjacency matrix and only contained sets of features and nodes, we addressed this issue by
implementing the "construct graph" function based on Bo et al. (2020) methodology. This allowed us to
successfully construct the adjacency matrix and implement the model on the non-graph datasets.

Furthermore, during the implementation phase, we observed an issue where the encoder was mapping all
nodes into a single point. This resulted in poor K-means clustering performance, leading to model stagnation,
especially as it clustered all high-confidence points into a single class. Upon thorough investigation of the
codebase, we identified that the construction of smooth features using Laplacian filters, i.e., X̄, caused a
majority of nodes to share the same feature vector. This, in turn, led to a misencoding of nodes. To address
this, when applying the model to non-graph datasets, we opted to bypass the feature smoothing step and
instead directly utilized the feature vector for encoding. This adjustment resulted in significantly improved
performance.

4.5 Computational requirement

All our experiments were conducted on Google Colab, leveraging the T4 GPU. While applying models to
graph datasets incurred minimal computational requirements, we encountered a bottleneck when working
with non-graph datasets due to limitations in system RAM. To address this challenge, we implemented
Principal Component Analysis (PCA) to reduce the dimensionality of the feature vector. This reduction not
only mitigated the strain on system resources but also resulted in a decreased computational load.

5 Results

In this section, we present the results obtained in our study. In the subsection titled "Experiment 1," we
discuss the performance of our model across six datasets, comparing our results with those reported by the
authors.

6
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Moving on to the section titled "Ablation Study," we conduct a comprehensive analysis of our model
by performing various ablation experiments. Here, we aim to validate the claims outlined in Section 3,
specifically focusing on the scope of reproducibility.
Lastly, in the section titled "Results Beyond Paper," we extend the application of our model to additional
datasets, both graph and non-graph related. This broader examination allows us to explore the generaliz-
ability and versatility of our model beyond the specific datasets originally considered in the paper.

5.1 Experiment 1: Performance comparison

In the initial research paper, the authors conducted a comparative analysis of their model against 12 other
approaches across 6 datasets namely CORA, CITESEER, UAT, BAT, EAT, & AMAP, details of the datasets
are outlined in section 4.2 . In this section, we replicate their results using the code shared by the authors
on their GitHub repository. However, we had to develop a custom data loader, as outlined in section 4.4, to
adapt the model to the dataset, given the variations in file types.
Based on the data presented in Table 5, which outlines the performance achieved by our approach across

Table 5: Reproduced performance

Dataset ACC NMI ARI F1

CORA 74.13 ± 1.58 56.71 ± 1.20 51.69 ± 2.50 71.01 ± 3.62
CITESEER 69.95 ± 0.78 44.38 ± 0.54 44.27 ± 1.44 61.48 ± 1.22

AMAP 77.29 ± 0.62 66.74 ± 0.82 57.57 ± 1.14 71.83 ± 0.90
BAT 76.72 ± 1.65 52.60 ± 1.54 50.70 ± 2.43 76.08 ± 1.76
EAT 56.16 ± 1.02 32.13 ± 1.11 25.65 ± 1.10 56.25 ± 0.88
UAT 54.82 ± 1.33 28.55 ± 1.31 21.26 ± 2.32 54.50 ± 2.03

Table 6: Discrepancies with authors’.

△ACC △NMI △ARI △F1

0.24 0.26 -0.82 0.03
0.11 0.05 -1.41 -1.23
0.04 -0.7 -0.42 -0.35
1.68 2.37 3.75 1.18
-1.03 -1.72 -2.06 -0.84
-1.52 0.4 -4.26 -0.74

the six datasets, and Table 6, which highlights the disparities between our results and those obtained by the
authors, it can be concluded that our results closely approximate those obtained by the authors.

5.2 Ablation study

The authors of the original paper conducted an ablation study, although they did not provide the
accompanying code or detailed description. However, leveraging the provided description, we metic-
ulously crafted our own implementation to conduct the study. While the results we obtained may not
precisely match those obtained by the author due to the unavailability of code, they do exhibit a similar trend.

Table 7: Performance on graph datasets

Dataset metrics With SCGC &
RNS

Only RNS Add edges Drop edges Mask features Diffusion CCGCN (repro-
duced)

CORA Accuracy 46.81 ± 2.75 73.70 ± 1.89 70.14 ± 1.25 71.52± 1.96 72.67 ± 1.32 64.07±3.84 74.13 ± 1.58
NMI 26.68 ± 2.60 57.18 ± 1.45 50.34 ± 1.51 53.96 ± 1.65 54.57 ± 1.78 52.24 ±2.05 56.71 ±1.20
ARI 17.70 ± 2.66 51.36 ± 2.46 45.45 ± 1.49 48.31 ± 3.08 49.5 ± 1.28 42.50 ± 4.07 51.69 ± 2.50
F1 40.44 ± 2.45 68.83 ± 3.59 67.40 ± 286 68.66 ± 4.05 69.26 ± 3.13 56.02 ± 4.64 71.01 ± 3.62

CITESEER Accuracy 63.53± 2.20 69.49 ± 0.74 65.75 ± 0.58 65.75 ± 1.49 67.96±1.88 68.85 ± 0.97 69.95 ± 0,78
NMI 36.85± 0.62 43.96 ± 0.87 36.80 ± 0.59 39.51 ± 1.71 40.97 ± 1.84 42.68 ± 0.94 44.38 ± 0.54
ARI 34.66 ± 2.35 43.90 ± 1.18 37.26 ± 0.87 37.33 ± 2.73 41.69 ± 2.68 42.51 ± 1.74 44.27± 1.44
F1 57.46 ± 1.30 61.59 ± 1.80 57.51 ± 0.80 57.77 ± 1.13 58.93 ±1.75 60.35 ± 0.75 61.48 ± 1.22

AMAP Accuracy 51.09 ± 2.89 77.54 ± 0.55 69.04 ± 1.17 76.57 ± 0.67 77.15 ± 0.64 77.61 ± 1.49 77.29 ± 0.62
NMI 33.35 ± 1.82 67.01 ± 0.73 56.89 ± 1.32 66.04 ± 0.86 67.02 ± 0.52 67.86 ± 1.17 66.74 ± 0.82
ARI 21.87 ± 1.47 58.44 ± 0.84 45.83 ± 0.92 56.88 ± 0.66 57.81 ± 0.86 59.09 ± 1.48 57.57 ± 1.14
F1 45.81 ± 3.54 71.88 ± 0.65 66.69 ± 1.92 72.04 ± 0.75 72.02 ± 0.41 71.25 ±3.75 71.83 ± 0.90

UAT Accuracy 49.46 ± 1.59 50.40 ± 1.04 51.21 ± 1.69 47.07 ± 3.88 53.89 ± 1.69 47.00 ± 2.67 54.82 ± 1.33
NMI 21.24 ± 2.92 21.72 ± 1.56 25.16 ± 2.34 22.68 ± 4.23 2842 ± 2.02 19.70 ± 2.17 28.55 ± 1.31
ARI 14.42 ± 2.48 14.84 ± 1.47 16.96± 2.54 14.38 ± 3.59 21.31 ± 2.84 15.34 ± 2.54 21.26±2.32
F1 46.39 ± 2.72 47.43 ± 2.91 50.72 ± 1.89 42.49 ± 5.13 53.37 ± 2.05 42.25 ± 4.58 54.50 ±2.03

EAT Accuracy 36.81 ± 8.90 56.37 ± 1.20 55.08 ± 0.21 54.53 ± 0.76 55.82 ± 0.75 42.43 ± 1.34 56.16 ± 1.02
NMI 11.40 ± 8.51 33.01 ± 1.36 34.33± 0.46 33.06 ± 1.08 32.19 ± 1.17 18.77 ± 2.54 32.13 ± 1.11
ARI 8.32 ± 7.18 26.05 ± 1.44 28.25 ± 0.29 26.28 ± 1.21 25.30 ± 0.9 12.35 ± 3.30 25.65 ± 1.10
F1 27.72 ± 13.59 56.10 ± 2.34 53.85 ± 0.57 50.± 3.137 56.03 ± 0.50 33.98 ± 2.27 56.25±0.88

BAT Accuracy 69.38 ± 2.08 69.16 ± 21.16 64.42 ± 0.85 64.58 ± 0.85 70.30 ± 3.30 48.39 ± 2.29 76.72 ± 1.65
NMI 47.15 ± 2.29 47.65 ± 2.42 41.99 ± 1.75 49,18± 2.03 48.78 ± 2.05 30.82 ± 5.31 52.60 ± 1.54
ARI 40.59 ± 2.45 40.54 ± 3.13 34.98 ± 1.76 43.59 ± 1.89 45.79 ± 1.93 17.80 ± 5.92 50.70± 2.43
F1 68.43 ± 3.29 68.22 ± 3.20 63.47 ± 1.50 59.09 ± 1.77 67.74 ±4.53 44.08 ± 2.29 76.08±1.76

5.2.1 Effectiveness of the Siamese encoder

We effectively executed the ablation study on the unshared Siamese network by sharing its parameter and
subsequently applying diverse graph augmentation techniques mentioned in the original paper, namely, ran-
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domly dropping 20% edges (“Drop Edges”) Xia et al. (2023), or randomly adding 20% edges (“Add Edges”)
Xia et al. (2023), or graph diffusion (“Diffusion”) with 0.20 teleportation rate Hassani & Khasahmadi (2020),
or randomly masking 20% features (“Mask Features”) Zhao et al. (2021).
Upon comparing the performance results obtained from these augmentation techniques to the "CCGCN
reproduced" performance, it becomes evident that the "CCGCN" performance consistently outperforms the
augmented scenarios. This finding strongly supports the authors’ claims 2 regarding the superiority of the
unshared Siamese encoder over traditional graph augmentation methods. Notably, utilizing the unshared
Siamese encoder effectively mitigates semantic drift, further emphasizing its efficacy in preserving the in-
tegrity of the encoded information.

5.2.2 Effectiveness of DPS

We were unable to replicate the suggested method for assessing the importance of DPS suggested in the
original paper due to the unavailability of code. Instead, to evaluate the effectiveness of DPS, we substituted
DPS with the neighbor-oriented contrastive loss method proposed in SCGC by Liu et al. (2022). By doing
so, we essentially removed the DPS component from our experiment
Upon comparing the results, it became evident that the CCGCN(reproduced) performance, achieved by
replacing DPS with the neighbor-oriented contrastive loss, under performed compared to the original results.
This comparison clearly indicates that the introduction of DPS significantly enhances the quality of positive
samples, resulting in improved performance in graph clustering tasks.
In conclusion, our findings support the claim made by the authors that the DPS method enhances the quality
of positive samples, leading to improved performance in graph clustering tasks.

5.2.3 Effectiveness of RNS

We encountered similar difficulties in replicating the suggested method for evaluating the importance of
Random Negative Sampling (RNS) due to the absence of available code. However, to validate claim 3, we
opted to assess the performance of the model solely on RNS-generated negative samples. This approach
allowed us to directly evaluate the effectiveness of the proposed RNS methodology
Upon comparing the results obtained from this experiment with the CCGCN(reproduced) performance,
we observed that the performance of the model when trained exclusively on RNS-generated negative
samples closely resembled the overall performance. This similarity in performance strongly suggests that
RNS is proficient in generating reliable negative samples. Consequently, these negative samples enhance
the informativeness of the training data, thereby improving the model’s capacity to differentiate between
various graph clusters.
In summary, our findings support claim 3 by demonstrating that RNS is indeed capable of generating
reliable negative samples, which in turn enhances the effectiveness of the training data and improves the
model’s ability to discern between different graph clusters.

5.3 Hyperparameter sensitivity

We conducted a study to assess hyperparameter sensitivity (fig 2) in our research. Specifically, we fixed the
value of α and varied τ to examine the sensitivity of τ . Conversely, we fixed the value of τ and varied α to
investigate the sensitivity of α.

To conduct this study, we initially set α to 0.5 and adjusted τ within the range of 0.5 to 0.7. This range was
chosen based on the findings that when τ falls below 50%, the network’s discriminative capacity becomes
limited, and when τ exceeds 70%, the pseudo labels’ overconfidence may introduce confirmation bias Arazo
et al. (2020). Following this, we maintained τ at 0.5 and varied α from 0.01 to 10.
For all values of α except 10, the approach was successfully executed on the CITESEER dataset. However,
at alpha 10, the approach exceeded the available GPU RAM. The specific ranges and standard deviations
for each dataset are outlined in Tables 8 and 9

8
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Table 8: Ranges of metrics for sensitivity analysis

Sensitivity on τ Sensitivity of α

Dataset ACC NMI ARI F1 ACC NMI ARI F1

CORA 0.7533 1.5002 0.6856 1.4070 0.6869 0.7565 0.8443 1.6598
CITESEER 0.5260 0.5391 0.6180 0.4081 0.0060 0.1782 0.1007 0.5528

AMAP 0.2471 0.0483 0.6675 0.3572 0.1817 0.2514 0.5425 0.2027
UAT 1.0840 0.4384 0.6859 1.0695 1.0672 1.3809 1.6853 2.6035
EAT 0.4010 0.5605 0.5253 0.4433 0.4511 0.3035 0.2251 0.4127
BAT 0.7634 0.9180 0.6498 0.9138 0.3817 0.6585 0.3421 0.7325

Table 9: Standard deviations of metrics for sensitivity analysis

Sensitivity on τ Sensitivity of α

Dataset ACC NMI ARI f1 score ACC NMI ARI f1 score

CORA 0.4126 0.7554 0.3497 0.7071 0.2928 0.3167 0.3505 0.7251
CITESEER 0.2946 0.2802 0.3462 0.2133 0.0035 0.1029 0.0581 0.3192

AMAP 0.2471 0.0483 0.6675 0.3572 0.1817 0.2514 0.5425 0.2027
UAT 0.5687 0.2442 0.3747 0.5469 0.5031 0.5751 0.8374 1.2408
EAT 0.2026 0.2914 0.2958 0.2339 0.0979 0.1189 0.2558 0.0995
BAT 0.3842 0.4590 0.3278 0.4598 0.2067 0.3141 0.1639 0.4085

Through an examination of hyperparameter sensitivity across six datasets, it becomes evident that while
adjustments to hyperparameters may result in slight enhancements, the model demonstrates remarkable
resilience and stability in performance. Despite potential variations in hyperparameter settings, the overall
impact on model performance remains minimal.

(a) CORA (b) AMAP (c) CITESEER (d) UAT (e) EAT (f) BAT

(g) CORA (h) AMAP (i) CITESEER (j) UAT (k) EAT (l) BAT

Figure 1: Sensitivity study on τ(top) and α(bottom)

6 Results beyond original paper

6.0.1 Non graph datasets

In our study extension, our primary focus was on testing the generalizability of the models. To achieve
this, we utilized the model for node classification on non-graph datasets, specifically the USPS and REUT
datasets. The evaluation of the models on these non-graph datasets revealed some important findings.
Firstly, despite demonstrating reasonable performance on non-graph datasets, we identified several short-
comings. One significant issue was the high computational load associated with our approach.

6.0.2 Computational challenges and solutions

In both the USPS and REUT datasets, we encountered a significant computational burden, notably in
terms of GPU RAM, which exceeded 15 GB. This heightened demand primarily stemmed from the k-means
clustering step within the model.
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CPU/GPU Trade-off in K-means Clustering Computations: In k-means clustering, a strategic
trade-off can be made during distance calculations (while calculating dis = (A-B)**2 ). By default, these
calculations take place in GPU memory, but an alternative using CPU memory is possible which we have
applied while performing Cross Validation on these datasets. However, it’s important to note that such a
switch extends the overall training time.

Precision Trade-off : In k-means clustering, a strategic trade-off can be made during distance calculations
(while calculating dis = (A-B)**2 ) converting these Matrices to less precise float values (i.e A.float() and
B.float()) introduces a tradeoff between precision and computational efficiency doing this may reduce model’s
performance but allows faster and memory efficient computations

Dimensionality Reduction:To address this issue, we propose employing Principal Component Analysis
(PCA) to diminish the dimensionality of the feature vector. Our analysis revealed that PCA has a minimal
impact on model performance, yet it substantially alleviates the computational load.
In summary, integrating PCA into our workflow offers a viable solution to mitigate the computational
demands associated with k-means clustering, without compromising model effectiveness.

6.0.3 Model stagnation and solution

Table 10: Performance on non-graph datasets

Dataset ACC (%) NMI (%) ARI (%) F1 (%)

REUT 74.34 ± 2.18 53.76 ± 2.89 51.92 ± 4.34 60.86 ± 1.59
USPS 73.68 ±3.23 63.97 ±1.55 58.08 ±2.54 72.33±3.79

Secondly, we encountered poor results when at-
tempting to employ Laplacian filters for feature
smoothing. As detailed in Section 4.4, our ex-
periments revealed that applying Laplacian filters
for feature smoothing resulted in all nodes hav-
ing identical features. Consequently, this led to
misencoding by the unshared encoder, where the
majority of nodes were encoded similarly. This, in turn, compromised the construction of pseudo labels and
subsequently, the overall model performance. By bypassing the feature smoothing step in our experiments,
we achieved significantly improved results, as outlined in Table 9.

In summary, while the method demonstrated promise for node classification on non-graph datasets, we
encountered challenges related to high computational demands and ineffective feature smoothing techniques.
These findings underscore the importance of refining our approach to address these limitations for more
robust model performance

6.0.4 Graph datasets

Table 11: Performance on Additional graph datasets

Dataset ACC NMI ARI F1

ACM 89.51 ± 0.55 66.01 ± 1.21 71.68 ± 1.29 89.46 ± 0.57
DBLP 52.82 ± 2.29 24.04 ± 2.48 17.85 ± 1.91 53.28 ± 2.15
AMAC 55.70 ± 1.18 34.92 ± 1.62 31.38 ± 1.25 35.71 ± 4.25
TEXAS 47.48 ± 0.62 14.26 ± 0.96 12.46 ± 1.52 31.27 ± 1.91
WISC 49.72 ± 5.05 24.90 ± 7.12 11.82 ± 7.77 30.73 ± 6.41

PUBMED 63.09 ± 3.76 28.54 ± 2.81 26.57 ± 3.03 61.92 ± 4.70

We further extended our approach to
other graph datasets with the aim of
studying the robustness of the model
across datasets of various sizes. The re-
sults of this extension are summarized in
Table 11

Despite our thorough analysis, we have
been unable to discern any clear patterns
regarding the varying performance of the

graph datasets. Notably, TEXAS and WISC, despite being relatively small datasets, exhibit poor perfor-
mance when evaluated with the model. Conversely, ACM, which is of slightly larger when compared to
TEXAS and WISC, demonstrates remarkably high performance. Additionally, the model achieves decent
performance on the relatively large dataset PUBMED.
This inconsistency in performance across datasets suggests that factors beyond dataset size may significantly
influence the model’s effectiveness. Further investigation is required to identify these factors and understand
their impact on the model’s performance across different graph datasets.
We further conducted a hyperparameter sensitivity study on additional datasets. The results indicate that
these datasets follow the same trend as previously mentioned, with the model showing minimal changes
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in performance with variations in hyperparameters. We observed that on these datasets, that the model
showed no performance change on variation with alpha thus those tables are not mentioned. The results of
this experiments can be found on the mentioned GitHub link.

Table 12: Standard deviation of metrics for sen-
sitivity analysis

Sensitivity on τ

Dataset ACC NMI ARI F1
ACM 0.082 0.258 0.224 0.079
DBLP 0.258 0.262 0.396 0.351

TEXAS 0.517 0.045 0.383 1.191
WISC 0.043 0.035 0.059 0.085
AMAC 0.041 0.234 0.166 0.667

Table 13: Ranges of metrics for sensitivity anal-
ysis

Sensitivity on τ

Dataset ACC NMI ARI F1 Score
ACM 0.15 0.49 0.44 0.14
DBLP 0.51 1.37 0.78 0.69

TEXAS 1.93 0.95 1.69 2.27
WISC 0.08 0.07 0.11 0.14
AMAC 0.09 0.57 0.34 1.24

6.1 Model cross validation

We expanded upon the findings of the original paper by conducting a 10 fold random cross-validation study
to assess the performance of the model. The results of this study are outlined below.

Dataset metrics 1 2 3 4 5 6 7 8 9 10 Average STD

Graph Datasets

BAT Test Accuracy 70.37 71.43 58.82 57.14 63.64 88.89 71.43 60.00 75.00 75.00 69.172 9.137967827
Test NMI 52.77 54.89 46.49 58.52 68.89 85.28 61.17 65.16 66.67 85.71 64.555 12.27686137
Test ARI 43.87 38.00 19.92 30.07 46.03 76.92 16.00 15.38 0.00 0.00 28.619 22.37656875

Test F1 Score 56.80 66.64 58.28 50.95 53.17 86.67 71.11 61.11 73.33 77.78 69.172 10.97177852

EAT Test Accuracy 52.5 50 45.1 56.1 57.58 61.54 42.86 64.71 71.43 72.73 67.89 5.68
Test NMI 33.01 41.51 29.44 53.75 31.73 47.62 23.14 54.93 59.35 69.52 61.63 4.48
Test ARI 22.96 28.49 14.96 38 .92 15.23 31.06 1.8 36.07 44.32 39.56 47.54 6.22

Test F1 Score 52.15 47.86 44.92 42.74 60.6 56.13 44.41 51.94 66.18 70.6 62.10 7.36

AMAP Test Accuracy 5.71 77.29 66.12 6964 73.68 62.87 72.82 61.99 66.54 70.24 67.89 5.68
Test NMI 53.15 65.16 58.47 62.46 64.74 55.79 64.04 59.45 65.15 67.94 61.63 4.48
Test ARI 38 56.86 41.46 49.86 54.55 41.74 52.11 40.61 49.24 51.02 47.54 6.22

Test F1 Score 50.6 71.75 66.76 69.12 68.6 55.53 63.78 51.87 56.36 66.67 62.10 7.36

CITSEER Test Accuracy 40.24 41.28 45.54 42.82 52,01 44.04 59.2 40. 71 36.61 46.07 44.852 6.18
Test NMI 22. 47 23.15 25.29 25.57 33. 96 27.788 38.06 20.557 27.32 35.35 27.96 5.61
Test ARI 11.28 13.39 18.15 15.16 22.38 18.65 28.86 10.64 6.67 20.01 16.51 6.13

Test F1 Score 30.18 33.76 40.47 25.93 42.35 34.96 46.04 32.90 30.79 40.7 36.808 5.03

UAT Test Accuracy 33.19 47.12 50.33 40.98 51.02 34.62 48.39 46 45 37.5 43.41 6.13
Test NMI 8.94 24.25 18.53 12.58 31.42 15.85 25.47 17.26 22.37 19.44 19.615 6.21
Test ARI 1.81 9.87 13.96 4.03 16.32 1.57 10.79 4.99 9.1 3.1 7.55 4.94

Test F1 Score 24.53 43.78 40.75 39.57 46.42 34.78 45.57 18.88 43.85 33.79 39.19 6.34

CORA Test Accuracy 53.61 53.92 49.86 51.99 47.75 51.12 56.34 55.26 56.o4 52.05 52.89 2.67
Test NMI 44.64 46.77 45.07 47.86 44.58 44.88 47.72 46.71 48.84 52.37 46.94 2.30
Test ARI 28.17 32.37 30.73 30.02 24.70 25.41 31.89 32.07 31.71 33.18 30.02 2.82

Test F1 Score 47.12 45.80 36.26 41.73 44.73 45.79 39.32 42.31 47.44 37.73 42.82 3.79

Non - Graph Datasets

USPS Test Accuracy 72.07 59.63 71.03 74.4 75.74 71.02 68.54 57.39 71.77 69.38 68.76 5.67
Test NMI 63.69 64.24 72.1 65.6 79.38 64.31 58.66 56.19 66.11 78.45 67.22 7.24
Test ARI 57.1 46.05 57.41 60.87 63.85 57.19 49.78 49.62 56.5 56.5 55.30 5.15

Test F1 Score 71.24 71.47 70.66 73.66 74.71 71.19 71.06 71.8 74.66 72.47 72.40 1.44

REUT Test Accuracy 61.1 76.56 65.16 68.75 56.34 73.63 64.69 62.86 61.01 60.07 65.017 5.97
Test NMI 39.09 50.29 49 47.24 34.16 51.05 50.19 41.66 36.2 34.61 43.349 6.58
Test ARI 35.71 57.29 44.85 44.11 25.36 46.84 43.16 32.16 30.43 31.55 39.14 9.19

Test F1 Score 56.01 67.91 61.97 62.05 55.95 61.24 56.93 56.87 59.96 50.43 58.932 4.51

Table 14: Results of Experiments

Low Variance in Evaluation Metrics: The evaluation metrics for the test set show minimal deviations
when compared to those of the training set. This indicates that the model performs consistently well on
unseen data, suggesting low variance. The model’s capacity to accurately classify unseen nodes within the
test graph dataset demonstrates its robustness.

Unusual Behavior in Smaller Datasets: In smaller datasets, we observe a peculiar trend where eval-
uation metrics display higher standard deviations from the mean values. This increased variability can be
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attributed to the limited size of the test set. With fewer instances available for evaluation, the metrics may
fluctuate significantly. This underscores the importance of taking into account dataset size and ensuring a
sufficiently large test set for accurate performance assessment.
In summary, the consistent evaluation metrics observed for the test set indicate the model’s ability to gener-
alize effectively to unseen data. Nevertheless, particular attention is warranted for smaller datasets, where
fluctuations in metrics may occur due to the limited size of the test set. This underscores the importance
of carefully considering dataset characteristics and employing appropriate experimental design to ensure
reliable model evaluation and comparison.

7 Discussion

7.1 verification of claim

In this section, we provide a summary of whether our results support the original claims made by the authors.
The validation for all claims has been conducted in Section 5.2, Ablation Study.In this section we summarize
weather our results support the original claims made by the authors. The validation to all the claims have
been performed in the section 5.2, Ablation study.

• Claim 1 states the effectiveness of Deep Positive Sampling (DPS) and emphasizes the importance of
well-discriminative positive samples. In Section 5.2.2, we address this claim by replacing the positive
contrastive loss with the neighborhood contrastive loss, as utilized in SCGC. This substitution effec-
tively removes DPS from our model. By comparing the performance obtained with this alteration
to that achieved with the total loss, we observe superior performance when employing DPS. As a
result, we validate claim 1.

• Claim 2 asserts the effectiveness of the Unshared Siamese network compared to traditional graph
augmentation methods by avoiding semantic drift. To validate this claim, we initially share the
parameters of the Siamese encoder and subsequently apply various graph augmentation techniques
as outlined in Section 5.2.2. We then compare the performance obtained from these augmented
methods to that of the actual method.
Through this comparison, we observe that in the majority of cases, the performance of the actual
method surpasses that of the augmented methods. This observation leads us to the conclusion that
unshared Siamese encoders are superior in avoiding semantic drift, thereby validating claim 2.

• Claim 3 highlights the significance of Random Negative Sampling (RNS) in constructing more
reliable negative samples, thereby contributing significantly to the learning process. While we were
unable to replace RNS with regular negative loss as suggested by the authors to test the effectiveness
of RNS, we validated claim 3 by utilizing only negative contrastive loss. By removing the positive
loss component and comparing the results obtained with this approach to those obtained using the
total loss, we observed a close similarity between the two sets of results. This observation strongly
supports the important contribution of RNS, as the performance achieved solely on RNS closely
approached that obtained with the total loss. Hence, claim 3 has been validated.

• Our findings and contributions : Based on the extensive experiments conducted, our find-
ings reveal that the model exhibits a broad spectrum of performance and lacks consistency. This
variability in performance is not solely attributable to differences in dataset size. Additionally, we
demonstrated the model shows negligible changes to performance on variation with hyper parameter
α and τ , In some cases showing 0 changes.
Our primary contribution lies in successfully applying the technique to non-graph datasets. Despite
encountering some limitations, we thoroughly discussed proposed solutions to address these chal-
lenges throughout our study.
Lastly we also conducted a cross validation study which was absent in the original paper, and were
able to Low Variance in Evaluation Metrics & some unusual Behavior in Smaller Datasets which are
discussed above in detail.
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7.2 Overall conclusion

In summary, our study successfully validated the claims made by the authors and reproduced the model’s
performance as reported in the original paper. However, the results from our ablation study did not precisely
match those obtained by the authors. Although the results of other experiments in the ablation study yielded
lower performance, their proximity to the results of CCGCN is concerning. Expanding our investigation to
non-graph datasets posed initial challenges due to computational load, which we mitigated by employing
PCA on the feature matrix. Additionally, we encountered issues with feature smoothing, resulting in poor
encoder performance. Once we bypassed these obstacle, our model achieved commendable results
Furthermore, upon applying our model to additional graph datasets, we noted inconsistencies in performance
across datasets. This observation suggests that factors beyond dataset size significantly influence the model’s
effectiveness.
In conclusion, while our study confirmed the validity of the authors’ claims and successfully replicated their
reported performance, it also revealed areas for further exploration and improvement, particularly concerning
the model’s response to different dataset characteristics.

7.3 What was easy

The code provided by the authors was extensive and relied on open-source standard libraries, which helped
ensure reduced implementation errors. Additionally, the methodology described in the paper was compre-
hensive and easy to understand.

7.4 What was difficult

We encountered significant difficulties during the ablation study due to the unavailability of code. Ad-
ditionally, applying the model to non-graph datasets proved challenging, primarily because of the high
computational requirements of the task.

7.5 Communication with authors

We attempted to contact the authors regarding the code for the ablation study but have not received any
response till date.
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