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ABSTRACT

A popular approach to model compression is to train an inexpensive student model
to mimic the class probabilities of a highly accurate but cumbersome teacher model.
Surprisingly, this two-step knowledge distillation process often leads to higher ac-
curacy than training the student directly on labeled data. To explain and enhance this
phenomenon, we cast knowledge distillation as a semiparametric inference problem
with the optimal student model as the target, the unknown Bayes class probabili-
ties as nuisance, and the teacher probabilities as a plug-in nuisance estimate. By
adapting modern semiparametric tools, we derive new guarantees for the prediction
error of standard distillation and develop two enhancements—cross-fitting and loss
correction—to mitigate the impact of teacher overfitting and underfitting on student
performance. We validate our findings empirically on both tabular and image data
and observe consistent improvements from our knowledge distillation enhancements.

1 INTRODUCTION

Knowledge distillation (KD) (Craven & Shavlik, 1996; Breiman & Shang, 1996; Bucila et al., 2006;
Li et al., 2014; Ba & Caruana, 2014; Hinton et al., 2015) is a widely used model compression technique
that enables the deployment of highly accurate predictive models on devices such as phones, watches,
and virtual assistants (Stock et al., 2020). KD operates by training a compressed student model to
mimic the predicted class probabilities of an expensive, high-quality teacher model. Remarkably and
across a wide variety of domains (Hinton et al., 2015; Sanh et al., 2019; Jiao et al., 2019; Liu et al.,
2018; Tan et al., 2018; Fakoor et al., 2020), this two-step process often leads to higher accuracy than
training the student directly on the raw labeled dataset.

While the practice of KD is now well developed, a general theoretical understanding of its successes
and failures is still lacking. As we detail below, a number of authors have argued that the success of KD
lies in the more precise “soft labels” provided by the teacher’s predicted class probabilities. Recently,
Menon et al. (2020) observed that these teacher probabilities can serve as a proxy for the Bayes
probabilities (i.e., the true class probabilities) and that the closer the teacher and Bayes probabilities,
the better the student’s performance should be.

Building on this observation, we cast KD as a plug-in approach to semiparametric inference (Kosorok,
2007): that is, we view KD as fitting a student model f̂ in the presence of nuisance (the Bayes
probabilities p0) with the teacher’s probabilities p̂ as a plug-in estimate of p0. This insight allows us
to adapt modern tools from semiparametric inference to analyze the error of a distilled student in Sec. 3.
Our analysis also reveals two distinct failure modes of KD: one due to teacher overfitting and data
reuse and the other due to teacher underfitting from model misspecification or insufficient training.
In Sec. 4, we introduce and analyze two complementary KD enhancements that correct for these
failures: cross-fitting—a popular technique from semiparametric inference (see, e.g., Chernozhukov
et al., 2018)—mitigates teacher overfitting through data partitioning while loss correction mitigates
teacher underfitting by reducing the bias of the plug-in estimate p̂. The latter enhancement was inspired
by the orthogonal machine learning (Chernozhukov et al., 2018; Foster & Syrgkanis, 2019) approach
to semiparametric inference which suggests a particular adjustment for the teacher’s log probabilities.
We argue in Sec. 4 that this orthogonal correction minimizes the teacher bias but often at the cost of
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unacceptably large variance. Our proposed correction avoids this variance explosion by balancing
the bias and variance terms in our generalization bounds.

In Sec. 5, we complement our theoretical analysis with a pair of experiments demonstrating the value
of our enhancements on six real classification problems. On five real tabular datasets, cross-fitting
and loss correction improve student performance by up to 4% AUC over vanilla KD. Furthermore, on
CIFAR-10 (Krizhevsky & Hinton, 2009), a benchmark image classification dataset, our enhancements
improve vanilla KD accuracy by up to 1.5% when the teacher model overfits.

Related work. Since we cannot review the vast literature on KD in its entirety, we point the interested
reader to Gou et al. (2020) for a recent overview of the field. We devote this section to reviewing
theoretical advances in the understanding of KD and summarize complementary empirical studies
and applications of in the extended literature review in App. A.

A number of papers have argued that the availability of soft class probabilities from the teacher rather
than hard labels enables us to improve training of the student model. This was hypothesized in Hinton
et al. (2015) with empirical justification. Phuong & Lampert (2019) consider the case in which the
teacher is a fixed linear classifier and the student is either a linear model or a deep linear network.
They show that the student can learn the teacher perfectly if the number of training examples exceeds
the ambient dimension. Vapnik & Izmailov (2015) discuss the setting of learning with privileged
information where one has additional information at training time which is not available at test time.
Lopez-Paz et al. (2015) draw a connection between this and KD, arguing that KD is effective because
the teacher learns a better representation allowing the student to learn at a faster rate. They hypothesize
that a teacher’s class probabilities enable student improvement by indicating how difficult each point
is to classify. Tang et al. (2020) argue using empirical evidence that label smoothing and reweighting
of training examples using the teacher’s predictions are key to the success of KD. Mobahi et al. (2020)
analyzed the case of self-distillation in which the student and teacher function classes are identical.
Focusing on kernel ridge regression models, they proved that self-distillation can act as increased
regularization strength. Bu et al. (2020) considers more generic model compression in a rate-distortion
framework, where the rate is the size of the student model and distortion is the difference in excess
risk between the teacher and the student. Menon et al. (2020) consider the case of losses such that
the population risk is linear in the Bayes class probabilities. They consider distilled empirical risk
and Bayes distilled empirical risk which are the risk computed using the teacher class probabilities
and Bayes class probabilities respectively rather than the observed label. They show that the variance
of the Bayes distilled empirical risk is lower than the empirical risk. Then using analysis from Maurer
& Pontil (2009); Bennett (1962), they derive the excess risk of the distilled empirical risk as a function
of the `2 distance between the teacher’s class probabilities and the Bayes class probabilities. We
significantly depart from Menon et al. (2020) in multiple ways: i) our Thm. 1 allows for the common
practice of data re-use, ii) our results cover the standard KD losses SEL and ACE which are non-linear
in p0, iii) we use localized Rademacher analysis to achieve tight fast rates for standard KD losses,
and iv) we use techniques from semiparametric inference to improve upon vanilla KD.

2 KNOWLEDGE DISTILLATION BACKGROUND

We consider a multiclass classification problem with k classes and n training datapoints zi=(xi,yi)
sampled independently from some distribution P. Each feature vector x belongs to a setX , each label
vector y∈{e1,...,ek}⊂{0,1}k is a one-hot encoding of the class label, and the conditional probability
of observing each label is the Bayes class probability function p0(x) =E[Y |X =x]. Our aim is to
identify a scoring rule f : X →Rk that minimizes a prediction loss on average under the distribution P.

Knowledge distillation. Knowledge distillation (KD) is a two-step training process where one first uses
a labeled dataset to train a teacher model and then trains a student model to predict the teacher’s predicted
class probabilities. Typically the teacher model is larger and more cumbersome, while the student is
smaller and more efficient. Knowledge distillation was first motivated by model compression (Bucila
et al., 2006), to find compact yet high-performing models to be deployed (such as on mobile devices).

In training the student to match the teacher’s prediction probability, there are several types of loss
functions that are commonly used. Let p̂(x)∈Rk be the teacher’s vector of predicted class probabilities,
f(x) ∈Rk be the student model’s output, and [k] , {1,2,...,k}. The most popular distillation loss
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functions1 `(z;f(x),p̂(x)) include the squared error logit (SEL) loss (Ba & Caruana, 2014)
`se(z;f(x),p̂(x)),

∑
j∈[k]

1
2 (fj(x)−log(p̂j(x)))

2 (SEL)
and the annealed cross-entropy (ACE) loss (Hinton et al., 2015)

`β(z;f(x),p̂(x))=−
∑
j∈[k]

p̂j(x)β∑
l∈[k]p̂l(x)β

log
(

exp(βfj(x))∑
l∈[k]exp(βfl(x))

)
(ACE)

for an inverse temperatureβ>0. These loss functions measure the divergence between the probabilities
predicted by the teacher and the student.

A student model trained with knowledge distillation often performs better than the same model trained
from scratch (Bucila et al., 2006; Hinton et al., 2015). In Secs. 3 and 4, we will adapt modern tools
from semiparametric inference to understand and enhance this phenomenon.

3 DISTILLATION AS SEMIPARAMETRIC INFERENCE

In semiparametric inference (Kosorok, 2007), one aims to estimate a target parameter or function f0, but
that estimation depends on an auxiliary nuisance function p0 that is unknown and not of primary interest.
We cast the knowledge distillation process as a semiparametric inference problem, by treating the
unknown Bayes class probabilities p0 as nuisance and the teacher’s predicted probabilities as a plug-in
estimate of that nuisance. This perspective allows us bound the generalization of the student in terms
of the mean squared error (MSE) between the teacher and the Bayes probabilities. In the next section
(Sec. 4) we use techniques from semiparametric inference to enhance the performance of the student.
The interested reader could consult Tsiatis (2007) for more details on semiparametric inference.

Our analysis starts from taking the following perspective on distillation. For a given pointwise loss
function `(z;f(x),p0(x)), we view the goal of the student as minimizing an oracle population loss
over a function classF ,

LD(f,p0)=E[`(Z;f(X),p0(X))] with f0,argminf∈FLD(f,p0).
The main hurdle is that this is objective depends on the unknown Bayes probabilities p0. We view
the teacher’s model p̂ as an approximate version of p0 and bound the distillation error of the student
as a function of the teacher’s estimation error.

Typical semiparametric inference considers cases where f0 is a finite dimensional parameter; however
recent work of Foster & Syrgkanis (2019) extends this framework to infinite dimensional models
f0 and to develop statistical learning theory with a nuisance component framework. The distillation
problem fits exactly into this setup.

Bounds on vanilla KD As a first step we derive a vanilla bound on the error of the distilled student
model without any further modifications of the distillation process, i.e., we assume that the student
is trained on the same data as the teacher and is trained by running empirical risk minimization (ERM)
on the plug-in loss, plugging in the teacher’s model instead of p0, i.e.,

f̂=argminf∈FLn(f,p̂) for Ln(f,p̂),En[`(Z;f(X),p̂(X))] (Vanilla KD)
where En[X]= 1

n

∑n
i=1Xi denotes the empirical expectation of a random variable.

Technical definitions Before presenting our main theorem we introduce some technical notation.
For a vector valued function f that takes as input a random variableX , we use the shorthand notation
‖f‖p,q,‖‖f(X)‖p‖Lq =E

[
‖f(X)‖qp

]1/q
. Let∇φ and∇π denote the partial derivatives of `(z;φ,π),

with respect to its second and third input correspondingly and ∇φπ the Jacobian of cross partial
derivatives, i.e., [∇φπ`(z;φ,π)]i,j= ∂2

∂φj∂πi
`(z;φ,π). Finally, let

qf,p(x)=E[∇φπ`(Z;f(X),p(X)) |X=x] and γf,p(x)=EU∼Unif([0,1])[qf,Up+(1−U)p0(x)].

Critical radius Finally, we need to define the notion of the critical radius (see, e.g., Wainwright
(2019, 14.1.1)) of a function class, which typically provides tight learning rates for statistical learning
theory tasks. For any function classF we define the localized Rademacher complexity as:

R(δ;F)=EX1:n,ε1:n [supf∈F :‖f‖2≤δ
1
n

∑n
i=1εif(Xi)]

where εi are i.i.d. random variables taking values equiprobably in {−1,1}. The critical radius of a
classF , taking values in [−H,H], is the smallest positive solution δn to the inequalityR(δ;F)≤ δ2

H .

1These loss functions do not depend on the ground-truth label y, but we use the augmented notation
`(z;f(x),p̂(x)) to accommodate the enhanced distillation losses presented in Sec. 4.
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Theorem 1 (Vanilla KD analysis). Suppose f0 belongs to a convex set F satisfying the `2/`4 ratio
condition supf∈F ‖f−f0‖2,4/‖f−f0‖2,2 ≤C and that the teacher estimates p̂∈P from the same

dataset used to train the student. Let δn,ζ = δn+c0

√
log(c1/ζ)

n for universal constants c0,c1 and δn
an upper bound on the critical radius of the function class

G,{z→r(`(z;f(x),p(x))−`(z;f0(x),p(x))) :f ∈F , p∈P, r∈ [0,1]}.
Let µ(z) = supφ‖∇φ`(z;φ,p̂(x))‖2, and assume that the loss `(z;φ,π) is σ-strongly convex in φ for
each z and that each g∈G is uniformly bounded in [−H,H]. Then the Vanilla KD f̂ satisfies
‖f̂−f0‖22,2 = 1

σ2O(δ2
n,ζC

2H2‖µ‖24+‖γ>f0,p̂(p̂−p0)‖22,2) with probability at least 1−ζ.

Thm. 1, proved in App. C, shows that vanilla distillation yields an accurate student whenever the
teacher generalizes well (i.e., ‖p̂−p0‖2,2 is small) and the student and teacher model classesF andP
are not too complex. The `2/`4 ratio requirement can be removed at the expense of replacing ‖µ‖4 by
‖µ‖∞=supz|µ(z)| in the final bound. Moreover, we highlight that the strong convexity requirement
for ` is satisfied by all standard distillation objectives including SEL and ACE, as it is strong convexity
with respect to the output of f and not the parameters of f . Even this requirement could be removed,
but this would yield slow rate bounds of the form: ‖f̂−f0‖22,2 =O(δn,ζ+‖γ>f0,p̂(p̂−p0)‖22,2).

Failure modes of vanilla KD Thm. 1 also hints at two distinct ways in which vanilla distillation
could fail. First, since the student only learns from the teacher and does not have access to the original
labels, we would expect the student to be erroneous when the teacher probabilities are inaccurate due
to model misspecification, an overly restrictive teacher function class, or insufficient training. Prop. 2,
proved in App. D, confirms that, in the worst case, student error suffers from inaccuracy due to this
teacher underfitting even when both the student and teacher belong to low complexity model classes.

Proposition 2 (Impact of teacher underfitting on vanilla KD). There exists a classification problem
in which the following properties all hold simultaneously with high probability for f0 =log(p0):

• The teacher learns p̂(x)= 1
n(1+λ)

∑n
i=1yi for all x∈X via ridge regression with λ=Θ(1/n1/4).

• Vanilla KD with SEL loss and constant f̂ satisfies ‖f̂−f0‖22,2 ≥‖γ>f0,p0(p̂−p0)‖22,2 = Ω( 1√
n

),
matching the dependence of the Thm. 1 upper bound up to a constant factor.
• Enhanced KD with SEL loss, γ̂(t) =diag( 1

p̂(t)
), and constant f̂ satisfies ‖f̂−f0‖22,2 =O( 1

n ).

Second, the critical radius in Thm. 1 depends on the complexity of the teacher model class P . If P
has a large critical radius, then the student error bound suffers due to potential teacher overfitting even
if the teacher generalizes well. Prop. 3, proved in App. E, shows that, in the worst case, this teacher
overfitting penalty is unavoidable and does in fact lead to increased student error. This occurs as the
student only has access to the teacher’s training set probabilities which, due to overfitting, need not
reflect its test set probabilities.

Proposition 3 (Impact of teacher overfitting on vanilla KD). There exists a classification problem in
which the following properties all hold simultaneously with high probability for f0 =E[log(p0(X))]:

• The critical radius δn of the teacher-student function class G in Thm. 1 is a non-vanishing
constant, due to the complexity of the teacher’s function class.
• The Vanilla KD error ‖f̂−f0‖22,2 for constant f̂ with SEL loss is lower bounded by a non-vanishing

constant, matching the δn dependence of the Thm. 1 upper bound up to a constant factor.
• Enhanced KD with SEL loss, γ̂(t) =0, and constant f̂ satisfies ‖f̂−f0‖22,2 =O(n−4/(4+d)).

These examples serve to lower bound student performance in the worst case by the teacher’s critical
radius and class probability MSE, matching the upper bounds given in Thm. 1. However, we note that
in other better-case scenarios vanilla distillation can perform better than the upper-bounding Thm. 1
would imply. In the next section, we adapt and generalize techniques from semiparametric inference
to mitigate the effects of teacher overfitting and underfitting in all cases.

4 ENHANCING KNOWLEDGE DISTILLATION

To address the two distinct inefficiencies of vanilla distillation revealed in Sec. 3, we will adapt and gen-
eralize two distinct techniques from semiparametric inference: orthogonal correction and cross-fitting.
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4.1 COMBATING TEACHER UNDERFITTING WITH LOSS CORRECTION

We can view the plug-in distillation loss `(z;f(x),p̂(x)) as a zeroth order Taylor approximation to
the ideal loss `(z;f(x),p0(x)) around p̂. An ideal first-order approximation would take the form

`(z;f(x),p̂(x))+〈p0(x)−p̂(x),∇π`(z;f(x),p̂(x))〉.
However, its computation also requires knowledge of p0. Nevertheless, since p0(x)=E[Y |X=x],
we can always construct an unbiased estimate of the ideal first order term by replacing p0(x) with y:

`ortho(z;f(x),p̂(x))=`(z;f(x),p̂(x))+〈y−p̂(x),E[∇π`(z;f(x),p̂(x)) |x]〉. (1)
For standard distillation base losses like SEL and ACE, the orthogonal loss (1) has an especially simple
form, as∇π`(z;f(x),p̂(x)) is linear in f . Indeed, this is true more generally for the following class
of Bregman divergence losses.

Definition 1 (Bregman divergence losses). Any Bregman divergence loss function of the form
`(z;f(x),p(x)),Ψ(f(x))−Ψ(g(p(x)))−〈∇gΨ(g(p(x))),f(x)−g(p(x))〉 has

`ortho(z;f(x),p(x))=`(z;f(x),p(x))+(y−p(x))>∇pg(p(x))>∇2
ggΨ(g(p(x)))f(x)+const (2)

with the second term bilinear in f(x) and y−p(x). For the SEL loss, Ψ(s) = 1
2‖s‖

2
2, g(p) = log(p),

and the correction matrix∇pg(p(x))>∇2
ggΨ(g(p(x))) = diag( 1

p(x) ). Similarly, the ACE loss falls
into the class of Bregman divergence losses.

We will show that orthogonal correction (1) can significantly improve student bias due to teacher
underfitting; however, for our standard distillation losses (SEL and ACE), the same orthogonal
correction term often introduces unreasonably large variance due to division by small probabilities
appearing in the correction matrix (see Definition 1). To grant ourselves more flexibility in balancing
bias and variance, we propose and analyze a family of γ-corrected losses, parameterized by a matrix
valued function γ :X →Rk×Rk:

`γ(z;f(x),p(x)),`(z;f(x),p(x))+(y−p(x))>γ(x)f(x)

to mimic the bilinear structure of Bregman orthogonal losses (2). Note that we can always recover
the vanilla distillation loss by taking γ≡0. We denote the associated population and empirical risks by

LD(f,p,γ),E[`γ(Z;f(X),p(X))] and Ln(f,p,γ),En[`γ(Z;f(X),p(X))].

Observe that at p0 the correction term is mean-zero and henceLD(f,p0,γ) is independent of γ
LD(f,p0),E[`(Z;f(X),p0(X))]=LD(f,p0,γ) for all γ.

The γ-corrected loss has strong connections to the literature on Neyman orthogonality (Chernozhukov
et al., 2018; Chernozhukov et al., 2016; Nekipelov et al., 2018; Chernozhukov et al., 2018; Foster
& Syrgkanis, 2019). In particular, if the function γ is set appropriately, then one can show that the
γ-corrected loss function satisfies the condition of a Neyman orthogonal loss defined by Foster &
Syrgkanis (2019). We begin our analysis by showing a general lemma for any estimator f̂ , which
adapts the main theorem of Foster & Syrgkanis (2019) to account for approximate orthogonality; the
proof can be found in App. F.

Lemma 4 (Algorithm-agnostic analysis). Consider any estimation algorithm that produces an
estimate f̂ with small plug-in excess risk, i.e.,

LD(f̂ ,p̂,γ)−LD(f0,p̂,γ)≤ε(f̂ ,p̂,γ).

If the lossLD is σ-strongly convex with respect to f andF is a convex set, then
σ
4 ‖f̂−f0‖22,2≤ ε(f̂ ,p̂,γ)+ 1

σ‖(γf0,p̂−γ)>(p̂−p0)‖22,2.
If, in addition, supz,φ,π,i∈[d]‖∇φiππ`(z;φ,π)‖op≤M , then

‖(γf0,p̂−γ)>(p̂−p0)‖22,2≤2
(
‖(qf0,p̂−γ)>(p̂−p0)‖22,2+M2k‖p̂−p0‖42,4

)
.

Connection to Neyman orthogonality Remarkably, if we set γ= qf0,p̂, then the γ-corrected loss
is Neyman orthogonal (Foster & Syrgkanis, 2019), and the student MSE bound depends only on the
squared MSE of the teacher. Moreover, qf0,p̂ is an observable quantity for any Bregman divergence loss
(Definition 1) as qf0,p̂ is independent of f0. However, we note that this setting of the γ can lead to larger
variance, i.e., the achievable excess risk can be much larger than the excess risk without the correction.
For instance, in the case of the SEL loss qf0,p̂(x) = 1

p̂(x) , which can be excessively large when p̂ is
close to 0, leading to a large increase in the variance of our loss. Thus, in a departure from the standard
approach in semiparametric inference, we will be choosing γ in practice to balance bias and variance.
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Example instantiation of student’s estimation algorithm If we use plug-in empirical risk
minimization, i.e., f̂ = argminf∈FLn(f,p̂,γ), to estimate f0 with p̂ estimated on an independent
sample, then the results of Maurer & Pontil (2009) directly imply that as long as the loss function
`(z;φ,π) is uniformly bounded in [−H,H], then, with probability at least 1−δ,

ε(f̂ ,p̂,γ)=O
(√ supf∈FVar(`γ(Z;f(X),p̂(X)))log(τ(n)/δ)

n +Hlog(τ(n)/δ)
n

)
where τ(n)=N∞(1/n,F ,2n) andN∞(ε,F ,m) is the `∞ empirical covering number of function class
F in the worst-case over all realizations ofmdata points and at approximation level ε. This result has two
drawbacks: it is a slow rate result that scales as 1/

√
n for parametric or bounded Vapnik–Chervonenkis

(VC)-dimension classes, and it requires the student to be fit on a completely separate dataset from the
teacher’s. In the next theorem, we address both of these drawbacks: i) we invoke localized Rademacher
complexity analysis to provide a fast rate result which would be of the order of 1/n for VC or parametric
function classes, and ii) we use a more sophisticated data-partitioning technique called cross-fitting,
which allows the student to be trained using all of the available teacher data.

4.2 COMBATING TEACHER OVERFITTING WITH CROSS-FITTING

We now describe a more sophisticated version of data partitioning to make use of all data points in our
student estimation, while at the same time not suffering from the sample complexity of the teacher’s
function space. This approach is referred to as cross-fitting (CF) in the semiparametric inference
literature (see, e.g., Chernozhukov et al. (2018)):

1. Partition the dataset intoB equally sized folds P1,...,PB .
2. For each fold t∈ [B] estimate p̂(t) and γ̂(t) using all the out-of-fold data points.
3. Estimate f̂ by minimizing the empirical loss:

f̂=argminf∈F
1
n

∑B
t=1

∑
i∈Pt`γ̂(t)(Zi;f(Xi),p̂

(t)(Xi)). (Enhanced KD)

In other words, the nuisance estimates (γ̂(t),p̂(t)) that are evaluated on the data points in fold twhen
fitting the student in step 3, are estimated only using data points outside of Pt.

Theorem 5 (Enhanced KD analysis). Suppose f0 belongs to a convex set F . Let

δn/B,ζ/B = δn/B + c0

√
Blog(c1B/ζ)

n for universal constants c0, c1 and δn/B an upper bound
on the critical radius of the class

G(p̂(t),γ̂(t))={z→r
(
`γ̂(t)(z;f(x),p̂(t)(x))−`γ̂(t)(z;f0(x),p̂(t)(x))

)
:f ∈F ,r∈ [0,1]}

for each t ∈ [B]. Let µ(z) = supf∈F,t∈[B]

∥∥∇φ`γ̂(t)(z;f(X),p̂(t)(x))
∥∥

2
, and assume that, with

probability 1 for each t ∈ [B], the loss `γ̂(t)(z;φ,p̂(t)(x)) is σ-strongly convex in φ for each z and
each g ∈ G(p̂(t),γ̂(t)) is uniformly bounded in [−H,H]. Moreover, suppose that the function class
F satisfies the `2/`4 ratio condition: supf∈F

‖f−f0‖2,4
‖f−f0‖2,2 ≤C. If f̂ is the output of Enhanced KD, then,

with probability at least 1−ζ,
σ
8 ‖f̂−f0‖22,2 = 1

σO
(
δ2
n/B,ζ/BC

2H2
(
‖µ‖24+ 1

B

∑B
t=1

√
E
[
‖(Y −p̂(t)(X))>γ̂(t)(X)‖42

]))
+ 1
σO( 1

B

∑B
t=1‖(γf0,p̂(t)−γ̂

(t))>(p̂(t)−p0)‖22,2).

The proof is found in App. G. Observe that, unlike Thm. 1, the function classes G(p̂(t),γ̂(t)) in the
Thm. 5 do not vary the teacher’s model overP but rather evaluate p at the specific out-of-fold estimates
p̂(t) and only vary f ∈F . Since in practice the teacher’s model can be quite complex, removing this
dependence on the sample complexity of the teacher’s function space can bring immense improvement
with the critical radius of G(p̂(t),γ̂(t)) significantly smaller than that of G from Thm. 1.

For instance, suppose that the loss function `γ̂(t)(z;f,p̂(t)) isL-Lipschitz with respect to f and thatF is
a VC-subgraph class with VC dimension dF . Then the critical radius of the function class G(p̂(t),γ̂(t))

is of order
√
dF log(n)/n for any choice of (p̂(t),γ̂(t)) (see, e.g., Foster & Syrgkanis, 2019, Sec. 4.2).2

However, under the same conditions, the critical radius of the teacher-student function class G in

2In fact, under the Lipschitz condition alone and using contraction lemma arguments as in Foster & Syrgkanis
(2019, Lem. 11), one can derive a version of Thm. 5 in which the upper bound depends only on the critical radius
of the function class {r(f−f0) :f ∈F ,r∈ [0,1]}, which solely depends on the function space of the student.

6



Published as a conference paper at ICLR 2021

Thm. 1 will still depend on the teacher’s function space. If P is also a VC-subgraph class with VC
dimension dP�dF , then the critical radius of G will be of the much larger order

√
dP log(n)/n.

We can also see in the bound of Thm. 5 the interplay between bias and variance introduced by γ. In
particular, the part of the bound that depends on γ̂(t) can be further simplified as√

E[δ4
n,ζC

4
∥∥(Y −p̂(X))>γ̂(t)(X)

∥∥4

2
+‖(γp̂,0(X)−γ̂(t)(X))>(p̂(X)−p0(X))‖42], (3)

where the terms respectively encode the increase in variance and decrease in bias from employing
loss correction. Notably, Thm. 5 implies that CF without γ-correction (i.e., γ̂(t)(x)=0) is sufficient
to reduce student error due to teacher overfitting but may still be susceptible to excessive student error
due to teacher underfitting. These qualitative predictions accord with our experimental observations
in Sec. 5 and Fig. 5.

4.3 BIASED STOCHASTIC GRADIENT DESCENT ANALYSIS

When the set of candidate prediction rules fθ is parameterized by a vector θ∈Rd, we may alternatively
fit θ via stochastic gradient descent (SGD) (Robbins & Monro, 1951; Bottou & Bousquet, 2008) on
the γ-corrected objectiveLD(fθ,p̂,γ̂). With a minibatch size of 1 and a starting point θ0, the parameter
updates take the form

θt+1 =θt−ηt∇θfθ(Xt)
>∇φ`γ(Wt;fθ(Xt),p(Xt)) for t+1∈ [n]. (4)

Ideally, these updates would converge to a minimizer of the ideal risk L(θ;p0) = LD(fθ,p0). Our
next result shows that, if the teacher p̂ is independent of (Wt)t∈[n], then the SGD updates (4) have
excess ideal risk governed by a bias term ζ(γ̂) and a variance term σ(γ̂)2/n. Here, σ2

0(θ) represents
the baseline stochastic gradient variance that would be incurred if SGD were run directly on the ideal
riskL(θ;p0) rather than our surrogate risk. Our proof in App. H builds upon the biased SGD bounds
of Ajalloeian & Stich (2020).

Theorem 6 (Biased SGD analysis). Suppose that the lossL(θ;p0) is λ-strongly smooth in θ. Define
the bias and root-variance parameters
ζ(γ̂),supθ∈Rd

∥∥∇θf>θ (γfθ,p̂−γ̂)>(p̂−p0)
∥∥

2,2

σ(γ̂),supθ∈Rdσ0(θ)+
√

E[‖∇θfθ(X)>γ(X)>(Y −p0(X))‖22]+
∥∥∇θf>θ (γfθ,p̂−γ̂)>(p̂−p0)

∥∥2

2,2

for σ2
0(θ) ,

∑
i∈[d] Var[∇θi`(W ; fθ(X), p0(X))] the unbiased SGD variance. If

F0 =L(θ0;p0)−minθ∈RdL(θ;p0), then the iterates{θt}nt=1 of the loss corrected SGD algorithm satisfy

mint∈[n]E
[
‖∇θL(θt;p0)‖22

]
= O

(
σ(γ̂)
√
λF0√
n

+ζ2(γ̂)
)
.

If, in addition,L(θ;p0) is µ-strongly convex in θ, then the iterates satisfy

E[L(θn;p0)−minθ∈RdL(θ;p0)]= 1
µO(λµ

σ(γ̂)2

n +ζ2(γ̂))+O
(
F0e
− µ

2λn
)
.

Similar to Thm. 5, the bound in Thm. 6, portrays the interplay of bias and variance as γ̂ ranges from
0 to qfθ,p̂ (recall that qfθ,p̂ is independent of fθ for any Bregman loss). In particular, the part of the
bound for strongly convex losses that depends on γ̂ can be further simplified to:

E
[(

λ‖γ̂(X)‖22‖Y−p0(X)‖22
µn +‖(γfθ,p̂(X)−γ̂(X))>(p̂(X)−p0(X))‖22

)
‖∇θfθ̂(X)‖22

]
(5)

This has a very intuitive form: the first term is the impact of γ̂(X) on the variance, which is also
related to the square of the noise of y, divided by the standard error scaling. The second controls how
γ̂ improves the bias introduced by the error in the teacher’s p̂.

5 EXPERIMENTS

We complement our theoretical analysis with a pair of experiments demonstrating the practical benefits
of cross-fitting and loss correction on six real-world classification tasks. Throughout, we use the SEL
loss and report mean performance ± 1 standard error across 5 independent runs. Code to replicate
all experiments can be found at

https://github.com/microsoft/semiparametric-distillation,

and supplementary experimental details and results can be found in App. I.
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Selecting the loss correction matrix γ̂ Motivated by the analyses in Sec. 4, for each training point
(x,y), we will select our correction matrix γ̂(x) to balance bias and variance by minimizing a pointwise
upper bound on the loss correction error (5) (ideally with a closed-form solution to avoid excessive
computational overhead).3 To eliminate dependence on the unobserved p0, we observe that the
bias term ‖(γfθ,p̂(x) − γ̂(x))> (p̂(x) − p0(x))‖22 = O(‖qfθ,p̂(x)−γ̂(x)‖2op) up to additive terms
independent of γ̂. We introduce a tunable hyperparameter α>0 to trade off between this bias bound
and the variance term in (5) and select γ̂(x)=diag(v(x)) to minimize:

E[‖γ̂(x)(y−p̂(x))‖22 |x]+α‖qfθ,p̂(x)−γ̂(x)‖2op =E[‖v(x)(y−p̂(x))‖22 |x]+α‖ 1
p̂(x)−v(x)‖22.

Since the conditional expectation involves the unknown quantity p0, we estimate
E[‖v(x)(y − p̂(x))‖22 | x] with its sample ‖v(x)(y − p̂(x))‖22.4 This objective is quadratic in
v(x) and thus has a closed-form solution. Given γ̂(x), the student’s loss-corrected objective is
equivalent to a square loss with labels log(p(x))+γ̂(x)>(y−p(x)).

Tabular data. We first validate our KD enhancements on five real-world tabular datasets—FICO (FIC),
StumbleUpon (Eve; Liu et al., 2017), and Adult, Higgs, and MAGIC from Dheeru & Karra Taniskidou
(2017)—with random forest (Breiman, 2001) students and teachers. In Fig. 1a, we examine the impact
of varying student model capacity for a fixed high-capacity teacher with 500 trees on FICO. This
setting lends itself to teacher overfitting, and we find that cross-fitting consistently improves upon
vanilla KD by up to 4 AUC percentage points. In Fig. 1b we explore the impact of teacher underfitting
by limiting the teacher’s maximum tree depth on Adult. Here we observe consistent gains from loss
correction with student performance exceeding even that of the teacher for smaller maximum tree
depths. Analogous results for the remaining datasets can be found in App. I.1.
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Figure 1: For random forest students and teachers, cross-fitting improves student performance when the teacher
overfits, while loss correction improves student performance when the teacher underfits.

Image data. We next validate our KD enhancements on the image classification dataset CIFAR-10
(Krizhevsky & Hinton, 2009). We pair a residual network (ResNet-8) student with teacher networks
of varying depths (ResNet-14/20/32/44/56) (He et al., 2016). It has been observed that larger and
deeper teachers need not yield better students, as the teacher might overfit to the training set (Cho &
Hariharan, 2019; Müller et al., 2019). To induce this overfitting, we turn off data augmentation (random
horizontal flipping and cropping). We compare students trained with Vanilla KD and Enhanced KD
with and without loss correction in Fig. 2. We find that cross-fitting consistently reduces the effect
of teacher overfitting with largest impact realized for the deepest models. This effect is most evident
in the cross-entropy test loss, where the Vanilla KD student incurs significantly larger loss than the
cross-fitted student. For both accuracy and test loss, employing loss correction on top of cross-fitting
provides an additional small performance boost.

Effect of the loss correction hyperparameterα. Our hyperparameterα controls the tradeoff between
bias and variance in loss correction. When α is very small, the objective is close to the vanilla KD
objective. When α is large, the objective is closer to the Neyman-orthogonal loss. In Figure 3, we show
the effect of varying α, with ResNet-8 as the student and ResNet-20 as the teacher, on the CIFAR-10
dataset. Large values of α lead to high variance and thus lower test accuracy. Intermediate values of α
improves on both the Vanilla KD objective, which corresponds toα=0 and on the orthogonal objective

3Balancing the bias and variance terms (3) of Thm. 5 yields a similar objective.
4An alternative estimate that performs slightly worse is ‖v(x)p̂(x)(1−p̂(x))‖22.
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Figure 2: On CIFAR-10 with ResNet students and teachers, cross-fitting reduces the effect of teacher overfitting,
and loss correction yields an additional small performance boost. Here, the test loss is cross-entropy.

(α=∞). The test accuracy drops sharply beyond some threshold of α as the variance becomes too
high (due to the terms qp̂(x)=diag

(
1

p̂1(x) ,...,
1

p̂K(x)

)
), causing training to become unstable.
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Figure 3: On CIFAR-10 with ResNet students and teachers, large values of the loss correction hyperparameter α
(corresponding to the orthogonal loss correction) lead to large variance and training instability, while intermediate
values improve upon cross-fit KD without loss correction (α=0). Here, the test loss is cross-entropy.

6 CONCLUSION

We developed a new analysis of knowledge distillation under the lens of semiparametric inference. By
framing the KD process as learning with plug-in estimation in the presence of nuisance, we obtained
new generalization bounds for distillation and new lower bounds highlighting the susceptibility
of KD to teacher overfitting and underfitting. To address these failure modes, we introduced two
complementary KD enhancements—cross-fitting and loss correction—which improve student
performance both in theory and in practice. Past work has shown that augmenting the student training
set with synthetic data from a generative model (e.g., a generative adversarial network (Liu et al., 2018)
or MUNGE (Bucila et al., 2006)) often leads to improved student performance. A natural next step is to
prove an analogue of Thm. 5 for synthetic augmentation to understand when this strategy successfully
mitigates the impact of teacher overfitting. In addition, two tantalizing open questions are, first, whether
other techniques from semiparametric inference, such as targeted maximum likelihood (Van Der Laan
& Rubin, 2006), can be used to improve KD performance and, second, whether a semiparametric
perspective can explain the surprising success of self-distillation (Furlanello et al., 2018) and noisy
student training (Xie et al., 2020) through which students routinely outperform their teachers.
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down: Revisiting the quantization of neural networks. 2020.

Sarah Tan, Rich Caruana, Giles Hooker, Paul Koch, and Albert Gordo. Learning global additive
explanations for neural nets using model distillation. arXiv preprint arXiv:1801.08640, 2018.

12

https://doi.org/10.1214/aoms/1177729586


Published as a conference paper at ICLR 2021

Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, Anima Singh, Ed H Chi, and Sagar Jain.
Understanding and improving knowledge distillation. arXiv preprint arXiv:2002.03532, 2020.

Anastasios Tsiatis. Semiparametric theory and missing data. Springer Science & Business Media, 2007.

Mark J Van Der Laan and Daniel Rubin. Targeted maximum likelihood learning. The international
journal of biostatistics, 2(1), 2006.

Vladimir Vapnik and Rauf Izmailov. Learning using privileged information: similarity control and
knowledge transfer. J. Mach. Learn. Res., 16(1):2023–2049, 2015.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi:
10.1017/9781108627771.

Chong Wang, Xipeng Lan, and Yangang Zhang. Model distillation with knowledge transfer from
face classification to alignment and verification. arXiv preprint arXiv:1709.02929, 2017.

Ji Wang, Weidong Bao, Lichao Sun, Xiaomin Zhu, Bokai Cao, and S Yu Philip. Private model
compression via knowledge distillation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 1190–1197, 2019.

Shinji Watanabe, Takaaki Hori, Jonathan Le Roux, and John R Hershey. Student-teacher network
learning with enhanced features. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5275–5279. IEEE, 2017.

Geoffrey S Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series
A, pp. 359–372, 1964.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10687–10698, 2020.

13



Published as a conference paper at ICLR 2021

A EXTENDED LITERATURE REVIEW

We point the interested reader to Gou et al. (2020) for a sweeping survey of the many developments in knowledge distillation over
the past half decade. In addition to the references discussing theoretical aspects of knowledge distillation provided in Sec. 1, we
highlight here a number of empirical investigations of why distillation works. Cho & Hariharan (2019) show that larger teacher
models do not necessarily improve the performance of student models as parsimonious student models are not able to mimic
the teacher model. They suggest early stopping in training large teacher neural networks as means of regularizing. Cheng et al.
(2020) demonstrate that when applied to image data, distillation allows the student neural net to learn multiple visual concepts
simultaneously, while, when learning from raw data, neural networks learn concepts sequentially.

Knowledge distillation has also been used for adversarial attacks (Papernot et al., 2016b; Ross & Doshi-Velez, 2017; Gil et al.,
2019; Goldblum et al., 2020), data security (Papernot et al., 2016a; Lopes et al., 2017; Wang et al., 2019), image processing (Li
& Hoiem, 2017; Wang et al., 2017; Chen et al., 2018; Li et al., 2017), natural language processing (Nakashole & Flauger, 2017;
Mou et al., 2016; Hu et al., 2018; Freitag et al., 2017), and speech processing (Chebotar & Waters, 2016; Lu et al., 2017; Watanabe
et al., 2017; Oord et al., 2018; Shen et al., 2018).

B GLOSSARY

Table 1: Glossary of notation

Notation Definition

`(Z;f(X),p0(X)) Loss function on a random data point
Population riskLD(f,p) E[`(Z;f(X),p(X))]
Empirical riskLn(f,p) En[`(Z;f(X),p(X))]
Population optimal student model f0 argminf∈FLD(f,p0)

Empirical optimal student model f̂ argminf∈FLn(f,p̂)

‖f‖p,q ‖‖f(X)‖p‖Lq =E
[
‖f(X)‖qp

]1/q
∇φ Partial derivative of `(z;φ,π) with respect to the second input
∇π Partial derivative of `(z;φ,π) with respect to the third input
∇φπ [∇φπ`(z;φ,π)]i,j= ∂2

∂φj∂πi
`(z;φ,π)

qf,p(x) E[∇φπ`(Z;f(X),p(X)) |X=x]
γf,p(x) EU∼Unif([0,1])[qf,Up+(1−U)p0(x)]
R(δ;F) Localized Rademacher complexity of function classF
δn Critical radius
γ-corrected loss `γ(z;f(x),p(x)) `(z;f(x),p(x))+(y−p(x))>γ(x)f(x)
Population γ-riskLD(f,p,γ) E[`γ(Z;f(X),p(X))]
Empirical γ-riskLn(f,p,γ) En[`γ(Z;f(X),p(X))]

C PROOF OF THM. 1: VANILLA DISTILLATION ANALYSIS

Introduce the shorthand `f,p̂(z)=`(z;f(x),p̂(x)). Since δn upper bounds the critical radius of the function class G, the localized
Rademacher analysis of Foster & Syrgkanis (2019, Lem. 11) implies5∣∣∣Ln(f̂ ,p̂)−Ln(f0,p̂)−(LD(f̂ ,p̂)−LD(f0,p̂))

∣∣∣≤O(Hδn,ζ‖`f̂ ,p̂−`f0,p̂‖2,2+Hδ2
n,ζ

)
with probability at least 1−ζ. Moreover, by Cauchy-Scwharz,

‖`f̂ ,p̂−`f0,p̂‖2,2≤ ‖µ‖4‖f̂−f0‖2,4.
By the assumed `2/`4 ratio condition we therefore have

ε(f̂ ,p̂,γ)≤O
(
δn,ζCH‖µ‖4‖f̂−f0‖2,2+Hδ2

n,ζ

)
.

Plugging this bound into Lemma 4 (which holds irrespective of whether data re-use, sample splitting, or cross-fitting is employed)
and applying the arithmetic-geometric mean inequality yields

σ

8
‖f̂−f0‖22,2≤

1

σ
O
(
δ2
n,ζC

2H2‖µ‖24+‖γ>p̂,0(p̂−p0)‖22,2
)

5We apply Foster & Syrgkanis (2019, Lem. 11) with Lg= g for g∈G with g∗=0. Then we instantiate the
concentration inequality for the choice g=`f̂ ,p̂−`f0,p̂∈G.
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D PROOF OF PROP. 2: IMPACT OF TEACHER UNDERFITTING ON VANILLA DISTILLATION

Suppose that p0 does not vary with x and, for known ε>0, belongs to the set
P={p : pj(x)∈ [ε,1], ∀x∈X , j∈ [k]}.

As all quantities in this proof are independent of x, we will omit the dependence on xwhenever convenient.

Consider the constant teacher estimate p̂= ȳ
1+λ∨ε obtained via ridge regression with regularization strength λ≤1 and ȳ, 1

n

∑n
i=1yi.

A constant student prediction rule in
F={f : fj(x)∈ [log(ε),0], ∀x∈X , j∈ [k]}

trained via Vanilla KD with SEL loss yields f̂(x)=log(p̂).

Suppose that, unbeknownst to the teacher and student, the true p0 satisfies the more stringent condition p0,j ≥ 2ε for all j ∈ [k].
Then the student satisfies

f0−f̂=log(p0)−log(p̂)≥diag( 1
p0

)(p0−p̂)=γ>f0,p0(p0−p̂)=γ>f0,p0(λp0−(ȳ−p0)
(1+λ) +min(0, ȳ

1+λ−ε))

=γ>f0,p0(λp0−(ȳ−p0)
(1+λ) +min(0, ȳ−p0+p0−(1+λ)ε

1+λ ))≥γ>f0,p0
λp0−|ȳ−p0|

(1+λ)

by the concavity of the logarithm and the choice λ≤1. Since

P (|ȳj−p0,j |≥θp0,j)≤ 2ζ
k for θ≥

√
2(1−p0,j)
np0,j

log(kζ )+ 4
3

1
np0,j

log(kζ )

by Bernstein’s inequality (Bernstein, 1946), we have
P (‖f0−f̂‖22,2≥‖γ>f0,p0(p0−p̂)‖22,2)≥P (f0,j−f̂j≥0, ∀j∈ [k])≥P (λp0,j≥|ȳj−p0,j |, ∀j∈ [k])≥1−2ζ

whenever √
2
nε log(kζ )+ 4

3
1
nε log(kζ )≤λ≤1.

Moreover, since limsup
n→∞

√
n|ȳj−p0,j |√

2p0,j(1−p0,j)loglog(n)
= 1 with probability 1 by the law of the iterated logarithm,

‖γ>f0,p0(p0−p̂)‖22,2 =Ω(min(1,λ2)) with probability 1 whenever 1≥λ≥
√

2loglog(n)
nε . The choice

λ=min

(
1,max

(
1

n1/4 ,
√

2loglog(n)
nε ,

√
2
nε log(kζ )+ 4

3
1
nε log(kζ )

))
=Θ( 1

n1/4 )

now yields the first two advertised claims.

The final claim follows directly from Thm. 5 with B = O(1) as γ̂(t) = γf0,p̂ and the critical radius of G(p̂(t), γ̂(t)) satisfies
δn/B=O(

√
Bk/n) by Wainwright (2019, Ex. 13.8).

E PROOF OF PROP. 3: IMPACT OF TEACHER OVERFITTING ON VANILLA DISTILLATION

Suppose that p0 has Lipschitz gradient and, for known ε>0, belongs to the set
P={p : pj(x)∈ [ε,1], ∀x∈X , j∈ [k]}.

Suppose moreover thatX ∈Rd has Lebesgue density bounded away from 0 and∞ and that ε< 1
4
E[p0,j(X)(1−p0,j(X))2]
E[(1−p0,j(X))/p0,j(X)] for each

j. Consider the teacher estimates p̂j(x)=max(ε,p̃j(x)) for p̃ the Nadaraya-Watson kernel smoothing estimator (Nadaraya, 1964;
Watson, 1964)

p̃(x),

{
yi if x=xi∑n
i=1yiK((x−xi)/h)/

∑n
i=1K((x−xi)/h) otherwise

with kernel K(x) = ‖x‖−a2 I[‖x‖2≤1], a ∈ (0,d/2), and h= n−1/(4+d). By Belkin et al. (2019, Thm. 1), the teacher satisfies
E[‖p0−p̂‖22,2]=O(n−4/(4+d)).

Now instantiate the notation of Thm. 1, and consider a student prediction rule trained to learn a constant prediction rule via Vanilla
KD with the SEL loss and

F={f : f(x)=f(x′)∈ [log(ε),0]k for all x,x′∈X}. (6)
Since p̃ exactly interpolates the observed labels (i.e., p̃(xi) = yi), the critical radius of the teacher-student function class
G satisfies δn = Ω(1). Moreover, since the student only has access to the teacher’s training set probabilities, its estimate
f̂(x)= 1

n

∑n
i=1log(max(yi,ε)) is inconsistent for the optimal constant rule f0(x)=E[log(p0(X))] as

f0,j(x)−Ef̂j(x)=E[log(p0,j(X))−log(max(Yj ,ε))]≥E[
p0,j(X)−max(Yj ,ε)

p0,j(X) +
(max(Yj ,ε)−p0,j(X))2

2 ]

=E[
p0,j(X)(1−p0,j(X))2+(1−p0,j(X))(p0,j(X)−ε)2

2 ]−εE[
1−p0,j(X)
p0,j(X) ]≥E[

p0,j(X)(1−p0,j(X))2

4 ]
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by Taylor’s theorem with Lagrange remainder. This non-vanishing student error reflects the non-vanishing critical radius δn of the
composite student-teacher function class G defined in Thm. 1; since the student function classF has low complexity, the complexity
of G is driven by the highly flexible interpolating teacher.

Next, instantiate the notation of Thm. 5, and consider a student prediction rule f̂ trained via Enhanced KD with SEL loss, γ̂(t) =0,
B=O(1), andF (6). The critical radius of G(p̂(t),γ̂(t)) satisfies δn/B=O(

√
Bk/n) by Wainwright (2019, Ex. 13.8). Moreover,

each cross-fitted teacher satisfiesE[‖p0−p̂(t)‖22,2]=O(n−4/(4+d)) by Belkin et al. (2019, Thm. 1), so, by Chebyshev’s and Jensen’s
inequalities, with probability at least 1−ζ/2,

‖p0−p̂(t)‖2,2≤E[‖p0−p̂(t)‖2,2]+
√

2BVar(‖p0−p̂(t)‖2,2)/ζ

≤(1+
√

2B/ζ)
√

E[‖p0−p̂(t)‖22,2]=O(n−2/(4+d)) for all t.

Therefore, Thm. 5 implies that
‖f̂−f0‖22,2 =O( 1

n+ 1
B

∑B
t=1‖(γf0,p̂(t))

>(p̂(t)−p0)‖22,2)

=O( 1
n+ 1

B

∑B
t=1‖(diag( 1

p̂(t)
)(p̂(t)−p0)‖22,2)

=O( 1
n+ 1

Bε2

∑B
t=1‖p̂(t)−p0‖22,2)=O(n−4/(4+d))

with probability at least 1−ζ.

F PROOF OF LEMMA 4: ALGORITHM-AGNOSTIC ANALYSIS

First we define for any functionalL(f) the Frechet derivative as:

DfL(f)[ν]=
∂

∂t
L(f+tν) |t=0

WhenL is an operator of the form: E[g(f(X))], then: DfL(f)[ν]=E[∇g(f(X))>ν(X)].

By the σ-strong convexity ofLD,6 we have that

LD(f̂ ,p̂,γ)≥LD(f0,p̂,γ)+DfLD(f0,p̂,γ)[f̂−f0]+
σ

2
‖f̂−f0‖22,2.

Furthermore, our excess risk assumption and the optimality of f0 give us
σ

2
‖f̂−f0‖22,2≤ LD(f̂ ,p̂,γ)−LD(f0,p̂,γ)︸ ︷︷ ︸

excess risk of f̂

−DfLD(f0,p̂,γ)[f̂−f0]

(a)

≤ ε(f̂ ,p̂,γ)−DfLD(f0,p0,γ)[f̂−f0]︸ ︷︷ ︸
≥0 by optimality of f0

+Df (LD(f0,p0,γ)−LD(f0,p̂,γ))[f̂−f0].

By Taylor’s theorem with integral remainder,
E[〈∇φ`(W ;f0(x),p0(x))−∇φ`(W ;f0(x),p̂(x)),f̂(x)−f0(x)〉 |X=x] (7)

=(p0(x)−p̂(x))>γf0,p̂(x)(f̂(x)−f0(x))
whenever∇φπ` is well-defined. We can now invoke the expansion (7) and Cauchy-Schwarz to obtain the bound

Df (LD(f0,p0,γ)−LD(f0,p̂,γ))[f̂−f0]

= E[〈∇φ`(W ;f0(X),p0(X))−∇φ`(W ;f0(X),p(X)),f̂(X)−f0(X)〉]
−E[(p0(X)−p̂(X))>γ(X)(f̂(X)−f0(X))]

= E[(p0(X)−p̂(X))>(γf0,p̂(X)−γ(X))(f̂(X)−f0(X))]

≤ E[‖(p0(X)−p̂(X))>(γf0,p̂(X)−γ(X))‖2‖f̂(X)−f0(X)‖2]

≤ ‖(p0−p̂)>(γf0,p̂−γ)‖2,2‖f̂−f0‖2,2

Thus combining all the above inequalities:
σ

2
‖f̂−f0‖22,2≤ε(f̂ ,p̂,γ)+‖(p̂−p0)>(γf0,p̂−γ)‖2,2‖f̂−f0‖2,2

6Notably this strong convexity assumption can be relaxed to E
[
∇φ`(W ;f0(X),p0(X))(f̂(X)−f0(X)

]
≥0.
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By an AM-GM inequality, for all a,b≥0: a·b≤ 1
2 ( 2
σa

2+ σ
2 b

2). Applying this to the product of norms on the RHS and re-arranging
yields

σ

4
‖f̂−f0‖22,2≤ε(f̂ ,p̂,γ)+

1

σ
‖(p̂−p0)>(γf0,p̂−γ)‖22,2.

To get the final inequality, observe that:

‖(p̂−p0)>(γf0,p̂−γ)‖22,2≤2‖(p̂−p0)>(qf0,p̂−γ)‖22,2+2‖(p̂−p0)>(γf0,p̂−qf0,p̂)‖22,2
Moreover, by the boundedness of the third derivative, we have:

‖(p̂−p0)>(γf0,p̂−qf0,p̂)‖22,2≤ E[‖p̂(X)−p0(X)‖22‖γf0,p̂(X)−qf0,p̂(X)‖22]

≤ E[‖p̂(X)−p0(X)‖22M2k‖p̂(X)−p0(X)‖22]

≤ M2k‖p̂−p0‖42,4
Combining all the above yields the final bound.

G PROOF OF THM. 5: CROSS-FITTED ERM ANALYSIS

Let Ln,t denote the empirical loss over the samples in the t-th fold and p̂(t),γ̂(t) the nuisance functions used on the samples in
the k-th fold. For any t∈ [K] and conditional on p̂(t),γ̂(t), suppose that δn upper bounds the critical radius of the function class
G(p̂(t),γ̂(t)), then by Lemma 11 of Foster & Syrgkanis (2019),7 if we denote with `t,f (z)=`γ̂(t)(z;f(x),p̂(t)(x)), w.p. 1−ζ:∣∣∣Ln,t(f̂ ,p̂(t),γ̂(t))−Ln,t(f0,p̂

(t),γ̂(t))−(LD(f̂ ,p̂(t),γ̂(t))−LD(f0,p̂
(t),γ̂(t)))

∣∣∣≤O(Hδn/B,ζ‖`t,f̂−`t,f0‖2,2+Hδ2
n/B,ζ

)
Moreover, we have that by the definition of cross-fitted ERM:

1

B

B∑
t=1

Ln,t(f̂ ,p̂
(t),γ̂(t))−Ln,t(f0,p̂

(t),γ̂(t))≤0

Thus we have that w.p. 1−ζB:

1

B

B∑
t=1

LD(f̂ ,p̂(t),γ̂(t))−LD(f0,p̂
(t),γ̂(t))≤O

(
Hδn/B,ζ

1

B

B∑
t=1

‖`t,f−`t,f0‖2,2+Hδ2
n/B,ζ

)

Moreover, if we let µ(z)=supφ,t
∥∥∇φ`(z;φ,p̂(t)(x))

∥∥
2
, then we have by Cauchy-Schwarz inequality:

‖`t,f−`t,f0‖2,2≤ ‖µ‖4‖f−f0‖2,4+

√
E
[(

(Y −p̂(t)(X))>γ̂(t)(X)(f(X)−f0(X))
)2]

≤ ‖µ‖4‖f−f0‖2,4+E
[∥∥∥(Y −p̂(t)(X))>γ̂(t)(X)

∥∥∥2

2
‖f(X)−f0(X))‖2

]
≤

(
‖µ‖4+E

[∥∥∥(Y −p̂(t)(X))>γ̂(t)(X)
∥∥∥4

2

]1/4
)
‖f−f0‖2,4

If we further assume that the function classF satisfies an `2/`4 condition that:

sup
f∈F

‖f−f0‖2,4
‖f−f0‖2,2

≤C

then w.p. 1−ζ:

1

B

B∑
t=1

ε(f̂ ,p̂(t),γ̂(t))≤O

(
Hδn/B,ζ/B

1

B

B∑
t=1

C

(
‖µp‖4+E

[∥∥(Y −p̂(X))>γ(X)
∥∥4

2

]1/4)
‖f−f0‖2,2+Hδ2

n/B,ζ/B

)
.

Applying Lemma 4 for any p̂(t),γ̂(t) and averaging the final inequality we get:

σ

4
‖f̂−f0‖22,2≤

1

B

B∑
t=1

(
ε(f̂ ,p̂(t),γ̂(t))+

1

σ
‖(γf0,p̂(t)−γ̂

(t))>(p̂(t)−p0)‖22,2
)
.

7We apply the lemma with Lg = g and g ∈G(p̂(t),γ̂(t)) and g∗ =0. Then we instantiate the concentration
inequality with g=`t,f̂−`t,f0 ∈G(p̂

(t),γ̂(t)).
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Plugging in the bound above to Lemma 4 and applying the AM-GM inequality and Jensen’s inequality, yields:
σ

8
‖f̂−f0‖22,2≤

1

σ
O

(
δ2
n/B,ζ/BC

2H2

(
‖µ‖24+

1

B

B∑
t=1

√
E
[∥∥(Y −p̂(t)(X))>γ̂(t)(X)

∥∥4

2

]))

+
1

σ
O

(
1

B

B∑
t=1

‖(γf0,p̂(t)−γ̂
(t))>(p̂(t)−p0)‖22,2

)
.

H PROOF OF THM. 6: BIASED SGD ANALYSIS

Below, for any integer s, we define the operator norm of any vector v∈Rs and any tensor T operating on Rs as
‖v‖op,‖v‖2 and ‖T‖op, sup

v:‖v‖2=1

‖T [v]‖op.

Recall the definition
∇(W ;θ,p,γ)=∇θfθ(X)>∇φ`γ(W ;fθ(X),p(X))

=∇θfθ(X)>(∇φ`(W ;fθ(X),p(X))+γ(X)>(Y −p(X))).
Observe that since E[Y |X=x]=p0(x), we can write for any γ:

L(θ;p0)=E[`(W ;fθ(X),p0(X))+(Y −p0(X))>γ(X)fθ(X)]=E[`γ(W ;fθ(X),p0(X))]
Thus we also have that:

∀θ,γ :∇θL(θ;p0)=E[∇(W ;θ,p0,γ)]
Given this observation, we can decompose the gradient that is used in our SGD algorithm into a bias and variance component,
when viewed from the perspective of a biased SGD algorithm for the population oracle loss:

∇(W ;θ,p,γ)= ∇θL(θ;p0)

+E[∇(W ;θ,p,γ)]−E[∇(W ;θ,p0,γ)]︸ ︷︷ ︸
b(θ,p,γ)

+∇(W ;θ,p,γ)−E[∇(W ;θ,p,γ)]︸ ︷︷ ︸
n(W ;θ,p,γ)

The following two lemmas bound the gradient bias and noise terms.
Lemma 7 (Gradient bias). If supx,φ,π‖E[∇ππφ`(W ;φ,π) |X=x]‖op≤M , then for any parameter vector θ and functions p and
γ, we have:

b(θ,p,γ)=E[∇θfθ(X)>(γfθ,p(X)−γ(X))>(p(X)−p0(X))],

‖b(θ,p,γ)‖2≤
∥∥∇θf>θ (γfθ,p−γ)>(p−p0)

∥∥
2,2
, and

‖b(θ,p,γ)‖2≤
∥∥∇θf>θ (qfθ,p−γ)>(p−p0)

∥∥
2,2

+
M

2
‖∇θfθ‖F,2‖p−p0‖22,4.

Proof By Taylor’s theorem with integral remainder and Lagrange remainder respectively the SGD bias for each parameter i
takes the form

bi(θ,p,γ)= E[∇i(W ;θ,p,γ)]−E[∇i(W ;θ,p0,γ)]

= E[〈∇φ`γ(W ;fθ(X),p(X))−∇φ`γ(W ;fθ(X),p0(X)),∇θifθ(X)〉]
= E[(p(X)−p0(X))>(γfθ,p(X)−γ(X))∇θifθ(X)]

= E[(p(X)−p0(X))>(qfθ,p(X)−γ(X))∇θifθ(X)]

+
1

2
E[∇ππφ`(W ;fθ(X),p̄(X))[∇θifθ(X),p(X)−p0(X),p(X)−p0(X)]].

Furthermore, our operator norm assumption and Cauchy-Schwarz imply

|bi(θ,p,γ)|≤ |E[(p(X)−p0(X))>(qfθ,p(X)−γ(X))∇θifθ(X)]|+M

2
E
[
‖∇θifθ(X)‖2‖p(X)−p0(X)‖22

]
≤ |E[(p(X)−p0(X))>(qfθ,p(X)−γ(X))∇θifθ(X)]|+M

2
‖∇θifθ‖2,2‖p−p0‖22,4.

Thus, by the triangle inequality and Jensen’s inequality we find that
‖b(θ,p,γ)‖2≤

∥∥∇θf>θ (γfθ,p−γ)>(p−p0)
∥∥

2,2
and

‖b(θ,p,γ)‖2≤
∥∥∇θf>θ (qfθ,p−γ)>(p−p0)

∥∥
2,2

+
M

2
‖∇θfθ‖F,2‖p−p0‖22,4.

Lemma 8 (Gradient Variance). Define For any parameter θ and functions p and γ,√
E[‖n(W ;θ,p,γ)‖22]≤σ0(θ)+

√
E[‖∇θfθ(X)>γ(X)>(Y −p0(X))‖22]+

∥∥∇θf>θ (γfθ,p−γ)>(p−p0)
∥∥2

2,2
.
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Proof For each i∈ [d], define the shorthand
∆i=∇θi`(W ;fθ(X),p(X))+∇θifθ(X)>γ(X)>(Y −p(X))−∇θi`(W ;fθ(X),p0(X)) and
Zi=E[∆i |X]

=∇θifθ(X)>(γ(X)−γfθ,p(X))>(p0(X)−p(X))

=∇θifθ(X)>(γ(X)−qfθ,p(X))>(p0(X)−p(X))

+
1

2
E[∇ππφ`(W ;fθ(X),p̄(X))[∇θifθ(X),p0(X)−p(X),p(X)−p0(X)]]

for some convex combination p̄(X) of p(X) and p0(X).

We begin by bounding the target expectation using Cauchy-Schwarz
E[‖n(W ;θ,p,γ)‖22]

=
∑
i∈[d]

Var[∇θi`(W ;fθ(X),p(X))+∇θifθ(X)>γ(X)>(Y −p(X))]

=
∑
i∈[d]

Var[∇θi`(W ;fθ(X),p0(X))+∆i]

= σ0(θ,p0)2+
∑
i∈[d]

Var[∆i]+2Cov(∇θi`(W ;fθ(X),p0(X)),∆i)

≤ σ0(θ,p0)2+
∑
i∈[d]

Var[∆i]+2
√

Var[∇θi`(W ;fθ(X),p0(X))]Var[∆i]

≤ σ0(θ,p0)2+(
∑
i∈[d]

Var[∆i])+2

√∑
i∈[d]

Var[∇θi`(W ;fθ(X),p0(X))]
∑
i∈[d]

Var[∆i]

= (σ0(θ,p0)+

√∑
i∈[d]

Var[∆i])
2.

We next employ the law of total variance to rewrite the variance terms:∑
i∈[d]

Var[∆i]=
∑
i∈[d]

Var[Zi+∇θifθ(X)>γ(X)>(Y −p0(X))]

= E[
∥∥∇θfθ(X)>γ(X)>(Y −p0(X))

∥∥2

2
]+
∑
i∈[d]

Var[Zi].

Finally, we control Var[Zi] using Cauchy-Schwarz√∑
i∈[d]

Var[Zi]≤
∥∥∇θf>θ (γfθ,p−γ)>(p−p0)

∥∥
2,2
.

The two claims of Thm. 6 now follow from Theorems 2 and 3 of Ajalloeian & Stich (2020) respectively, with the parameters σ2

and ζ instantiated with quantities σ2(γ) and ζ(γ) of Lemmas 7 and 8.

I EXPERIMENT DETAILS AND ADDITIONAL RESULTS

I.1 TABULAR DATA

We use cross-fitting with 10 folds. The student is trained using the SEL loss with clipped teacher class probabilities max(p̂(x),ε)
for ε=10−3. The α hyperparameter of the loss correction was chosen by cross-validation with 5 folds. We repeat the experiments
5 times to measure the mean and standard deviation.

For the overfitting experiment, we use a random forest with 500 trees as the teacher and a random forest with 1-40 trees as the student.

We also evaluate the impact of teacher underfitting by limiting the teacher’s maximum tree depth (from 1 to 20). Lower depth
corresponds to greater underfitting. The teacher has 100 trees, and the student has 10 trees. For all of the datasets, loss correction
successfully mitigates the teacher’s underfitting and thus improves the student’s performance. The effect is most pronounced when
the teacher underfits more heavily (has lower tree depth).
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We show the full results for all 5 of the datasets in Figs. 4 and 5.
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(e) StumbleUpon dataset

Figure 4: Tabular random forest distillation with varying student complexity.
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Figure 5: Tabular random forest distillation with varying teacher complexity.

I.2 IMAGE DATA (CIFAR-10)

We use SGD with initial learning rate 0.1, momentum 0.9, and batch size 128 to train for 200 epochs. We use the standard learning
rate decay schedule, where the learning rate is divided by 5 at epoch 60, 120, and 160. For loss correction, we select the value
of the hyperparameter α that yields the highest accuracy on a held-out validation set. For cross-fitting, we use 10 folds.
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