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Figure 1: Our fast hybrid rendering method takes a low resolution with a high sample rate rendering (LRHS) and a high resolution with a low
sample rate rendering (HRLS) as inputs, and produces the high resolution high quality result.

ABSTRACT

Monte Carlo rendering algorithms are widely used to produce photo-
realistic computer graphics images. However, these algorithms need
to sample a substantial amount of rays per pixel to enable proper
global illumination and thus require an immense amount of computa-
tion. In this paper, we present a hybrid rendering method to speed up
Monte Carlo rendering algorithms. Our method first generates two
versions of a rendering: one at a low resolution with a high sample
rate (LRHS) and the other at a high resolution with a low sample
rate (HRLS). We then develop a deep convolutional neural network
to fuse these two renderings into a high-quality image as if it were
rendered at a high resolution with a high sample rate. Specifically,
we formulate this fusion task as a super resolution problem that
generates a high resolution rendering from a low resolution input
(LRHS), assisted with the HRLS rendering. The HRLS rendering
provides critical high frequency details which are difficult to recover
from the LRHS for any super resolution methods. Our experiments
show that our hybrid rendering algorithm is significantly faster than
the state-of-the-art Monte Carlo denoising methods while rendering
high-quality images when tested on both our own BCR dataset and
the Gharbi dataset [14]1.

Index Terms: Computing methodologies—Computer graphics—
Ray tracing

1 INTRODUCTION

Physically-based image synthesis has attracted considerable atten-
tion due to its wide applications in visual effects, video games,
design visualization, and simulation [25]. Among them, ray tracing
methods have achieved remarkable success as the most practical
realistic image synthesis algorithms. For each pixel, they cast nu-
merous rays that are bounced back from the environment to collect
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photons from light sources and integrate them to compute the color
of that pixel. In this way, ray tracing methods are able to generate
images with a very high degree of visual realism. However, ob-
taining visually satisfactory renderings with ray tracing algorithms
often requires casting a large number of rays and thus takes a vast
amount of computations. The extensive computational and memory
requirements of ray tracing methods pose a challenge, especially
when running these rendering algorithms on resource-constrained
platforms and impede their applications that require high resolutions
and refresh rates.

To speed up ray tracing, Monte Carlo rendering algorithms are
used to reduce ray samples per pixel (spp) that a ray tracing method
needs to cast [10]. For instance, adaptive reconstruction methods
control sampling densities according to the reconstruction error esti-
mation from existing ray samples [57]. However, when the ray sam-
ple rate is not sufficiently high, the rendering results from a Monte
Carlo algorithm are often noisy. Therefore, the ray tracing results are
usually post-processed to reduce the noise using algorithms like bilat-
eral filtering and guided image filtering [27,37,42,44,48,51,56]. Re-
cently, deep learning-based denoising approaches are developed to
reduce the noise from Monte Carlo rendering algorithms [2,9,23,28].
These methods achieved high-quality results with impressive time
reduction, and some of them are incorporated into commercial tools,
such as VRay Renderer, Corona Renderer, and RenderMan, and
open source renderers like Blender. However, real-time ray tracing
is still a challenging problem, especially on devices with limited
computing resources.

Our idea to speed up ray tracing is to reduce the number of pixels
that we need to estimate color values. For instance, upsampling by
2× 2 can reduce 75% of pixels that need ray tracing to estimate
color. There are two main challenges in super-resolving a Monte
Carlo rendering. First, it is still a fundamentally ill-posed problem
to recover the high-frequency visual details that are missing from
the low-resolution input. Second, a Monte Carlo rendering is subject
to sampling noise, especially when it is produced at a low spp rate.
Upsampling a noisy image will often amplify the noise level as well.
To address these challenges, we propose to generate two versions
of rendering: a low-resolution rendering but at a reasonable high
spp rate (LRHS) and a high-resolution rendering but at a lower spp
rate (HRLS). LRHS is less noisy while the more noisy HRLS can
potentially provide high-frequency visual details that are inherently
difficult to recover from the low resolution image.
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Figure 2: Examples from our BCR dataset.

We accordingly develop a hybrid rendering method dedicated
for images rendered by a Monte Carlo rendering algorithm. Our
neural network takes both LRHS and HRLS renderings as input.
We use a de-shuffle layer to downsample the HRLS rendering to
make it the same size as LRHS and to reduce the computational
cost. Then we concatenate the features from both LRHS and HRLS
and feed them to the rest of the network to generate the high-quality
high resolution rendering. Our experiments show that given the
hybrid input, our method outperforms the state-of-the-art Monte-
Carlo rendering algorithms significantly.

To train our network, we collected a large Blender Cycles Ray-
tracing dataset, which contains 2449 high-quality images rendered
from 1463 models. The dataset consists of various factors that affect
the Monte Carlo noise distribution, such as depth of field, motion
blur, and reflections. We render the images at a range of spp rates,
including 1-8, 12, 16, 32, 64, 250, 1000, and 4000 spp. All the
images are rendered at the resolution of 1080p. Each image contains
not only the final rendered result but also the intermediate render
layers, including albedo, normal, diffuse, glossy, and so on.

This paper contributes to the research on photo-realistic image
synthesis by integrating Monte Carlo rendering and image super res-
olution for efficient high-quality image rendering. First, we explore
super resolution to reduce the number of pixels that need ray tracing.
Second, we use multi-resolution sampling to both reduce noises and
create visual details. Third, we develop a large ray-tracing image
dataset, which will be made publicly available.

2 RELATED WORK

Monte Carlo rendering is an important technology for photo-realistic
rendering. It aims to reduce the number of rays that a ray tracing
algorithm needs to cast and integrate while synthesizing a high
quality image [10, 22]. Conventional Monte Carlo rendering algo-
rithms investigate various ways to adaptively distribute ray sam-
ples [8, 13, 20, 32, 38–41, 46, 47]. When only a small number of rays
are casted, the rendered images are often noisy. They are typically
filtered using various algorithms [11, 21, 29, 30, 36, 42–44, 49]. Due
to the space limit, we refer readers to a recent survey on Monte Carlo
rendering [57].

Our research is more related to the recent deep learning ap-
proaches to Monte Carlo rendering denoising. Kalantari et al.
trained a multilayer perceptron neural network to learn the parame-
ters of filters before applying these filters to the noisy images [23].
Bako et al. extended this method by employing filters with spatially
adaptive kernels to denoise Monte Carlo renderings [2]. They devel-
oped a convolutional neural network method to estimate spatially
adaptive filter kernels. Chaitanya et al. developed an encoder-
decoder network with recurrent connections to denoise a Monte
Carlo image sequence [9]. Recently, Kuznetsov et al. [28] devel-
oped a deep convolutional neural network approach that combines
adaptive sampling and image denoising to optimize the rendering

performance. Different from the above methods, Gharbi et al. ar-
gued that splatting samples to relevant pixels is more effective than
gathering relevant samples for each pixel for denoising. Accordingly,
they developed a novel kernel-splatting architecture that estimates
the splatting kernel for each sample, which was shown particularly
effective when only a small number of samples were used [14]. Com-
pared to these methods, our method improves the speed of Monte
Carlo rendering by reducing the number of pixels that we need to
cast rays for.

Our work also builds upon the success of deep image super res-
olution methods [1, 12, 15, 19, 26, 33–35, 50, 52, 55]. Dong et al.
developed the first deep learning approach to image super resolu-
tion [12]. They designed a three-layer fully convolutional neural
network and showed that a neural network could be trained end to
end for super resolution. Since that, a variety of neural network
architectures, such as residual network [16], densely connected
network [18], and squeeze-and-excitation network [17], are intro-
duced to the task of image super resolution. For instance, Kim et
al. developed a deep neural network that employs residual archi-
tectures and obtained promising results [26]. Lim et al. further
improved super resolution results by removing batch norm layers
and increasing the depth of networks [34]. Zhang et al. developed
a residual densely connected network that is able to explore inter-
mediate features via local dense connections for better image super
resolution [54]. Zhang et al. recently reported that a channel-wise
attention network which is able to learn attention as guidance to
model channel-wise features could more effectively super resolve
a low resolution image [53]. While these image super resolution
methods achieved promising results, recovering visual details that
do not exist in the input image is necessarily an ill-posed problem.
Our method addresses this fundamentally challenging problem by
leveraging a high-resolution image but rendered at a low ray sample
rate. Such an auxiliary rendering can be quickly rendered and yet
provide visual details that do not exist in the low resolution input
rendered at a high sample rate.

3 THE BLENDER CYCLES RAY-TRACING DATASET

We develop a Blender Cycles Ray-tracing dataset (BCR) that consists
of a large number of high quality scenes together with the ray-tracing
images and the intermediate rendering layers. We will share BCR
with our community.

3.1 Source Scenes
Blender’s Cycles is a popular ray tracing engine that is capable
of high-quality production rendering. It has an open and active
community where thousands of artists share their work. Using the
Blender community assets, we collected over 8000 scenes under
Creative Commons Licenses, which allow us to share our dataset
with the research community. We rendered these scenes at 4000 spp
and manually checked the rendered images and all the rendering
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Figure 3: Pixel value distribution of our BCR dataset. The rendered
images use the scene linear color space and the pixel value is repre-
sented in Float32. We use the logarithmic scale for the y axis. While
99.98% pixels are in the range of [0, 10], the distribution has a long
tail. For a better visualization, we only show the pixel value in the
range of [0, 200].

layers. We eliminated scenes with missing materials, lack of high
frequency information, or with noticeable rendering noises even
rendered at 4000 spp. This culling process reduced the total number
of source scenes to 1465. These remaining scenes produced 2449
images by rendering from 1 to 10 viewpoints per scene. We split
the dataset into 3 subsets: 2126 images from 1283 scenes as the
training set, 193 images from 76 scenes as the validation set, and
130 images from 104 scenes as the test set. There is no overlap
scene among them. As shown in Figure 2, our dataset covers various
optical phenomena, such as motion blur, depth of field, and complex
light transport effects. It covers a variety of scene contents, including
indoor scenes, buildings, landscapes, fruits, plants, vehicles, animals,
glass, and so on.

3.2 Rendering Settings

To generate the high-quality “ground-truth” renderings, we rendered
each scene at 4000 spp. As described previously, we noticed that
the rendered images for some scenes still contain noticeable noises
even when rendered at 4000 spp and we removed them through
manual inspection. On average, it took around 20 minutes to render
an image on an Nvidia Titan X Pascal GPU. We set the rendering
resolution to 1920× 1080 or 1080× 1080 to cover the most content
of scenes. For each image, we provide both the final rendered
image and the render layers, which are essential for Monte Carlo
rendering [2, 3, 9, 23, 24, 28, 31, 32]. In total, each image has 33
rendering layers, including albedo, normals, depth, diffuse color,
diffuse direct, diffuse indirect, glossy color and so on. Please refer to
our project website for more details. All images in the BCR dataset
can be produced using the render layers as follows [6]:

IHR = IDi f f + IGloss + ISub + ITrans + IEnv + IEmit , (1)

where the diffuse, gloss, subsurface, trans layers can be generated
with their color, direct light and indirect light layers

IDi f f = IDi f fCol ∗ (IDi f f Dir + IDi f f Ind),
IGloss = IGlossCol ∗ (IGlossDir + IGlossInd),
ISub = ISubCol ∗ (ISubDir + ISubInd),
ITrans = ITransCol ∗ (ITransDir + ITransInd).

(2)

Besides rendering 4000spp images as ground truth, we rendered
each scene at 1-8, 12, 16, 32, 64, 128, 250, and 1000 spp as input
for Monte Carlo rendering enhancement algorithms, including ours.
The rendered images and the auxiliary results in the scene were
saved in the scene linear color space, which closely corresponds to
natural colors [5]. These images were rendered with a high dynamic
range. The pixel values were represented in Float32. As shown in
Figure 3, 99.98% pixel values were in the range of [0, 10]. However,
the pixel value distribution had a long tail. We also noticed that many
of the very large values come from the firefly rendering artifacts.
Therefore we removed these outliers by clipping at value 100. An

Dataset Images Scenes SPP Layers

Kalantari [23] 500 20 4, 8, 16, 32, 64, 32000 5
KPCN [2] 600 - 32, 128, 1024 6

Chaitanya [9] - 3 1, 4, 8, 16, 32, 256, 2000 3
Kuznetsov [28] 700 50 1, 2, 4, 8, 16, 1024 4

BCR dataset 2449 1463 1-8, 12, 16, 32, 64, 33128, 250, 1000, 4000

Table 1: Monte Carlo rendering dataset comparison.

image in the scene linear space can be converted to sRGB space for
visualization in this paper as follows.

s =


0 if l ≤ 0,
12.92× l if 0 < l ≤ 0.0031308,
1.055× l

1
2.4 −0.055 if 0.0031308 < l < 1,

1 if l ≥ 1,

(3)

where l and s indicate the pixel value in scene linear color space and
sRGB respectively [4].

3.3 Low Resolution Image Generation
A straightforward way to generate low resolution images is to change
the output resolution in Cycles. However, directly rendering a low
resolution image does not always work [7]. For example, some
scenes are modelled using a subdivision technology and chang-
ing the rendering resolution will disrupt the inherent relationship
among the material and geometry settings in the scene files and thus
cause mismatch between images rendered at different resolutions.
Therefore, we generate low resolution images by downsampling the
corresponding high resolution rendered images via the nearest neigh-
bour degradation. We did not use bilinear or bicubic sampling as the
nearest neighbor degradation more accurately simulates a real-world
rendering engine. That is, rays for low resolution renderings are
sampled at a sparse grid compared with high resolution ones.

3.4 Monte Carlo Rendering Dataset Comparison
We compare our dataset with those used in recent deep learning-
based Monte Carlo rendering denoising algorithms, including [2, 9,
23, 28]. As reported in Table 1, our dataset has over 3× the amount
of images and over 25× the number of scenes than the other datasets.
Moreover, most these existing datasets are private and we will make
our dataset public.

4 METHOD

Our method takes a low-resolution-high-spp image ILRHS and its
corresponding high-resolution-low-spp image IHRLS as input and
aims to estimate a corresponding HR image ISR. ILRHS contains the
RGB channel, while IHRLS is composed of RGB channel and extra
layers, including Albedo, Normal, Diffuse, Specular, Variance layer
as these extra layers can provide high-frequency visual details.

As shown in Figure 4, we design a two-encoder-one-decoder
network to estimate the HR image. Given ILRHS and IHRLS, our
network firstly extracts the features FLRHS and FHRLS, respectively.
We leverage a downscale module with deshuffle layers [45] instead
of pooling layers to downscale the feature maps as deshuffle layers
can keep the high-frequency information. Compared with upscaling
LRHS features, downsampling HRLS features to the same size of
FLRHS can reduce the computational complexity of the network
significantly. It also enables the features to fuse in the earlier layer
of the network. We obtain the fused feature F0 by combining FHRLS
with FLRHS through a fusion module and feed it to a sequence of
residual dense groups (RDG) [53, 54]. With the feature FG from
RDGs, we combine it with FLRHS by element-wise adding. Finally,
we upscale the resulting dense feature FDF and predict the final HR
image ISR through a convolutional layer. Below we describe the
network in detail.
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Figure 4: The architecture of our network. Our network takes a low-resolution-high- spp rendering (LRHS) and its corresponding high-
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Figure 5: Deshuffle layer for downscaling feature maps.

LRHS shallow feature FLRHS. Following [34, 53, 54], we adopt a
convolutional layer to get the shallow feature FLRHS

FLRHS = Hlrhs(ILRHS), (4)

where H(·) indicates the convolution operation.
HRLS shallow feature FHRLS. We first extract the shallow feature
from IHRLS with a convolutional layer,

F0
HRLS = Hhrls(IHRLS). (5)

Inspired by ESPCN [45], we design a deshuffle layer to downscale
the features. As shown in Figure 5, we downscale the feature map
with a stride of α . In our network, we set α = 2. To downscale
the feature map, we stack deshuffle layers together. Supposing our
network has D deshuffle layers, we can get the output FHRLS

FHRLS = DSFD(DSFD−1(· · ·DSF1(F0
HRLS) · · ·)), (6)

where DSF(·) indicates the operation of the deshuffle layer. By
downscaling auxiliary features, our network can work in the size of
the LRHS image, which can significantly reduce the computational
complexity of the overall network.

We concatenate FLRHS from LRHS image and FHRLS from HRLS
into a combined feature map F0.
Residual densely connected block. We employ the densely con-
nected network and residual groups to build the backbone of our
neural network as they are shown effective for image super resolu-
tion [53, 54]. In our network, we use 4 convolutional layers in each
residual densely connected block (RDB). By stacking B = 5 RDBs,
we build a residual densely connected group (RDG) as follows,

Fg = RDBB(RDBB−1(· · ·RDB1(Fg−1) · · ·))+Fg−1 (7)

We predict the dense feature FDF with G = 3 RDGs as follows,

FDF = RDGG(RDGG−1(· · ·RDB1(F0) · · ·))+F0 (8)

Upscale. In our network, we adopt the shuffle layer from ES-
PCN [45] to upscale the features and estimate the high resolution
prediction ISR,

ISR = HRec(UP(FDF )), (9)

where UP(·) indicates the operation of upscale [45].
Loss function. The BCR dataset is in the scene linear color space.
As shown in Figure 3, the pixel value distribution of this BCR dataset

has a long tail. `1 loss cannot handle it well because it might be
biased to the extremely large pixel values. To handle this problem,
we adopt the following robust loss

`r =
1
N ∑

p∈IHR

|Ip
HR− Ip

SR|
β + |Ip

HR− Ip
SR|

, (10)

where β indicates the robust factor. For the small difference, `r
works quite similarly to `1. For the extremely large difference, `r
will be close to but always below 1. This will prevent our network
from the bias towards rare but extremely large pixel values. We set
β = 0.1 in our experiments.
Implement details. We set the kernel size of all convolutional layers
to 3×3, except for the fuse convolutional layer, whose kernel size
is 1× 1. Every convolutional layer is followed by a RELU layer,
except for the last convolutional layer. The shallow features, fusion
features, and dense features have 64 channels. During each iteration
of the training, we randomly select the spp of IHRLS from the set of
[1-8, 12, 16, 32] and the spp of ILRHS from the set of [2-8, 12, 16, 32,
64, 128, 250, 1000, 4000] while making sure that the spp of IHRLS
is smaller than that of ILRHS.

We use PyTorch to implement our network. We use a mini-batch
size of 16 and train the network for 500 epochs. It takes about one
week on one Nvidia Titan Xp for training. We use the SGD optimizer
with the learning rate of 10−4. We also perform data augmentation
on-the-fly by randomly cropping patches. In order to save data
loading time, we pre-crop training HR images into 300×300 large
patches. During training, we further crop smaller patches on those
large patches. The final patch size of HR is set to 96 for ×2, 192
for ×4, and 256 for ×8. We select the model that works best on the
validation set.

5 EXPERIMENTS

We evaluate our method by comparing it with representative state-
of-the-art denoising methods for Monte Carlo rendering and image
super resolution algorithms. We also conduct ablation studies to
further examine our method. We use two metrics to evaluate our
results. First, we adopt RelMSE (Relative Mean Square Error) to
report the results in the scene linear color space, which is defined as

RelMSE = λ1 ∗
(ISR− IHR)

2

I2
HR +λ2

, (11)

where λ1 = 0.5 and λ2 = 0.01 when experimenting on our BCR
dataset following KPCN [2]. For the Gharbi dataset, we use the
evaluation code from its authors [14] where λ1 = 1 and λ2 = 10−4.

We also use PSNR to evaluate the results in the sRGB space. For
our BCR dataset, we convert images to sRGB to calculate PSNR use
Equation 3. For the Gharbi dataset, we convert images to the sRGB
space using codes provided by its authors as follows [14],

s = min(1,max(0, l)), (12)



Method
2spp 4spp 8spp

PSNR RelMSE PSNR RelMSE PSNR RelMSE

Input 18.12 0.2953 21.51 0.1400 24.75 0.0646
KPCN [2] 25.87 0.0390 27.31 0.0299 28.11 0.0276

KPCN-ft [2] 31.03 0.0078 33.69 0.0043 35.83 0.0026
Bitterli [3] 26.67 0.0293 27.22 0.0252 27.45 0.0226
Gharbi [14] 30.73 0.0068 31.61 0.0057 32.29 0.0050

Ours×2 (4 - 1) ( 8 - 2) (16 - 4)
33.27 0.0044 35.15 0.0027 36.74 0.0019

Ours×4 (16 - 1) (32 - 2) (64 - 4)
33.94 0.0039 35.21 0.0028 36.31 0.0022

Ours×8 (64 - 1) (128 - 2) (250 - 4)
31.37 0.0075 32.35 0.0057 33.14 0.0049

Table 2: Comparison on our BCR dataset. Ours ×2 indicates that
our method performs x2 super resolution and (4 - 1) indicates that
our method takes 4 spp LRHS and 1 spp HRLS as input, which is
effectively 2 spp on average for all the pixels.

Method
4 spp 8 spp 16 spp

PSNR RelMSE PSNR RelMSE PSNR RelMSE

Input 19.58 17.5358 21.91 7.5682 24.17 11.2189
Sen [44] 28.23 1.0484 28.00 0.5744 27.64 0.3396

Rousselle [41] 30.01 1.9407 32.32 1.9660 34.36 1.9446
Kalantari [23] 31.33 1.5573 33.00 1.6635 34.43 1.8021

Bitterli [3] 28.98 1.1024 30.92 0.9297 32.40 0.9640
KPCN [2] 29.75 1.0616 30.56 7.0774 31.00 20.2309

KPCN-ft [2] 29.86 0.5004 31.66 0.8616 33.39 0.2981
Gharbi [14] 33.11 0.0486 34.45 0.0385 35.36 0.0318

Ours×2 (8 - 2) (16 - 4) (32 - 8)
34.02 1.5025 35.30 1.4902 36.43 1.4748

Ours×4 (32 - 2) (64 - 4) (128 - 8)
33.94 5.5586 35.22 5.6781 35.97 5.7436

Ours×8 (128 - 2) (16 - 8) (32 - 16)
31.56 3.7228 32.60 4.2300 33.22 4.5045

Table 3: Comparison on the Gharbi dataset [14].

where l indicates images in the scene linear space, s indicates images
in the sRGB space.

5.1 Comparison with Denoising Methods
We compare our method to both state-of-the-art traditional denoising
methods, including Sen et al. [44], Rousselle et al. [41], Kalantari et
al. [23], Bitterli et al. [3], and recent representative deep learning
based methods, including KPCN [2] and Gharbi et al. [14]. Unlike
other methods, our method takes both a LRHS rendering and a HRLS
rendering as input. Therefore, we compute the average spp for our
input as sppavg = sppLRHS/s2 + sppHRLS, where s indicates the
super resolution scale. For instance, in Table 2, “Ours ×2” indicates
that our method performs ×2 super resolution and (4 - 1) indicates
that our method takes 4 spp LRHS and 1 spp HRLS as input, which
is effectively 2 spp on average. We conducted on the comparisons
on both the Gharbi dataset and our BCR dataset.

Table 2 compares our method to Bitterli et al. [3], KPCN [2], and
Gharbi et al. [14]. We used the code / model shared by their authors
in this experiment. For KPCN [2], we provide another version of the
results produced by their neural network but fine-tuned on our BCR
dataset. This experiment shows that our method, especially ours ×2
and ×4, outperform the state-of-the-art methods by a large margin.
Specifically, our ×4 method wins 2.91dB on PSNR and 0.0039 on
RelMSE when the spp is 2. When spp is relatively high, our ×2
method wins 0.91dB on PSNR and 0.0007 on RelMSE. Figure 7
shows several visual examples on the BCR dataset. Our results
contain fewer artifacts than the other methods.

We were not able to compare to additional methods on our BCR

7x106

Rendering Result Error Map
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Figure 6: Error map visualization.

spp 4 8 16 32 64 128

Rousselle [41] 13.3
Kalantari [23] 10.4

Bitterli [3] 21.9
KPCN [2] 14.6
Sen [44] 281.2 638.1 1603.1 4847.8 - -

Gharbi [14] 6.0 10.1 18.9 35.9 67.0 156.5

Ours×2 0.362
Ours×4 0.118
Ours×8 0.052

Table 4: Comparison of runtime cost (second) to denoise a 1024×
1024 image. The data is from Gharbi [14]. If the runtime is constant,
we report it in the last column. Our ×2, ×4 and ×8 method are at
least 17×, 51× and 115× faster than the start-of-the-art methods,
respectively.

dataset as these methods work with other rendering engines or use
very different input formats. We compare with these methods on the
Gharbi dataset, as reported in Table 3. We obtained the results for
the comparing methods from Gharbi et al. [14]. For our results, we
directly used our neural network trained on our BCR dataset without
fine-tuning it on the Gharbi training dataset.2 As shown in Table 3,
our method outperforms all the other methods in terms of PSNR.

However, the RelMSE of our results is higher than some of the
existing methods, such as KPCN [2] and Gharbi [14]. We looked
into the discrepancy between the results measured using PSNR and
RelMSE. We found that the RelMSE metric is heavily affected by a
small number of pixels with abnormally large errors in our results.
Figure 6 shows the RelMSE error map of one of our results with a
much larger error than Gharbi. Figure 6 shows an example of our
result where the errors concentrate in the region around the bright
light, with 16 pixels having errors larger than 106, which contribute
to most of the error of the whole image. After excluding these 16
pixels, while our error is still larger than Gharbi, the difference is
much smaller. We would like to point out that our method was
trained on our BCR dataset only and was not fine-tuned on the
Gharbi dataset as its training set is not available. Moreover, BCR
and the Gharbi dataset were rendered using different engines and
thus contained different intermediate layers. To test on the Gharbi
examples, we had to set the variance layer to a constant value, which
compromises our results.

Figure 8 shows visual comparisons between our method and
several existing methods. Although our RelMSE is higher than
Gharbi [14], our results look more plausible, which is consistent
with our higher PSNR values measured in the sRGB space. In the
first example, the seat in our result contains much fewer artifacts.
In the second example, the highlight in our result is more accurate
than others. It shows that our model and BCR dataset have a great
generalization capability.
Speed and memory. We report the speeds of the above methods in
Table 4. We use the same setting as Gharbi [14] and obtain the timing
data for the comparing methods from them as well. For our method,
We report the aggregated spp for our method by combining samples
used to render both HRLS and LRHS. Since all the methods use the

2We removed one image from the Gharbi testing set as its source model
is also included in our BCR training set.



Ground Truth Ground Truth (PSNR↑/RelMSE↓) 2spp (7.27/1.8574) KPCN [2] (18.94/0.0677)

KPCN-ft [2] (27.41/0.0113) Bitterli [3] (21.11/0.0449) Gharbi [14] (28.09/0.0079) Ours ×4 (31.67/0.0037)

Ground Truth Ground Truth (PSNR↑/RelMSE↓) 2spp (11.64/0.4790) KPCN [2] (23.76/0.0474)

KPCN-ft [2] (27.84/0.0173) Bitterli [3] (23.21/0.0125) Gharbi [14] (31.90/0.0042) Ours ×4 (36.61/0.0015)

Figure 7: Visual comparison on the BCR dataset.

Ground Truth

Ground Truth 4spp Sen [44] Rousselle [41] Kalantari [23]
PSNR↑/RelMSE↓ 17.89/0.7711 30.92/0.2301 31.43/0.0254 32.28/0.0624

Bitterli [3] KPCN [2] KPCN-ft [2] Gharbi [14] Ours ×2
26.40/0.0499 28,14/0.4158 29.77/0.0274 33.60/0.0104 34.99/0.0188

Ground Truth

Ground Truth 4spp Sen [44] Rousselle [41] Kalantari [23]
PSNR↑/RelMSE↓ 26.45/73.63 29.28/0.0516 36.18/0.5295 33.79/0.0943

Bitterli [3] KPCN [2] KPCN-ft [2] Gharbi [14] Ours ×2
33.70/0.3937 33.37/0.5008 34.09/0.0354 36.24/0.0192 38.59/0.0766

Figure 8: Visual comparison on the Gharbi dataset [14].



Methods
×2 ×4 ×8

PSNR RelMSE PSNR RelMSE PSNR RelMSE

Bicubic 30.57 0.0141 25.39 0.0858 22.36 0.2473
EDSR [34] 32.01 0.0079 30.70 0.0119 27.97 0.0241
RCAN [53] 32.03 0.0084 30.73 0.0117 27.92 0.0253

Ours 38.40 0.0015 34.27 0.0039 31.08 0.0079

Table 5: Comparison with super resolution methods on the BCR
dataset.

LRHS
HRLS 1spp 2spp 4spp

PSNR RelMSE PSNR RelMSE PSNR RelMSE

2spp 32.14 0.0056 - - - -
4spp 32.94 0.0048 33.76 0.0038 - -
8spp 33.52 0.0042 34.41 0.0033 35.20 0.0027
16spp 33.94 0.0039 34.88 0.0030 35.71 0.0025
32spp 34.22 0.0037 35.21 0.0028 36.06 0.0023
64spp 34.42 0.0035 35.44 0.0027 36.31 0.0022

128spp 34.56 0.0035 35.60 0.0026 36.49 0.0021

Table 6: The effect of spp values on the final rendering results.

same spp, we only include the time needed for denoising. We report
the time of processing one 1024× 1024 image on one Nvidia Xp
GPU. We can find that our×2, ×4 and×8 methods are at least 17×,
51× and 115× faster than the state-of-the-art method Gharbi [14].
In addition, our ×2, ×4 and ×8 network models require peak GPU
memories of 1134 MB, 749 MB, and 737 MB process a 1024×1024
image respectively.

5.2 Comparisons with Super Resolution Methods
We also compare our method with several baseline methods that use
super resolution to upsample the low-resolution-high-spp renderings
to the target size. In this experiment, we used the trained models
shared by the authors of these super resolution methods [34, 53]
and fine-tuned them on our BCR dataset. As reported in Table 5,
our method generates significantly better results than these super
resolution methods. While this comparison is unfair to these base-
line methods, it indeed shows the benefits of taking an extra high-
resolution-low-spp rendering as input. As shown in Figure 11, our
results contain more fine details that are missing from the super
resolution results.

5.3 Ablation study
We now examine several key components of our method.
Input layers of ILRHS and IHRLS. We examine how the rendering
layers affect the final results. In this experiment, we use 1 spp for
IHRLS and 4000 spp for ILRHS. The upsampling scale is set to ×4.
Our neural network contains two input branches, one for ILRHS and
the other for IHRLS. In this experiment, we fix the input layer of
one branch to RGB while changing the input layers of the other.
For the model with “None”, we remove this branch. As shown in
Figure 9, compared with no inputs, IHRLS can greatly improve the
results. Among various input layers, RGB improves the results by
a large margin. The result can be further improved if the IHRLS
takes all rendering layers. We believe that these improvements come
from the high frequency information in the IHRLS. For the ILRHS,
while all the input layers still help, the RGB result alone can achieve
the best result. We conjecture that since ILRHS is rendered with a
high spp, its RGB layer is already of very high quality, and the
other intermediate layers do not further contribute. On the other
hand, the intermediate layers for IHRLS provide useful information
for denoising, which is consistent with the findings of the previous
denoising methods [2, 14].
Robust loss `r. We examine the effect of the parameter β in our
robust loss. We also compare it to the standard `1 loss. In this
experiment, we use 4000 spp for ILRHS and 1 spp for IHRLS. The
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Figure 9: The effect of input rendering layers.
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Figure 10: Comparison between `r and `1.

upsampling scale is set to ×4. The input channels of ILRHS and
IHRLS are set to RGB. Figure 10 shows that the robust loss `r with
β = 0.1 outperforms `1 by a large margin as it can avoid the bias
towards a very small number of pixels with extremely large pixel
values. We also find that using a too large or too small β will be
harmful to the results. This is because a very large β value reduces
the robust loss to the `1 loss while a very small beta value makes the
loss always close to 1 without regard to the error between the output
and the ground truth.
SPP of ILRHS and IHRLS. We examine how our method works
with different spp values used to render ILRHS and IHRLS. In the
experiment, we set the upsampling scale to ×4. Table 6 shows
rendering at high spp values consistently leads to better final results.

6 CONCLUSION

This paper presented a hybrid rendering method to speed up Monte
Carlo rendering algorithms. We designed a two-encoder-one-
decoder network for this task. Our network takes a low resolution
image with a high spp and a high resolution image with a low spp
as inputs and estimates the high resolution high quality images. We
built a large-scale ray-tracing dataset Blender Cycles Ray-tracing
dataset. Our experiments showed that our method is able to generate
high quality high resolution images quickly. Our experiments also
showed that HRLS and the robust loss are helpful to generate high
quality results.
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