
Under review as a conference paper at ICLR 2024

FAST SAMPLING VIA DE-RANDOMIZATION FOR DIS-
CRETE DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have emerged as powerful tools for high-quality data genera-
tion, such as image generation. Despite its success in continuous spaces, discrete
diffusion models, which apply to domains such as texts and natural languages,
remain under-studied and often suffer from slow generation speed. In this paper,
we propose a novel de-randomized diffusion process, which leads to an acceler-
ated algorithm for discrete diffusion models. Our technique significantly reduces
the number of function evaluations (i.e., calls to the neural network), making the
sampling process much faster. Furthermore, we introduce a continuous-time (i.e.,
infinite-step) sampling algorithm that can provide even better sample qualities
than its discrete-time (finite-step) counterpart. Extensive experiments on natural
language generation and machine translation tasks demonstrate the superior perfor-
mance of our method in terms of both generation speed and sample quality over
existing methods for discrete diffusion models. 1

1 INTRODUCTION

The diffusion-based generative model (Sohl-Dickstein et al., 2015) has demonstrated its powerful
ability to generate high-quality samples in the domains including images (Ho et al., 2020; Song
& Ermon, 2020), audios (Chen et al., 2020; Kong et al., 2020) and videos (Ho et al., 2022). A
diffusion model includes a forward process that gradually corrupts training data into pure noise and a
backward/reverse process that decodes the random noises. During the training, the model will learn a
neural function by minimizing an objective closely related to maximum likelihood estimation. Given
the learned neural network, the model can generate high-quality samples based on different decoding
strategies, such as implicit dynamics (Song et al., 2020a), analytical processes (Bao et al., 2022), and
differential equation solvers (Song et al., 2020b; Liu et al., 2022; Lu et al., 2022).
While the above diffusion models focus on continuous-state spaces, diffusion models in discrete-state
spaces have also gained significant attention for their application in image segmentation (Hoogeboom
et al., 2021b), medical record generation (Ceritli et al., 2023; Yuan et al., 2023), and text generation
(Hoogeboom et al., 2021b; Austin et al., 2021; Zheng et al., 2023). Inspired by the discrete nature
of the data, several studies (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021b; Austin et al.,
2021) have introduced discrete diffusion models, which operate directly on discrete state spaces.
However, in contrast to their continuous counterparts, discrete diffusion models remain relatively less
explored, particularly on the aspect of sampling efficiency. In order to accelerate discrete diffusion
models, Zheng et al. (2023) recently proposed a model based on a novel reparameterization technique.
The resulting reparameterized diffusion model (RDM) significantly improves the sampling speed
compared with vanilla discrete diffusion models (Hoogeboom et al., 2021b; Austin et al., 2021) and
achieves better performance than these baselines on text generation tasks.
Unlike the continuous diffusion model, which employs a Gaussian distribution, the discrete diffusion
model uses categorical white noises to corrupt the data. By analyzing this special formula, we
introduce a de-randomized generation process with an accelerated algorithm. Compared with existing
discrete diffusion models, the improved algorithm accelerates sampling under the same number of
sampling steps. Notably, this new sampling technique does not necessitate any changes to the training
objective of diffusion models. As a result, it can be applied to any discrete diffusion model as long
as we can define a de-randomized reverse process and its corresponding accelerated algorithm. Our
main contributions are summarized as follows:

1Our implementation can be accessed via https://anonymous.4open.science/r/DNDM.

1

https://anonymous.4open.science/r/DNDM

Under review as a conference paper at ICLR 2024

• We propose a discrete non-Markov diffusion model (DNDM) by introducing a set of latent variables
T , termed transition time set. For the original diffusion trajectory {xt} where x0 denotes the real
example, the new process provably preserves the distribution of q(xt) as well as the conditional
distribution q(x0|xt). Since q(xt) of the new diffusion process is identical to that of the exact
process, the new process can be used as an alternative for diffusion and data generation. Since
q(x0|xt) remains the same, we can choose from a large family of generative models using the same
neural network.

• Leveraging the de-randomized diffusion process, we propose an accelerated algorithm, drastically
reducing the frequency of neural network calls. In a T time-step discrete diffusion process, where
the original sampling (Ho et al., 2020; Austin et al., 2021) need to invoke the neural network T
times, our approach requires only K calls (where K represents the cardinality of transition times
T). More precisely, K is less than T and approaches O(1) as T goes to infinity. Therefore, our
algorithm is faster, and the improvement becomes more significant as T increases. Notably, our
algorithm on machine translation benchmarks is about 3× faster than RDM (Zheng et al., 2023)
for T = 50 and about 30× faster for T = 1000 while preserving the sample quality.

• To further illustrate the effectiveness of the de-randomized diffusion process, we explore the limit
as T → ∞ and introduce an infinite-step sampling algorithm. With a pretrained neural network,
we can generate an initial noise xT and a transition time set T ⊂ [0, 1] with infinitesimal spacing,
such that |T | = O(1). This enables the generation of the real data distribution with only |T | neural
network evaluations. Experiments show that this infinite-step approach yields a superior sample
quality compared to finite-step methods.

Notation. We use lowercase letters to denote scalars, boldface lowercase letters for vectors, and
boldface uppercase letters for matrices. Consider a sequence xk. If xk = O(yk), this implies that
there exists a positive constant C such that |xk| ≤ C|yk|. The notation 1 : N indicates the sequence
from 1 through N . The symbol q designates the real distribution in a diffusion process, while p
represents the distribution during sampling. With its success probability inside the parentheses, the
Bernoulli distribution is denoted as Bernoulli(·). We further use Cat(p) to denote a categorical
distribution over a one-hot row vector with probabilities given by the row vector p.

2 DE-RANDOMIZED DIFFUSION PROCESS

In this section, we will first provide the background of the discrete Markov diffusion model, and then
introduce our discrete non-Markov diffusion model (DNDM).

2.1 DISCRETE MARKOV PROCESS

We begin by briefly describing the discrete Markov diffusion model, which is defined on categorical
random variables. Let x ∈ RK represents a one-hot encoded discrete random variable with K
categories. More specifically, if x equals the standard basis ek, then the category of x is k. We use
{xt}Tt=0 to denote the process of random variables across time 0 ≤ t ≤ T , where x0 ∈ RK represents
data drawn from the real distribution qdata. Discrete diffusion probabilistic models (Hoogeboom
et al., 2021b; Austin et al., 2021) are characterized by both forward and backward processes. The
forward process aims to gradually transform the real distribution qdata to some noise distribution
qnoise through T intermediate latent variables x1, . . .xT with the following process:

xt = btxt−1 + (1− bt)wt, (1)

where bt are independently drawn from the Bernoulli distribution Bernoulli(βt), wt are independently
drawn from the noise distribution qnoise, which can be a uniform noise distribution over the vocabulary
{1, 2, . . . ,K} (Hoogeboom et al., 2021b) or a point mass with all of the probability on an absorbing
state (Austin et al., 2021). The process in (1) defines a Markov process characterized by the transition
kernel

q(xt|xt−1) = Cat
(
βtxt−1 + (1− βt)qnoise

)
. (2)

The property of Markov chain enables us to get samples x0:t by p(x1:t | x0) =
∏t

i=1 q(xt | xt−1).
Marginalizing over p(x1:t | x0) further allows us to sample xt for arbitrary time t directly from x0:

q(xt|x0) = Cat
(
αtx0 + (1− αt)qnoise

)
, (3)

where αt := Πt
s=1βs is determined by the sequence of βt of our choice and decreases from 1 to 0 as

t goes from 1 to T .

2

Under review as a conference paper at ICLR 2024

Training the Neural Networks. During training, discrete diffusion algorithms aim to train a function
capable of predicting x0 given xt. Specifically, they strive to learn a neural network fθ(·, t) such that
fθ(xt, t) predicts x0. The training process typically involves the subsequent steps (Hoogeboom et al.,
2021b; Austin et al., 2021; Zheng et al., 2023):
• Generate pairs (x0,xt) according to the joint distribution q(x0,xt) stemming from the process

in (1), aggregated into the training data set.
• Define a loss objective for the training set at the t-th step, denoted by
Lt(fθ(·, t), q(x0,xt)). Then the training objective is to minimize the average loss given
by argminθ(1/T)

∑T
t=0 Lt(fθ(·, t), q(x0,xt)).

The formulation of the loss Lt differs across methods. Hoogeboom et al. (2021b) utilized Lt

derived from the negative variational bound, which corresponds to the KL divergence between two
categorical distributions. Building on this foundation, Austin et al. (2021) introduced an auxiliary
denoising objective, which aims at refining the predictions of data x0 at each time step. Furthering the
advancements, Zheng et al. (2023) put forth a reparametrized loss Lt that incorporates a reweighted
parameter λt, enhancing its trainability. While our research primarily revolves around reverse
sampling, we’ve relegated detailed discussions of these losses to Appendix B. Importantly, our
DNDM can be seamlessly integrated with the neural function fθ(·, t) as guided by the aforementioned
losses.
Reverse Sampling. Given the forward Markov process, the reverse process can be derived by
Bayes’ rule (Hoogeboom et al., 2021b; Austin et al., 2021; Zheng et al., 2023): q(xt−1|x0,xt) =
q(xt|xt−1)q(xt−1|x0)/q(xt|x0). At step t, a prediction of x0 can be decoded given fθ(xt, t) where
fθ is the neural network learned during the training. Then the conditional probability q(xt−1|x0,xt)
can be approximated by pθ(xt−1|x̂0,xt) by plugging in x̂0, an estimation of x0. Finally xt−1 will
be generated based on pθ(xt−1|x̂0,xt). The reverse process for the discrete Markov process is
stochastic and requires the neural network’s call at every step.

2.2 DE-RANDOMIZED PROCESS AND CORRESPONDING REVERSE SAMPLING

In this subsection, we will introduce a non-Markov process such that the joint distribution of (x0,xt)
remains the same as the one defined with Markov process in Section 2.1. However, the induced
reverse sampling method is de-randomized and fast.
The new process aims to gradually transform input data qdata to the noise distribution qnoise through
T intermediate latent variables x1, . . .xT with the following process:

xt = btxt−1 + (1− bt)w, (4)

where bt is independently drawn from the Bernoulli distribution Bernoulli(βt) and w is drawn from
the noise distribution qnoise. The only difference between (4) and (1) is that w is time-invariant
during the diffusion. Process in (4) is non-Markov since q(xt|xt−1, . . . ,x0) doesn’t necessarily
equals q(xt|xt−1).
Although the diffusion process is converted from Markov to non-Markov, the following theorem
shows that the condition distribution q(xt|x0) remains unchanged.
Theorem 2.1. For the non-Markov process in (4), we still have

q(xt|x0) = Cat
(
xt;αtx0 + (1− αt)qnoise

)
,

where αt := Πs
i=1βs is specified to decrease from 1 to 0 with respect to t.

Using the Bayes’ rule, we have q(xt,x0) = q(xt|x0)q(x0). Thus, according to Theorem 2.1, the
joint distribution of (xt,x0) remains consistent with the process defined in (1). Furthermore, the
equation q(xt) =

∑
x0

q(xt|x0)q(x0) indicates that probability flow of q(xt) with respect to t is
preserved.
Therefore, any neural network fθ(·, t) learned by the Markov process in (1) can still be used for
our non-Markov process (4). Thanks to the de-randomized process, we can now give a simple
characterization of xt’s distribution by introducing the transition time.
Definition 2.2. The transition time τ is the time that the token xt transition from x0 to noise, i.e.,
τ := mint{t|bt = 0}.

Remark 2.3. A similar concept is introduced in Hoogeboom et al. (2021a) for the discussion purpose.
However, Hoogeboom et al. (2021a) restricts the transition time to be the first time of entering the
absorbing state, which is only applicable to absorbing diffusion. Our definition is more general and
applies to discrete diffusion with various noise qnoise including multinomial diffusion.

3

Under review as a conference paper at ICLR 2024

We can get the following process given the transition time τ .

xt = 1(τ > t)x0 + 1(τ ≤ t)w, (5)

which shows that the token will be a real token x0 before the time τ and will be the noise w after the
transition time. Since token only get changed at the transition time τ , we can derive a reverse process
based on (5),

xt−1 = 1(τ = t)x0 + 1(τ ̸= t)xt. (6)

Therefore, the process in (6) is de-randomized given transition time τ : as long as we observe x0 and
xt for some t, then xt−1 becomes known and fixed. It is also worth noting that given x0 and τ , the
exact reverse process (6) is Markovian, since xt−1 solely depends on x0, τ,xt. Assuming that the
learned reverse process is also Markovian given x0 and τ , then the estimation error of the learned
reverse process can be characterized by the Kullback–Leibler (KL) divergence between the reverse
process q and the learned reverse process pθ, which can be further decomposed into the summation
of the KL divergence at each time t. See Appendix B.3 for details.
Remark 2.4. Equations (5) and (6) suggest that even though there are T distinct time steps, not every
time in the range 1 : T is crucial for capturing the process. Our primary focus should be on the most
significant time step, i.e., the transition time τ . This insight drives our motivation to devise a faster
reverse sampling method. Notably, the transition time τ exhibits randomness and can differ across
runs. Hence, the T time steps are not redundant but have significance.
Remark 2.5. Song et al. (2020a) introduced the denoising diffusion implicit model (DDIM) for
the continuous Gaussian process, as represented in Equation (7) in their paper. Their model is
non-Markov and also de-randomized. It can be mathematically expressed as: x̂t−1 =

(√
α̂t−1 −√

α̂t(1− α̂t−1)/(1− α̂t)
)
x̂0+

√
(1− α̂t−1)/(1− α̂t)x̂t, where x̂t denotes a continuous diffusion

process, and α̂ is its associated coefficient. In this context, our processes as described in Equations
(5) and (6) can be considered as discrete counterparts for DDIM. It is worth noting that while Song
et al. (2020a) also proposed a model for discrete diffusion in Equation (18) of their paper, their
discrete process is randomized and lacks empirical validation. In contrast, our method offers a full
de-randomization by utilizing the transition time argument. As we will elaborate in Section 3, our
discrete non-Markov diffusion model (DNDM) can achieve a faster sampling speed under the same
number of sampling steps. Such efficiency has not been reported in DDIM and stands as a distinctive
feature of our discrete diffusion approach.

3 ACCELERATED REVERSE SAMPLING

This section will demonstrate that sampling from DNDM can lead to accelerated reverse sampling.
Although our algorithm is quite general, we will focus on text generation in the presentation.
In Section 2, we only consider the case of a single token x ∈ RK being one hot encoding of K
categories. In real applications, we are interested in generating a sentence with multiple tokens. So,
we extend the terminology in Section 2, and we denote the sequence of tokens at t-th time step to
be xt,1:N = [xt,1, . . . ,xt,N] where xt,n is the n-th token and N is the sequence length. The noise
will be added to each token in a sequence independently. Therefore, each token will have its own
transition time defined in Definition 2.2. We denote the transition time for each token xn to be τn and
further denote the transition time set T := {τn}Nn=1. Given the transition times τn ∈ T , our DNDM
can now be extended to the sequence with multiple tokens

xt−1,n = 1(τn = t)x0,n + 1(τn ̸= t)xt,n,∀n ∈ [N]. (7)

Learning the Reverse Process. We first generate the transition times τn for n ∈ [N], then we follow
(7) to generate the learned reverse process. Since x0,n is unknown in the process, we will use the
neural network evaluation fθ(·, t) obtained in Section 2 to predict x0,n. It is worth noting that, given
x0 and τ , the learned reverse process (6) is indeed Markovian, since xt−1 solely depends on τ,xt.

In detail, the noisy sequence xt,1:N is fed into fθ(·, t) and collect the output fθ(xt,1:N , t). The
tokens generally uses a transformer structure (Hoogeboom et al., 2021b; Austin et al., 2021) and
thus fθ(xt,1:N , t) also have n-positions f = [f1, . . . , fN]. Here fn(xt,1:N , t) ∈ RK is a probability
vector. We will collect the output fn(xt,1:N , t) for n-th token. A prediction token x̂0,n will then
be decoded from fn(xt,1:N , t) using different decoding strategies including greedy decoding, top-k
decoding and temperature decoding. Note that the decoding strategy here pertains to the approach for
obtaining x̂0,n in traditional NLP tasks and is independent of our diffusion model.

4

Under review as a conference paper at ICLR 2024

Transition time. Transition time, denoted as τ , is crucial in our reverse process. This is because
the reverse sampling becomes deterministic upon using (7). Each instance of transition time τ is a
random variable within the set {1, 2, . . . , T}. Let’s assume it follows the distribution Dτ . Given the
schedule {αt}Tt=0, we can derive the distribution for Dτ .

Theorem 3.1. Each specific transition time τn in Definition 2.2 is independent. Furthermore, they
collectively adhere to the distribution Dτ , which obeys the rule P(τn = t) = αt−1 − αt.

From Theorem 3.1, we discern that the nature of the diffusion model scheduler, αt, clarifies the
distribution of τ . Take the linear schedule as an example, as given by (Austin et al., 2021), the
relationship is αt = 1− t/T . This translates to P(τn = t) = 1/T for every t in the range 1 to T . As
a result, transition time distributes uniformly across each moment in the set {1, . . . , T}. Generally,
if we express αt as g(t/T), then we can simplify to P(τn = t) = g((t − 1)/T) − g(t/T), which
further refines to (1/T)|g′(t/T)|+ o(1/T). This indicates that transitions are more likely where |g′|
is large.
In practical applications, we have observed that the shape of the transition time does not need to match
the theoretical prediction schedule exactly. A more efficient way is to give an approximate schedule
with a Beta distribution. Essentially, we first sample a time t ∈ [0, 1] from a Beta distribution, then
adjust these samples to fit by multiplying T and round them to acquire the integer.
De-randomized Accelerated Sampling. According to (7), a token xt−1,n is updated only if step t is
the transition time for the n-th token. If step t is not the transition time for any token, the sentence
from the previous step can be directly copied: xt−1,1:N = xt,1:N . As a result, there is no need to
evaluate fn(xt,1:N , t) for the current step. Our attention, therefore, can be solely centered on the
transition set T , necessitating function evaluations only for t within T . Given that the cardinality
of T is at most |T | = min{N,T}, the function evaluations decrease from T to |T | for a particular
example. Further insights into the sampling based on this approach are detailed in Algorithm 1. For
our method, when N is fixed while T → ∞, the total NFE will reach N . On the other hand, when T
is fixed and N → ∞, the NFE will reach T . Such observation can be rigorously inferred from our
Theorem D.1. Therefore, our framework bridges two extremes of (fixed N, infinite T) and (infinite
N, finite T). It is worth noting that the auto-regressive diffusion model (ARDM) Hoogeboom et al.
(2021a) can also achieve at most N NFE when T = ∞. ARDM is primarily focused on infinite
timesteps, while our method here accelerates sampling for finite time steps. More detailed discussion
and theoretical analysis (Theorem D.1) can be found in Section D. Additional experiment in §D also
demonstrates that our DNDM achieves an NFE that is less than half of the original sampling method.
Another property of Algorithm 1 is that it does not require intricate probability computations,
further speeding up the sampling process. By incorporating the forward process with different
noises, we can develop DNDM-Multi and DNDM-Absorb, which accelerate the Multinomial and
Absorbing sampling methods respectively. Recent works have demonstrated that the quality of
samples can be enhanced by utilizing supplementary information derived from the neural network,
fθ(·, t) (Ghazvininejad et al., 2019; Savinov et al., 2021; Chang et al., 2022; He et al., 2022; Zheng
et al., 2023). Our DNDM can also be improved using this idea. We call it a discrete non-Markov
Diffusion Model with Top-k Transition Time (DNDM-k). Due to the limit of the pages, we leave the
detailed Algorithm and discussion to Appendix E.

4 CONTINOUS-TIME (INFINITE STEP) REVERSE SAMPLING

In the context of continuous state spaces, continuous-time processes have been proposed to accommo-
date algorithms that offer faster sampling speeds and enhanced sample quality (Jolicoeur-Martineau
et al., 2021; Zhang & Chen, 2022; Salimans & Ho, 2022; Chung et al., 2022; Song et al., 2020b;
Dockhorn et al., 2021). However, the utilization of continuous-time schemes to discrete-state spaces
remains underexplored. Furthermore, later in Section 5.1, we will compare the performance of
sampling with 50 steps to sampling with 1000 steps. It’s important to note that choosing a finer step
size in reverse sampling can result in higher BLEU scores, as demonstrated in Tables 1 and 2. This
highlights the need for the development of a more flexible time sampling schedule.
Campbell et al. (2022) first designed a continuous framework for discrete-time diffusion for the
Markovian process and randomized sampling, however not in our non-Markovian setting. In this sec-
tion, we present the continuous-time extension of our non-Markovian process and DNDM algorithm.
This approach not only provides flexibility by allowing arbitrary time points but also demonstrates
improved BLEU scores on some tasks.

5

Under review as a conference paper at ICLR 2024

Algorithm 1 Sampling From DNDM

Require: Trained prediction function fθ(·, t), qnoise,
Dτ

1: for n = 1 . . . N do
2: Initiate each token xT,n ∼ qnoise

3: Initiate the transition time τn ∼ Dτ

4: end for
5: Collect transition time set T = {τn}Nn=1
6: for t = T . . . 1 do
7: if t ∈ T then
8: Generate x̃0,1:N from fθ(xt,1:N , t)
9: for n = 1 . . . N do

10: Update xt−1,n based on condition of τn
11: end for
12: else
13: Update xt−1,1:N = xt,1:N

14: end if
15: end for
16: return x0,1:N

Algorithm 2 Sampling from DNDM-C

Require: Trained prediction function
fθ(·, t), qnoise, Dτ

1: for n = 1 . . . N do
2: Initiate each token xT,n ∼ qnoise

3: Initiate the transition time τn ∼
Dτ

4: end for
5: Collect and arrange transition times

in T
6: for k = 1 . . . N do
7: Generate x̃0,1:N using

fθ(xtk−1,1:N , tk)
8: for n = 1 . . . N do
9: Update xtk+1,n based on condi-

tion of τn
10: end for
11: end for
12: return x0,1:N

Continuous-time forward and backward process. We recall that the forward process described
in (4) can be sampled from x0,n through the following process:

xt,n = αtx0,n + (1− αt)qnoise, αt =

s∏
i=1

βs. (8)

In the previous section, we are constrained to discrete time steps, where we must define a maximum
step, denoted as T . The values of xt are computed only for t = 1, . . . , T . As a result, during the
training process, it is only possible to predict the x0 at these predetermined time steps. This constraint
confines the computation of our reverse process exclusively to these fixed time stamps.
To derive the continuous limit of (8), for each T we rescale (8) to a diffusion process on [0, 1],
e.g. xT,n = x̂1,n,x0,n = x̂0,n, and xt,n = x̂t/T,n. Therefore, when T → ∞, x̂t,n represents the
continuous process that has value at arbitrary t ∈ [0, 1]. If the choice of αt for each T is scale-
invariant, we can define a continuous function α(t) as the continuous α schedule of the discrete
counterpart2. More specifically, we obtain

x̂t,n = α(t)x̂0,n + (1− α(t))qnoise, t ∈ [0, 1]. (9)

For the reverse-time process, we define the transition time set T := {τn}Nn=1 consistent with
Theorem 3.1 and sample it from P(τn = t) = −α′(t). With T defined, the updates to xt,n only occur
at {τn}. Consequently, we arrange τn to obtain an ordered sequence τnk

, where τn1
< τn2

< . . . <
τnN

. When omitting the infinitely many time steps between τnk
and τnk−1

. The resulting reverse
process is then given by:

xτnk−1
,n = 1(τn = τnk−1

)x0,n + 1(τn ̸= τnk−1
)xτnk

,n, ∀n ∈ [N]. (10)

This limit is taken with infinitesimally small time steps, yielding an exact solution rather than an
approximate transition time schedule when considering the partition of time steps. The resulting
algorithm is shown in Algorithm 2.
Comparison with ARDM (Hoogeboom et al., 2021a). Autoregressive Diffusion Model (ARDM)
Hoogeboom et al. (2021a) is a discrete diffusion model built upon the autoregressive nature of data.
ARDM is shown to be equivalent to a continuous-time absorbing diffusion model and thus provides
a unique perspective for discrete diffusion. For continuous-time (T = ∞) reverse sampling, both
ARDM and our method achieve N NFEs. Compared with ARDM, our method provides a unified
framework including both absorbing and multinomial diffusions, applicable to both finite time and
continuous time diffusions. For infinite timesteps, Hoogeboom et al. (2021a) also proposed an
advanced parallelizing technique that can reduce NFE according to the log-likelihood, which we have
not considered in DNDM-C.

2If we represent αt with maximum step T as αt(T), the scale-invariant property states that αct(cT) = αt(T).
The simplest example of such an αt schedule is αt(T) = 1− t/T , under which α(t) = 1− t.

6

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

In this section, we evaluate DNDM and demonstrate its superior performance on two types of tasks:
conditional sequence-to-sequence text generation (i.e., machine translation) and unconditional text
generation. For the fairness of comparison, all the experiments are conducted using a single NVIDIA
RTX A6000 GPU with 48 GB memory. Additional experiment details are provided in Appendix F.

5.1 CONDITIONAL TEXT GENERATION

We first evaluate the ability of DNDM on conditional text generation by machine translation tasks.
Following (Zheng et al., 2023), we process the raw text with the Byte Pair Encoder (BPE) (Sennrich
et al., 2016) to construct the vocabulary, which consists of the words and subwords of both the source
and the target languages. We conduct our experiments using the FairSeq toolkit (Ott et al., 2019),
which employs a model consisting of an encoder and a decoder. The encoder takes the source text as
input, while the decoder generates the target text.
Datasets. We use the following three datasets to compare with the baselines for machine translation
tasks: (1) IWSLT14 DE-EN (Cettolo et al., 2014), a dataset with German as the source language and
English as the target language. It consists of 173972 examples (sentence pairs), and each of the
validation set and the testing set accounts for around 4.2% of the dataset; (2) WMT14 EN-DE (Bojar
et al., 2014), which is an English-to-German translation dataset consisting of 3967182 examples.
Each of the validation set and the testing set accounts for around 0.076% of the dataset; and (3)
WMT16 EN-RO (Bojar et al., 2016), which is an English-to-Russian translation dataset consisting of
612317 examples. Each of the validation sets and the testing set accounts for around 0.33% of
the dataset. For all machine translation datasets, the train-validation-test split is fixed across all
experiments to ensure fair comparison.
Performance metrics. We use the BLEU score (Papineni et al., 2002) to evaluate the machine
translation quality, where the BLEU score is calculated based on the similarity between the actual
target sequence and the predicted target sequence. The sampling speed is measured by wall-clock
time (in second).
Baselines. The main baselines we are comparing with are RDM and RDM-k from Zheng et al.
(2023). Here, we use RDM and RDM-k to denote the sampling method proposed in their paper with
and without the usage of top-k selection for the token generation technique (see Appendix E for
more details), respectively. RDM and RDM-k are applied to two previously proposed state-of-the-art
discrete diffusion models: Multinomial Diffusion (Hoogeboom et al., 2021b) and D3PM (Austin
et al., 2021), where the latter is a typical absorbing discrete diffusion model, so in the following
sections the term “absorbing diffusion” refers to it.
Diffusion type. There are two types of diffusion proposed for discrete diffusion models: (1)
multinomial diffusion (Hoogeboom et al., 2021b), and (2) absorbing diffusion (Austin et al., 2021).
Decoding type. In our experiments, we found that argmax decoding always outperforms normal
decoding across all the tasks. Therefore, we only report the experiment results based on argmax
decoding.
Results and Discussion. Tables 1 and 2 present the performance evaluations of our algorithms in
machine translation tasks. Table 1 presents results for multinomial diffusion, while Table 2 displays
results for absorbing diffusion. Our reported time and BLEU scores are averaged over 5 repeated
experiments, except for the baseline RDM experiment3.
From Tables 1 and 2, we observe that methods based on DNDM significantly accelerate the sampling
process compared to baseline diffusion models. This acceleration allows for greater flexibility in
increasing the number of steps (up to infinity) without imposing a significant computational burden.
Consequently, our sampling method demonstrates an improved overall BLEU score. More specifically,
as we can see in each column of Tables 1 and 2, more sampling steps lead to better generation quality
(BLEU) at the expense of longer sampling time. For RDM-based methods, generation time increases
linearly with the number of sampling steps. On the contrary, for our DNDM-based method, generation
time only increases marginally (See Figure 4 in Section G). As a result of the difference in the growing
speed of sampling time with respect to sampling steps, the more sampling steps, the more speedup
DNDM can obtain. Notably, when the sampling steps increase to 1000, DNDM can accelerate the

3Due to computational intensity, we did not repeat the 1000-step sampling for the RDM baseline. However,
reproducing it was deemed unnecessary as the sampling time is largely stable across repeated experiments, and
the precise averaged timing is not critical for demonstrating the speed improvement of DNDM.

7

Under review as a conference paper at ICLR 2024

sampling process 30-60 times compared to RDM. This remarkable acceleration is attributed to the
introduction of transition times and the elimination of unnecessary steps, as discussed in Section 3.
Continuous-time results, as the ultimate limit of increasing sampling steps, are presented in the last
row of each dataset with the tag ∞. Given that the results with 1000 steps consistently outperform
those with 50 steps, we compare ∞ with 1000 steps in Table 1 and 2. For IWSLT14 and WMT16, where
the generation BLEU score is relatively high, we observe a consistent performance improvement of
up to 0.3 in BLEU score when utilizing the DNDM-C algorithm, with the exception of a single case
in the absorbing diffusion setting for WMT16 without the use of top-k selection. The performance gain
of the continuous-time method on WMT14 is less significant, with both drops and gains. However,
WMT14 itself has not reached a high level of performance, with a BLEU score significantly lower than
other datasets. In general, training WMT14 poses challenges across all diffusion models, including
multinomial diffusion (Hoogeboom et al., 2021b), absorbing diffusion (Austin et al., 2021), and RDM
diffusion (Zheng et al., 2023), etc. We defer a more detailed discussion on WMT14 to Appendix F.1.
Finally, when compared with the results obtained with 50 steps, the performance of DNDM-C
demonstrates improvement consistently. Furthermore, we note that regardless of the dataset or the
method (i.e., RDM or DNDM) employed, top-k token generation consistently outperforms vanilla
methods. This approach enhances the BLEU score by approximately 1-2 points without introducing
significant increases in sampling time.

Dataset Steps RDM-Multi DNDM-Multi RDM-k-Multi DNDM-k-Multi

BLEU Time (s) BLEU Time (s) BLEU Time(s) BLEU Time (s)

IWSLT14

25 31.26 166.9 30.95 52.9 32.82 161.9 32.30 52.6
50 31.50 328.6 31.45 83.9 32.82 321.2 32.80 93.2

1000 31.69 6308.9 31.82 191.3 32.64 6321.3 33.15 191.5
∞ - - 31.89 225.2 - - 33.44 228.1

WMT14

25 25.25 237.3 25.01 90.7 26.03 230.9 25.98 90.5
50 25.75 466.1 25.33 138.4 26.14 500.2 26.37 138.3

1000 25.66 8996.7 25.71 265.4 25.82 8991.7 26.88 265.5
∞ - - 24.79 307.5 - - 26.39 307.3

WMT16

25 32.29 145.2 31.97 36.4 33.12 143.5 32.94 36.4
50 32.53 286.1 32.50 63.2 33.41 312.4 33.26 62.7

1000 32.63 5588.9 32.86 171.4 33.67 5601.0 33.79 171.2
∞ - - 32.91 196.4 - - 33.86 196.3

Table 1: BLEU score comparison of multinomial diffusion on machine translation benchmarks
IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO. The blue background highlights our algorithms,
and the bold number indicates the best performance within each row and each setting (i.e., with or
without top-k).

Dataset Steps RDM-Absorb DNDM-Absorb RDM-k-Absorb DNDM-k-Absorb

BLEU Time (s) BLEU Time (s) BLEU Time(s) BLEU Time (s)

IWSLT14

25 31.58 116.3 32.43 67.2 34.50 108.9 34.14 67.3
50 31.80 227.2 32.63 95.9 34.58 213.9 34.34 96.2

1000 31.91 4197.4 32.93 161.1 34.60 4205.9 34.56 162.3
∞ - - 33.03 174.6 - - 34.65 180.7

WMT14

25 24.97 116.4 25.79 68.1 27.50 107.5 27.18 68.0
50 24.95 231.1 26.10 102.0 27.73 255.2 27.66 102.5

1000 25.22 4169.4 26.43 178.3 27.75 4167.4 27.82 179.1
∞ - - 26.50 180.1 - - 27.50 181.2

WMT16

25 32.86 75.5 33.20 41.2 33.92 69.9 33.96 41.4
50 32.93 148.4 33.30 62.5 34.10 166.1 34.20 62.7

1000 33.25 2951.7 33.60 121.3 34.44 2718.7 34.38 122.7
∞ - - 33.42 121.8 - - 34.41 121.9

Table 2: BLEU score comparison of absorbing diffusion on machine translation benchmarks
IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO. The blue background highlights our algorithms,
and the bold number indicates the best performance within each row and each setting (i.e., with or
without top-k).

8

Under review as a conference paper at ICLR 2024

Scaling law in sampling speed. For illustrative purposes, we use the example of IWSLT14 to
visualize how the sample quality scales regarding sampling speed for different methods. In Figure 1,
we observe the trend of the BLEU score in relation to computational time. Each line in the legend
represents a different sampling algorithm, and a steeper slope indicates a larger marginal gain when
sampling for longer periods. Figure 1 demonstrates that our algorithm displays nearly linear growth
in BLEU score over the log of time, which is remarkable in contrast with the flat curve of the
baseline. Particularly, for multinomial diffusion, the BLEU score increases by 1 in less than 60
seconds of additional sampling time. For absorbing diffusion, DNDM outperforms RDM before
RDM samples 50 steps. In Tables 5 and 6 in Appendix §D, we further use the average number
of function evaluations (NFE) to measure the improved efficiency within the specified number of
sampling steps. Additionally, in Figure 2, we visualize how the BLEU score and the generated text
change throughout the sampling process.

10 100 1000 10000
Computational Time (s)

31.0

31.5

32.0

32.5

33.0

33.5

BL
EU

 S
co

re

 25

 50

 100

 25

 50

 100
 Inf

 25 50

 100

 25

 50

 100

 Inf RDM-Multi
DNDM-Multi
RDM-k-Multi
DNDM-k-Multi

(a) Multinomial Diffusion

10 100 1000 10000
Computational Time (s)

31.5

32.0

32.5

33.0

33.5

34.0

34.5

BL
EU

 S
co

re
25

50
100

25
50

 100
 Inf

25 50 100

25
50

100
InfAbsorb

DNDM-Absorb
RDM-Absorb
DNDM-T-Absorb

(b) Absorbing Diffusion
Figure 1: Generation quality to generation time comparison on IWSLT14. x-axis: computational time
in seconds; y-axis: BLEU score.

100 90 80 70 60 50 40 30 20 10 0
Time in Reverse Process

0

5

10

15

20

25

30

BL
EU

 S
co

re

DNDM-k-Multi

(a) The BLEU Score in the Generation Process

t = 100 [noise] [noise] [noise] [noise] · · ·
t = 75 [noise] · · · [noise] and we [noise] · · ·
[noise] govern[noise] [noise] year [noise]
t = 67 we [noise] [noise] fello [noise] [noise]
[noise] and we let them [noise] [noise] city
govern[noise] every year.

t = 39 we choose some fellows every
year and we let them work with
city governance every year.

t = 0 we choose some fellows every
year and we let them work with
city governance every year.

(b) Text in the Generation Process
Figure 2: We demonstrate the 100-step generation process of DNDM-k-Multi as an example, where
the left is the change of the BLEU score along the generation process, and the right is the text
at different time steps. As the time goes from 100 to 0, noise is gradually removed until the
corresponding English text emerges. Since the transition time follows a Beta distribution as described
in Section 3, the majority of transitions occur near the starting time.

5.2 UNCONDITIONAL TEXT GENERATION

In unconditional text generation, we focus on language modeling tasks, where the goal is to generate
language data similar to the provided training dataset. In this task, no input text is given during
sampling, and the neural network directly learns q(x0|xt).
Datasets. The natural language generation task is evaluated on two language datasets following
Hoogeboom et al. (2021b): text8 and enwik8. Both datasets are from Wikipedia, but their contents
are highly distinct. In text8, the plain text consists of English words (all the letters are in lower case)
and spaces, and it is tokenized into 26 characters and one blank space, resulting in 27 categories. In
contrast to the cleanness of text8, enwik8 preserves the original XML dump contents, and there
exist various special symbols in its raw text, so its text is tokenized into 1 Byte, resulting in 256
categories. We utilize text8 dataset with sequence length 256 and enwik8 dataset with sequence
length 320. The train/val/test splits are 9e7/5e6/5e5 for both text8 and enwik8.

9

Under review as a conference paper at ICLR 2024

Performance metrics. Our evaluation of text generation quality relies on the perplexity score. When
generating text8 data, we calculate perplexity scores using the GPT2 model, while for enwik8 data
generation, we employ the GPT2-large model. The sampling speed is measured in seconds.
Baselines. We compare our proposed DNDM on unconditional text generation task with the vanilla
Multinomial Diffusion (Hoogeboom et al., 2021b).
Results and discussion. Table 3 displays the performance of our algorithms in text generation
tasks. We run the multinomial diffusion model on the text8 dataset for 1000 diffusion steps and on
the enwik8 dataset for 4000 diffusion steps. Our DNDM-based algorithms outperform the vanilla
sampling algorithm used in Hoogeboom et al. (2021b) in terms of both sampling time and perplexity
score. Specifically, for the text8 dataset, DNDM-based algorithms are 5 times faster than the vanilla
algorithm. For the enwik8 dataset, DNDM-based algorithms are 14 times faster than the vanilla
algorithm.

Vanilla DNDM

text8
Perplexity 1,465.75 600.02
Time (s) 135.9 31.1

enwik8
Perplexity 801.78 556.78
Time (s) 602.8 47.4

Table 3: Comparison of different sam-
pling methods for unconditional text
generation (multinomial diffusion) on
text8 and enwik8 benchmarks. Sam-
pling time is computed by generating
a single text sample of length 256 for
text8 and length 320 for enwik8, aver-
aged over 10 runs. The blue background
represents our algorithms, and the bold
number indicates the optimal value.

6 CONCLUSION AND FUTURE WORK

This paper presents a novel discrete non-Markov diffusion model (DNDM) accompanied by an
accelerated algorithm designed to boost the sampling speed in a discrete-state space. Our discrete
diffusion model incorporates "transition time set" latent variables, establishing itself as an efficacious
diffusion and data generation method. Thanks to our accelerated technique, we significantly decrease
the number of calls to the neural network without sacrificing the quality of samples. We also introduce
an infinite-step sampling algorithm, DNDM-C, which exhibits superior sample quality relative to its
finite-step counterparts. While this study focuses on text generation using non-autoregressive models,
a promising direction for future exploration is applying our method to other tasks like audio and
image generation, as well as other architectures such as the GPT model (an auto-regressive model).

REFERENCES

Guillaume Alain, Yoshua Bengio, Li Yao, Jason Yosinski, Eric Thibodeau-Laufer, Saizheng Zhang,
and Pascal Vincent. Gsns: generative stochastic networks. Information and Inference: A Journal
of the IMA, 5(2):210–249, 2016.

Anirudh Goyal ALIAS PARTH GOYAL, Nan Rosemary Ke, Surya Ganguli, and Yoshua Bengio.
Variational walkback: Learning a transition operator as a stochastic recurrent net. Advances in
Neural Information Processing Systems, 30, 2017.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022.

Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason Yosinski. Deep generative stochastic
networks trainable by backprop. In International Conference on Machine Learning, pp. 226–234.
PMLR, 2014.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Level-
ing, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia, and
Aleš Tamchyna. Findings of the 2014 workshop on statistical machine translation. In Proceed-
ings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58, Baltimore, Maryland,
USA, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-3302. URL
https://aclanthology.org/W14-3302.

10

https://aclanthology.org/W14-3302

Under review as a conference paper at ICLR 2024

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 conference on machine
translation. In Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task
Papers, pp. 131–198, Berlin, Germany, August 2016. Association for Computational Linguistics.
doi: 10.18653/v1/W16-2301. URL https://aclanthology.org/W16-2301.

Florian Bordes, Sina Honari, and Pascal Vincent. Learning to generate samples from noise through
infusion training. arXiv preprint arXiv:1703.06975, 2017.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Taha Ceritli, Ghadeer O Ghosheh, Vinod Kumar Chauhan, Tingting Zhu, Andrew P Creagh, and
David A Clifton. Synthesizing mixed-type electronic health records using diffusion models. arXiv
preprint arXiv:2302.14679, 2023.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report
on the 11th IWSLT evaluation campaign. In Proceedings of the 11th International Workshop on
Spoken Language Translation: Evaluation Campaign, pp. 2–17, Lake Tahoe, California, December
4-5 2014. URL https://aclanthology.org/2014.iwslt-evaluation.1.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad:
Estimating gradients for waveform generation. arXiv preprint arXiv:2009.00713, 2020.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating
conditional diffusion models for inverse problems through stochastic contraction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12413–12422,
2022.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion. arXiv preprint arXiv:2112.07068, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion solvers.
Advances in Neural Information Processing Systems, 35:30150–30166, 2022.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
bert: Improving generative masked language models with diffusion models. arXiv preprint
arXiv:2211.15029, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021a.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021b.

11

https://aclanthology.org/W16-2301
https://aclanthology.org/2014.iwslt-evaluation.1

Under review as a conference paper at ICLR 2024

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Siwei Lyu. Interpretation and generalization of score matching. arXiv preprint arXiv:1205.2629,
2012.

Javier R Movellan. Contrastive divergence in gaussian diffusions. Neural Computation, 20(9):
2238–2252, 2008.

Eliya Nachmani, Robin San Roman, and Lior Wolf. Non gaussian denoising diffusion models. arXiv
preprint arXiv:2106.07582, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Machel Reid, Vincent J Hellendoorn, and Graham Neubig. Diffuser: Discrete diffusion via edit-based
reconstruction. arXiv preprint arXiv:2210.16886, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion models.
arXiv preprint arXiv:2104.02600, 2021.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord.
Step-unrolled denoising autoencoders for text generation. arXiv preprint arXiv:2112.06749, 2021.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units, 2016.

Jascha Sohl-Dickstein, Peter Battaglino, and Michael R DeWeese. Minimum probability flow learning.
arXiv preprint arXiv:0906.4779, 2009.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

12

Under review as a conference paper at ICLR 2024

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to efficiently sample
from diffusion probabilistic models. arXiv preprint arXiv:2106.03802, 2021.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Quanquan Gu. Diffusion language models
can perform many tasks with scaling and instruction-finetuning. arXiv preprint arXiv:2308.12219,
2023.

Hongyi Yuan, Songchi Zhou, and Sheng Yu. Ehrdiff: Exploring realistic ehr synthesis with diffusion
models. arXiv preprint arXiv:2303.05656, 2023.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. arXiv preprint arXiv:2302.05737, 2023.

13

Under review as a conference paper at ICLR 2024

A RELATED WORK

Continous Diffusion Models. Generative modeling via continuous-time stochastic process has been
investigated thoroughly in a series of work (Movellan, 2008; Lyu, 2012; Sohl-Dickstein et al., 2009;
Bengio et al., 2014; Alain et al., 2016; ALIAS PARTH GOYAL et al., 2017; Bordes et al., 2017). The
two lines of probabilistic modeling, denoising diffusion probabilistic model (Sohl-Dickstein et al.,
2015; Ho et al., 2020) and score matching with Langevin dynamics (Song & Ermon, 2019) are unified
by Song et al. (2020b) through introducing the SDE framework for SGM. Based on it, subsequent
works (Dockhorn et al., 2021; Nachmani et al., 2021; Vahdat et al., 2021) introduced a more complex
diffusion process to improve the generation efficiency and quality. On the other hand, the score-based
sampling process is time-consuming and has attracted much attention for improvements in speed
(San-Roman et al., 2021; Watson et al., 2021; Kong & Ping, 2021; Karras et al., 2022; Song et al.,
2023). “Gotta go fast" (GGF), an SDE solver with adaptive step size tailored to SGM, is proposed in
Jolicoeur-Martineau et al. (2021). Song et al. (2020a) introduced a non-Markov diffusion process
that corresponds to a deterministic sampling process, enabling the generation of high-quality samples
more rapidly. Dockhorn et al. (2022); Liu et al. (2022) proposed a high-order SDE/ODE solver to
achieve lower discretization error. Lu et al. (2022); Zhang & Chen (2022) leveraged the semi-linear
structure of reverse ODE to reduce the discretization error and achieve state-of-the-art sampling
speed.
Discrete Diffusion Models. Research on discrete diffusion models was initiated by Sohl-Dickstein
et al. (2015), who investigated diffusion processes over binary random variables. The methodology
was expanded upon by Ho et al. (2020), integrating categorical random variables through transition
matrices with uniform probabilities. Though Song et al. (2020a) suggested a similar extension in
their supplementary content, they abstained from experimenting with this model type. Later on,
Austin et al. (2021) unveiled a more intricate framework for diffusion concerning categorical random
variables, enhancing the discrete diffusion models by merging them with Masked language models
(MLMs). Contemporary research has furthered this domain by introducing features like editing-
based operations (Jolicoeur-Martineau et al., 2021; Reid et al., 2022), auto-regressive diffusion
models (Hoogeboom et al., 2021a; Ye et al., 2023), the evolution of a continuous-time structure
(Campbell et al., 2022), and the exploration of neural network analogs for learning (Sun et al., 2022).
Additionally, Zheng et al. (2023) introduced a re-parameterized loss and an associated sampling
technique, attaining commendable outcomes in fewer iterations. Our contributions run parallel to
these aforementioned studies.

B ADDITIONAL DETAILS OF DISCRETE DIFFUSION

In our paper, we treat all the x,qnoise as a row vector and treat 1 as a column vector with all elements
equal 1.

B.1 DE-RANDOMIZATION

In Section 2, we introduced two different diffusion processes, the Markov process in Equation (1) and
the non-Markov process in Equation (4). In this section, we will explain why they are different but
will result in the same joint distribution of (x0,xt) for every time step t. Since q(x0) keeps the same,
we only need to prove that the conditional distribution q(xt|x0) is the same for the two processes.
Markov Process. Equation 1 is a Markov process since wn is independent with xt−1, . . . ,x0, so
xt is independent of all the past states given the present state. This can also be inferred from the
following distribution, which does not depend on x0, . . . ,xt−2,

q(xt|xt−1) = Cat
(
xt;βtxt−1 + (1− βt)qnoise

)
. (11)

Denote Qt := βtI+ (1− βt)1qnoise, then we have that
xt−1Qt = βtxt−1 + (1− βt)xt−1 1qnoise

= βtxt−1 + (1− βt)qnoise,

where the last equality holds due to the fact that xt−1 is a one hot vector and thus xt−1 1 = 1.
Therefore, we can rewrite Equation (11) as q(xt|xt−1) = Cat

(
xt;xt−1Qt

)
. Then, it is a Markov

process with transition kernel Qt. So q(xt|x0) = Cat
(
xt;x0Q0 . . .Qt

)
(Austin et al., 2021). We

can then have that
Q0 . . .Qt = [β0I+ (1− β0)1qnoise] . . . [βtI+ (1− βt)1qnoise]

= Πt
s=0βsI+ (1−Πt

s=0βs)1qnoise,

14

Under review as a conference paper at ICLR 2024

where the last equality holds since identity matrix I multiplying any vector equals the vector itself
and 1qnoise 1qnoise = 1(qnoise 1)qnoise = 1qnoise. Therefore, we have that

q(xt|x0) = Cat
(
xt; Π

t
s=0βsx0 + (1−Πt

s=0βs)qnoise

)
= Cat

(
xt;αtx0 + (1− αt)qnoise

)
,

where the last equality holds due to the definition αt = Πt
s=0βs. This gives rise to why the Markov

process (1) will result in conditional distribution q(xt|x0) = Cat
(
xt;αtx0 + (1− αt)qnoise

)
.

Non-Markov Process. Notice that our DNDM is defined by
xt = btxt−1 + (1− bt)w,

where w is fixed for any time t. Therefore, w is no longer independent with x0, . . . ,xt−1. There-
fore, we can’t define the transition kernel and compute q(xt|x0) by using the property of Markov.
Therefore, we need to advance the technique to calculate the conditional distribution.

Proof of Theorem 2.1. By Equation (4), we can derive the following explicit expression for a recur-
sive sequence,

xt = b1 . . . btx0,n +

t∑
s=1

(1− bs)bs+1 . . . btw

= b1 . . . btx0 + (1− b1 . . . bt)w

= atx0 + (1− at)w,

where second equality is by cancellation of terms, the last inequality holds by defining at = b1 . . . bt.
Since at either equals to 1 or 0. Besides, at equals 1 if and only if b1 = b2 = . . . = bt = 1, so we have
that at follows Bernoulli distribution Bernoulli(β1 . . . βt) = Bernoulli(αt) where αt = Πt

i=1βs.
Therefore, we can conclude that q(xt|x0) = Cat

(
xt;αtx0 + (1− αt)qnoise

)
, which completes the

proof.

B.2 TRAINING OBJECTIVE

In Section 2.1, we have introduced a general form of the training objective,

1

T

T∑
t=0

Lt(fθ(·, t), St).

Next, we will detail the loss Lt for different methods.
Hoogeboom et al. (2021b) utilized Lt derived from the negative variational bound. In detail,

Lt

(
f, q(xt,x0)

)
= KL

(
Cat(x;θpost(xt,x0)

∣∣Cat(θpost(xt, x̂0)
)
, (12)

where x̂0 = fθ(xt, t), θpost = (βtxt + (1 − βt)/K 1⊤) ⊙ (αt−1x0 + (1 − αt−1)/K 1⊤) and
θpost = (βtxt+(1−βt)/K 1⊤)⊙ (αt−1x̂0+(1−αt−1)/K 1⊤). This loss evolves KL divergence
between two categorical distributions.
Building on this foundation, Austin et al. (2021) introduced an auxiliary denoising objective to
strengthen the data predictions x0 at each time step. In detail, the auxiliary objective is as follows,

Eq(xt,x0)

[
− log p̃θ(x0|xt)

]
,

where p̃θ(x0|xt) is a function of fθ(xt, t) and the auxiliary loss term is minimized exactly when
p̃θ(|xt) has all its mass on the data point x0.
Furthering the advancements, Zheng et al. (2023) put forth a reparametrized loss Lt that incorporates
a re-weighted parameter λt. The detailed loss is

Lt

(
f, q(xt,x0)

)
= Eq(xt,x0)

[
− λt−1x0 · log(fθ(xt, t))

]
.

This loss can be related to the standard multi-class cross-entropy loss function, which is also simple
and powerful. That’s why we consider Zheng et al. (2023) as the baseline model.
In Section 4, we consider the continuous-time forward and backward process. Based on that, we
were motivated to analyze the infinite limit of the average loss,

lim
t→∞

1

T

T∑
t=1

Lt

(
f, q(xt,x0)

)
.

We find that the new loss can provide a better checkpoint than the loss averaged on the finite step on
some tasks.

15

Under review as a conference paper at ICLR 2024

B.3 CALCULATION OF THE EVIDENCE LOWER BOUND

B.3.1 FINITE TIME DNDM

In this section, we derive the evidence lower bound (ELBO) for our model. The derivatives
are inspired by the reasoning in DDIM (Song et al., 2020a). Specifically, We denote the gener-
ative process as pθ(x0:T |τ) = p

(T)
θ (xT |τ)

∏T
t=1 p

(t)
θ (xt−1|xt, τ). Here, p(T)

θ is the pure noise and
p
(t)
θ (xt−1|xt, τ) = q(xt−1|xt, x̂0, τ), where x̂0 is given by a neural network fθ, i.e., x̂0 = fθ(xt, t).

Notice that by Jensen’s inequality,

log pθ(x0) = logEτ∼Dτ
[pθ(x0|τ)] ≥ Eτ∼Dτ

[log pθ(x0|τ)]. (13)

The evidence lower bound inequality gives

log pθ(x0|τ) ≥ Ex1:T∼q(x1:T |x0,τ) log
pθ(x0:T |τ)

q(x1:T |x0, τ)
. (14)

Plugging (14) into (13) gives the following ELBO,

log pθ(x0) ≥ Eτ∼Dτ
Ex1:T∼q(x1:T |x0,τ) log

pθ(x0:T |τ)
q(x1:T |x0, τ)

:= ELBO.

We factorize the pθ and q by

pθ(x0:T |τ) = p
(T)
θ (xT |τ)

T∏
t=1

p
(t)
θ (xt−1|xt, τ),

q(x1:T |x0, τ) = q(xT |x0, τ)

T∏
t=2

q(xt−1|xt,x0, τ).

Here q admits such a decomposition due to our definition of the diffusion process in (4), which
introduce the following reverse process:

xt−1 = 1(τ = t)x0 + 1(τ ̸= t)xt.

Therefore, x1:T is Markovian when conditioned on x0 and τ . Based on the factorization, we have

ELBO = Eτ∼DτEx1:T∼q(x1:T |x0,τ)

[
log p

(T)
θ (xT |τ) +

T∑
t=1

log p
(t)
θ (xt−1|xt, τ)

− log q(xT |x0, τ)−
T∑

t=2

log q(xt−1|xt,x0, τ)
]

= Eτ∼Dτ
Ex1:T∼q(x1:T |x0,τ)

[
log p

(1)
θ (x0|x1, τ) +

T∑
t=2

log
p
(t)
θ (xt−1|xt, τ)

q(xt−1|xt,x0, τ)

+ log
p
(T)
θ (xT |τ)

q(xT |x0, τ)

]
= Eτ∼DτEx1∼q(·|x0,τ) log p

(1)
θ (x0|x1, τ)

+

T∑
t=2

Ext−1,xt∼q(·|x0,τ) log
p
(t)
θ (xt−1|xt, τ)

q(xt−1|xt,x0, τ)
+ const

= Eτ∼Dτ
Ex1∼q(·|x0,τ) log p

(1)
θ (x0|x1, τ)︸ ︷︷ ︸

L1

−
T∑

t=2

Eτ∼Dτ
Ext−1,xt∼q(·|x0,τ)KL(q(xt−1|xt,x0, τ)|p(t)θ (xt−1|xt, τ))︸ ︷︷ ︸

Lt

+const.

16

Under review as a conference paper at ICLR 2024

By a slight abuse of notations we use q(xt−1|xt,x0), p
(t)
θ (x0|x1) to indicate the distribution of the

diffusion process defined in Zheng et al. (2023), that is, the standard Markov discrete diffusion
process. In particular, we have

L1 =

{
Ex1∼q(·|x0) log p

(1)
θ (x0|x1), τ = 1,

const, τ ̸= 1.

Lt =

{
Ext−1,xt∼q(·|x0)KL(q(xt−1|xt,x0)|p(t)θ (xt−1|xt)), τ = t,
0, τ ̸= t.

Thus, we can obtain that

ELBO =P(τ = 1) · Ex1∼q(·|x0) log p
(1)
θ (x0|x1)︸ ︷︷ ︸

L1

−
T∑

t=2

P(τ = t) · Ext−1,xt∼q(·|x0)KL(q(xt−1|xt,x0)|p(t)θ (xt−1|xt))︸ ︷︷ ︸
Lt

+const.

Here Lt matches the loss terms in Zheng et al. (2023). In the practical training process, Zheng et al.
(2023) samples t from Unif{1, · · · , T} in each iteration and optimizes λt ·Lt, where λt’s are weights.
Thus, when we sample τ and optimize Lτ , our ELBO indeed leads to the same training objective as
Zheng et al. (2023) up to reweighting. Since Zheng et al. (2023) is a parametrization of existing works
(Austin et al., 2021; Hoogeboom et al., 2021b), our training objective indeed aligns with previous
discrete diffusion models.

B.3.2 CONTINOUS TIME DNDM

In Section B.3, we derived an ELBO for DNDM and its accelerated algorithm defined in Section 2
and 3. While for finite sampling steps, we can decompose the diffusion process via the sampling
steps 1, . . . , T in (14), it becomes intractable for continuous Time DNDM (Infinite steps T → ∞).
Therefore, we will formulate the ELBO of continuous time DNDM by decomposing the transition
times. The idea of decomposition of transition times follows Hoogeboom et al. (2021a), but their
proof is only applicable to absorbing discrete diffusion, while ours can deal with discrete diffusion
with various noise qnoise including multinomial diffusion.
In Section B.3, we only consider the case of a single token x ∈ RK for simplicity as we decompose
with the sampling steps T . In this Subsubsection, we will decompose over the transition time τ .
Therefore, we need to consider a sentence with multiple tokens xt,1:N = [xt,1, . . . ,xt,N] where
xt,n is the n-th token and N is the sequence length. Recall that we defined the transition time set
T = {τn}Nn=1 in Section 3. We arrange τn to obtain an ordered sequence τnk

, where 0 = τn0 <
τn1 < τn2 < . . . < τnN

= T . Then conditioning on the transition time set T = {τ1, . . . , τN}, we
have that

pθ(x0:T,1:N |T) = pθ(xτnN
,1:N |T)

∏
s=N,...,1

pθ(xτns−1
,1:N |xτns ,1:N

, T),

where we omit the time superscript of p for simplicity. Then the evidence lower bound inequality
gives

log pθ(x0,1:N |T) ≥ Exτn1
:T,1:N∼q(xτn1

:T,1:N |x0,1:N ,T) log
pθ(x0:T,1:N |T)

q(xτn1 :T,1:N |x0,1:N , T)
. (15)

By Jensen’s inequality, we have
log pθ(x0,1:N) = logEτ1,...,τn∼Dτ [pθ(x0,1:N |T)] ≥ Eτ1,...,τn∼Dτ [log pθ(x0|T)]. (16)

Plugging (15) into (16) gives the following ELBO,

log pθ(x0,1:N) ≥ Eτ1,...,τn∼Dτ
Exτn1 :T∼q(xτn1 :T |x0,T) log

pθ(x0:T |T)

q(xτn1
:T |x0, T)

:= ELBO.

We factorize the pθ and q by

pθ(x0:T,1:N |T) = pθ(xT,1:N |T)
∏

s=N,...,1

pθ(xτns−1
,1:N |xτns ,1:N

, T),

q(xτn1
:T,1:N |x0,1:N , T) = q(xT,1:N |x0, T)

∏
s=N,...,2

q(xτns−1
,1:N |xτns ,1:N

,x0,1:N , T).

17

Under review as a conference paper at ICLR 2024

Therefore, we have

ELBO = Eτ1,...,τn∼Dτ
Exτn1 :T,1:N∼q(xτn1 :T,1:N |x0,1;N ,T)

[
log pθ(xT,1:N |T)

+

N∑
s=1

log pθ(xτns−1
,1:N |xτns ,1:N

, T)− log q(xT,1:N |x0,1:N , T)

−
N∑
s=2

log q(xτns−1
,1:N |xτns ,1:N

,x0,1:N , T)
]

= Eτ1,...,τn∼Dτ
Exτn1

:T,1:N∼q(xτn1
:T,1:N |x0,1:N ,T)

[
log pθ(x0,1:N |x1,1:N , T)

+

N∑
s=2

log
pθ(xτns−1

,1:N |xτns ,1:N
, T)

q(xτns−1
,1:N |xτns ,1:N

,x0,1:N , T)
+ log

pθ(xT,1:N |T)

q(xT,1:N |x0,1:N , T)

]
= Eτ1,...,τn∼Dτ

Ex1,1:N∼q(·|x0,1:N ,T) log pθ(x0,1:N |x1,1:N , T)

+

N∑
s=2

Exτns−1
,1:N ,xτns ,1:N∼q(·|x0,1:N ,T) log

pθ(xτns−1
,1:N |xτns ,1:N

, T)

q(xτns−1
,1:N |xτns ,1:N

,x0,1:N , T)
+ const

= Eτ1,...,τn∼Dτ
Ex1,1:N∼q(·|x0,1:N ,T) log pθ(x0,1:N |x1,1:N , T)

−
N∑
s=2

Eτ1,...,τn∼Dτ
Exτns−1

,1:N ,xτns ,1:N∼q(·|x0,1:N ,T)

KL(q(xτns−1
,1:N |xτns ,1:N

,x0,1:N , T)|pθ(xτns−1
,1:N |xτns ,1:N

, T)) + const. (17)

Remark B.1. (17) represents the ELBO utilized by the DNDM-C architecture. As our transition
times τn are independently and identically drawn from the distribution Dτ , we are unable to further
decompose (17) into a loss function related to the position information 1 : N , as was accomplished
by Hoogeboom et al. (2021a).

C CHOICE OF THE TRANSITION TIME

Transition time τ in Definition 2.2 plays an important role in DNDM. In this section, we provide a
deeper discussion of the transition time. We first give a proof of the Theorem 3.1.

Proof of Theorem 3.1. By the definition of τ , we know that τn = t is equivalent to b0,n =
1, . . . , bt−1,n = 1 and bt,n = 0. Since {bt,n}Tt=0 is independent for different n by definition,
each τn is also independent. Therefore, we drop the subscript n for simplicity. On the other hand if
b0 = 1, . . . , bt−1 = 1 and bt = 0 we can also conclude that τ = t. Therefore, we have that

P(τ = t) = P(b0 = 1, . . . , bt−1 = 1, bt = 0)

=
[
Πt−1

s=1βs

]
· (1− βt)

= Πt−1
s=1βs −Πt

s=1βs

= αt−1 − αt,

where the second equality is due to bs, s = 1, 2, . . . , t are independent random variable following
Bernoulli(βs) distribution and the last equality is by the definition of αt = Πt

s=1βs.

Notice that αt is a decreasing sequence in the 0 to 1 range. Therefore, P(τ = t) ∈ [0, 1] for any
t ∈ {1, . . . , T}. Besides

∑
P(τ = t) =

∑T
t=1

(
αt−1 − αt

)
= α0 − αT = 1. Therefore, the derived

distribution is valid as long as the αt is decreasing from 1 to 0.
From Theorem 3.1, we discern that the nature of the diffusion model scheduler, αt, clarifies the
distribution of τ .
Linear α schedule. This is a schedule studied in (Austin et al., 2021), where αt = 1− t/T . This
will result in P(τn = t) = 1/T for every t in the range 1 to T . As a result, transition time distributes
uniformly across each moment in the set {1, . . . , T}. This can be verified in a) of Figure 3.
Cosine α schedule. This is a schedule studied in (Hoogeboom et al., 2021b), where αt = cos(π ∗
t/2T). For numerical consideration of the noise, a small offset s is added, i.e., αt = f(t)/f(0)

18

Under review as a conference paper at ICLR 2024

0 10 20 30 40 50
Value

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Transition Time

(a) αt = 1− t/T

0 10 20 30 40 50
Value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

De
ns

ity

Transition Time

(b) αt = cos(π ∗ t/2T)

0 10 20 30 40 50
Value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

De
ns

ity

Transition Time

(c) αt = cos2(π ∗ t/2T)

0 10 20 30 40 50
value (mapped from [0,1] to [0,50])

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

=3, =3
=1, =1
=15, =7
=2, =1

(d) Beta Distribution with Different Parameter
Figure 3: Different distribution of transition time for T = 50. a), b), c) The transition time sampled
1K times under the different αt schedule. d) The approximated transition time for t = 1, . . . , T using
different hypter-parameters.

where f(t) = cos((s + t/T)/(1 + s) ∗ π/2). As shown in b) of Figure 3, the transition time will
concentrate more on the large T .
Cosine square α schedule. This is a schedule studied in (Zheng et al., 2023), where αt = cos2(π ∗
t/2T), which motivated by Nichol & Dhariwal (2021). Again, for numerical consideration of the
noise, a small offset s is added, i.e., αt = f(t)/f(0) where f(t) = cos((s+ t/T)/(1 + s) ∗ π/2).
As shown in c) of Figure 3, the transition time will concentrate more on the middle of the range.
Generally, if we express αt as g(t/T), then we can simplify to P(τ = t) = g((t− 1)/T)− g(t/T),
which further refines to (1/T)|g′(t/T)| + o(1/T). This indicates that transitions are more likely
where |g′| is large. Such a mathematical finding can match our observation in Figure 3.
In practice, we find that the shape of the transition time doesn’t need to match the theoretical
prediction schedule exactly. As we can see from d) in Figure 3. A reshaped Beta distribution can
approximate all the transition time distributions in a fixed range. We first extract a time t ∈ [0, 1]
from a Beta distribution, then adjust these samples to fit by multiplying T and round them to acquire
the integer. Our experiment finds that a properly chosen Beta distribution (tuned on the validation
set) makes DNDM perform better on the translation tasks. Specifically, the chosen Beta distributions
and the searching method are reported in Appendix F. The performance of the four transition time
schedules mentioned above, including the reported Beta distributions for comparison, are listed in
Table 4, where we find the other three schedules affect the performance and most of their scores are
lower than the scores of Beta distribution, but their scores are at least still close to the reported Beta
distributions, especially for DNDM-k-absorb and DNDM-absorb. The efficiencies (measured by
NFE) are also similar to one another.
Additionally, the ablation study on a reasonable range of different Beta distributions with 50 and
1000 sampling steps is shown in Tables 8 and 7, where the BLEU scores and NFE values on the
test set of one of the three machine translation datasets, WMT16, are shown for demonstration. The
range of Beta distributions covers our chosen Beta schedules based on validation sets and a variety of
basic Beta distribution shapes. These results show that the different Beta distributions influence the
performance, but most of these choices of parameters still achieve results close to the optimal. Since
the Beta distributions of the reported results in Tables 1 and 2 are selected using the validation set,
they do not always have the highest scores on the test set, but their scores still at least belong to the
top tiers according to these tables.

19

Under review as a conference paper at ICLR 2024

Another view of the transition time. In Algorithm 1, we only need to call the neural network when
t ∈ T , which can significantly speed up the sampling since we reduce the function call. Notice that
after we get the x0 prediction, we only update the xt for those tokens at the transition time. However,
(5) implies that xt = x0 as long as τ > t. Therefore, instead of only updating the xt for those tokens
at the transition time, i.e., τ = t, we can also update those tokens with transition time τ >= t. This
motivates us to consider a variation presented as Algorithm 3, which keeps almost the same sampling
time but will update the tokens several times rather than just once. Since the tokens now get the
chance to be corrected over time. The new Algorithm 3 will be more robust than Algorithm 1.

Datasets Schedules
DNDM-multi DNDM-absorb DNDM-k-multi DNDM-k-absorb

BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE

IWSLT14

Cosine 31.72 31.71 32.71 31.21 32.91 31.71 34.50 31.21
Cosine2 31.78 31.74 32.93 31.21 32.78 31.74 34.53 31.21
Linear α 31.77 31.82 32.65 31.33 32.83 31.82 34.53 31.33
Beta (reported) 31.82 30.33 32.93 31.08 33.15 30.33 34.56 31.08

WMT14

Cosine 25.80 39.61 26.54 39.18 26.63 39.61 27.81 39.18
Cosine2 25.52 39.48 26.53 39.18 25.01 39.48 27.95 39.18
Linear α 25.58 39.97 26.33 39.82 25.47 39.97 27.63 39.82
Beta (reported) 25.71 38.94 26.43 38.76 26.88 38.94 27.82 38.76

WMT16

Cosine 32.71 40.50 33.56 40.45 33.46 40.50 34.37 40.45
Cosine2 32.73 40.50 33.51 40.45 33.44 40.50 34.24 40.45
Linear α 32.85 40.36 33.46 40.36 33.47 40.36 33.88 40.36
Beta (reported) 32.86 38.46 33.60 38.27 33.79 38.45 34.38 38.27

Table 4: The BLEU scores and average number of function evaluations (NFE) values of different
distributions of transition time for 1000 sampling steps with batch size 100. The parameters of the
Beta distributions in this table are the same as in Tables 1 and 2 and are reported in Appendix F.

D DISCUSSION OF THE NUMBER OF FUNCTION EVALUATIONS (NFE).
In this section, we discuss the number of function evaluations (NFE) in DNDM. According to (7),
the update of a token xt−1,n occurs solely at its designated transition time. Meanwhile, if step t
does not coincide with a transition time for any token, we maintain the sentence from the preceding
step unchanged: xt,1:N = xt−1,1:N . Therefore, our algorithm removes the need of evaluating
fn(xt,1:N , t) for steps outside the set of transition times. Given this structure, our analytical emphasis
is on the transition set T since function evaluations are required only at times t that are members of
T . Consequently, the NFE is precisely the cardinality of the transition set, denoted as |T |. In our
main paper, we propose a naive upper bound for |T | as min{N,T}, which effectively demonstrates
the efficiency of our method when T > N . Next, we demonstrate that DNDM also reduces the NFE
when T < N , by providing a precise estimation of |T |.
Theorem D.1. Suppose transition time follows distribution Dτ , and consider a sequence of length
N . Then, the cardinality of the transition set T := {τ1, . . . , τN} satisfies:
• 1 ≤ |T | ≤ min{N,T},
• E[|T |] = [1− CT,N,Dτ] · T , where CT,N,Dτ is a constant in the range (0, 1). Furthermore,

CT,N,Dτ
=

(T∑
i=1

(1− pi)
N
)
/T ≥ (1− 1/T)N ,

where pi = P(τ = i) for τ ∼ Dτ , and the equality holds if and only if Dτ is a uniform distribution.

Proof. The first statement is straightforward. For completeness, the proof is provided. Since there
are only N transition times (possibly repeated): τ1, . . . , τN , the distinct transition times must satisfy
|T | ≤ N . Additionally, since T ⊆ {1, . . . , T}, we also have |T | ≤ T .
To prove the second statement, we decompose T and use the property of expectation. Note that
|T | =

∑T
i=1 1{i ∈ T }. Thus,

E[|T |] = E
[T∑

i=1

1{i ∈ T }
]
=

T∑
i=1

P(i ∈ T). (18)

20

Under review as a conference paper at ICLR 2024

Assuming PDτ
(τ = i) = pi, and that τn are i.i.d. draws from Dτ , we have

P(i ∈ T) = 1− P(i /∈ T) = 1− (1− pi)
N . (19)

Substituting (19) into (18) yields

E[|T |] =
T∑

i=1

[
1− (1− pi)

N
]
=

[
1−

∑T
i=1(1− pi)

N

T

]
· T = [1− CT,N,Dτ

] · T,

where CT,N,Dτ
=

(∑T
i=1(1− pi)

N
)
/T . An upper bound for CT,N,Dτ

is given as

CT,N,Dτ
=

[
1−

∑T
i=1(1− pi)

N

T

]
· T

≤
[
1−

(
1− 1

T

)N]
· T,

where the inequality holds if and only if pi = 1/T for all i ∈ [T], i.e., Dτ is a uniform distribution.

Remark D.2. Theorem D.1 suggests that even when T ≤ N , our method still provides a significant
improvement. Specifically, for T = N ≥ 4, we have CT,N,Dτ = (1− 1/N)N ≥ 0.3. This implies
that our model requires at most 0.7T even in the worst case. Moreover, if we consider a special
scenario where the number of pi satisfying pi < ϵ is more than M , then we have CT,N,Dτ >
M(1 − ϵ)N/T , indicating that with M sufficiently large and ϵ sufficiently small, CT,N,Dτ

can be
pretty close to 1.
Remark D.3. In practical applications of our model, we employ a beta distribution for Dτ , which
typically exhibits a right-heavy tail. Therefore CT,N,Dτ

tends to be larger than that in the worst-case
scenario. In Tables 5 and 6, we list the average NFE for each experiment we run in §5. These results
demonstrate a significant reduction in NFE compared to the original counts: for T = 25, the NFE is
only about half of the original count; for T = 50, it is approximately one-third; and for T = 1000, it
reduces to less than one-twentieth of the original count.
Remark D.4. By Bernoulli’s inequality, (1 − p)N > 1 − N · p for 1 > p > 0. Therefore,
CT,N,Dτ

> 1 − N/T , implying that E[|T |] < N . As T → ∞, assuming the transition time does
not concentrate at a single point, the probability that two transitions occur simultaneously is zero.
Consequently, the generation process will sequentially go through each token. Thus, the expected
number of function evaluations (NFE), E[|T |], will be N . In contrast, when T is finite, there is a
non-zero probability that multiple transitions happen at the same time. Hence, in this case, the NFE,
|T |, is strictly less than N

E DISCRETE NON-MARKOV DIFFUSION MODEL WITH TOP-K TRANSITION
TIME (DNDM-K).

Recent works have demonstrated that the quality of samples can be enhanced by utilizing supple-
mentary information derived from the neural network, fθ(·, t) (Ghazvininejad et al., 2019; Savinov
et al., 2021; Chang et al., 2022; He et al., 2022). Very recently, Zheng et al. (2023) applied this idea
in their RDM framework and can achieve significant performance improvement. Specifically, after
decoding x̂0,1:N from transformer fθ(xt,1:N , t), the score corresponding to this decoded token from
the transformer’s last layer, is also recorded and denote as st,n. Tokens with high scores are more
likely to be selected for updates.
Inspired by Zheng et al. (2023), we introduce the discrete non-Markov discrete diffusion Model with
top-K transition time (DNDM-K). Instead of directly determining which token gets updated at step t
by first drawing transition time τ ∼ Dτ , we employ a two-step process.
1. We first compute Kt =

∑N
n=1 1(τn ≥ t). kt represents how many tokens should be decoded at

the current step.
2. Compare Kt−1 and Kt, if Kt−1 = Kt. There is no transition time at time t, we just update

xt−1,1:N = xt,1:N . If Kt−1 > Kt, Then there exist transition time at time t, we calculate and
select the indexes with top-Kt−1 scores. Then we update those tokens if it hasn’t been updated
yet.

Subsequently, we will only update those tokens with the highest Kt score that hasn’t been changed
yet. Since the function evaluation occurs only when Kt changes, DNDM-K can give an accelerated
sampling algorithm. The details are presented in Algorithm 4.

21

Under review as a conference paper at ICLR 2024

Dataset Steps RDM-Multi DNDM-Multi RDM-k-Multi DNDM-k-Multi

BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE

IWSLT14

25 31.26 25 30.95 9.03 32.82 25 32.30 9.03
50 31.50 50 31.45 14.07 32.82 50 32.80 14.07

1000 31.69 1000 31.82 30.33 32.64 1000 33.15 30.33
∞ - - 31.89 32.73 - - 33.44 32.73

WMT14

25 25.25 25 25.01 13.52 26.03 25 25.98 13.52
50 25.75 50 25.33 20.58 26.14 50 26.37 20.58

1000 25.66 1000 25.71 38.94 25.82 1000 26.88 38.94
∞ - - 24.79 40.67 - - 26.39 40.67

WMT16

25 32.29 25 31.97 8.5 33.12 25 32.94 8.5
50 32.53 50 32.50 14.73 33.41 50 33.26 14.73

1000 32.63 1000 32.86 38.45 33.67 1000 33.79 38.45
∞ - - 32.91 41.64 - - 33.86 41.64

Table 5: BLEU score and the average number of function evaluations (NFE) comparison of multino-
mial diffusion on machine translation benchmarks IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO.
The blue background highlights our algorithms. The average NFE values are calculated by dividing
the number of times calling the denoising function (neural network) during generation by the number
of batches, where the batch sizes of all experiments are 100.

Dataset Steps RDM-Absorb DNDM-Absorb RDM-k-Absorb DNDM-k-Absorb

BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE

IWSLT14

25 31.58 25 32.43 13.81 34.50 25 34.14 13.81
50 31.80 50 32.63 19.24 34.58 50 34.34 19.24

1000 31.91 1000 32.93 31.08 34.60 1000 34.56 31.08
∞ - - 33.03 32.07 - - 34.65 32.07

WMT14

25 24.97 25 25.79 15.09 27.50 25 27.18 15.09
50 24.95 50 26.10 22.45 27.73 50 27.66 22.45

1000 25.22 1000 26.43 38.76 27.75 1000 27.82 38.76
∞ - - 26.50 40.39 - - 27.50 40.39

WMT16

25 32.86 25 33.20 13.91 33.92 25 33.96 13.91
50 32.93 50 33.30 20.95 34.10 50 34.20 20.95

1000 33.25 1000 33.60 38.27 34.44 1000 34.38 38.27
∞ - - 33.42 41.59 - - 34.41 41.59

Table 6: BLEU score and the average number of function evaluations (NFE) comparison of absorbing
diffusion on machine translation benchmarks IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO. The
blue background highlights our algorithms. The average NFE values are calculated by dividing the
number of times calling the denoising function (neural network) during generation by the number of
batches, where the batch sizes of all experiments are 100.

F EXPERIMENT DETAILS

F.1 CONDITIONAL TEXT GENERATION

Parameter choices. In all experiments, the batch size is chosen to be 100. For RDM and RDM-k,
our hyperparameter settings follow the original paper (Zheng et al., 2023) except for the batch size.
Before the sampling, we used the saved checkpoint of trained models provided by the authors for
discrete sampling experiments, and we trained the corresponding models for continuous sampling
experiments.
For finite-step DNDM, the transition times are determined by the schedule, and we approximate the
schedule with a Beta distribution Beta(α, β) (please refer to Section 3 for detailed explanation). The α
and β values are selected by applying grid search on the validation sets. Based on the BLEU scores on
the validation sets, we have selected Beta(15, 7) for Multinormial Diffusion on IWSLT14, Beta(3, 3)
for Absorbing Diffusion on both IWSLT14 and WMT14, Beta(5, 3) for Multinormial Diffusion on
WMT14 and Absorbing Diffusion on WMT16, and Beta(20, 7) for Multinormial Diffusion on WMT16.

22

Under review as a conference paper at ICLR 2024

Algorithm 3 Sampling From DNDM (Ver-
sion 2)

Require: Trained prediction function
fθ(·, t), qnoise, Dτ

1: for n = 1 . . . N do
2: Initiate each token xT,n ∼ qnoise

3: Initiate the transition time τn ∼ Dτ

4: end for
5: Collect transition time set T =

{τn}Nn=1
6: for t = T . . . 1 do
7: if t ∈ T then
8: Generate x̃0,1:N from

fθ(xt,1:N , t)
9: for n = 1 . . . N do

10: Update xt−1,n if τn ≥ t
11: end for
12: else
13: Update xt−1,1:N = xt,1:N

14: end if
15: end for
16: return x0,1:N

Algorithm 4 Sampling From DNDM-K

Input: Trained prediction function fθ(·, t), qnoise

and Dτ

for n = 1 . . . N do
Initiate each token xT,n ∼ qnoise

Initiate the top K number {Kt}
Initiate an empty set U = {}, which includes the
index of the tokens that have been updated.

end for
for t = T . . . 1 do

if Kt−1 > Kt then
Calculate the P = argtopKt

{st,n}Nn=1;
Generate x̃0,1:N from fθ(xt,1:N , t)
Update xt−1,n = x̃0,n for all n in the set P but
not in the set U (top score but not updated yet)
Update the set U by appending the index of the
updated tokens

else
Update xt−1,1:N = xt,1:N ;

end if
end for
return x0,1:N .

For infinite-steps (continuous-step) diffusion (DNDM-C), the transition timestamps are sampled
from Beta(α, β), where the choice of (α, β) are chosen from (100.0, 4.0) or (17.0, 4.0), based on
the performance comparison on the validation set. In the end we choose Beta(17, 4) for IWSLT14
and Beta(100, 4) for WMT14 and WMT16.
We conduct a performance comparison based on varying configurations of the Beta and Alpha
distributions. The results of these comparisons are presented in Tables 8 and 7. Furthermore, to
evaluate the efficacy of discrete versus continuous step schemes, we also conduct an ablation study
under the same set of parameters (100, 4) in Table 9.

Model Alpha
Beta

3 5 7 9 11 13 15 17 19 21

DNDM-k-Multi
3 33.47 33.67 33.62 33.77 33.87 33.64 33.73 33.60 33.68 33.56
5 33.18 33.47 33.68 33.53 33.71 33.69 33.73 33.72 33.74 33.82
7 32.99 33.20 33.49 33.56 33.58 33.61 33.67 33.72 33.78 33.83

DNDM-Multi
3 32.73 32.66 32.74 32.82 32.77 32.92 32.80 32.81 32.76 32.86
5 32.32 32.62 32.70 32.80 32.83 32.83 32.90 32.95 32.91 32.87
7 32.35 32.35 32.53 32.67 32.75 32.78 32.86 32.80 32.86 32.88

DNDM-k-Absorb
3 34.19 34.38 34.34 34.22 34.21 34.24 34.07 34.31 34.42 34.36
5 32.15 33.99 34.29 34.30 34.29 34.40 34.40 34.24 34.30 34.22
7 27.67 32.87 33.94 34.28 34.27 34.38 34.31 34.29 34.38 34.40

DNDM-Absorb
3 33.53 33.60 33.67 33.71 33.71 33.70 33.58 33.63 33.53 33.54
5 32.70 33.33 33.52 33.60 33.66 33.73 33.70 33.74 33.72 33.74

7 30.56 32.65 33.28 33.37 33.51 33.52 33.61 33.67 33.63 33.67

Table 7: BLEU scores on dataset WMT16 from the ablation study of other different Beta(α, β)
distributions of the transition time with 1000 sampling steps.
Continuous time vs discrete time diffusions. To test our hypothesis that the continuous-time
sampler will produce more accurate results in reverse sampling if our x0 estimator consistently
approximates the true x0 over time, we conduct various sampling experiments using a shared pre-
trained neural network. For discrete-time sampling, we consider three cases: T = 25, 50, 1000.
In each case, we rescale the interval [0, T] to [0, 50] and divide it into T fractions. In contrast, for
continuous-time sampling, we directly sample from a continuous distribution over the interval [0, 50]
without any partitioning.

23

Under review as a conference paper at ICLR 2024

Model Alpha
Beta

3 5 7 9 11 13 15 17 19 21

DNDM-k-Multi
3 33.31 33.47 33.39 33.48 33.29 33.23 33.25 33.27 33.11 33.17
5 32.93 33.28 33.29 33.58 33.45 33.21 33.40 33.49 33.16 33.19
7 32.61 32.98 33.31 33.20 33.27 33.41 33.39 33.53 33.35 33.08

DNDM-Multi
3 32.63 32.46 32.44 32.56 32.59 32.55 32.37 32.33 32.22 32.23
5 32.31 32.43 32.66 32.64 32.68 32.55 32.55 32.44 32.35 32.30
7 31.95 32.11 32.22 32.26 32.54 32.52 32.50 32.58 32.48 32.41

DNDM-k-Absorb
3 34.05 34.2 34.31 34.37 34.15 34.05 34.06 33.77 33.81 33.84
5 32.30 34.08 34.30 34.38 34.26 34.23 34.09 34.06 34.02 34.13
7 27.39 32.64 33.71 34.18 34.02 34.33 34.31 34.17 34.12 34.19

DNDM-Absorb
3 33.26 33.30 33.29 33.24 33.23 32.97 33.06 32.85 32.89 32.63
5 32.47 33.08 33.31 33.22 33.41 33.25 33.15 33.27 33.04 32.98
7 30.34 32.27 33.27 33.03 33.16 33.14 33.27 33.11 33.11 33.07

Table 8: BLEU scores on dataset WMT16 from the ablation study of other different Beta(α, β)
distributions of the transition time with 50 sampling steps.

Steps DNDM-k-multi DNDM-k-absorb DNDM-multi DNDM-absorb
50 31.60 31.74 30.39 29.69

1000 33.59 34.37 32.87 33.52
∞ 33.86 34.41 32.91 33.42

Table 9: The BLEU scores on dataset WMT16 with Beta(100,4) as the transition time schedule for
discrete sampling or the distribution to sample transition timestamps for continuous sampling.

Training approach. In machine translation tasks, the neural network is designed to learn q(x0|xt, z),
where z represents the embedding of the source text obtained using transformer encoder layers.
For a fair comparison, we employ the same neural network structure as our baseline, with detailed
architecture specifications available in Section E.2 of Zheng et al. (2023). Furthermore, given that
the primary focus of this paper is the efficiency and effectiveness of our sampling algorithm, we
omit the training procedure and instead use a state-of-the-art diffusion-based pretrained checkpoint
from Zheng et al. (2023). In the Appendix, we present additional results of continuous sampling based
on a continuously trained checkpoint. In this setting, we rescale our network input to the interval
[0, 1] and uniformly sample from this interval. The rest of the architecture follows that of Zheng et al.
(2023).
Performance on WMT14. Our work primarily focuses on the sampling process, and for the training,
we utilized a pretrained checkpoint trained on 50 steps. In our sampling experiments we noticed
that our method does not work ideally on WMT14, this could be possibly attributed to the fact that
the training performance on WMT14 was not ideal. Specifically, when we performed sampling using
1000 steps, the network was trained with exposure to only 50 time steps, specifically at intervals of
20 (0, 20, 40, ..., 980, 1000). As a result, when we apply our model to generation using 1000 steps,
the checkpoint NN has only been explicitly trained on these intervals. While we generally assume
that the network can still provide a good estimate for the untrained steps, this might not hold under
some hard scenarios. Considering the longer training time and poorer performance of WMT14, it is
likely that the training performance is insufficient for us to rely on those unseen steps. In a word, the
model’s trained checkpoint may not be robust enough to effectively handle unseen steps, especially
for timesteps 1000 or infinite timesteps.

F.2 UNCONDITIONAL TEXT GENERATION

Parameter choices. We recover the checkpoints of the multinomial diffusion model employing the
provided code by Hoogeboom et al. (2021b). We train 12-layer Transformers for both text8 and
enwik8 datasets for 500 epochs with the cosine schedule. For the text8 dataset, we utilize a training
batch size of 256, while for the enwik8 dataset, we use a batch size of 128. During training, we
employ a learning rate of 0.0001, a weight decay parameter of 0.99, and the Adam optimizer.

G ADDITIONAL EXPERIMENTS

In this section, we present additional experimental results. We begin by plotting the relationship
between computational time and the number of sampling steps, using the absorbing diffusion in

24

Under review as a conference paper at ICLR 2024

IWSLT14 as an example. Figure 4 displays the growth of computational time for absorbing diffusion
(yellow and orange lines), RDM-absorbing diffusion, and our model DNDM-Absorb and DNDM-T-
Absorb (green and blue lines). We see from Figure 4 that previous algorithms, including absorbing

25 50 1000
of Sampling Steps

0

1000

2000

3000

4000

Co
m

pu
ta

tio
na

l T
im

e
(s

)

Absorb
DNDM-Absorb
RDM-Absorb
DNDM-T-Absorb

Figure 4: The growth of computational time with the increase of the sampling steps
diffusion and RDM-absorbing diffusion all suffer from linear growth of computational time.

G.1 CONTINUOUS TRAINING

In Section 5.1, we demonstrated the superiority of the DNDM-C algorithm, designed for continuous-
time, over discrete-time algorithms. However, this algorithm assumes that we have learned a
sufficiently accurate neural network at any timestamp t ∈ [0, 1]. Using the checkpoint trained with
50 discrete time partitions might not suffice for the purpose of continuous sampling. In this section,
we investigate the performance of continuous sampling when training is also done continuously.
In Table 10, we summarize the performance of DNDM-C based on a neural network estimated

Dataset Step scheme C-DNDM-Multi C-DNDM-Absorb
default top-k default top-k

IWSLT14 continuous 32.07 33.57 32.80 34.52
WMT16 continuous 33.48 33.71 33.50 34.36

Table 10: Continuouos Training + Continuous Sampling
continuously during training time. This involves sampling time uniformly from [0, 1] during training,
and the forward process follows Eq. (9) in Section 4. The training objective remains the same as
in discrete-time training. In Table 10 we list the result of IWSLT14 and WMT16 with continuous
training followed by continuous sampling. In addition, we compare the value with the corresponding
value during discrete training and continuous sampling in Section 5.1 and mark every item that
improves in bold. As demonstrated in Table 10, there is room for enhancement in the overall sampling
scores by training the neural network in a complete space of timestamps.

G.2 COMPARISON WITH MORE GENERATIVE MODELS

In our study, a key aspect of evaluating our fast discrete generative model involves comparisons
with prior work known for efficiency in sampling with minimal steps. Specifically, we draw a direct
comparison with the Mask-Predict (Ghazvininejad et al., 2019), which is notable for its ability
to generate high-quality results within just 10 iterations. The results are shown in Table 11. All
experiments were conducted on the same GPU and within the same machine setup.

Mask-Predict DNDM-Absorb DNDM-k-Absorb
Steps BLEU Time Steps BLEU Time NFE Steps BLEU Time NFE

10 33.08 49.25 25 33.20 41.2 13.91 25 33.96 41.4 13.91
15 33.06 67.94 50 33.30 62.5 20.95 50 34.20 62.7 20.95
25 33.16 111.89 1000 33.60 121.3 38.27 1000 34.38 122.7 38.27
40 33.10 169.95 ∞ 33.42 121.8 41.59 ∞ 34.41 121.9 41.59

Table 11: The performance comparison on WMT16 of DNDM with Mask-Predict (Ghazvininejad
et al., 2019). We align the number of sampling steps used in Mask-Predict with a similar number of
function evaluations (NFE) in our DNDM algorithm. We see that our Algorithm runs faster, with
better BLEU score.

25

Under review as a conference paper at ICLR 2024

G.3 SAMPLES FROM THE MULTINOMIAL TEXT MODELS

G.3.1 CONDITIONAL GENERATION

For DNDM-Multi trained on IWSLT14, we provide a full generation process with 100 steps in
Figure 5. A token ending with @@ indicates it is an incomplete word; it will be concatenated with the
following token to form a complete word. For example, “fel@@ lo@@ ws” means “fellows”.
t = 100
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise]
[noise] [noise] [noise] [noise] [noise] [noise]
t = 79
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise]
[noise] [noise] [noise] year [noise]
t = 78
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] we [noise] [noise] [noise] [noise] [noise]
[noise] [noise] [noise] year [noise]
t = 77
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] and we [noise] [noise] [noise] [noise] [noise]
[noise] [noise] [noise] year [noise]
t = 75
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] and we [noise] [noise] [noise] [noise]
govern@@ [noise] [noise] year [noise]
t = 74
we [noise] [noise] [noise] lo@@ [noise] [noise] [noise] and we [noise] [noise] [noise] [noise] govern@@
[noise] [noise] year [noise]
t = 73
we [noise] [noise] fel@@ lo@@ [noise] [noise] [noise] and we let [noise] [noise] [noise] [noise]
govern@@ [noise] [noise] year [noise]
t = 71
we [noise] [noise] fel@@ lo@@ [noise] [noise] [noise] and we let [noise] [noise] [noise] [noise]
govern@@ [noise] every year [noise]
t = 67
we [noise] [noise] fel@@ lo@@ [noise] [noise] [noise] and we let them [noise] [noise] city
govern@@ [noise] every year .
t = 66
we [noise] [noise] fel@@ lo@@ ws [noise] [noise] and we let them work [noise] city govern@@
[noise] every year .
t = 64
we [noise] [noise] fel@@ lo@@ ws [noise] [noise] and we let them work [noise] city govern@@
ance every year .
t = 61
we [noise] [noise] fel@@ lo@@ ws [noise] [noise] and we let them work with city
govern@@ ance every year .
t = 60
we [noise] [noise] fel@@ lo@@ ws [noise] year and we let them work with city
govern@@ ance every year .
t = 58
we [noise] [noise] fel@@ lo@@ ws every year and we let them work with city
govern@@ ance every year .
t = 52
we [noise] some fel@@ lo@@ ws every year and we let them work with city
govern@@ ance every year .
t = 39
we choose some fel@@ lo@@ ws every year and we let them work with city
governance every year.

t = 0
we choose some fel@@ lo@@ ws every year and we let them work with city
governance every year.

Figure 5: Text in the Generation Process

26

Under review as a conference paper at ICLR 2024

We can see that after t = 39, the generate sentence converges.

G.3.2 UNCONDITIONAL GENERATION

For the multinomial diffusion model trained on the text8 dataset, Figure 6 provides a comparison of
samples generated using the original sampling method and the DNDM algorithm. For the multinomial
diffusion model trained on the enwik8 dataset, Figure 7 provides a comparison of samples generated
using the original sampling method and the DNDM algorithm. Specially, for our DNDM sampling
algorithm used in text8, we set temperature parameter τ as 1, while for our DNDM sampling
algorithm used in enwik8, we set temperature parameter τ as 0.4.
s women relations of epistle seen
since dominants were that serious
form the judges of the most un
ato distue poorlus d al saucomi
and on whom within the work and
test for automaneous poon the
foundings and francis e panisa
who promoted ido who named as th

(a) Vanilla

ass any other than the necessary
the relations were accepted by the
nations of the ront the beginning
of the purpose of the creation
in the united states of nuclear
permissions with the late one eight
seven zero and shvmd the lire thit
was possibly in tueh

(b) DNDM
Figure 6: text8 multinomial diffusion samples generated by different sampling algorithms

27

Under review as a conference paper at ICLR 2024

organised party. Many split
that fire and complexity dairy
gives suppress more technically
location, which follows the
foundations of debate affordands
for much prison body fors from
a resole use drinking theories
and other the hamp in the rage
in which he conforms to by be
eaven.) It except put out it
would go in apr

oth very mean what sometimes
added to master ounce be fact in
what verbs confidence that is,
below that or abdollo states
the select inquiry. Calene
deals auro prosemi indecovered
the concepts’ paids accounts
the cloud (or converted with
the version) of each verb if
primarily solution is such as,
the caves produce as b

to fee produce for much project.

Allan Racing and Kick requests
loose feets, both in the time,
and all the murder as they are
the normal that are used to its
privategrad, [[indico]] dotes.
Too many transitors belies their
major deverocentral exception to
[[Inducide]].

These operator scripts are
existed that [[Time G

ector famine, the Filippurni
histt infection. The Lincomten’s
"obero" (sun) shaped
55 status (38 ft) width, and the
would be Genticel category to fit
the number of the dead because of
Time Figgin unallowed as forcible
and when modified its at home
dialecture, where two (unmonths
and 22 marches (1200 cm) and t

rove with many the First Sagan’s
describe "Keugen"
ventuare Villagues re raduals,
the success of them

*[[Opeatre in France]], and the
[[Francisco Expert]] named the
inconveniental picture catria
using the [[Valin Reds]] and
[[Lagin (music)|Lagin]]s at
the Four Rein’s Warriors and
at seven-year seas frequents

(a) Vanilla

the imperiors that the rules
power; among these cities, the
leader have been based set half
of the riot and bringing the
until t e age of the home rests
eround the thirds of the empire
on the east with London, and,
most only in them, the Eastern
part of the New Churchs to have
been, have some waves that should
be haven

ent decade it to in passage of
and resulting in making the
messiges, while he cannot not
assist their decision of the
version of the same first ships,
and that the war controls the
major voices of company. Rose
combines created downward later
that the planets predicted in
order the expression he was a
part of the court

and [[Alain Corter]] recording
where succession was the stone
depiction of the House the admini
tion of Mike Theaster’s son as a
Victorian history.

Modern of the wars im a deal
in the latgest area sf records,
invading British release to
the traditional bishop of some
years. The treaty of English
Roman children also c

ey. Yet in they point that the
two lists takes thee could be
diverse. When how the daces when
not pressed in the spot, etc.
They are in the dace. The the
top on the island at the face in
the wooder let for the way. He
gives take let face to the left.
A crowd was the center of the
incentrations of the wind

the D-B the line of the loou
to DOS, then then ranked by the
intra line of many times. This
is also the direction of being
the i e in one. This prefix that
DOB is a little release that the
ONE DOS present unusual capable
for interface and all that there
is The data in unadditional data
formats. There are more of the d

(b) DNDM
Figure 7: enwik8 multinomial diffusion samples generated by different sampling algorithms

28

	Introduction
	De-randomized Diffusion Process
	Discrete Markov Process
	De-randomized process and corresponding reverse sampling

	Accelerated Reverse Sampling
	Continous-time (Infinite Step) Reverse Sampling
	Experiments
	Conditional Text Generation
	Unconditional Text Generation

	Conclusion and Future Work
	Related Work
	Additional details of Discrete Diffusion
	De-randomization
	Training Objective
	Calculation of the Evidence Lower Bound
	Finite Time DNDM
	Continous Time DNDM

	Choice of the Transition Time
	Discussion of the Number of Function Evaluations (NFE).
	Discrete Non-Markov Diffusion Model with Top-k Transition Time (DNDM-K).
	Experiment details
	Conditional Text Generation
	Unconditional Text Generation

	Additional Experiments
	Continuous training
	Comparison with more generative models
	Samples from the multinomial text models
	Conditional Generation
	Unconditional Generation

