
Published as a workshop paper at FPI @ ICLR 2025

EFFICIENTLY WARMSTARTING MCMC FOR BNNS

David Rundel, Emanuel Sommer, Bernd Bischl, David Rügamer, Matthias Feurer
Department of Statistics, LMU Munich, Munich, Germany
Munich Center for Machine Learning, Munich, Germany
{firstname.lastname}@stat.uni-muenchen.de

ABSTRACT

Markov Chain Monte Carlo (MCMC) algorithms are widely regarded as the gold
standard for approximate inference in Bayesian neural networks (BNNs). How-
ever, they remain computationally expensive and prone to inefficiencies, such
as dying samplers, frequently leading to substantial waste of computational re-
sources. While prior work has presented warmstarting techniques as an effective
method to mitigate these inefficiencies, we provide a more comprehensive empir-
ical analysis of how initializations of samplers affect their behavior. Based on var-
ious experiments examining the dynamics of warmstarting MCMC, we propose
novel warmstarting strategies that leverage performance predictors and adaptive
termination criteria to achieve better-performing, yet more cost-efficient, models.
In numerical experiments, we demonstrate that this approach provides a practical
pathway to more resource-efficient approximate inference in BNNs.

1 INTRODUCTION

Recent advancements in deep learning (DL) have led to models achieving outstanding predictive ac-
curacy across diverse tasks. However, these models often fail to provide reliable uncertainty quan-
tification (UQ), limiting their broader applicability. Bayesian deep learning (BDL) offers a com-
pelling framework for addressing this challenge, with Markov Chain Monte Carlo (MCMC) being
one widely used approach to approximate inference (Neal, 2012a; Papamarkou et al., 2024). Never-
theless, MCMC-based inference in Bayesian neural networks (BNNs) is computationally expensive
and susceptible to inefficiencies (Izmailov et al., 2021). To address this, prior work has proposed
warmstarting, where MCMC samplers are initialized with specifically chosen starting points, and
demonstrated its effectiveness in preventing dying samplers (Sommer et al., 2024) - a phenomenon
where samplers become trapped in regions of very low probability after initialization. However, a
comprehensive analysis of how warmstarting impacts both the UQ performance of sampling algo-
rithms and their associated computational costs is lacking.

Our Contributions: In this work, we close this gap by investigating the dynamics of warmstarting
MCMC and how they relate to properties of the posterior. By first analyzing this through an extensive
set of numerical experiments, we find that the performance of samplers and their functional outputs
can be linked to the characteristics of the initial proposals. Furthermore, we are the first to link
the potential performance gains of warmstarting to its associated computational cost, identifying
significant pipeline backloading. These insights motivate the development of novel warmstarting
strategies that leverage performance predictors and adaptive termination criteria to yield models
with improved performance at lower computational cost. Finally, we provide empirical evidence
validating the effectiveness of our approach.

2 BACKGROUND AND RELATED WORK

Let Dtrain = {xi, yi}ntrain
i=1 represent a training dataset consisting of ntrain independent and identically

distributed (iid) observations, where each xi ∈ X ⊆ Rp is a p-dimensional feature vector and
yi ∈ Y is the corresponding target. In supervised machine learning (ML), the objective is to learn
a model f̂ : X → Y that accurately approximates the conditional distribution p0(y

∗ | x∗) of the
underlying data generating process (DGP) for previously unseen x∗. In this work we focus on deep

1

Published as a workshop paper at FPI @ ICLR 2025

neural networks (DNNs) f̂θ, parameterized by θ ∈ Θ ⊆ Rd. BDL approximates p0(y∗ | x∗) by the
posterior predictive density (PPD) p(y∗ | x∗,Dtrain), which integrates over the posterior distribution
of the model parameters θ.

2.1 BACKGROUND

However, exact Bayesian inference is typically intractable, and designing approximate inference
methods presents a significant challenge: Contemporary DNNs give rise to posterior surfaces that
are extremely high-dimensional and multi-modal, making exhaustive exploration intractable and
increasing the risk of neglecting important regions. Furthermore, effectively disconnected poste-
rior modes (Yao et al., 2022; Sommer et al., 2024) and posterior symmetries (Wiese et al., 2023;
Hecht-Nielsen, 1990), potentially leading to redundant computations that do not improve predictive
uncertainty, further exacerbate this issue (Neal, 2012a; Papamarkou et al., 2024).

2.2 MARKOV CHAIN MONTE CARLO

MCMC unites a class of algorithms for approximate inference, designed to generate Markov chains
with stationary distribution corresponding to the posterior distribution. Specifically, given an initial
proposal (IP) θ(0) ∈ Θ, a sampling algorithm produces approximate posterior samples collected
in S = {θ(1), . . . ,θ(S)} ∈ ΘS . The algorithms operate in two phases: an initial warmup phase,
during which samples are generated to ensure effective mixing of the chains but are later discarded,
and the main sampling phase, where the actual posterior samples are drawn (Gelman et al., 2013).
Compared to alternative approximate inference methods for BNNs, MCMC is often considered the
gold standard because it does not rely on restrictive assumptions about the posterior distribution
(Farquhar et al., 2020). However, this advantage comes at the cost of significantly increased com-
putational cost. State-of-the-art (SOTA) algorithms like Hamiltonian Monte Carlo (HMC) (Neal,
2012b) require extensive warmup phases and must repeatedly iterate over the entire training dataset
to generate a single approximate posterior sample (Izmailov et al., 2021). Nevertheless, phenomena
such as chains becoming stuck in isolated regions or the dying sampler problem (Sommer et al.,
2024) — where chains become trapped in regions of near-zero probability from which they were
initialized — suggest that, despite the high computational burden, the true posterior distribution is
often not efficiently recovered and a significant amount of computational resources is wasted.

Motivated by this, Sommer et al. (2024) proposed Deep Ensemble Initialized MCMC (DEI-MCMC),
a strategy that leverages multiple chains simultaneously to explore multimodal surfaces more effec-
tively. Empirical evidence has shown that this approach often generates samples with greater func-
tional diversity compared to those from single chains, thereby improving UQ performance (Wiese
et al., 2023; Fort et al., 2019). The method first optimizes several DNNs and uses their parameters
as IPs for the parallel MCMC runs in the subsequent sampling phase — a process known as warm-
starting. With this approach, initializing samplers in regions of high posterior density rather than
using random IPs, issues related to dying samplers can be avoided, and the length of the warmup
phase can be significantly reduced. The detailed algorithm is outlined in Appendix A.1. However,
this approach still has several limitations: Although warmstarting samplers proves to be an efficient
strategy, there is no guarantee that the samplers will explore the posterior in regions that contribute
most to the PPD or capture functional diversity that enables effective interactions across chains.

3 ANALYZING MCMC WARMSTARTING DYNAMICS

In the following section, we will explore typical dynamics of warmstarting MCMC runs with opti-
mized DNNs. We consider the Bike Sharing dataset (Fanaee-T, 2013), a medium-sized regression
task, modeled with a simple multi-layer perceptron (MLP) and sampled using the No-U-Turn Sam-
pler (NUTS) (Hoffman et al., 2014), a SOTA full-batch sampling algorithm. This preliminary analy-
sis provides valuable insights that motivate our subsequent methodology for enhancing DEI-MCMC.

2

Published as a workshop paper at FPI @ ICLR 2025

Figure 1: Performance difference evolution
across various warm-started MCMC runs. Ver-
tical bars separate the phases, and an inset plot
zooms into the final warmstart step. The runs
are colored according to their final performance.

Figure 2: Functional diversity, measured by the
Wasserstein distance of predictive distributions,
between different steps within and between six
warmstarted MCMC runs, each consisting of 100
warmup and 200 sampling steps. The axes are
sorted by run, phase, and step.

3.1 PERFORMANCE DIFFERENCES

In Figure 1, we illustrate the evolution of UQ performance across different phases and 100 warm-
started MCMC runs. For each run, the warmstart phase lasts for 4096 epochs, followed by a warmup
phase of 100 steps, as proposed by Sommer et al. (2024), and then a sampling phase of 2048 steps.
The x-axis shows the wall-clock time in hours on a logarithmic scale, with vertical bars separat-
ing the three phases. The y-axis shows the corresponding log pointwise predictive density (LPPD)
(Equation 4 in Appendix A.3) on the test set Dtest at each step, computed using all previous approx-
imate posterior samples from the respective chain during the sampling phase and only the current
parameter state in the preceding phases. Furthermore, each run is colored according to the LPPD of
the entire chain.

Generally, after the random initialization of DNNs in regions of low LPPDs, optimization elevates all
runs into areas of substantially higher LPPDs, with each run converging at slightly different levels.
During the warmup phase of the DNN-initialized MCMC runs, another slight increase in LPPDs is
observed. Subsequently, in the sampling phase, the samplers achieve even higher UQ performance
and exhibit convergence. This can be attributed to the marginalization over multiple approximate
posterior samples rather than considering single parameter states. The final UQ performance of the
chains varies significantly between runs. Moreover, while the ultimate ranking of chains differs
from their ranking in earlier phases, as indicated by the color gradient across runs at each step, there
appears to be a relationship with the ranking of partial chains and the rankings in the warmup phase.
Notably, as indicated by the inset plot (bottom right), which displays the final step of the warmstart
phase in isolation, there even seems to be a link between the final performances of the warmstart
phase and the final chain performances.

3.2 FUNCTIONAL DIVERSITY

Furthermore, we investigate the functional diversity between different steps within and between
chains. Therefore, we consider six warmstarted MCMC runs with warmup and sampling phases
of 100 and 200 steps, respectively. For each run and step across phases, we compute the predic-
tive distribution over the test set and estimate the functional diversity between all pairs using the
Wasserstein-2 distances between the associated predictive distributions.

Figure 2 visualizes the Wasserstein distance between predictive distribution pairs, with axes sorted
by run, phase, and step, and colors indicating distance. Generally, one can observe that functional

3

Published as a workshop paper at FPI @ ICLR 2025

diversity is typically much higher between runs than within runs. This suggests that, at least for a
limited number of steps, the samplers remain largely confined to a local subspace of the functional
output space, which is related to the functional outputs from the initialization.

3.3 BACKLOADING

As observed in Figure 1, the time required for the warmstarting phase accounts for only a fraction
of the subsequent warmup and sampling times: While the warmstarting phase takes approximately
2 minutes (141 seconds), the combined warmup and sampling phases require, on average, more
than 9 hours (33,762 seconds). This difference arises from the distinct algorithms used in these
phases: During the latter phases, NUTS is employed, which performs several integration steps for
each posterior sample. In popular implementations such as BlackJAX (Cabezas et al., 2024), PyMC
(Abril-Pla et al., 2023), and Stan (Carpenter et al., 2017), the default configuration allows up to
1,024 integration steps, each requiring gradient computation of the posterior with respect to all
model parameters for the entire dataset. In contrast, during warmstarting, a well-performing DNN
can be trained in our experiments with only thousands of optimization steps, each requiring just
a single gradient evaluation on the dataset. Consequently, the warmstarting phase is significantly
cheaper than the sampling phase, a phenomenon we refer to as backloading of the pipeline.

4 METHODOLOGY

Previous findings clearly indicate the potential to improve DEI-MCMC’s efficiency and motivate the
following exposition.

4.1 EXAMINING ANYTIME PERFORMANCE

Existing work has primarily evaluated DEI-MCMC from an UQ performance perspective, without
considering its computational cost. We suggest instead to frame it as a multi-objective optimization
problem, relating the potential performance gains of warmstarting to its computational overhead.
This consideration is particularly important, as the methods introduced later in this work aim to fur-
ther enhance warmstarting approaches but at the cost of even greater computational overhead. Using
wall-clock time as a proxy for computational cost, we propose considering the anytime performance
of DEI-MCMC. This refers to the progression of performance — such as UQ performance mea-
sured by LPPD on an unseen test set — over time, incorporating all approximate posterior samples
generated up to that point. Hence, it indicates a method’s ability to produce high-quality results at
any stage of its execution, rather than solely at a single point.

4.2 CONFIGURING WARMSTARTS

Our empirical results in Section 3 suggest a correlation between warmstarting and sampler behavior
that goes beyond the mere occurrence of dying samplers but extends to the overall performance and
functional characteristics of chains. In this work, we propose a method to exploit these findings by
identifying warmstarting configurations that, across diverse tasks, improve the anytime performance
of DEI-MCMC. This can be regarded as an algorithm configuration problem (Hutter et al., 2009).

Algorithm configuration for DEI-MCMC While in the vanilla variant of DEI-MCMC, the
warmstarting procedure consists of sequential Hyperparameter optimization (HPO) and the opti-
mization of M DNNs, we aim to exploit the significant backloading of the pipeline. We propose
considering a larger number of IP candidates and strategically selecting an optimal subset for sam-
pling. With this approach, employing adaptive termination criteria, we can significantly increase the
number of considered IP candidates while greatly reducing computational cost compared to execut-
ing the entire sampling process for all candidates. This may be effective, as the enhanced set of IP
candidates could include IPs that lead to better-performing chains and chains that capture a broader
range of functional diversity, potentially interacting more effectively.

Optimization process We outline the proposed algorithm in Appendix A.2. Specifically, for
each task, we first optimize an expanded set of M ′ > M IP candidates, denoted as M′ =

4

Published as a workshop paper at FPI @ ICLR 2025

{θ(1), . . . ,θ(M ′)}. These candidates give rise to a variety of potential IP set candidates M ⊆ M′

with |M| = M for DEI-MCMC with M chains (while discarding all other candidates). We then aim
to select the IP set candidate M∗ that maximizes downstream performance under a fixed computa-
tional budget t ∈ R+. Mathematically, this can be formulated as

M∗ ∈ argmax
(M⊆M′:|M|=M)

[
ρ(LPPD, t)

(
As

(
M,λs,Dtrain

)
,Dtest

)]
, (1)

where Dtest = D \ Dtrain, As : ΘM × Λs × D → (ΘS)M is a parallel sampling procedure that,
given M IPs, a hyperparameter (HP) configuration λs ∈ Λs, and a training split Dtrain, generates
S posterior samples for each of the M chains, and the LPPD on the unseen test set at a given time
step t is defined via the performance measure ρ(LPPD, t). However, since leaking the test dataset is not
admissible and repeatedly evaluating As, thus executing the entire sampling process, is prohibitively
expensive, we propose resorting to proxy optimization instead:

M∗ ≈ argmax
(M⊆M′:|M|=M)

[
ρPP(M,Dval)

]
. (2)

Proxy metric As a proxy-metric, we propose utilizing low-fidelity performance predictors ρPP :
ΘM × D → R, which estimate the final performance of IP set candidates using only a previously
unseen validation split Dval (of the training data) and the parameter states of the IPs. Specifically,
we propose the following proxy-LPPD-based performance predictor:

ρPP (M,Dval) =
1

nval

∑
(x∗,y∗)∈Dval

log
(1

M

∑
θ̃∈M

p(y∗ | x∗, θ̃)
)
. (3)

It is closely related to our downstream UQ performance metric (Equation 4 in Appendix A.3), as
it approximates the LPPD of an ensemble of chains on a test set by computing the same metric
on a validation set and using only a single proxy posterior sample for each chain — namely, the
last parameter state of the warmstarting phase. Thereby, it does not only consider IP candidates in
isolation but also take interactions into consideration.

Ensemble selection via greedy search Furthermore, since an exhaustive search for the combina-
torial optimization problem in Equation 2 quickly becomes infeasible, we instead apply ensemble
selection algorithms (Caruana et al., 2004) that select among IP set candidates using the perfor-
mance predictors in a feasible way. We propose a greedy search as follows: After initializing M as
empty, at each of the M steps, the IP candidate that yields the largest performance improvement in
the performance predictor, computed on the current M, is added to M.

5 EXPERIMENTS

Setup We conduct 100 independent warmstarted MCMC runs on the Bike Sharing dataset
(Fanaee-T, 2013) and the Protein Tertiary Structure dataset (Rana, 2013) — both medium-sized
regression tasks modeled with simple MLPs and sampled using NUTS (Hoffman et al., 2014). We
use the experimental setup as delineated in Appendix A.3, including a warmstart phase of 4096
epochs, a warmup phase of 100 steps, and a sampling phase of 2048 steps for each run. We then
repeatedly sample random subsets of runs of size M ′. In each trial, we compare the performance
of our proposed method (referred to as ”Ours” in the following) to that of the vanilla variant of
DEI-MCMC (referred to as ”Baseline”). Specifically, for our proposed method, in each trial, we se-
lect M out of the M ′ runs according to our proposed performance predictors (Equation 3), coupled
with the proposed greedy search algorithm (Subsection 4.2). To simulate the behavior of vanilla
DEI-MCMC (Algorithm outlined in Appendix A.1), which optimizes only M IPs, we simply select
the first M runs of each trial. Furthermore, for each specified M , we assume a parallel computing
environment with M parallel cores, each independently performing warmstarted MCMC runs.

Results Figure 3 depicts the mean anytime LPPDs of the approaches for various combinations
of M and M ′ across 100 trials on the Bike Sharing dataset. An equivalent plot for the Protein
Tertiary Structure dataset is provided in Appendix A.4. The x-axis indicates the wall-clock time in

5

Published as a workshop paper at FPI @ ICLR 2025

Figure 3: Mean anytime LPPDs (across 100 trials) of our proposed method compared to the
baseline (vanilla DEI-MCMC) for various combinations of M and M ′ on the Bike Sharing
dataset.

seconds. Due to extended warmstarting procedures, the configurations of our proposed method start
generating posterior samples at a later stage than the baselines. However, across all configurations,
our proposed method surpasses the respective baseline after a relatively short amount of time and
seems to converge at higher LPPD levels.

In Table 1, we compare the final mean LPPDs across all configurations and trials on the Bike Sharing
dataset and the Protein Tertiary Structure dataset. The results suggest that across tasks, for all
considered variants of M and up to the investigated values of M ′, the ultimate performance increases
monotonically with M ′. These findings indicate that, despite the computational overhead — due to
backloading and the ability to predict highly performant chains — a large number of IP candidates
is worthwhile.

6 CONCLUSION

In this work, we investigated the causes of the computational cost in MCMC-based inference for
BNNs by analyzing the dynamics of warmstarting Markov chains. We found that performance pre-
dictors can be used in order to determine better-performing chains when the computational budget
is limited. We demonstrated the potential of our proposed method to achieve better-performing yet
more cost-efficient MCMC-based approximate inference in BNNs.

Table 1: LPPD mean and standard deviation (across 100 trials) for different M values and config-
urations of our proposed method compared to the baseline (DEI-MCMC), after approximately 14
hours (50,546 seconds) on the Bike Sharing dataset and approximately 34 hours (123,595 seconds)
on the Protein Tertiary Structure dataset. For our proposed method, the value of M ′ is given by the
product M · c. The highest mean value for each M is highlighted in bold.

Dataset M Baseline Ours
(c = 1) c = 4 c = 8 c = 16 c = 32

Bike
1 0.513 ± 0.041 0.529 ± 0.029 0.536 ± 0.032 0.550 ± 0.031 0.564 ± 0.024
2 0.546 ± 0.023 0.560 ± 0.019 0.571 ± 0.019 0.584 ± 0.016 0.596 ± 0.013
4 0.564 ± 0.013 0.576 ± 0.012 0.584 ± 0.011 0.597 ± 0.007 —

Protein
1 -0.869 ± 0.022 -0.866 ± 0.018 -0.863 ± 0.018 -0.859 ± 0.017 -0.857 ± 0.019
2 -0.816 ± 0.013 -0.814 ± 0.012 -0.810 ± 0.010 -0.808 ± 0.011 -0.803 ± 0.008
4 -0.789 ± 0.009 -0.785 ± 0.008 -0.783 ± 0.008 -0.778 ± 0.007 —

6

Published as a workshop paper at FPI @ ICLR 2025

Future work There are three main directions for future research that follow from our work: 1)
More advanced warmstarting configurations, potentially incorporating more sophisticated perfor-
mance predictors and ensemble selection algorithms, could result in even greater cost savings (or,
equivalently, increased performance under constraints). 2) Exploring these effects in large-scale,
structured studies using, for example, algorithm configuration approaches such as SMAC (Hutter
et al., 2011) could provide highly valuable insights for practitioners, as the computational costs of
MCMC-based inference still prevent its application to large-scale computer vision or language mod-
els and bigger datasets. 3) Lastly, from an anytime performance perspective, it may be worthwhile to
merge the sequential HPO and DNN optimization phases of DEI-MCMC into a single stage, where
models trained during HPO are recycled as IP candidates.

7

Published as a workshop paper at FPI @ ICLR 2025

REFERENCES

Oriol Abril-Pla, Virgile Andreani, Colin Carroll, Larry Dong, Christopher J Fonnesbeck, Maxim
Kochurov, Ravin Kumar, Junpeng Lao, Christian C Luhmann, Osvaldo A Martin, et al. PyMC:
a modern, and comprehensive probabilistic programming framework in Python. PeerJ Computer
Science, 9:e1516, 2023.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(2), 2012.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Alberto Cabezas, Adrien Corenflos, Junpeng Lao, and Rémi Louf. Blackjax: Composable Bayesian
inference in JAX, 2024.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Be-
tancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of Statistical Software, 76, 2017.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection from
libraries of models. In International Conference on Machine Learning, pp. 18, 2004.

Hadi Fanaee-T. Bike Sharing. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C5W894.

Sebastian Farquhar, Lewis Smith, and Yarin Gal. Liberty or depth: Deep Bayesian neural nets do
not need complex weight posterior approximations. Advances in Neural Information Processing
Systems, 33:4346–4357, 2020.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin.
Bayesian data analysis. 2013.

Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive information criteria for
Bayesian models. Statistics and computing, 24:997–1016, 2014.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Ad-
vanced Neural Computers, pp. 129–135. Elsevier, 1990.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

Matthew D Hoffman, Andrew Gelman, et al. The No-U-Turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593–1623,
2014.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS: an auto-
matic algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267–
306, 2009.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization: 5th International
Conference, pp. 507–523. Springer, 2011.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What
are Bayesian neural network posteriors really like? In International Conference on Machine
Learning, pp. 4629–4640. PMLR, 2021.

8

http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/flax

Published as a workshop paper at FPI @ ICLR 2025

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. Advances in Neural Information Processing
Systems, 30, 2017.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012a.

Radford M Neal. MCMC using Hamiltonian dynamics. arXiv preprint arXiv:1206.1901, 2012b.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-
Lobato, et al. Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI. In
International Conference on Machine Learning, 2024.

Prashant Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
Repository, 2013. DOI: https://doi.org/10.24432/C5QW3H.

Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou, Ludwig Bothmann, Bernd Bischl, and
David Rügamer. Connecting the dots: Is mode-connectedness the key to feasible sample-based
inference in bayesian neural networks? In International Conference on Machine Learning, pp.
45988–46018. PMLR, 2024.

Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, and
David Rügamer. Towards efficient MCMC sampling in Bayesian neural networks by exploiting
symmetry. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 459–474. Springer, 2023.

Yuling Yao, Aki Vehtari, and Andrew Gelman. Stacking for non-mixing Bayesian computations:
The curse and blessing of multimodal posteriors. Journal of Machine Learning Research, 23(79):
1–45, 2022.

Erik Štrumbelj, Alexandre Bouchard-Côté, Jukka Corander, Andrew Gelman, Håvard Rue,
Lawrence Murray, Henri Pesonen, Martyn Plummer, and Aki Vehtari. Past, Present and Future of
Software for Bayesian Inference. Statistical Science, 39(1):46 – 61, 2024.

9

Published as a workshop paper at FPI @ ICLR 2025

A APPENDIX

A.1 DEEP ENSEMBLE INITIALIZED MCMC

Algorithm 1 DEI-MCMC (Sommer et al., 2024)
Require: Training dataset Dtrain, HPO configuration λhpo, Sampling configuration λs

▷ First phase: Warmstarting
1: λ∗

de = Ahpo(λhpo,Dtrain) ▷ DNN HPO
2: M = {θ(1), . . . ,θ(M)} = Ade(λ

∗
de,Dtrain) ▷ DNN Optimization

▷ Second phase: Sampling
3: S = As(M,λs,Dtrain) ▷ Warmup & Sampling

For DEI-MCMC, HPO is initially performed on the training dataset via Ahpo : Λhpo × D → Λde
to identify well-suited HPs λ∗

de ∈ Λde for DNNs optimization. Thereby, λhpo ∈ Λhpo defines the
configuration of the HPO routine and its search space. Next, M DNNs are independently optimized
on the training dataset according to λ∗

de, each with a different random initialization of the parameters,
following Ade : Λde×D → ΘM . This results in a so-called deep ensemble (DE) (Lakshminarayanan
et al., 2017), collected in M = {θ(1), . . . ,θ(M)}, which serves as the set of IPs for M parallel
MCMC runs in the subsequent phase — a process known as warmstarting. The parallel sampling
procedure As : Θ

M × Λs × D → (ΘS)M then generates M chains, each producing S approximate
posterior samples following a warm-up phase of W steps, as specified by the HP configuration
λs ∈ Λs.

A.2 ADVANCED DEI-MCMC

Algorithm 2 Advanced DEI-MCMC (ours)
Require: Training dataset Dtrain, HPO configuration λhpo, Sampling configuration λs

▷ First phase: Warmstarting
1: λ∗

de = Ahpo(λhpo,Dtrain) ▷ DNN HPO
2: M′ = {θ(1), . . . ,θ(M ′)} = Ade(λ

∗
de,Dtrain) ▷ Extended DE Optimization

3: M = Aes(M′,Dtrain) ▷ Ensemble Selection

▷ Second phase: Sampling
4: S = As(M,λs,Dtrain) ▷ Warmup & Sampling

In our proposed method to advance DEI-MCMC, we first optimize an expanded set of M ′ > M
IP candidates, M′, and then select a subset M for sampling using an ensemble selection algorithm
Aes : Θ

M ′ × D → ΘM .

A.3 EXPERIMENTAL SETUP

Tasks We consider the Bike Sharing dataset (Fanaee-T, 2013) and the Protein Tertiary Structure
dataset (Rana, 2013) as simple regression tasks that fall within the medium data-size regime, con-
taining 17,379 and 45,730 observations with 13 and 9 numerical features, respectively. The datasets
are split into a training set, Dtrain, a validation set, Dval, and a test set, Dtest, with the validation and
test sets each comprising 3,000 observations for the former dataset and 7,500 observations for the
latter, respectively.

Models We employ simple MLPs with ReLU activation functions and two hidden layers, each
containing 16 neurons. To model the natural parameters of Gaussian likelihoods with unknown
variance, we use two output heads.

10

Published as a workshop paper at FPI @ ICLR 2025

Warmstarting In the optimization procedure for warmstarting, we utilize the AdamW optimizer
(Loshchilov, 2017) in conjunction with the negative log likelihood (NLL) of a heteroscedastic Gaus-
sian distribution as the loss function. To enhance regularization, we apply weight decay, early stop-
ping, and dropout. The associated hyperparameters — as well as batch size, learning rate, and
weight decay — are tuned via simple random search (Bergstra & Bengio, 2012). Additionally, we
incorporate gradient clipping to improve training stability.

Sampling For sampling, we rely on NUTS (Hoffman et al., 2014), a variant of HMC. We choose
this method because it is considered a SOTA full-batch sampling algorithm (Štrumbelj et al., 2024)
and because it automatically tunes its HPs during the warmup phase, largely eliminating the need
for additional HPO in the sampling phase. We use a fixed target acceptance probability of 0.8,
allow up to 1,024 integration steps, and adopt unit Gaussian priors to reflect the absence of strong
assumptions about the relationships between model parameters and outputs.

Performance measures To evaluate chains, we assess UQ performance using the log pointwise
predictive density (LPPD) over the test set (Gelman et al., 2014), defined as

1

ntest

∑
(x∗,y∗)∈Dtest

log
(1

(|S|)
∑
θ̃∈ S

p(y∗ | x∗, θ̃)
)
. (4)

Additionally, we track the wall-clock time for each optimization and sampling step.

Implementation The implementation is written in Python, primarily leveraging JAX (Bradbury
et al., 2018), Flax (Heek et al., 2023) and BlackJAX (Cabezas et al., 2024). Furthermore, the exper-
iments were conducted on a single CPU instance with 32 cores and 64GB of RAM.

A.4 EXPERIMENTAL RESULTS

Figure 4: Mean anytime LPPDs (across 100 trials) of our proposed method compared to the
baseline for various combinations of M and M ′ on the Protein Tertiary Structure dataset.

Figure 4 depicts the mean anytime LPPDs of the DEI-MCMC variants for various combinations of
M and M ′ across 100 trials on the Protein Tertiary Structure dataset. As with the results for the Bike
Sharing dataset (Section 5), our proposed method surpasses the respective baseline after a relatively
short amount of time and appears to converge at higher LPPD levels across configurations.

11

Published as a workshop paper at FPI @ ICLR 2025

B LIST OF ABBREVIATIONS

BDL Bayesian deep learning
BNN Bayesian neural network
DEI-MCMC Deep Ensemble Initialized MCMC
DE deep ensemble
DL deep learning
DGP data generating process
DNN deep neural network
HMC Hamiltonian Monte Carlo
HP hyperparameter
HPO Hyperparameter optimization
MCMC Markov Chain Monte Carlo
ML machine learning
MLP multi-layer perceptron
NUTS No-U-Turn Sampler
NLL negative log likelihood
PPD posterior predictive density
SOTA State-of-the-art
UQ uncertainty quantification
IP initial proposal
LPPD log pointwise predictive density

12

	Introduction
	Background and Related Work
	Background
	Markov Chain Monte Carlo

	Analyzing MCMC Warmstarting Dynamics
	Performance differences
	Functional diversity
	Backloading

	Methodology
	Examining Anytime Performance
	Configuring Warmstarts

	Experiments
	Conclusion
	Appendix
	Deep Ensemble Initialized MCMC
	Advanced DEI-MCMC
	Experimental Setup
	Experimental Results

	List of Abbreviations

