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Abstract

Time series data analysis is a critical component in various domains such as finance, healthcare,
and meteorology. Despite the progress in deep learning for time series analysis, there remains
a challenge in addressing the non-stationary nature of time series data. Most of the existing
models, which are built on the assumption of constant statistical properties over time,
often struggle to capture the temporal dynamics in realistic time series and result in bias
and error in time series analysis. This paper introduces the Adaptive Wavelet Network
(AdaWaveNet), a novel approach that employs Adaptive Wavelet Transformation for multi-
scale analysis of non-stationary time series data. AdaWaveNet designed a lifting scheme-
based wavelet decomposition and construction mechanism for adaptive and learnable wavelet
transforms, which offers enhanced flexibility and robustness in analysis. We conduct extensive
experiments on 10 datasets across 3 different tasks, including forecasting, imputation, and
a newly established super-resolution task. The evaluations demonstrate the effectiveness
of AdaWaveNet over existing methods in all three tasks, which illustrates its potential in
various real-world applications. The code implemented for the AdaWaveNet is available at
https://github.com/comp-well-org/AdaWaveNet.

1 Introduction

Time series data, extensively encountered in various domains, including finance, healthcare, and meteorology,
require effective analytical methodologies (Esling & Agon, 2012). Therefore, understanding and analyzing
time series data has triggered substantial interest in various real-world applications. Recently, the rapid
development of deep learning has significantly transformed the landscape of time series analysis. These
advancements have triggered breakthroughs in various applications, including forecasting (Zhou et al., 2021;
2022b; Wu et al., 2021), imputation (Wu et al., 2022; Xu et al., 2022), and anomaly detection (Blázquez-García
et al., 2021; Li & Jung, 2023).

However, even with the promising performances of the aforementioned methods, a notable limitation in this
research area is the inadequate focus on the non-stationary nature of time series data. Non-stationarity, with
its evolving statistical properties and time-dependent patterns, poses a significant challenge for traditional
deep learning models (Hyndman & Athanasopoulos, 2018; Shumway et al., 2017). The constantly shifting
nature of time series data can make it difficult for the aforementioned methods to fully capture its dynamic
patterns, which potentially leads to inaccurate analysis.
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To address the non-stationary challenge, recent efforts have aimed to adapt deep learning methods for temporal
dynamic analysis (Liu et al., 2022b; 2023b). However, due to the designing basis, such as instance-wise
normalization and Fourier transform, these methods may lack the adaptability to process multi-scale features
and capture the changing temporal dynamics across different signals. Thus, despite the advancements in
modeling non-stationary time series data by these methods, there remains a critical need for an approach
that combines multi-scale analysis with efficient computational strategies and adaptability.

In response to these challenges, we propose AdaWaveNet, a novel architecture that employs adaptive wavelet
transformations within an efficient, multi-scale framework. Unlike existing wavelet-based methods such as
FEDformer (Zhou et al., 2022b), which relies on manually tuned wavelet parameters and a fixed Transformer
architecture, AdaWaveNet leverages the lifting scheme (Sweldens, 1998) to enable fully learnable, adaptive
wavelet transformations. Also, expanded from the existing time-series decompositon, we proposed a grouped
linear module to enhance the dependencies among varying channels. This approach dynamically adjusts to
the data’s temporal properties, which offers superior flexibility and robustness in handling non-stationary
time series. By combining adaptive multi-scale analysis with an efficient computational design, AdaWaveNet
addresses critical gaps in current methods for analyzing complex time series data.

Our contribution can be summarized as:

• We introduce AdaWaveNet, a novel architecture designed to address the challenges posed by
non-stationary time series data through an adaptive, multi-scale approach. Differing from prior
decomposition-based or fixed-parameter methods, AdaWaveNet leverages a learnable wavelet trans-
formation via the lifting scheme, which enables dynamic adaptation to evolving statistical properties
within the data. While we leverage time-series decomposition module that separates trend and
seasonal components following previous methods, the adaptability is further enhanced by a grouped
linear module, which uniquely captures channel-specific dependencies.

• We establish a new benchmark for super-resolution in the field of time series data. This benchmark
aims to enhance the quality of data obtained from under-sampled sequences and improve the overall
efficiency and effectiveness of time series data monitoring and analysis.

• Our extensive evaluations demonstrate that AdaWaveNet outperforms existing methods in forecasting
and super-resolution tasks. These results suggest the capability of the proposed method for diverse
real-world applications.

2 Related Work

2.1 Time Series Analysis with Deep Learning

The evolution of deep learning has significantly impacted temporal modeling and time series analysis.
Recurrent neural networks (RNNs), such as those based on Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997; Siami-Namini et al., 2019), are designed to capture temporal dependencies through
internal states. Multi-Layer Perceptrons (MLPs) (Zeng et al., 2023; Li et al., 2023) have shown effectiveness in
temporal modeling by processing point-wise projections of sequences. Convolutional Neural Networks (CNNs)
(Lea et al., 2017; Liu et al., 2022a) excel in extracting hierarchical features and detecting complex patterns,
leveraging their strength in spatial and temporal data processing. Moreover, the Transformer variants
have demonstrated remarkable results in time series applications by capturing long-range dependencies and
processing entire sequences efficiently (Zhou et al., 2022b; Liu et al., 2023a; 2022b; Zhang & Yan, 2022).
Nevertheless, in real-world applications, these well-proven structures may struggle with non-stationarity in
time series data because their learned patterns and dependencies are based on the assumption of consistent
statistical properties. On the other hand, most of the realistic temporal data, which is non-stationary with
dynamics over time, violates the consistent assumption.

These methods have been developed and applied to various tasks, including forecasting (Zhou et al., 2021;
2022b; Wu et al., 2021), imputation (Wu et al., 2022; Xu et al., 2022), and anomaly detection (Blázquez-García
et al., 2021; Li & Jung, 2023). However, the field of super-resolution in time series analysis remains relatively
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unexplored. This technique, crucial for enhancing signal quality and detail, can significantly benefit sensing
applications. For example, in wearable sensors, super-resolution can extend battery life and reduce storage
needs by enabling post-processing enhancement of data resolution instead of continuous high-frequency
sampling. This approach not only conserves resources but also provides detailed insights for precise tasks
such as health monitoring.

2.1.1 Decomposition-Based Methods

Decomposition-based methods have emerged as promising techniques for time series analysis by separating
data into interpretable components such as trend and residual terms, which enhances the ability to capture
both short-term and long-term patterns (Wu et al., 2021; Wang et al., 2024; Zhu et al., 2023; Cao et al.,
2023; Hu et al., 2023). For instance, DRCNN (Zhu et al., 2023) uses a multi-resolution approach with
convolutional kernels to improve forecasting accuracy across different time scales. Similarly, MICN (Wang
et al., 2023) combines multi-scale local and global context modeling through convolution and isometric
convolutions, achieving significant improvements in long-term forecasting tasks. TEMPO (Cao et al., 2023)
extends Transformer-based models by introducing a prompt-based generative pre-training architecture that
decomposes time series into trend, seasonal, and residual components and establishes a foundational model
for time series forecasting.

Despite the success of the aforementioned decomposition-based methods, they have limitations in handling
the dynamic and evolving nature of non-stationary time series data. For instance, DRCNN’s focus on fixed
decomposition into residual and trend terms may fail to capture complex temporal shifts over time, while
MICN, though addressing both short-term and long-term patterns, relies on pre-defined convolutional kernels
that lack adaptability to dynamically changing signals. To leverage the benefits of decomposition while
incorporating adaptability, our proposed AdaWaveNet introduces a novel adaptive wavelet-based lifting
scheme that dynamically learns wavelet coefficients through end-to-end training.

2.2 Non-Stationarity-Enhanced Models

Recent developments in time series analysis have started addressing non-stationarity issues (Liu et al.,
2022b; Zhou et al., 2022b; Liu et al., 2023b;c). For instance, Liu et al. (2022b) introduced Non-stationary
Transformers with strategies like Series Stationarization and De-stationary Attention to standardize signal
statistics over time. Zhou et al. (2022b) employed frequency domain-enhanced attentions in Transformers,
incorporating Fourier and wavelet transform-based techniques. Additionally, Liu et al. (2023b) integrated
Koopman operator theory for analyzing non-linear dynamical systems by transforming signals into a linear,
high-dimensional space. While these methods effectively model stationarity, they exhibit limitations such
as the need for manually tuned filters in FEDformer and extensive computations for long-term signals or
high-dimensional projections.

Recent advancements in adaptive wavelet-based models, such as the Adaptive Multi-Scale Wavelet Neural
Network (AMSW-NN) (Ouyang et al., 2021), have demonstrated the effectiveness of combining multi-scale
convolutional neural networks with depthwise convolutions. However, AMSW-NN primarily focuses on
generating candidate frequency decompositions without explicitly considering inter-channel relationships or
dynamic adaptability at different scales. To address these gaps, we propose the Adaptive Wavelet Network
(AdaWaveNet). AdaWaveNet utilizes a novel lifting scheme that learns adaptive wavelet coefficients through
end-to-end training and incorporates a grouped linear module for efficient trend processing. This dual-residual
approach dynamically captures both fine-grained and broad patterns, which enhances adaptability and
performance across diverse time series datasets.

3 Background

Non-stationary time series data often contain transient behaviors and changing frequencies, which makes
traditional methods that assume constant statistical properties less effective. Wavelet analysis addresses this
by enabling multi-resolution decomposition, where each scale handles different frequency bands over time.
For instance, high-frequency components can capture rapid changes or anomalies that occur over a short
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duration; whereas low-frequency components can capture long-term trends or patterns that evolve more
gradually. Thus, wavelet transforms provide a natural way to represent non-stationary data by focusing on
both time-localized features and frequency dynamics, which makes them particularly useful for time series
where the underlying statistical properties are not consistent.

This section reviews the wavelet transform and the lifting scheme (Sweldens, 1998) concepts to provide
foundational knowledge essential for understanding the proposed method.

3.1 Wavelet Transform

The wavelet transform is a versatile tool for analyzing signals across multiple scales, simultaneously capturing
both frequency and temporal information. Unlike the Fourier transform, which focuses exclusively on
the frequency domain, the wavelet transform enables a time-frequency analysis by decomposing a signal
into components that reveal its structure at different resolutions. This ability is crucial for handling non-
stationary time series, which often contain short-term fluctuations (high-frequency) alongside long-term
trends (low-frequency). Given a signal f , the discrete wavelet transform decomposes it into the following
form:

f(x) =
∑
i,j

⟨f, ψi,j(x)⟩ψ
(
2ix− j

)
=

∑
i,j

wi,jψi,j(x)) (1)

In the equation, ψi,j(x) = ψ
(
2ix− j

)
represents the wavelets at different scales i and translations j, with

w = ⟨f, ψ(x)⟩ denoting the wavelet coefficients.

The wavelet transformation provides an extensive capability for analyzing the changing dynamics and
non-stationarity in time series data, which shows advances compared to the Fourier transform’s frequency-
centric approach. Traditional wavelet bases, such as Haar (Haar, 1909), Daubechies (Daubechies, 1988),
and Biorthogonal (Cohen et al., 1992) wavelets, have been widely used in various real-world applications.
However, the selection of an optimal wavelet basis remains a challenge, as the effectiveness of different bases
can vary considerably depending on the specific characteristics and structure of the real-world time series
data being analyzed.

3.2 Lifting Scheme

The lifting scheme, also known as the second-generation wavelet approach, was introduced by Sweldens (1998)
to enhance the flexibility and adaptability of wavelet transforms. Differing from traditional wavelets built
from dilations and translations of a single function, the lifting scheme constructs wavelets in the spatial
domain using a series of simple operations. This approach preserves essential wavelet properties while offering
greater adaptability to specific signal characteristics.

The scheme processes an input signal x to segregate it into approximation (c) and detail (d) sub-bands,
which achieves multi-resolution analysis through three main stages: split, update, and predict. This method
enables the creation of custom wavelets that can be more efficiently computed and better adapted to irregular
data structures or non-standard sampling grids. By doing so, the lifting scheme provides an efficient route
to achieve similar mathematical properties and practical results as traditional wavelets, which makes it
particularly valuable for various signal processing applications.

The procedures of the lifting scheme can be considered as:

Split: The input signal is divided into two non-overlapping components: the even (xe) and odd (xo)
components, denoted as xe[n] = x[2n] and xo[n] = x[2n+ 1].

Update: This stage separates the signal in the frequency domain to generate the approximation c. An update
operator U(·) is applied to a sequence of neighboring odd polyphase samples, yielding c[n] = xe[n]+U(xLU

o [n]).

Predict: Given the correlation between xe and xo, a predictor P (·) is developed for one partition based on
the other. The detail sub-band d, is computed as the prediction residual d[n] = xo[n] − P (cLP [n]).

The lifting scheme improves the flexibility of wavelet transformations by allowing for a data-driven adaptation
of wavelet coefficients, which makes it more suitable for analyzing non-periodic and intricate signals frequently
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encountered in real-world applications. Also, in the proposed AdaWaveNet architecture (Section 4), the
lifting scheme is crucial for enabling a hierarchical decomposition of the time series data, where the signal is
split into coarser approximations and finer details at each level. This allows the model to capture both local
fluctuations and global trends in the data and model the non-stationary characteristics of time series.

4 Adaptive Wavelet Network

We propose an Adaptive Wavelet Network (AdaWaveNet), which comprises a time series decomposition
module, stacked adaptive wavelet (AdaWave) blocks based on the lifting scheme (Sweldens, 1998), and a
grouped linear module. Figure 1 illustrates the overall framework of our method. We denote the input
sequence as xinput ∈ RC×L and the target model output as xpred ∈ RC×Lp . The target output can represent
various terms depending on the task, such as future sequences for the forecasting task or completed signals
for the imputation task. The decomposition module processes the time series data into seasonal (xs) and
trend (xtrend) components. The AdaWave blocks then transform xs into a low-rank approximation xl

s and
wavelet coefficients cl at different levels l. The channel-wise attention layer models the intermediate xl

s across
channels to predict the targeted low-rank approximation x̂l

s. We reconstruct the predicted seasonal phase
x̂s from cl and x̂l

s using inverse adaptive wavelet (InvAdaWave) blocks. The trend component xtrend often
exhibits alignment issues and discrepancies across variates, and we employ a grouped linear module that
applies distinct linear heads to different channel groups, to enhance the quality of trend phase predictions.
The network’s final output is the sum of x̂s and x̂trend.

AdaWaveNet offers several advantages, including multi-scale processing to mitigate non-stationary issues
and a data-driven approach to learn wavelet coefficients through the lifting scheme adaptively. This
adaptability is a key aspect of our proposed method. Additionally, the AdaWave and InvAdaWave blocks,
based on convolutional layers, provide computational efficiency compared to the prior self-attention-based
implementation of the wavelet transform (Zhou et al., 2022b). The grouped linear module further improves
the modeling of the trend component, which tackles the discrepancies across channels or signal variates.

In the following subsections, we detail the proposed blocks, including the time series decomposition,
AdaWaveNet, and Grouped Linear Module.

4.1 Time Series Decomposition

We use the additive time series decomposition method (Hamilton, 2020; Wu et al., 2021) to separate the time
series sequences into their seasonal and trend components:

xinput = xs + xtrend (2)

In this equation, the trend component (xtrend) shows the overall direction and long-term movements of the
data over time. It is often calculated using a moving average, which smooths out short-term fluctuations to
highlight longer-term trends. The seasonal component (xs) captures repeating patterns that occur within a
specific period and helps identify systematic variations in the data.

To perform the decomposition, we first apply a moving average to the time series to estimate the trend
component. Once the trend is identified, we subtract it from the original time series to isolate the seasonal
component. By separating the data in this way, we can better understand and analyze the different scales of
variation present in the time series. This decomposition is the first step in our multi-scale analysis framework.

4.2 Adaptive Wavelet Block

Given the seasonal component xs of a time series, we apply a Lifting Wavelet Transform (LWT) using
Convolutional Neural Networks (CNNs) to refine features at various levels of granularity iteratively. These
processes transform the seasonal component at level l − 1 into a more refined level l, denoted as xl

s, and
generate the corresponding detail coefficients, cl.

Splitting Step: The input xl−1
s (initially x0

s = xs) is split into odd and even indexed components:

el = xl−1
s [2i] ∀i ∈ N (3)
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Figure 1: Illustration of the AdaWaveNet framework for time series analysis. The input sequence xinput

undergoes decomposition into trend (xtrend) and seasonal (xs) components. The trend component is processed
through a clustering algorithm followed by a grouped linear module to produce a refined trend prediction
x̂trend. Concurrently, the seasonal component is processed through stacked AdaWave blocks, employing index
splitting, convolutional layers, and a channel-wise attention layer to capture multi-scale features and generate
a low-rank approximation x̂l

s. This is followed by inverse AdaWave blocks that reconstruct the seasonal
prediction x̂s. The final predicted output xpred is obtained by summing the predicted seasonal and trend
components.

ol = xl−1
s [2i+ 1] ∀i ∈ N (4)

Convolutional Kernel-based Prediction and Update Steps: Inspired by Huang & Fang (2021), we
employ convolution operations as the wavelet filters in each split subset to extract approximations and
coefficients. The learnable 1D convolution kernels are considered the ideal basis of the lifting scheme in our
study. This operation can be represented as:

e′l = σ(Wl
e ∗ el + bl

e) (5)

o′l = σ(Wl
o ∗ ol + bl

o) (6)

where ∗ denotes the convolution operation, Wl
e and Wl

o are the convolutional filter weights, and bl
e and bl

o

are the biases for the even and odd components at level l, respectively.

In the prediction step, we use the even-indexed components to estimate the odd-indexed components. This is
because, in many signals, there is a smooth transition between consecutive samples. The prediction step aims
to estimate the finer details of the signal (odd indexed components) using a smoothed version (even indexed
components) to capture the high-frequency variations by computing the detail coefficients cl:

cl = ol − σ(Wl
p ∗ el + bl

p) (7)

Then, the update step utilizes these detail coefficients to refine the even indexed components:

e′l = el + σ(Wl
u ∗ cl + bl

u) (8)

These steps iteratively improve the signal representation in capturing the overall trend and the intricate
details within the data.
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4.3 Channel-wise Attention for Approximation Projection

To enhance the feature representation of the seasonal component xl
s specifically at the final level of the

AdaWave blocks, a self-attention (SA) mechanism is employed, inspired by Liu et al. (2023a). The self-
attention structure is applied to xN

s , where N denotes the final level of decomposition. This computation after
the last layer of decomposition ensures efficient and focused refinement of the feature map of the low-rank
approximation of the seasonal component, as the length of the sequences after N blocks of AdaWave blocks
becomes (L/(2N )). The channel-wise attention mechanism operates on the channels of xN

s to refine its
approximation, to project the processed seasonal component onto the targeted sequences as x̂N

s . Importantly,
during this process, the detail coefficients (cN ) remain unchanged.

Focusing the channel-wise attention mechanism at the final decomposition layer is both computationally
efficient and effective in capturing the essential characteristics of the time series. It allows the model to
emphasize the global contextual information, which is crucial for the accurate representations of the seasonal
components in complex time series data.

4.4 Inverse Adaptive Wavelet Blocks

To reconstruct the original seasonal component x̂s from its refined representation x̂l
s obtained after predicted

approximation x̂N
s , we utilize an inverse process facilitated by Convolutional Transpose Networks. This

inverse procedure employs transposed convolutional layers to upscale the feature maps and merge the detail
coefficients with the upsampled seasonal components iteratively.

The inverse of the combining step involves an element-wise subtraction of the detail coefficients from the
seasonal component at the current level l:

êl = x̂l
s − cl (9)

Inverse Update and Prediction Steps: The transposed convolution operations are applied to refine the
split components and to estimate the original even indexed components:

el = êl − σ(Wl,T
u ∗ cl + bl,T

u ) (10)

The original odd indexed components are reconstructed by adding the predicted detail coefficients:

ol = cl + σ(Wl,T
p ∗ ẽl + bl,T

p ) (11)

where Wl,T
u and Wl,T

p denote the transposed convolutional filter weights, and bl,T
u and bl,T

p are the corre-
sponding biases for the inverse update and prediction operations, respectively.

Finally, the odd and even indexed components are interleaved to reconstruct the seasonal component at the
previous level l − 1:

x̂l−1
s [2i] = el ∀i ∈ N (12)

x̂l−1
s [2i+ 1] = ôl ∀i ∈ N (13)

4.5 Grouped Linear Module

We process the trend component xtrend using a two-step approach: clustering the channels and applying
distinct linear projections based on the clustering labels. This method effectively captures and models the
long-term progression of the trend component.

In the first step, we group the channels of xtrend using a clustering algorithm, specifically K-means. This
clustering step helps to identify patterns and group similar channels together. For example, in the diagram
as in Figure 1, channels are clustered into different groups according to their characteristics. This step is
crucial for understanding the temporal patterns within the trend data that might indicate different states
across variates.
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Figure 2: Comparison of model performances in forecasting, imputation, and super-resolution.

Following the clustering, each group of channels is connected with a linear projection layer. This step ensures
that the model can apply specific linear projections to different clusters of the trend data. This design aims
to help the model accurately capture different patterns within the trend data.

This dual approach of clustering followed by grouped linear transformations is particularly effective in dealing
with complex time series data. By initially clustering the trend components into different groups, the model
can recognize and adapt to different underlying patterns. Subsequent application of distinct linear projections
to each cluster further enhances the model’s ability to represent and forecast the trend component accurately.

5 Experiments

We conduct experiments on different time series analysis tasks to evaluate the proposed AdaWaveNet, including
forecasting, imputation, and the newly proposed super-resolution tasks.

AdaWaveNet is extensively benchmarked against established models from recent literature. For models
related to wavelet and frequency domain enhancements, comparisons include FreTS (Yi et al., 2023), FiLM
(Zhou et al., 2022a), TimesNet (Wu et al., 2022), and FEDformer (Zhou et al., 2022b). Additionally, models
previously recognized for state-of-the-art (SOTA) performances, such as iTransformer (Liu et al., 2023a),
DLinear (Zeng et al., 2023), and PatchTST (Nie et al., 2022), are included as experimental baselines. The
Non-stationary Transformer (Stationary) (Liu et al., 2022b), known for addressing non-stationary issues in
time series, is also featured for comparison.

Figure 2 presents the aggregated results across the forecasting, imputation, and super-resolution tasks. The
results indicate that our proposed AdaWaveNet method achieves SOTA performance in all three areas of
time series analysis.

5.1 Time Series Forecasting

Forecasting is essential in time series applications, such as weather, traffic, exchange rate, etc. In this section,
we conduct extensive experiments to evaluate the forecasting performance of the proposed AdaWaveNet on
varying-domain datasets. Following prior studies such as iTransformer (Liu et al., 2023a) and TimesNet
(Wu et al., 2022), we adopt a long-term forecasting setting with datasets including traffic, electricity (ECL),
exchange rate, weather, solar energy, and electricity transformer temperature (ETT). For each dataset, we
set the predicting length Lp with {96, 192, 336, 720} with the inputting observation length equal to the
predicting length.

The performances of evaluations are shown in Table 1. The proposed AdaWaveNet achieves promising
performances in both MSE and MAE across various datasets. In particular, compared to the prior frequency
domain-enhanced methods, AdaWaveNet outperforms 7.7% in MSE and 6.2% in MAE when compared to the
best performances in all these methods. For the SOTA methods such as iTransformer (Liu et al., 2023a) and
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Table 1: Forecasting task. The prediction lengths for all datasets are established at {96, 192, 336, 720}, with
the past sequence length matching the prediction lengths. Evaluation metrics include Mean Squared Error
(MSE) and Mean Absolute Error (MAE). The lowest MSE is indicated in bold red, while the second lowest is
underlined in blue.

Model
(Year)

AdaWaveNet
(Ours)

iTransformer
(2023a)

FreTS
(2023)

TimesNet
(2022)

DLinear
(2023)

PatchTST
(2022)

Stationary
(2022b)

FiLM
(2022a)

FEDformer
(2022b)

Pred Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0.146 0.248 0.151 0.243 0.189 0.277 0.165 0.269 0.210 0.302 0.181 0.268 0.167 0.269 0.398 0.452 0.193 0.308

192 0.158 0.260 0.156 0.258 0.164 0.261 0.185 0.289 0.174 0.275 0.158 0.254 0.193 0.295 0.266 0.361 0.208 0.326
336 0.171 0.268 0.177 0.274 0.202 0.289 0.196 0.301 0.176 0.278 0.176 0.278 0.207 0.310 0.281 0.377 0.224 0.339
720 0.196 0.292 0.201 0.299 0.225 0.322 0.215 0.317 0.201 0.300 0.207 0.310 0.214 0.317 0.289 0.385 0.242 0.357

ECL

Avg. 0.168 0.267 0.171 0.269 0.195 0.287 0.190 0.294 0.190 0.289 0.181 0.278 0.195 0.298 0.309 0.394 0.217 0.333
96 0.169 0.215 0.177 0.217 0.173 0.231 0.172 0.220 0.196 0.254 0.176 0.217 0.197 0.238 0.193 0.234 0.219 0.298

192 0.203 0.245 0.213 0.253 0.204 0.268 0.222 0.266 0.227 0.286 0.212 0.258 0.264 0.298 0.230 0.266 0.265 0.341
336 0.248 0.286 0.256 0.289 0.255 0.313 0.286 0.314 0.262 0.313 0.256 0.291 0.316 0.330 0.266 0.295 0.316 0.380
720 0.313 0.336 0.325 0.343 0.320 0.356 0.375 0.373 0.318 0.359 0.321 0.339 0.400 0.378 0.322 0.338 0.372 0.403

Weather

Avg. 0.233 0.271 0.243 0.276 0.238 0.292 0.264 0.293 0.251 0.303 0.241 0.276 0.294 0.311 0.253 0.283 0.293 0.356
96 0.417 0.291 0.396 0.271 0.525 0.333 0.592 0.319 0.652 0.397 0.544 0.359 0.610 0.341 0.647 0.384 0.585 0.363

192 0.401 0.281 0.400 0.280 0.514 0.329 0.592 0.321 0.622 0.354 0.547 0.361 0.621 0.348 0.462 0.302 0.586 0.366
336 0.407 0.284 0.415 0.286 0.527 0.341 0.611 0.330 0.624 0.355 0.555 0.368 0.628 0.344 0.447 0.305 0.597 0.369
720 0.433 0.297 0.428 0.301 0.546 0.359 0.626 0.344 0.664 0.408 0.603 0.393 0.647 0.384 0.485 0.321 0.615 0.390

Traffic

Avg. 0.415 0.288 0.410 0.285 0.528 0.341 0.605 0.329 0.641 0.379 0.562 0.370 0.627 0.354 0.510 0.328 0.596 0.372
96 0.086 0.204 0.087 0.209 0.088 0.214 0.113 0.243 0.093 0.227 0.093 0.212 0.150 0.265 0.166 0.307 0.147 0.276

192 0.188 0.310 0.197 0.320 0.211 0.347 0.243 0.361 0.182 0.323 0.188 0.312 0.261 0.375 0.224 0.345 0.260 0.387
336 0.360 0.437 0.398 0.452 0.572 0.576 0.466 0.522 0.391 0.477 0.328 0.415 0.633 0.581 0.400 0.467 0.502 0.544
720 1.288 0.862 1.370 0.849 1.576 0.972 1.796 1.044 1.364 0.888 1.144 0.800 1.357 0.875 1.200 0.883 1.491 0.954

Exchange

Avg. 0.481 0.453 0.513 0.458 0.612 0.527 0.655 0.543 0.508 0.479 0.438 0.435 0.600 0.524 0.498 0.501 0.600 0.540
96 0.199 0.254 0.211 0.256 0.227 0.292 0.249 0.290 0.286 0.374 0.223 0.271 0.216 0.251 0.309 0.334 0.243 0.343

192 0.207 0.262 0.216 0.269 0.213 0.279 0.238 0.281 0.261 0.330 0.211 0.258 0.219 0.252 0.275 0.282 0.244 0.346
336 0.216 0.269 0.220 0.272 0.242 0.297 0.242 0.285 0.270 0.325 0.214 0.273 0.229 0.272 0.288 0.294 0.251 0.352
720 0.214 0.263 0.223 0.286 0.255 0.306 0.245 0.287 0.237 0.296 0.221 0.282 0.227 0.275 0.291 0.298 0.252 0.355

Solar

Avg. 0.209 0.262 0.218 0.271 0.234 0.294 0.244 0.286 0.264 0.331 0.217 0.271 0.223 0.263 0.291 0.302 0.248 0.349
96 0.384 0.396 0.420 0.428 0.412 0.430 0.400 0.420 0.385 0.431 0.384 0.402 0.559 0.505 0.387 0.399 0.377 0.418

192 0.437 0.431 0.463 0.456 0.467 0.461 0.564 0.526 0.430 0.443 0.426 0.428 0.698 0.575 0.437 0.430 0.422 0.451
336 0.445 0.441 0.489 0.475 0.501 0.493 0.509 0.495 0.437 0.453 0.460 0.456 0.664 0.568 0.459 0.455 0.451 0.453
720 0.510 0.497 0.600 0.565 0.602 0.573 0.708 0.615 0.492 0.510 0.505 0.470 0.713 0.615 0.509 0.501 0.497 0.499

ETTh1

Avg. 0.444 0.441 0.493 0.481 0.496 0.489 0.545 0.514 0.436 0.459 0.444 0.439 0.659 0.566 0.448 0.446 0.437 0.455
96 0.326 0.366 0.354 0.381 0.343 0.376 0.330 0.371 0.345 0.371 0.334 0.368 0.422 0.415 0.351 0.370 0.379 0.419

192 0.335 0.370 0.355 0.384 0.364 0.394 0.396 0.406 0.342 0.368 0.339 0.368 0.466 0.446 0.388 0.404 0.415 0.428
336 0.375 0.394 0.384 0.406 0.393 0.409 0.403 0.422 0.370 0.386 0.367 0.392 0.555 0.496 0.400 0.420 0.417 0.431
720 0.439 0.428 0.448 0.449 0.466 0.457 0.456 0.455 0.420 0.422 0.456 0.447 0.615 0.531 0.447 0.439 0.484 0.479

ETTm1

Avg. 0.369 0.390 0.385 0.405 0.392 0.409 0.396 0.414 0.369 0.387 0.374 0.394 0.515 0.472 0.397 0.408 0.424 0.439
1st Count 18 21 5 3 0 0 0 0 5 3 5 5 0 2 0 0 2 1

PatchTST (Nie et al., 2022), the evaluation results also suggest that our proposed method outperforms them
in the forecasting task.

5.2 Time Series Imputation

During time series data collection, various factors can disrupt continuous observation and monitoring and
lead to missing values within the dataset. For example, factors such as the malfunction of the devices and
interference of signals can all trigger data quality issues, e.g., missing observation. Therefore, in this study,
we also investigate the capability of the proposed method in time series imputation tasks. Following the
evaluation strategy as Wu et al. (2022), we conduct extensive experiments on the datasets with controlled
masking rates under a random missing setting. We further extend the experimental strategy by introducing
the extended missingness. In (Wu et al., 2022), the missingness was crafted by randomly masking timestamps
with a certain ratio that simulates sporadic data loss; whereas the extended missingness masks contiguous
subsequences of the original signals across all channels, which emulates the prolonged periods of missing data.
Refer to Appendix A.2 for the detailed descriptions of two masking methods. In this experiment, we examine
the proposed method and the baselines on the weather and electricity data. Also, considering the common
missingness of sensing data of the wearable sensors Xu et al. (2022), the experiments cover biobehavioral
datasets, including 12-lead electrocardiogram (ECG) from the PTB-XL dataset Wagner et al. (2020), and
electroencephalogram (EEG) from the Sleep-EDFE dataset Kemp et al. (2000).

Table 2 shows the imputation performance for each dataset. The observed results show the two different
masking strategies create different levels of challenges for the imputation tasks. The extended masking task
introduces larger errors for all the models. For both imputations, our proposed method shows competitive
performances on the PTB-XL and Sleep-EDFE datasets, where the sequence lengths are significantly longer
than the ECL and weather datasets. TimesNet (Wu et al., 2022) outperforms all the other models in ECL
and Weather random imputation tasks; whereas AdaWaveNet shows substantial improvement compared to
the other baselines on ECL and Weather data for the random masked imputation task. Visualization of
imputed examples can be found in Appendix C.2.
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Table 2: Imputation task. Experiments are conducted on two types of imputation - random and extended.
In each case, we mask {12.5%, 25%, 37.5%, 50%} of time points or segments randomly from the original
sequences. For the ECL and Weather datasets, sequence lengths are set to 96, while for the PTB-XL and
Sleep-EDFE datasets, the lengths are 1000 and 3000, respectively. Evaluation metrics include Mean Squared
Error (MSE) and Mean Absolute Error (MAE). The lowest MSE is marked in bold red, and the second lowest
is underlined in blue.

Model
(Year)

AdaWaveNet
(Ours)

iTransformer
(2023a)

FreTS
(2023)

TimesNet
(2022)

DLinear
(2023)

PatchTST
(2022)

Stationary
(2022b)

FiLM
(2022a)

FEDformer
(2022b)

Mask Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
0.125 0.080 0.202 0.089 0.210 0.102 0.218 0.089 0.205 0.123 0.251 0.077 0.194 0.093 0.210 0.095 0.216 0.107 0.237
0.25 0.091 0.205 0.101 0.229 0.107 0.225 0.092 0.208 0.114 0.424 0.093 0.215 0.097 0.214 0.102 0.246 0.120 0.251

0.375 0.108 0.219 0.124 0.256 0.128 0.243 0.096 0.213 0.141 0.273 0.110 0.236 0.102 0.220 0.118 0.241 0.136 0.266
0.5 0.122 0.234 0.152 0.286 0.147 0.271 0.102 0.221 0.173 0.303 0.114 0.240 0.108 0.228 0.135 0.258 0.158 0.284E

C
L

Avg. 0.100 0.215 0.117 0.245 0.121 0.239 0.095 0.212 0.138 0.313 0.099 0.221 0.100 0.218 0.112 0.240 0.130 0.260
0.125 0.033 0.059 0.029 0.062 0.023 0.049 0.025 0.045 0.039 0.084 0.028 0.065 0.027 0.051 0.031 0.066 0.044 0.110
0.25 0.041 0.077 0.046 0.083 0.044 0.080 0.029 0.052 0.048 0.103 0.040 0.079 0.029 0.056 0.042 0.086 0.062 0.160

0.375 0.050 0.099 0.055 0.105 0.059 0.120 0.031 0.057 0.057 0.117 0.051 0.096 0.033 0.062 0.055 0.111 0.107 0.231
0.5 0.062 0.129 0.068 0.136 0.072 0.142 0.034 0.062 0.066 0.134 0.058 0.107 0.037 0.068 0.073 0.136 0.183 0.311

W
ea

th
er

Avg. 0.047 0.091 0.050 0.097 0.050 0.098 0.030 0.054 0.053 0.110 0.044 0.087 0.032 0.059 0.050 0.100 0.099 0.203
0.125 0.017 0.028 0.032 0.044 0.029 0.040 0.025 0.031 0.042 0.049 0.024 0.035 0.022 0.033 0.028 0.039 0.035 0.051
0.25 0.024 0.037 0.044 0.055 0.040 0.052 0.030 0.044 0.058 0.071 0.035 0.046 0.033 0.045 0.040 0.052 0.052 0.064

0.375 0.029 0.039 0.060 0.069 0.052 0.065 0.034 0.047 0.057 0.068 0.044 0.058 0.045 0.059 0.049 0.062 0.074 0.089
0.5 0.044 0.058 0.077 0.085 0.063 0.077 0.041 0.056 0.073 0.087 0.057 0.069 0.057 0.066 0.063 0.075 0.091 0.103

P
T

B
-X

L

Avg. 0.029 0.041 0.053 0.063 0.046 0.059 0.033 0.045 0.058 0.069 0.040 0.052 0.039 0.051 0.045 0.057 0.063 0.077
0.125 0.024 0.036 0.033 0.047 0.027 0.039 0.041 0.055 0.036 0.050 0.031 0.038 0.047 0.065 0.036 0.050 0.052 0.068
0.25 0.031 0.040 0.042 0.058 0.037 0.051 0.046 0.063 0.045 0.058 0.040 0.049 0.059 0.072 0.044 0.057 0.048 0.066

0.375 0.037 0.048 0.052 0.062 0.048 0.062 0.050 0.067 0.056 0.071 0.051 0.062 0.070 0.084 0.054 0.068 0.067 0.084
0.5 0.043 0.055 0.061 0.070 0.059 0.073 0.052 0.074 0.068 0.085 0.057 0.069 0.081 0.095 0.063 0.078 0.082 0.102

R
an

d
om

S
le

ep
-E

D
F

E

Avg. 0.034 0.045 0.047 0.059 0.043 0.056 0.047 0.065 0.051 0.066 0.045 0.055 0.064 0.079 0.049 0.063 0.062 0.080
0.125 0.098 0.207 0.109 0.217 0.130 0.217 0.114 0.227 0.168 0.276 0.120 0.229 0.115 0.226 0.126 0.219 0.152 0.254
0.25 0.104 0.207 0.116 0.218 0.128 0.222 0.117 0.225 0.138 0.230 0.131 0.231 0.124 0.233 0.127 0.228 0.155 0.261

0.375 0.121 0.228 0.138 0.241 0.160 0.257 0.139 0.243 0.194 0.292 0.163 0.263 0.134 0.243 0.151 0.255 0.161 0.270
0.5 0.126 0.230 0.143 0.241 0.165 0.262 0.140 0.246 0.186 0.266 0.172 0.263 0.137 0.245 0.156 0.256 0.177 0.293E

C
L

Avg. 0.112 0.218 0.127 0.229 0.146 0.240 0.128 0.235 0.172 0.266 0.147 0.247 0.128 0.237 0.140 0.239 0.161 0.270
0.125 0.067 0.091 0.074 0.113 0.072 0.112 0.216 0.257 0.072 0.106 0.082 0.108 0.086 0.122 0.101 0.138 0.138 0.197
0.25 0.084 0.127 0.082 0.118 0.090 0.135 0.086 0.118 0.097 0.149 0.079 0.118 0.101 0.158 0.097 0.143 0.154 0.218

0.375 0.098 0.154 0.102 0.139 0.115 0.171 0.101 0.142 0.121 0.184 0.096 0.138 0.113 0.176 0.115 0.167 0.177 0.229
0.5 0.107 0.170 0.119 0.159 0.127 0.182 0.113 0.157 0.135 0.202 0.112 0.153 0.125 0.191 0.128 0.181 0.186 0.231

W
ea

th
er

Avg. 0.089 0.136 0.094 0.132 0.101 0.150 0.129 0.169 0.106 0.160 0.092 0.129 0.106 0.162 0.110 0.157 0.164 0.219
0.125 0.049 0.062 0.069 0.087 0.055 0.071 0.044 0.069 0.075 0.107 0.064 0.083 0.062 0.083 0.061 0.082 0.071 0.096
0.25 0.063 0.080 0.077 0.098 0.071 0.092 0.065 0.090 0.082 0.118 0.075 0.097 0.071 0.092 0.074 0.097 0.089 0.106

0.375 0.074 0.089 0.094 0.106 0.085 0.124 0.089 0.108 0.103 0.125 0.096 0.111 0.083 0.106 0.092 0.110 0.109 0.133
0.5 0.089 0.122 0.112 0.135 0.099 0.136 0.104 0.134 0.114 0.141 0.110 0.126 0.097 0.114 0.105 0.132 0.118 0.147

P
T

B
-X

L

Avg. 0.069 0.088 0.088 0.107 0.078 0.106 0.076 0.100 0.094 0.123 0.086 0.104 0.078 0.099 0.083 0.105 0.097 0.121
0.125 0.066 0.087 0.092 0.112 0.070 0.098 0.083 0.104 0.102 0.134 0.079 0.096 0.113 0.149 0.089 0.115 0.103 0.140
0.25 0.082 0.105 0.114 0.146 0.085 0.110 0.106 0.133 0.117 0.158 0.096 0.120 0.125 0.164 0.105 0.136 0.116 0.155

0.375 0.104 0.137 0.119 0.154 0.110 0.142 0.124 0.155 0.139 0.188 0.104 0.132 0.133 0.177 0.122 0.160 0.142 0.197
0.5 0.109 0.141 0.131 0.188 0.121 0.157 0.142 0.191 0.155 0.207 0.127 0.163 0.147 0.196 0.134 0.180 0.139 0.195

E
x

te
n

d
ed

S
le

ep
-E

D
F

E

Avg. 0.090 0.118 0.114 0.150 0.097 0.127 0.114 0.146 0.128 0.172 0.102 0.128 0.130 0.172 0.112 0.148 0.125 0.172

Table 3: Super-resolution task. Super-resolution upsampling ratios are set at {2, 5, 10}. Experimentally,
sequence lengths are fixed at 200 for ETTm1, ETTh1, and Traffic datasets, and at 1000, 3000, and 960 for
PTB-XL, Sleep-EDFE, and CLAS datasets, respectively. Evaluation metrics include Mean Squared Error
(MSE) and Mean Absolute Error (MAE), with all results being averages over 4 masking ratios. The lowest
MSE is highlighted in bold red, while the second lowest is underlined in blue.

Model
(Year)

AdaWaveNet
(Ours)

iTransformer
(2023a)

FreTS
(2023)

TimesNet
(2022)

DLinear
(2023)

PatchTST
(2022)

Stationary
(2022b)

FiLM
(2022a)

FEDformer
(2022b)

SR Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
2 0.016 0.085 0.021 0.097 0.024 0.102 0.027 0.096 0.044 0.123 0.035 0.111 0.031 0.104 0.051 0.136 0.037 0.109
5 0.035 0.101 0.036 0.110 0.040 0.115 0.039 0.112 0.070 0.160 0.057 0.146 0.038 0.117 0.047 0.121 0.055 0.158

10 0.058 0.151 0.065 0.173 0.077 0.179 0.054 0.147 0.087 0.194 0.077 0.182 0.062 0.166 0.070 0.172 0.081 0.190ETTm1

Avg. 0.036 0.112 0.041 0.127 0.047 0.132 0.040 0.118 0.067 0.159 0.056 0.146 0.044 0.129 0.056 0.143 0.058 0.152
2 0.039 0.112 0.046 0.125 0.043 0.115 0.051 0.123 0.063 0.134 0.054 0.128 0.051 0.130 0.048 0.129 0.037 0.109
5 0.093 0.193 0.107 0.210 0.099 0.200 0.102 0.205 0.128 0.231 0.110 0.217 0.090 0.194 0.100 0.203 0.107 0.208

10 0.178 0.270 0.202 0.291 0.190 0.287 0.187 0.287 0.202 0.304 0.196 0.292 0.168 0.266 0.189 0.294 0.201 0.297ETTh1

Avg. 0.103 0.192 0.118 0.209 0.111 0.201 0.113 0.205 0.131 0.223 0.120 0.212 0.103 0.197 0.112 0.209 0.115 0.205
2 0.107 0.096 0.114 0.104 0.127 0.119 0.133 0.125 0.141 0.136 0.124 0.111 0.157 0.155 0.162 0.154 0.155 0.142
5 0.210 0.197 0.208 0.193 0.226 0.213 0.241 0.221 0.239 0.222 0.219 0.197 0.264 0.250 0.277 0.258 0.256 0.233

10 0.322 0.281 0.329 0.285 0.351 0.307 0.369 0.322 0.355 0.319 0.337 0.295 0.383 0.346 0.401 0.377 0.363 0.336Traffic

Avg. 0.213 0.191 0.217 0.194 0.235 0.213 0.248 0.223 0.245 0.226 0.227 0.201 0.268 0.250 0.280 0.263 0.258 0.237
2 0.007 0.016 0.009 0.019 0.007 0.015 0.006 0.015 0.011 0.021 0.014 0.020 0.012 0.025 0.008 0.018 0.010 0.022
5 0.016 0.023 0.019 0.028 0.017 0.023 0.015 0.021 0.023 0.037 0.026 0.036 0.023 0.037 0.019 0.027 0.020 0.029

10 0.033 0.045 0.035 0.046 0.036 0.048 0.030 0.042 0.045 0.062 0.052 0.069 0.042 0.061 0.039 0.052 0.037 0.050PTB-XL

Avg. 0.019 0.028 0.021 0.031 0.020 0.029 0.017 0.026 0.026 0.040 0.031 0.042 0.026 0.041 0.022 0.032 0.022 0.034
2 0.011 0.133 0.017 0.140 0.015 0.137 0.027 0.160 0.022 0.155 0.025 0.156 0.031 0.166 0.020 0.150 0.027 0.158
5 0.022 0.141 0.036 0.168 0.028 0.154 0.035 0.179 0.035 0.177 0.038 0.182 0.045 0.184 0.039 0.173 0.042 0.179

10 0.027 0.159 0.041 0.177 0.036 0.170 0.044 0.181 0.049 0.190 0.048 0.194 0.064 0.212 0.053 0.202 0.061 0.222Sleep-EDFE

Avg. 0.020 0.144 0.031 0.162 0.026 0.154 0.035 0.173 0.035 0.174 0.037 0.177 0.047 0.187 0.037 0.175 0.043 0.186
2 0.018 0.048 0.025 0.057 0.023 0.055 0.037 0.083 0.022 0.054 0.033 0.078 0.044 0.081 0.030 0.071 0.029 0.062
5 0.034 0.079 0.047 0.084 0.041 0.082 0.046 0.099 0.039 0.088 0.054 0.098 0.046 0.082 0.052 0.103 0.039 0.084

10 0.051 0.101 0.066 0.120 0.062 0.111 0.060 0.107 0.056 0.114 0.072 0.135 0.066 0.117 0.078 0.144 0.062 0.116CLAS

Avg. 0.034 0.076 0.046 0.087 0.042 0.083 0.048 0.096 0.039 0.085 0.053 0.104 0.052 0.093 0.053 0.106 0.043 0.087
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Table 4: The averaged results of model ablation with mean squared error as the evaluation metric. "GL"
denotes the Grouped Linear module, "CWA" indicates Channel-wise Attention, and "AWB" signifies the
AdaWave component. Tasks are marked as (F) for forecasting and (I) for extended imputation. The highest
MSE is highlighted in bold red, while the second highest is underlined in blue. Refer to Table 8 in the
Appendix for comprehensive results.

w/o - GL RevIN CWA AWB
Weather (F) 0.233 0.240 0.246 0.256 0.255
Traffic (F) 0.415 0.425 0.422 0.519 0.473

ECL (I) 0.112 0.115 0.117 0.122 0.131
PTB-XL (I) 0.069 0.080 0.070 0.069 0.082

5.3 Time Series Super-resolution

This study introduces a benchmark for super-resolution in time series data, which can be crucial for enhancing
the detail and quality of data, particularly when dealing with under-sampled or low-resolution datasets.
The objective of the super-resolution task is to reconstruct the original high-resolution signal from the
down-sampled version and increase the temporal resolution by reconstructing the data at finer granularities.
The super-resolution task differs from traditional imputation in that it focuses on upsampling the temporal
resolution rather than simply filling in missing values. Specifically, it requires the model to infer the higher-
frequency components that are missing due to down-sampling. For instance, reconstructing a 100 Hz ECG
signal from 10, 20, 50 Hz inputs requires generating fine-grained details that are not directly observable in
the low-resolution input.

In this context, we conduct super-resolution experiments on the ETT, traffic, ECG (PTB-XL), EEG (Sleep-
EDFE), and electrodermal activity (EDA) datasets from the CLAS study (Markova et al., 2019). We evaluate
the performance of various models, including AdaWaveNet, by upscaling the temporal resolution at ratios of 2,
5, 10. Our results demonstrate that AdaWaveNet excels at reconstructing high-resolution signals, capturing
both low- and high-frequency components, which leads to superior performance compared to other baseline
models.

Table 3 shows the evaluation results for the super-resolution task. The proposed method shows competitive
results compared to the baseline methods, especially on datasets such as Traffic, Sleep-EDFE, and CLAS. We
credit the observed improvement to the multi-scale analysis inside the model architecture. In this experiment,
we find the frequency domain enhanced methods including FreTS, TimesNet, and FEDformer generally provide
better results in strongly periodic data. For example, the first three places of averaged super-resolution
reconstruction performances on ECG signals in the PTB-XL dataset are TimesNet, AdaWaveNet, and
FreTS, respectively. The channel-wise attention also brings advantages to models, such as AdaWaveNet and
iTransformer, in reconstructing the high-dimensional traffic data.

6 Discussion

In this section, we discuss the model ablations and efficiency. Also, we showcase an example of the multi-scale
analysis performed by the proposed method. Further, we discuss the limitations of this work.

6.1 Ablation Study

An ablation study was conducted to assess the contribution of individual components within the proposed
AdaWaveNet framework to its overall performance. This involved evaluating the model on forecasting tasks
and extended imputation tasks with the omission of specific components: the Grouped Linear Module,
reversible instance normalization (RevIn) as described by (Kim et al., 2021), channel-wise Attention inspired
by Liu et al. (2023a), and the AdaWaveNet and InvAdaWaveNet blocks. The results are presented in Table
4, which indicates that the AWB component significantly enhances performance on the ECL and PTB-XL
datasets for imputation tasks. Meanwhile, CWA shows notable efficacy in forecasting tasks. The GL module
also demonstrates improved results on the PTB-XL dataset during imputation.
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Figure 3: Comparison of model efficiency on the ETTh1 and Traffic datasets. The y-axis represents the
averaged mean squared error performances across the forecasting and super-resolution tasks; whereas the
x-axis represents the model training time for each iteration. The input length is 192 with a batch size of 16.

6.2 Efficiency Analysis

Efficiency is one of the important concerns in time series analysis. Therefore, we evaluate the efficiency of the
proposed method and compare the results with all the baseline models we used in the main experiments.
Controlling the input length of the sequences as 96 time points, we select the data samples from the ETTh1
and Traffic sets, as they have the least (7) and the most (862) numbers of variates. The environment used in
this evaluation is AWS g5 instances with Nvidia A10 GPUs. The batch size is fixed as 16. Following the
previous studies (Wu et al., 2022; Liu et al., 2023a), we evaluate the efficiency of the models in aspects of
performances (MSE), training speed, and memory footprints.

The comparison results shown in Figure 3 illustrate that AdaWaveNet achieves state-of-the-art performance
while maintaining reasonable model efficiency. The DLinear model exhibits the smallest memory footprint
and fastest training time among the evaluated models. AdaWaveNet demonstrates comparable training speed
and memory usage to the iTransformer; while achieving significant savings in memory and training time
compared to established approaches such as PatchTST.

6.3 Wavelet Decomposition

Figure 4 illustrates the wavelet decomposition process employed by AdaWaveNet in a time series forecasting
task. The decomposition splits the seasonal component into layers of approximations and detail coefficients.
A channel-wise attention mechanism is then applied to forecast future sequence approximations. Each
decomposition level incorporates a residual connection that integrates the reconstructed signals from the
InvAdaWave blocks. This example illustrates the multi-scale analytical capability of the proposed method,
which enables the model to extract features across various granularities. Moreover, the flexibility introduced
in the learnable CNN kernels empowers the AdaWave and InvAdaWave blocks to dynamically adapt to
varying input data.

6.4 Limitations

6.4.1 Model Complexity

AdaWaveNet incorporates effective components, such as the grouped linear module and cross-channel attention
mechanisms, to model dependencies across similar variates in the trend phase. It also introduces multi-scale
capabilities through the AdaWave blocks. Despite its promising performance, AdaWaveNet is less efficient
compared to simpler MLP-based models such as DLinear Zeng et al. (2023), which potentially limits its
applicability in environments where computational resources are constrained or real-time analysis is required.
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Projection

Linear

AdaWave Block

AdaWave Block

Linear

InvAdaWave Block

InvAdaWave Block

Figure 4: An example of the wavelet decomposition and projection in time series forecasting on ETTh1
data with two layers of AdaWave and InvAdaWave blocks. xl

s and x̂l
s represents the the approximation at

wavelet level l of the input and target sequences, respectively. c is the wavelet coefficients decomposed by the
AdaWave blocks.

6.4.2 Generalization to Different Signal Types

AdaWaveNet demonstrates robust performance in forecasting tasks with data types such as weather and
solar, as well as in extended imputation tasks with electricity and EEG data. However, its capacity to
generalize across the full spectrum of time series data and various tasks has room to be further improved.
For example, in tasks involving random imputation of electricity and weather datasets, TimesNet exhibits
superior performance. Similarly, iTransformer outperforms AdaWaveNet in traffic forecasting tasks.

7 Conclusion and Future Work

This paper presented AdaWaveNet, a novel and efficient architecture for addressing the challenges of non-
stationarity in time series data analysis. Through the integration of adaptive wavelet transformations,
AdaWaveNet demonstrates the advantages of modeling multi-scale data representations in time series data.
Our extensive experiments are conducted on 10 datasets for forecasting, imputation, and the newly established
super-resolution tasks, and the results indicate the effectiveness of our approach.

Future efforts will focus on exploring and expanding AdaWaveNet and its multi-scale analysis framework to a
broader range of tasks, such as classification and anomaly detection. Also, we aim to explore the possibility
of using multi-scale analysis in large-scale pre-training models.
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Appendix

A Implementation Details

In this section, we cover the implementation details of the methods and experiments, including datasets,
algorithm details, hyperparameters, and baselines.

A.1 Datasets

There are 10 datasets used in this study, and the overall summary of the datasets information can be seen in
Table 5. Also, the descriptions of each set are introduced in this section.

ETT (Electricity Transformer Temperature): The ETT dataset (Zhou et al., 2021) includes detailed
records of electricity transformer temperatures and corresponding electricity consumption data. This high-
resolution dataset, sampled every 15 minutes, covers two years. It provides insights into the relationship
between transformer temperatures and electricity demand, crucial for maintaining efficient and safe operations
of power systems. In our research, we utilize the ETT dataset to forecast short-term electricity demand and
transformer temperatures.

Electricity Load Diagrams: The Electricity Load Diagrams dataset, sourced from the UCI Machine Learn-
ing Repository (Asuncion & Newman, 2007), comprises electricity consumption data recorded at 15-minute

Table 5: Details of datasets used in the experiments. Data Split means the number of samples split into the
train, validation, and test sets.

Dataset Dimentions Frequency Data Split Forecasting Imputation SR
ETTm1 7 15 mins (34465, 11521, 11521) ✓ ✓
ETTh1 7 Hourly (8545, 2881, 2881) ✓ ✓

ECL 321 Hourly (18317, 2633, 5261) ✓ ✓
Traffic 862 Hourly (12185, 1757, 3509) ✓ ✓

Weather 21 10 mins (36792, 5291, 10540) ✓ ✓
Exchange 8 Daily (5120, 665, 1422) ✓

Solar 137 10 mins (36601, 5161, 10417) ✓
PTB-XL 12 500 Hz (14771, 1493, 1652) ✓ ✓

Sleep-EDFE 1 100 Hz (22212, 9519, 10577) ✓ ✓
CLAS 1 100 Hz (993, 0, 359) ✓
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intervals from multiple customers. The dataset represents a diverse range of electricity consumers, including
both individual households and industrial customers. The data spans from 2011 to 2014, encompassing
various consumption patterns and seasonal effects. For our study, we focus on forecasting electricity demand
on an hourly basis.

Traffic (PeMS: Performance Measurement System): The PeMS dataset, provided by the California
Department of Transportation, is a comprehensive collection of traffic flow data. It contains real-time traffic
speed and volume information collected from over 39,000 individual sensors across the freeway system of
California. These sensors report data every 30 seconds, offering an exceptionally detailed view of traffic
patterns. Our study utilizes this dataset to forecast traffic flow and congestion levels. The data spans several
years, but for our analysis, we focus on a one-year period, ensuring a mix of workdays and weekends to
capture varying traffic behaviors.

Weather (Global Surface Summary of the Day): The weather dataset from NOAA’s National Climatic
Data Center (Wetterstation, 2020) offers daily weather summaries from a wide array of weather stations
around the world. This dataset includes essential meteorological parameters such as temperature, humidity,
precipitation, wind speed, and atmospheric pressure. The data, spanning over several decades, provides a
rich source for analyzing and forecasting weather patterns. For our research, we select a subset of the dataset
encompassing ten years of data from stations across different climatic zones. The goal is to develop models
capable of predicting weather conditions such as temperature and precipitation.

Exchange Rates: The Foreign Exchange Rates dataset (Lai et al., 2018) encompasses daily exchange rates
of various currencies against the US dollar from the year 2000 to 2019. It is a comprehensive dataset that
includes the exchange rates of over 50 currencies and offers a detailed view of global financial dynamics. Our
study aims to forecast the daily exchange rates of major currencies. The dataset’s span allows for the analysis
of long-term trends as well as responses to major global events. For preprocessing, we ensure data continuity
by addressing any missing values and then normalize the data to account for different scales across currencies.

Solar Energy Prediction: The Solar Energy Prediction dataset from the UCI Machine Learning Repository
(Asuncion & Newman, 2007) contains solar power generation data alongside various meteorological variables.
The dataset, collected over one year, includes measurements such as solar irradiance, temperature, humidity,
and wind speed, sampled at 10-minute intervals. This comprehensive dataset enables the development of
models for predicting solar energy output, a key factor in managing renewable energy resources. In our
analysis, we focus on forecasting daily solar energy data.

PTB-XL: The PTB-XL (Wagner et al., 2020) dataset is a large dataset containing 21,837 clinical 12-lead
electrocardiogram (ECG) records from 18,885 patients of 10-second length, where 52% are male and 48%
are female with ages ranging from 0 to 95 years (median 62 and interquartile range of 22). There are two
sampling rates: 100 Hz and 500 Hz, available in the dataset, but in our experiments, only data sampled at
100 Hz are used. The raw ECG data are annotated by two cardiologists into five major categories, including
normal ECG (NORM), myocardial infarction (MI), ST/T Change (STTC), Conduction Disturbance (CD),
and Hypertrophy (HYP). The dataset contains a comprehensive collection of various co-occurring pathologies
and a large proportion of healthy control samples. We experimented with imputation and super-resolution
tasks. Further, to ensure a fair comparison of machine learning algorithms trained on the dataset, we follow
the recommended splits of training and test sets, which results in a training/testing ratio of 8/1.

Sleep-EDFE: The Sleep-EDF (expanded) (Kemp et al., 2000) dataset contains whole-night sleep recordings
from 822 subjects with physiological signals and sleep stages that were annotated manually by well-trained
technicians. In this dataset, the physiological signals, including Fpz-Cz/Pz-Oz electroencephalogram (EEG),
electrooculogram (EOG), and chin electromyogram (EMG), were sampled at 100 Hz. To model the relationship
between the sleep patterns and physiological data, we split the whole-night recordings into 30-second Fpz-Cz
EEG segments as in Supratak & Guo (2020), which resulted in a total of 42308 EEG and sleep pattern pairs.
We divided 25% of the samples into a testing set according to the order of the subject IDs.

CLAS: The CLAS dataset Markova et al. (2019) aims to support research on the automated assessment of
certain states of mind and emotional conditions using physiological data. The dataset consists of synchronized
recordings of ECG, photopletysmogram (PPG), electrodermal activity (EDA), and acceleration (ACC) signals.
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Random Masking Extended Masking

Figure 5: Comparison of masking methods for time series imputation. The left column depicts random
masking, where individual data points are randomly concealed throughout the series, simulating sporadic
data loss. The right column illustrates extended masking, where contiguous segments are masked to emulate
prolonged periods of missing data. Each row represents an independent time series sample subject to the
respective masking method.

Sixty-two healthy subjects participated and were involved in three interactive tasks and two perceptive tasks.
The perceptive tasks, which leveraged the images and audio-video stimuli, were purposely selected to evoke
emotions in the four quadrants of arousal-valence space. In this study, our goal was to use the EDA signal
to detect binary high/low stress states that are annotated in arousal-valence space. We processed the raw
EDA data with a lowpass Butterworth filter with a cutoff frequency of 0.2 Hz, then split the sequences into
10-second segments. We divided the train/test set in a subject-independent manner and utilized the data
from 17 subjects as the test set according to subject ids (> 45).

A.2 Imputation Settings

In the context of time series imputation, masking refers to the process of artificially removing or concealing
parts of the data to simulate missing values, which the model then attempts to impute. Two distinct masking
approaches are commonly employed: random masking and extended masking.

Random Masking: This method involves randomly selecting points or segments within the time series
data and setting them as missing or masked. The randomness of this approach is intended to simulate data
missingness that occurs sporadically and without a specific pattern, which is a common scenario in real-world
datasets. However, this method may not adequately represent scenarios where data is missing for extended
periods, which is also a practical occurrence.

Extended Masking: To address the limitations of random masking, we introduce the extended masking
approach. This technique creates artificial gaps by masking contiguous segments of the time series. Extended
masking is designed to simulate scenarios where data might be missing due to prolonged outages or systematic
issues, providing a more challenging and realistic task for the imputation model to tackle.

Both methods are essential for testing the robustness and versatility of imputation models, ensuring they can
handle various types of missing data patterns.
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Table 6: Comparison of performances of using different numbers of clusters in grouped linear module.

Dataset / number of clusters k = 1 k = 2 k = 3 k = 4 k = 5
ECL 0.175 0.173 0.170 0.168 0.169

Weather 0.240 0.233 0.236 0.235 0.235
Exchange 0.481 0.484 0.482 0.481 0.482

Solar 0.209 0.214 0.210 0.212 0.214
ETTh1 0.462 0.457 0.449 0.444 0.446

Table 7: The hyperparameter settings of AdaWaveNet for each dataset.
hyperparam. lifting kernel size lifting Levels n_clusters learning rate

ETT 7 4 4 0.0005
ECL 7 3 4 0.0005

Traffic 5 1 9 0.001
Exchange Rate 7 4 1 0.0001

Weather 7 4 2 0.0005
Solar 7 1 1 0.0005

PTB-XL 16 5 2 0.001
Sleep-EDFE 16 5 1 0.001

CLAS 9 5 1 0.001

A.3 Implementation Details

In this section, we introduce the experimental environments and the hyperparameter we used for each dataset

A.3.1 Experimental Environments

All the modules are implemented in PyTorch 1.11 and a Python version of 3.10. To speed up the experiments,
GPU instances are utilized. We use AWS G5 instances, which are equipped with Nvidia A10 24GB GPUs, in
training and inferring the models.

A.3.2 Hyperparameter Setting

In this section, we list some essential hyperparameters used in this study. For the design of AdaWave blocks,
we adjust the depth of transformations in a range of 1 to 5; whereas the kernel size of the utilized convolutional
kernels is adjusted based on the datasets. The number of clusters used in the grouped linear model varies
from 1 to 9 depending on the channels of signals. Also, we adjust the learning rate for each set of experiments
to achieve better convergent performances. Further, to determine the number of clusters in the proposed
group linear module, we conduct extensive experiments as shown in Table 6. The detailed hyperparameters
of each dataset are listed in Table 7.

A.4 AdaWaveNet Ablation Study

Table 8 shows the full results of the ablations of the model.

B Case Study: Analyses of Non-stationary Signals with AdaWaveNet

In this case study, we present a comprehensive approach to synthesizing non-stationary time series data,
which combines low-frequency sinusoidal components, high-frequency transients, linear trends, and Gaussian
noise to create a basic non-stationary signal. This is represented by the equation:

s(t) = sin(2πf1t) + sin(2πf2t)e−α(t−t0)2
+ βt+ ε(t) (14)
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Table 8: The full results of model ablation with mean squared error as the evaluation metric. The highest
MSE is highlighted in bold, while the second highest is underlined. Refer to Table 8 in the Appendix for
comprehensive results.

w/o / Grouped Linear RevIn Channel Attention AdaWave Block
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.169 0.215 0.174 0.226 0.180 0.231 0.185 0.239 0.177 0.231
192 0.203 0.245 0.209 0.254 0.216 0.260 0.227 0.266 0.222 0.257
336 0.248 0.286 0.255 0.299 0.262 0.311 0.272 0.328 0.276 0.337
720 0.313 0.336 0.321 0.348 0.325 0.356 0.341 0.375 0.345 0.382

Weather

Avg. 0.233 0.271 0.240 0.282 0.246 0.290 0.256 0.302 0.255 0.302
96 0.417 0.291 0.429 0.303 0.418 0.293 0.513 0.338 0.472 0.314
192 0.401 0.281 0.415 0.297 0.409 0.288 0.499 0.331 0.466 0.312
336 0.407 0.284 0.416 0.297 0.417 0.292 0.520 0.349 0.470 0.306
720 0.433 0.297 0.439 0.314 0.442 0.314 0.545 0.382 0.483 0.317

Fo
re

ca
st

in
g

Traffic

Avg. 0.415 0.288 0.425 0.303 0.422 0.297 0.519 0.350 0.473 0.312
0.125 0.098 0.207 0.099 0.208 0.103 0.212 0.108 0.214 0.112 0.219
0.25 0.104 0.207 0.106 0.212 0.106 0.214 0.112 0.215 0.121 0.227
0.375 0.121 0.228 0.124 0.233 0.129 0.240 0.131 0.232 0.140 0.240
0.5 0.126 0.230 0.131 0.237 0.130 0.235 0.137 0.243 0.149 0.250

ECL

Avg. 0.112 0.218 0.115 0.223 0.117 0.225 0.122 0.226 0.131 0.234
0.125 0.049 0.062 0.058 0.071 0.052 0.065 0.053 0.064 0.063 0.084
0.25 0.063 0.080 0.072 0.089 0.067 0.088 0.062 0.078 0.072 0.091
0.375 0.074 0.089 0.085 0.114 0.071 0.082 0.077 0.089 0.090 0.110
0.5 0.089 0.122 0.103 0.136 0.091 0.121 0.085 0.117 0.104 0.127

Im
pu

ta
ti

on

PTB-XL

Avg. 0.069 0.088 0.080 0.103 0.070 0.089 0.069 0.087 0.082 0.103

where f1 and f2 are the low and high frequencies respectively, α controls the transient decay, β represents
the linear trend, and ε(t) is Gaussian noise. This formulation captures fundamental non-stationary behaviors
while maintaining interpretability. We first generate signals with a regular low-frequency component (5 Hz)
and a high-frequency component (50 Hz) as the simple signal. Further, for increased complexity, we introduce
traffic-like signals that incorporate daily and weekly cyclical patterns to mimic real-world traffic fluctuations:

straffic(t) = sin(2π24t) + 0.5 sin(4π24t) + sin(2π7t) + 0.5t+ ε(t) (15)

Similarly, electricity consumption-mimic signals simulate seasonal and daily variations typical of power usage
data:

selectricity(t) = 5 sin(2πt) + 2 sin(4πt) + 3 sin(2π365t) + 2t+ ε(t) (16)
Both complex models include trend components and noise to simulate realistic non stationary data. Fur-
thermore, we implement optional variance shifts and step changes to test model robustness against abrupt
signal changes. The variance shift is modeled as an increase in the amplitude of ε(t) at a specific time point,
while the step change is represented by a sudden additive constant to the signal. Based on the three settings -
including simple, traffic, and electricity - we further adjust (1) the variance shift values to be 1 and 2, for
moderate and large shifts, (2) the step changes as -0.5 or 0.5 to indicate the negative and positive changes.
The synthetic signals are visualized in Figure 6. In total, for each signal, 1024 data points are generated,
where the first 512 timestamps are used in training models. In the evaluation stage, we compare model
predictions with a denoised signal, i.e., sin(2π · 5t) + sin(2π · 50t) · e−50(t−0.5)2 + t. Also, the variance shifts
and step changes are only applied in the test phases.

The performance of various models, including AdaWaveNet, DLinear, TimesNet, FreTS, PatchTST, and
iTransformer, was evaluated on this synthetic non-stationary time series. Table 9 summarizes the results
of this case study. Further, we showcase two examples, including Simple and Traffic with variance shift
and step changes, in Figure 7 and 8. With the lowest MSE and MAE among all models, AdaWaveNet’s
predictions closely align with the ground truth, effectively capturing both the low-frequency sinusoidal
component and the high-frequency transient component. In contrast, other models struggle to varying degrees
in accurately predicting the non-stationary signal. DLinear shows significant deviation from the ground truth,
particularly in capturing the high-frequency components, which results in high MSE and MAE. FreTS and
iTransformer demonstrate moderate performance but fail to capture the finer details of the signal, particularly
the high-frequency components.
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Figure 6: Synthetic non-stationary time series data generated using three complexity levels (Simple, Traffic,
and Electricity) and three parameter settings (No shift/step, Moderate shift with negative step, and Large
shift with positive step). Each row represents a different complexity level, while each column shows the
conditions of variance shift and step changes.

Table 9: The averaged results of the model forecasting on synthetic non-stationary signals. Models are
trained on 512 data samples, whereas the test samples are the later 512 points. Both the lookback length and
prediction length are fixed at 96. The evaluation metrics are mean squared error (MSE) and mean absolute
error (MAE)

.

Models Simple Traffic Electricity
MSE MAE MSE MAE MSE MAE

iTransformer 0.454 0.525 1.268 0.904 2.677 2.564
DLinear 0.599 0.692 1.032 0.858 1.885 1.679

TimesNet 0.397 0.492 1.622 1.027 2.571 2.488
FreTS 0.676 0.707 2.081 1.169 1.701 1.502

PatchTST 0.330 0.453 1.168 0.866 1.550 1.351
AdaWaveNet 0.215 0.367 0.478 0.576 1.299 1.193
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Figure 7: Comparison of model predictions on a synthetic non-stationary time series [Simple]. Top row:
Original non-stationary signal (left) and ground truth for the prediction period (right). Subsequent rows:
Predictions from AdaWaveNet, DLinear, TimesNet, FreTS, PatchTST, and iTransformer models compared
against the ground truth.

22



Published in Transactions on Machine Learning Research (11/2024)

0.0 0.2 0.4 0.6 0.8 1.0
Time

4

2

0

2

4

Am
pl

itu
de

Original Non-Stationary Signal
Original Signal

0.6 0.7 0.8 0.9 1.0
Time

2

1

0

1

2

Am
pl

itu
de

Ground Truth (Denoised Prediction Period)
Ground Truth

0.6 0.7 0.8 0.9 1.0
Time

3

2

1

0

1

2

3

Am
pl

itu
de

AdaWaveNet Prediction vs Ground Truth

Ground Truth
AdaWaveNet Prediction

0.6 0.7 0.8 0.9 1.0
Time

4

3

2

1

0

1

2

3
Am

pl
itu

de
DLinear Prediction vs Ground Truth

Ground Truth
DLinear Prediction

0.6 0.7 0.8 0.9 1.0
Time

2

1

0

1

2

Am
pl

itu
de

TimesNet Prediction vs Ground Truth

Ground Truth
TimesNet Prediction

0.6 0.7 0.8 0.9 1.0
Time

2

1

0

1

2

Am
pl

itu
de

FreTS Prediction vs Ground Truth

Ground Truth
FreTS Prediction

0.6 0.7 0.8 0.9 1.0
Time

2

1

0

1

2

Am
pl

itu
de

PatchTST Prediction vs Ground Truth
Ground Truth
PatchTST Prediction

0.6 0.7 0.8 0.9 1.0
Time

2

1

0

1

2

Am
pl

itu
de

iTransformer Prediction vs Ground Truth

Ground Truth
iTransformer Prediction

Figure 8: Comparison of model predictions on a synthetic non-stationary time series [Traffic - moderate
variance shift & negative step change]. Top row: Original non-stationary signal (left) and ground truth for
the prediction period (right). Subsequent rows: Predictions from AdaWaveNet, DLinear, TimesNet, FreTS,
PatchTST, and iTransformer models compared against the ground truth.
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Figure 9: Multi-level decomposition of a non-stationary time series using AdaWaveNet. The top plot shows
the input signal, followed by four levels of approximations (left column) and their corresponding wavelet
coefficients (right column). Each level represents a coarser approximation of the original signal, with the
coefficients capturing the details lost between successive approximation levels.
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Figure 10: Visualization of a forecasting task on traffic dataset. The length of both the input sequence and
forecasting sequence is 96.

Figure 9 illustrates the multi-scale decomposition capabilities of AdaWaveNet when processing the generated
non-stationary time series. The approximation at each level represents a progressively coarser version of the
original signal, which effectively separates low-frequency trends from high-frequency details. Concurrently,
the wavelet coefficients encode the fine-grained information lost between successive approximation levels. This
hierarchical decomposition allows AdaWaveNet to adapt to the signal’s changing characteristics at multiple
scales. For instance, the Level 0 approximation retains much of the original signal’s structure, while Levels 1,
2, and 3 focus on broader trends. This adaptive multi-scale approach enables the proposed model to learn
both local fluctuations and overarching patterns in non-stationary time series.

C Showcases

In this section, we showcase some examples of forecasting, imputation, and super-resolution tasks.

C.1 Forecasting

Figure 10 presents a comparative example of forecasting future traffic volumes using various models. The
figure reveals a notable disparity between past sequences and predicted sequences for this particular variate.
The visual results indicate that AdaWaveNet yields the most accurate forecast in this instance. Additionally,
the iTransformer model also performs commendably, which suggests that its channel-wise attention mechanism
is particularly useful for analyzing past traffic patterns for prediction purposes.

C.2 Imputation

The examples of imputation, including the random imputation and extended imputation are demonstrated in
this section.
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Figure 11: Visualization of a random imputation task on ETTh1 dataset. The sequence length is 96 and the
masked ratio is 0.25.

C.2.1 Random Masking

We provide an example of imputation with the random masking method. The proposed AdaWaveNet and
all the other baseline methods. As shown in Figure 11, AdaWaveNet, alongside baseline methods such
as PatchTST, TimesNet, and Nonstationary-Transformer, is capable of capturing the temporal dynamics.
Notably, AdaWaveNet shows superior performance in imputing fine-grained details, effectively handling both
the seasonality during peak phases and the underlying trends in flatter regions.

C.2.2 Extended Masking

We provide an example of imputation with the extended masking method. The proposed AdaWaveNet and all
the other baseline methods. Shown as in Figure 12, the proposed method exhibits a close approximation to
the ground truth, which indicates a higher predictive accuracy within this interval. The consistency across the
models outside the masked region implies a shared ability to capture the temporal dynamics in non-masked
intervals; while the differences within the masked region highlight the distinct predictive capabilities and
potential overfitting issues of the individual models.

C.3 Super-resolution

The visualization presents the results of a super-resolution task on time series data, specifically forecasting
traffic volume. Each subplot represents the performance of a different model: AdaWaveNet, iTransformer,
FreTS, TimesNet, DLinear, PatchTST, Non-stationary Transformer, FiLM, and FEDformer. In each plot,
three lines are denoted as the Ground Truth (blue line), which is the actual high-resolution data; the
Prediction (orange line), which is the model’s predicted high-resolution data; and the Low-resolution Input
(gray line), which serves as the model’s input data and represents the downsampled or coarse version of the
Ground Truth.
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Figure 12: Visualization of an extended imputation task on ETTh1 dataset. The sequence length is 96 and
the masked ratio is 0.25.

The predictions of AdaWaveNet closely follow the Ground Truth across the entire sequence. The fidelity
of AdaWaveNet’s prediction to the Ground Truth, particularly in capturing the peaks and troughs of the
traffic volume, showcases the model’s capability in the super-resolution task. The granularity of details in
the prediction suggests that AdaWaveNet effectively upsamples the low-resolution input and reconstructs
nuanced and accurate traffic data.
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Figure 13: Visualization of a super-resolution task on traffic data with an input length of 200. The super-
resolution ratio is 5.
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