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Abstract

The aim of knowledge graph (KG) completion is to extend an incomplete KG
with missing triples. Popular approaches based on graph embeddings typically
work by first representing the KG in a vector space, and then applying a predefined
scoring function to the resulting vectors to complete the KG. These approaches
work well in transductive settings, where predicted triples involve only constants
seen during training; however, they are not applicable in inductive settings, where
the KG on which the model was trained is extended with new constants or merged
with other KGs. The use of Graph Neural Networks (GNNs) has recently been
proposed as a way to overcome these limitations; however, existing approaches
do not fully exploit the capabilities of GNNs and still rely on heuristics and ad-
hoc scoring functions. In this paper, we propose a novel approach, where the
KG is fully encoded into a GNN in a transparent way, and where the predicted
triples can be read out directly from the last layer of the GNN without the need for
additional components or scoring functions. Our experiments show that our model
outperforms state-of-the-art approaches on inductive KG completion benchmarks.

1 Introduction

Knowledge graphs (KGs) are graph-structured knowledge bases where nodes and edges represent
entities of interest and their relations [7]. KGs are commonly represented as sets of triples in a standard
format such as the Resource Description Framework (RDF) [9]. Many prominent KGs are highly
incomplete, which limits their usefulness in practice; hence KG completion (or link prediction)—the
problem of extending a KG with missing triples—has received significant attention [14].

Most approaches to KG completion, such as TransE [3], DistMult [28], and RotatE [20], are based on
graph embedding techniques, which first embed the KG into a vector space (e.g., by learning a feature
vector for each entity) and then generate the predicted triples by applying a predefined scoring function
to the learnt vectors [14]. These models demonstrate good performance in transductive settings, where
missing triples are assumed to mention only constants already occurring in the incomplete KG. A key
limitation of these models, however, is that they are not applicable in inductive settings [5, 24, 21],
where missing triples may involve constants unseen during training; this setting is especially relevant
in practice since KGs are evolving: they may be extended with triples describing new objects or
integrated with external KGs. Consider, for instance, the KG inside the frame in Fig. 1, where an
embedding-based model has been used to extend the KG with the triple (Plato, lives,Greece); thus,
the model seems to have successfully learnt the pattern that students and their teachers tend to live in
the same country. Assume the graph is now extended with the triples

(Aristotle, student,Plato), (R.Feynman, student, J.Wheeler), (J.Wheeler, lives,USA),
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Figure 1: An example for link prediction, where solid and dotted arrows represent known and missing
triples, respectively. If we use the graph enclosed within the frame for training, transductive methods
will only be able to predict the missing triple (Plato, lives,Greece) inside the frame; in contrast,
inductive methods can take the new information (e.g., triple (Aristotle, student,Plato)) into account
and predict all three missing triples without re-training.

introducing constants for Aristotle, Feynman, Wheeler, and the USA. Since the parameters learnt by
embedding-based models are tied to the constants in the original KG, such a model cannot generalise
the learnt pattern to the constants unseen during training, and fails to complete the KG with triples
(Aristotle, lives,Greece) and (R.Feynman, lives,USA). Indeed, for the model to become applicable,
it would require re-training using also the newly introduced triples.

There are various approaches for inductive KG completion. Rule-based methods [29, 10, 15] show
good results, but only when the shape of the rules is known in advance. Other methods utilise
side information about unseen constants, such as attributes [6] and textual descriptions [25, 18],
which is not always available in practice. Recent approaches [5, 17, 30, 24, 21] aim to overcome
these limitations by exploiting Graph Neural Networks (GNNs), which are directly applicable to
graphs annotated with feature vectors [16]. GNNs are biased towards graph symmetries (nodes
with same neighbourhoods receive the same value) and have built-in inductive capabilities: they
are invariant under isomorphisms (i.e., insensitive to the identity of nodes) and can capture general
patterns represented as logic formulas [2, 11, 27].

Conceptually, we see GNN-based KG completion approaches as working in three stages. First, they
encode the input KG as a graph with nodes annotated by feature vectors; second, this graph is fed to a
GNN; third, the predicted triples are decoded from the output vectors of the GNN. Approaches differ
in their encoding of the KG, the kind of GNN they use, and the chosen function for decoding. In the
R-GCN approach [17], the encoder generates a node with a randomly initialised vector for each entity
in the KG and triples are encoded as directed coloured edges (colours correspond to binary relations);
their GNN model aggregates separately for each colour, and a colour-specific scoring function is
applied to the outermost GNN layer for decoding the prediction. Hamaguchi et al. [5] and Wang et
al. [24] developed similar approaches with decoding also based on a scoring function. A drawback
of these approaches is that their prediction for a triple depends on the standalone neighbourhoods
of its constants in the input KG, but does not take into account what is the common part of these
neighbourhoods. This drawback has been recently addressed in the GraIL system by Teru et al. [21].
To predict whether a given triple should be added to the KG, GraIL identifies a sub-graph of the KG
for that triple and encodes it in a way similar to R-GCN. Then, GraIL applies a GNN and makes a
prediction for this triple using a scoring function applied globally to the output vectors of all nodes
in its dedicated subgraph. To make predictions for many triples, the approach requires generating a
subgraph to each of them, which is a significant bottleneck in practice.

In this paper, we propose a novel approach where the KG is encoded into the input graph to a graph
convolutional network [8]) in a transparent and direct way, so that the inductive capabilities of the
GNN are fully exploited. In contrast to existing approaches, our encoding establishes a one-to-one
correspondence between elements of the feature vectors in the innermost and outermost layers of the
GNN and triples over the KG’s signature, and hence the predicted triples can be read out directly
from the outermost layer without the need for an external scoring function. As a result, our approach
has neither the aforementioned drawbacks of scoring-based approaches, nor the bottleneck of GraIL,
being able to process the entire graph at once; moreover, our approach allows to make predictions for
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several triples in one run, which may provide significant speed up in practice. We have implemented
our approach in a system called INDIGO and compared it with R-GCN, GraIL and the system in
[5] on the inductive benchmarks developed in [21] and [5], as well as on a new benchmark we have
developed based on Freebase. Our results show that INDIGO not only outperforms the baselines
on these benchmarks, but can also be trained and applied more efficiently. We have finally studied
the ability of our system to learn in practice common inference patterns represented using logical
rules; our experiments show that our system is able to learn more comprehensive rule sets than the
evaluated baselines.

2 Inductive KG Completion

In the context of this paper, a knowledge graph is a set of triples represented in a standard format for
graph-structured data such as RDF [9]. More formally, a signature consists of pairwise disjoint sets
of types (i.e., unary predicates), relations (i.e., binary predicates), and constants. A knowledge graph
(KG) is a finite set of triples of the form (c, type, t), where c is a constant and t is a type, and triples
of the form (c, r, d), where c, d are constants and r is a relation.1 The signature Sig(K) of a KG K is
the set of types, relations, and constants used in K; then, Pred(K) is the subset of Sig(K) consisting
of all its types and relations.

The problem of KG completion can be loosely understood as that of extending an incomplete KG K
to its complete version K∗ by adding triples over Sig(K), where a triple is added if there is sufficient
evidence that it holds given the triples in K. We formalise inductive KG completion as the following
ML problem. Given arbitrary (but fixed) finite sets Types and Rels of types and relations, respectively,
the aim in inductive KG completion is to learn a Boolean completion function f(·, ·) applicable to
each pair of a KG K with Pred(K) ⊆ Types ∪ Rels and a triple λ with Sig(λ) ⊆ Sig(K) such that
f(K,λ) is true if λ is in K∗. Note that, in this formalisation, transductive KG completion is the
particular case of inductive completion where the function to be learnt is applicable only to a fixed
KG K—that is, can be seen as fK(·) such that fK(λ) is true for a triple λ if λ belongs to K∗.

A key limitation of transductive approaches based on graph embeddings is that the completion
function learnt for a given KG is not applicable to any other KG (for this one needs to independently
learn a new function). In other words, a trained instance of such an approach cannot make predictions
for triples involving constants unseen during training; for example, a model trained by such a system
on a graph in the frame in Fig. 1 cannot make predictions for any triple with a constant outside this
frame. In contrast, once trained on a KG K, inductive GNN-based systems, such as GraIL and our
system, can make predictions without re-training on every KG and triple over the same types and
relations as K, regardless of the constants they use.

3 A GNN-Based Architecture for Inductive KG Completion

3.1 Overview

Our inductive approach relies on the completion function f realised by the following three steps.

1. Encoding, which takes an (incomplete) KG K and a set Λ of candidate triples (of the same
signature) as input and returns a node-annotated graph GΛ

K of the form specified in Definition 1;
the encoding is pair-wise: nodes in GΛ

K correspond to pairs of constants occurring in K and Λ.
2. GNN application, which updates the annotations of the graph nodes; in our approach, we use a

graph convolutional network (GCN), which is a GNN variant popular in applications [8].
3. Decoding, which extracts the predictions f(K,λ) for each λ ∈ Λ from the updated graph output

by the GNN; this step is essentially mirroring the encoding.

The details of these steps are given in Sections 3.2, 3.3, and 3.4, respectively. The key conceptual
difference distinguishing our approach from existing inductive systems, such as R-GCN and GraIL,
lies in the encoding and decoding steps. On the one hand, existing approaches typically encode each
constant in K by a unique node in the graph, where the node’s feature vector is randomly initialised;
in contrast, in our approach each node in the graph encodes a pair of constants, and each element in

1In the KG literature, constants and types are sometimes collectively referred to as entities and the type
relation is treated as an ordinary relation.
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the initial feature vector of this node directly captures a fact in the KG involving these constants. On
the other hand, existing approaches typically rely on ad-hoc scoring functions to decode the output
of the GNN, whereas in our approach the predicted triples can be read out directly from the feature
vectors in the final layer of the GNN. Furthermore, in our approach, we are able to make predictions
for a set Λ of candidate triples at once (for the same KG) rather than for a single triple; this facilitates
training and testing in many practical scenarios, including those reflected in existing benchmarks.

Next, we define the node-annotated graphs which are used on all three steps of our approach. There
are significant differences between KGs, which represent graph-structured data, and annotated graphs,
which are the graphs manipulated by GNNs. Nodes in a KG represent constants and types, and edges
are labelled with relations between such entities; in contrast, nodes in annotated graphs are annotated
with feature vectors, and (undirected and unlabelled) edges between nodes indicate that the values of
their vectors influence each other during the execution of the GNN.

Definition 1. For annotation dimension δ ∈ N, a δ-annotated graph is an undirected graph where
each node u is associated with a feature vector u ∈ Rδ . The i-th element of u is denoted by (u)i.

In our approach, the annotation dimension δ is determined by the relevant sets Rels of relations and
Types of types (which are assumed known and fixed before training in the inductive setting); in
particular, we take δ = |Types|+ 2 · |Rels|. This allows us to associate positions in feature vectors
to types, relations, and inverses of relations, which will be instrumental for encoding and decoding.
In particular, we fix an (arbitrary) enumeration id assigning a unique natural number from 1 to δ
to each t ∈ Types, each r ∈ Rels, and the inverse r− of each r ∈ Rels, and assume that, for every
type, relation, or inverse p, element id(p) of a node feature vector corresponds to p. Observe that the
dimension δ does not depend on the constants of the input KG; so our approach is indeed inductive:
once trained, our model is applicable to any KG over the fixed sets of types and relations, but using
arbitrary constants. For the rest of this section, we assume that Rels, Types, id, and δ are fixed.

3.2 Encoding KGs

Our encoder maps a KG K and a set Λ of candidate triples to a δ-annotated graph GΛ
K where each

node uc,d corresponds to a pair of (not necessarily distinct) constants c, d connected by a triple in K
or Λ. To avoid duplication of information, graph GΛ

K contains only one of the nodes uc,d and ud,c

when c ̸= d. The choice between uc,d and ud,c is immaterial to our approach; for definiteness, we
employ the lexicographic order ⪯ on the set of constants and add node uc,d to GΛ

K only if c ⪯ d. As
formalised in the following definition, the annotation of uc,d is a Boolean feature vector where an
element is set to 1 if and only if the corresponding type, relation, or inverse relation holds in K for c
and d (e.g., (uc,d)i = 1 if and only if c = d and (c, type, t) ∈ K for type t with id(t) = i); if c and
d appear in the same triple only in Λ, then the elements of uc,d are all 0. As a result, our encoding
establishes a one-to-one correspondence between elements of the feature vectors and relevant triples
over the KG’s signature. Finally, two nodes in GΛ

K are connected by an edge if they share a constant,
which, as we will see, allows GNNs to learn structural patterns in the data (e.g., such as the pattern in
Fig. 1 capturing that teachers live in the same country as their students).

Definition 2. The encoding of a KG K over Types and Rels, and a set Λ of candidate triples of the
same signature as K is the δ-annotated graph GΛ

K where

– GΛ
K has a node uc,d for every two constants c, d in K such that

- either c = d,
- or c ≺ d and K ∪ Λ contains a triple of the form (c, r, d) or (d, r, c) for some relation r;

– the feature vectors of nodes in GΛ
K are defined as

- (uc,c)id(t) = 1 for all (c, type, t) ∈ K,
- (uc,d)id(r) = 1 for all (c, r, d) ∈ K with c ⪯ d and
- (uc,d)id(r−) = 1 for all (d, r, c) ∈ K with c ⪯ d,
- all other elements are 0;

– GΛ
K has an edge between different nodes uX and uY if pairs X and Y have a constant in common.

The graph in Fig. 2(a) depicts the structure of GΛ
K for our running example KG K inside the frame

in Fig. 1 and Λ = {(Plato, lives,Greece)} (where we assume that enumeration id of relations is
lexicographic). Nodes represent pairs of constants, and two nodes are connected only if their pairs
share a constant. Since our example K has no types and two relations, each feature vector (not
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Figure 2: Encodings of the KG in the frame in Fig. 1 with a candidate triple (Plato, lives,Greece).
(a) Encoding of INDIGO, where the feature vectors of the nodes are omitted and the node names are
abbreviated; for example (G,X) denotes uGreece,Xenophon. (b) Encodings of R-GCN, where the names
of constants are abbreviated to their first letter, and Col1 and Col2 are colours.

shown in the figure for clarity) has dimension 4. For instance, the vector of (G,X) is [0, 0, 1, 0]; the
first two components are set to 0 because K does not contain the triple (Greece, lives,Xenophon) or
(Greece, student,Xenophon), the third is 1 since K contains (Xenophon, lives,Greece), and the last
is 0 because there is no triple (Xenophon, student,Greece) in K. As we will see in Section 3.4, our
model predicts the triple (Plato, lives,Greece) to be in the completion K∗ by examining the feature
vector of (G,P ) after processing GΛ

K using a GNN as in Section 3.3; in the encoding, the node
(G,P ) is justified in GΛ

K by Λ and initialised with vector [0, 0, 0, 0], since Plato and Greece are not
connected in K.

It is interesting to compare our encoding to that of existing approaches. In particular, Fig. 2(b) depicts
the encoding of R-GCN [17] for the same example. The annotated graph now contains one node per
constant, and its directed edges are labelled with colours Col1 and Col2, representing relations lives
and student; thus, the structure of the annotated graph closely mimics that of the KG. In contrast
to our approach, however, the feature vectors associated to each node do not bear any connection
with the contents of the KG and are typically initialised randomly. After processing this graph by an
appropriate GNN, the R-GCN model applies a scoring function to the feature vectors of Plato and
Greece in the output layer of the GNN to predict the presence of the triple in the completion K∗.

Observe that, differently to R-GCN, the size of the encoding graph in our approach can be larger than
that of the original KG. Although the size growth can be quadratic in theory, we next argue that it is
almost always linear in practice. To this end, let K be a KG and let Λ be a set of candidate triples of
the same signature. By construction, encoding GΛ

K has m+ |K|+ |Λ| nodes annotated by δ-vectors
and up to (m+ |K|+ |Λ|) ∗ n edges, where m is the number of constants in K and n is the maximal
degree of a constant in K ∪ Λ (here, the degree of a constant c is the number of constants d such
that c and d appear in the same triple in K ∪ Λ). In theory, n is bounded by m, which is, however,
approached only if every two constants are connected by a triple in K or Λ. This hardly happens in
practice, since real-world KGs are typically sparse. Hence, we can assume that n is small and the
encoding size is linear (assuming that δ, which is the number of types and relations, is also small).

3.3 The GNN Model

Broadly speaking, a GNN is characterised by aggregation and combination functions for each layer,
where the functions usually depend on learnable parameters. Every layer of the GNN updates the
feature vector of each node in the graph by first aggregating the previous vectors of the neighbouring
nodes using the aggregation function, and then combining the result with the node’s previous vector
using the combination function. The vectors in the final layer form the GNN’s output.

In our approach, we use a graph convolutional network (GCN) variant [8] with ReLU activation on
the hidden layers, which offers a good balance between expressivity and performance (note, however,
that the choice of GCNs is not crucial for our approach, and GCNs can be easily replaced with
any other suitable GNN variant). The following definition of GCNs relies on a representation of
each δ-annotated graph G with N nodes as two matrices AG ∈ {0, 1}N×N and UG ∈ RN×δ, with

5



AG = A′
G + I for A′

G the adjacency matrix of G and I the identity matrix, and UG the feature
matrix of G where each row is the feature vector of a node in G. This representation relies on an
ordering of nodes in G, which we assume arbitrarily fixed for each graph. The diagonal identity
matrix I plays a technical role: in essence, it adds an artificial loop to each node in the graph and
thus allows for a uniform treatment of combination and aggregation in GCNs. In fact, instead of AG,
GCNs use its normalised version Anorm

G = D−½
G AGD

−½
G , where DG is the node degree matrix of

AG—that is, the diagonal matrix where the i-th diagonal element is defined as (DG)ii =
∑

j(AG)ij
(where Mij is the element of a matrix M in row i and column j).

Definition 3. A graph convolutional network (GCN) N with L ∈ N layers and dimension δ ∈ N
is characterised by (learnable) weight matrices Wℓ ∈ Rδℓ−1×δℓ and bias vectors bℓ ∈ Rδℓ for all
layers ℓ ∈ {1, . . . ,L}, where each δℓ ∈ N is the dimension of layer ℓ such that δ0 = δL = δ (the
number L of layers and the dimensions δℓ of the hidden layers are hyper-parameters of the model).
For an input δ-annotated graph G with N nodes given as matrices AG and UG, N updates, on each
layer ℓ ∈ {1, . . . ,L}, its hidden state matrix Uℓ ∈ RN×δℓ using the rule

Uℓ = σℓ(A
norm
G Uℓ−1 Wℓ + bℓ),

where U0 = UG and the non-linear activation function σℓ is ReLU for each ℓ < L and the logistic
sigmoid function for ℓ = L, which (in both cases) is applied to matrices element-wise. Then, N(G) is
the δ-annotated graph with the same nodes and edges as G, where the feature vector of each node u
is the row in UL corresponding to u.

Observe that the all the elements of a GCN, including all trainable and non-trainable parameters,
do not depend on the number of nodes in the graph, and so each (trained) GCN is applicable to
graphs of arbitrary size. Also, the activations are justified by practice: ReLU on hidden layers is
computationally efficient and prevents the vanishing gradient problem, while sigmoid on the final
layer guarantees values to be in (0, 1), which is convenient for computing the loss.

3.4 Decoding the GNN Output

The result N(GΛ
K) of a GCN N applied to the encoding GΛ

K of K and a candidate set Λ can be decoded
into a set of triples over the same signature by essentially inverting the encoder. Note, however, that
features in N(GΛ

K) are not Boolean; so, to decide if the decoded graph contains a triple, we check if
the corresponding feature in N(GΛ

K) is above a threshold θ, which we take as 0.5 in our experiments.

Definition 4. Given a threshold value θ ∈ R, the decoding of δ-annotated graph G is the set Kdec(G)
of the following triples, for c, d constants, t a type, and r a relation:

– (c, type, t) such that (uc,c)id(t) ≥ θ,
– (c, r, d) such that (uc,d)id(r) ≥ θ and c ⪯ d,
– (d, r, c) such that (uc,d)id(r−) ≥ θ and c ⪯ d.

Overall, a triple λ in a candidate set Λ for a KG K is predicted by a GCN N to be in the completion
K∗ if λ ∈ Kdec(N(GΛ

K)). Note, however, that in training and evaluation we sometimes need not just
a Boolean prediction for a candidate triple, but a confidence in this prediction—that is, a numeric
value from (0, 1); for this, we directly take the corresponding component of uc,d in the final layer.

3.5 Capturing Logical Rules

In addition to using standard benchmarks, we will also compare the inductive capabilities of com-
pletion approaches in terms of their ability to capture common inference patterns represented in
Datalog [1]—a well-known logic-based rule language in knowledge representation and databases.

A (Datalog) rule is a function-free first-order logic sentence of the form

∀x.B1, . . . ,Bn → H, (1)

where all Bi and H are atoms over predicates in Types∪Rels using variables in x as terms, such that
each variable in H is mentioned in one of Bi; in our context, it is convenient to see atoms as triples
as in a KG where variables are used instead of constants. Each assignment σ of constants to variables
x of a rule r of form (1) maps the atoms B1, . . . ,Bn into a KG Kσ

r ; in the same way, σ maps H to a
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Table 1: Benchmarks statistics, where |T |, |V|, |Ktest|, and |Λ+
test| are the sizes of the corresponding

training set, validation set, incomplete test KG, and positive test triple set, respectively.

GraIL-BM / FB15K-237 GraIL-BM / NELL-995 GraIL-BM / WN18RR
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

|T | 4,245 9,739 17,986 27,203 4,687 8,219 16,393 7,546 5,410 15,262 25,901 7,940
|V| 489 1,166 2,194 3,352 414 922 1,851 876 630 1,838 3,097 934

|Ktest| 1,993 4,145 7,406 11,714 833 4,586 8,048 7,073 1,618 4,011 6,327 12,334
|Λ+

test| 205 478 865 1,424 100 476 809 731 188 441 605 1,429

Hamaguchi-BM INDIGO-
h-1K h-3K h-5K t-1K t-3K t-5K b-1K b-3K b-5K BM

|T | 108,197 99,963 92,309 96,968 78,763 67,774 93,364 71,097 57,601 121,601
|V| 4,613 4,184 3,845 3,999 3,122 2,601 3,799 2,759 2,166 14,121

|Ktest| 4,352 12,376 19,625 15,277 31,770 40,584 18,638 38,285 48,425 250,195
|Λ+

test| 994 2,969 4,919 986 2,880 4,603 960 2,708 4,196 14,904

triple tσr . A completion function (or a GNN-based model realising this function) captures r if, for
every assignment σ of constants to x, the model predicts triple tσr when applied to the KG Kσ

r .

In general, verifying whether a completion function captures a rule requires checking an infinite
number of assignments. We can, however, restrict ourselves to a small finite number and rely on
the following proposition (proven in the appendix) when comparing, in Section 4.5, the ability of
different approaches to capture rules in practice, provided the completion function f realised by a
system under consideration is constant-agnostic—that is, such that f(K,λ) = f(ϱ(K), ϱ(λ)) for
every KG K, candidate triple λ, and renaming ϱ of constants. As far as we could check, all the
systems considered in this paper realise constant-agnostic completion functions.

Proposition 1. Let r be a rule of form (1), let C be a set of |x| constants, and let Σ be the set of all
assignments of constants from C to x. A constant-agnostic completion function f captures r if and
only if f(Kσ

r , t
σ
r ) is true for each σ ∈ Σ.

4 Evaluation

We have implemented our approach using Python and PyTorch v1.4.0 in a system called INDIGO.
We used R-GCN [17], GraIL [21], and the system by Hamaguchi et al. [5] as baselines. We also
tried to include the system of Wang et al. [24], but we found that the system crashes during testing.
All experiments were performed on an Intel(R) Xeon(R) machine with 8 cores and a 2.6 GHz CPU
equipped with 540 GB of RAM running Fedora 33 (x86_64).

4.1 Benchmarks

We exploit a number of benchmarks proposed by Teru et al. [21] and Hamaguchi et al. [5] for
inductive KG completion. The benchmarks by Teru et al., 12 in total, are based on transductive
benchmarks FB15K-237 [22], NELL-995 [26], and WN18RR [4], and have four versions for each
of these transductive benchmarks; we will call them using the pattern GraIL-BM / XXX.vi where
XXX is the base and i the number of the version (e.g., GraIL-BM / NELL-995.v3 is the third version
of the benchmark based on NELL-995). Similarly, the benchmarks by Hamaguchi et al., 9 in total,
are all based on a transductive benchmark WordNet11 [19], and we call them Hamaguchi-BM /
X-iK, where X is one of h, t, b and i = 1, 3, 5 (these parameters specify how the benchmark was
constructed, but the exact details are not essential for this paper).

Each of these benchmarks provides the following:

– disjoint sets T and V of triples with Sig(V) ⊆ Sig(T ) for training and validation;

– an incomplete KG Ktest and a set Λ+
test of test triples with Sig(Λ+

test) ⊆ Sig(Ktest) that are
to hold in the completion of Ktest for testing.
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These benchmarks implicitly assume that all provided triples represent true facts. In contrast, all
other triples over the relevant signature represent facts that are unknown, but assumed to be pseudo-
negative—that is, are false with equal probability. This relatively weak assumption is due to the
fundamental incompleteness and open-world nature of existing KGs, which make it difficult to
discern the truth status of a triple not mentioned in the KG when designing a benchmark. The equal
probability ensures that no system has an advantage when evaluated on these benchmarks under the
assumption that all pseudo-negative triples are truly negative. Furthermore, to capture the inductive
setting, triples in all sets use the same types and relations, but the test sets contain constants that are
not mentioned in the training and validation sets.

These existing benchmarks are, however, limited in that they capture the KG evolution scenario in
Fig. 1 only partially. On the one hand, in benchmarks GraIL-BM the training and test sets mention
completely disjoint sets of constants, thus not capturing the situation where triples mentioning both
existing and new constants are added to the KG; on the other hand, in benchmarks Hamaguchi-BM
each triple in the testing set always uses both a constant mentioned in the training set and an unseen
constant, thus not capturing the situation where a KG is also extended with triples mentioning only
unseen constants. To address this limitation, we have designed a new benchmark, called INDIGO-
BM, which is based on FB15K-237 and has the same structure and assumptions as the existing
benchmarks, but where the use of unseen constants in the test sets is not restricted in any specific way.
Additionally, in contrast to existing benchmarks, which contain no type information, our benchmark
comes equipped with type triples. Further details of the construction are given in the appendix.

The statistics of all our 22 benchmarks are summarised in Table 1.

4.2 Performance Metrics

We evaluate the systems’ performance using standard classification metrics (e.g., accuracy and
F1-score) and ranking metrics (e.g., Hits@k), which are computed based on the systems’ outcomes
on sets P and N of positive and negative examples. For a benchmark with incomplete KG Ktest and
a set Λ+

test of test triples, we take P as the set of all pairs (Ktest,λ) with λ ∈ Λ+
test for all metrics; in

turn, we obtain N by sampling from the set N∗ of all pairs (Ktest,λ) with the pseudo-negative triples
λ ̸∈ Ktest ∪ Λ+

test and Sig(λ) ⊆ Sig(Ktest) using different sampling methods for classification and
ranking-based metrics as described below. Note that sampling is necessary because N∗ is usually
very large, and so using all its triples is infeasible. To mitigate the effects of possible fluctuations
caused by sampling, we evaluate each system on a given benchmark over 10 runs with independently
sampled sets of negative examples, and report the average and variance for each metric.

For classification-based metrics, we construct N by randomly sampling, with equal probability,
one element of N∗ for each positive example in P . This method ensures that systems cannot gain
advantage by adopting a particular sampling strategy for negative examples during training [12].
Classification-based metrics for a KG completion system evaluated on P and N are then computed in
the standard way based on the numbers tp, tn, fp, fn of true positives, true negatives, false positives,
and false negatives. In our experiments, we use precision tp/(tp+ fp), recall tp/(tp+ fn), and
accuracy (tp + tn)/(tp + tn + fp + fn). Besides this, we use F1-score and the area under the
precision-recall curve (AUC), which are defined as usual from precision and recall for different
thresholds (computed using confidence-based predictions).

For ranking-based metrics, we construct N = Nc ∪ Nr ∪ Nd by randomly “corrupting” positive
examples. In particular, for each positive example (Ktest, (c, r, d)) in P , set Nc contains 50 randomly
sampled negative examples in N∗ of the form (Ktest, (c

′, r, d)); sets Nr and Nd are constructed
analogously by corrupting r and d and taking all and 50 samples, respectively (note that the number
of candidates for Nr is bounded by the number of relations in Sig(Ktest)). Our ranking-based metrics
for a KG completion system evaluated on P and N are then computed as follows. For each λ ∈ Λ+

test
and x ∈ {c, r, d}, let Rankx(λ) be the position of (Ktest,λ) in the decreasing-ordered list of the
system’s confidence predictions for all the examples in P ∪Nx. Then, we use entity and relation hit
metrics e-Hits@k = (Hitsc@k + Hitsd@k)/2 and r-Hits@k = Hitsr@k, for k = 1, 3, 10, where, for
each x, Hitsx@k = m/|Λ+

test| for m the number of λ ∈ Λ+
test such that Rankx(λ) ≤ k. We also use

the entity and relation mean reciprocal ranks e-MRR = (MRRc + MRRd)/2 and r-MRR = MRRr,
where, for each x, MRRx = h/|Λ+

test|, for h the sum of 1/Rankx(λ) for all λ ∈ Λ+
test.
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Table 2: Main metric results on the benchmarks in %, where R, G, H, and I stand for R-GCN, GraIL,
the system of Hamaguchi et al., and INDIGO, respectively.

Bench- Accuracy AUC e-Hits@3 r-Hits@3

mark R G H I R G H I R G H I R G H I

G
ra

IL
-B

M

FB
15

K
-2

37 v1 51.0 69.0 - 84.3 51.0 78.6 - 93.4 16.1 43.4 - 45.1 2.4 1.0 - 53.1
v2 51.3 80.0 - 89.3 50.5 90.0 - 96.3 18.3 68.5 - 36.2 3.4 0.4 - 67.6
v3 54.9 81.0 - 89.0 50.5 93.1 - 96.6 14.1 71.2 - 33.9 3.5 6.6 - 66.5
v4 52.1 79.3 - 87.8 52.6 89.5 - 95.8 16.1 61.8 - 37.1 3.3 3.0 - 66.3

N
E

L
L

-9
95

v1 63.7 97.3 - 85.6 74.5 98.8 - 94.5 7.5 51.0 - 39.5 26.0 0.0 - 80.0
v2 52.0 68.5 - 84.1 50.4 89.7 - 92.5 12.2 76.5 - 44.2 0.8 7.4 - 56.9
v3 52.3 74.3 - 89.7 52.0 95.4 - 95.1 15.5 84.4 - 45.0 1.4 2.5 - 64.4
v4 53.6 49.7 - 85.2 51.0 65.8 - 92.9 9.3 56.0 - 52.3 3.0 0.5 - 45.7

W
N

18
R

R v1 50.2 88.7 - 85.7 49.0 92.3 - 91.2 20.1 82.7 - 12.5 2.1 0.6 - 98.4
v2 52.7 81.2 - 85.8 49.8 92.7 - 92.5 18.1 81.5 - 18.8 11.0 10.7 - 97.3
v3 52.2 75.7 - 84.3 53.1 82.8 - 92.4 16.9 55.5 - 33.1 24.5 17.5 - 91.9
v4 48.4 86.4 - 85.4 50.2 94.4 - 94.7 8.8 76.3 - 13.5 8.1 22.6 - 96.1

H
am

ag
uc

hi
-B

M

h-1K 43.0 49.3 83.6 75.3 43.0 51.5 77.7 87.4 31.6 13.8 55.6 32.9 31.4 29.6 47.1 80.0
h-3K 44.1 50.2 79.0 80.8 43.0 55.6 72.4 91.2 29.7 17.7 48.1 35.3 27.8 29.1 41.6 83.8
h-5K 46.5 50.0 79.7 83.3 45.4 56.8 73.1 93.4 23.9 21.0 49.7 33.4 31.3 26.1 38.5 86.2

t-1K 49.8 53.5 77.1 81.8 48.7 58.8 71.4 90.3 17.1 23.9 42.9 31.0 27.6 31.7 43.3 85.4
t-3K 42.5 53.1 75.3 85.8 41.4 61.7 69.2 94.3 24.9 19.5 31.6 33.9 30.3 27.9 35.3 88.0
t-5K 40.8 53.4 74.0 87.0 39.2 62.0 67.7 95.3 21.3 26.7 31.6 36.1 25.4 25.5 37.4 88.3

b-1K 22.4 54.0 85.0 87.0 33.4 59.2 79.2 95.4 62.5 26.5 46.7 43.2 19.8 32.1 38.5 93.8
b-3K 27.3 53.8 79.3 86.8 35.4 61.1 72.1 95.7 36.0 22.3 37.1 37.5 20.2 28.6 41.5 90.1
b-5K 28.3 52.6 75.8 88.8 35.1 58.8 68.4 96.8 24.3 26.3 30.6 39.1 22.1 27.2 34.0 92.0

INDIGO-BM 73.9 86.2 - 94.4 89.5 94.2 - 99.0 36.1 73.6 - 53.5 32.4 4.9 - 77.0

4.3 Training

Our INDIGO system is trained as a denoising autoencoder [23]. The training set T of a benchmark
is first randomly split, with ratio 9:1, into an incomplete KG Ktrain and a set Λ+

train of triples assumed
to hold in the completion of Ktrain. Then, the model is trained on positive examples (Ktrain,λ) for
each λ ∈ Λ+

train and negative examples (Ktrain,λ) for λ sampled from the set N of triples not in T
using the strategy described next. For each triple (c, r, d) ∈ Λ+

train with r ̸= type we sampled (with
equal probability) the following triples from N : three triples of the form (c, r′, d) where r′ is disjoint
from r role in T —that is, such that T has no triples (c′, r, d′) and (c′, r′, d′); three triples of the form
(c, r, d′), if r is functional in T —that is, T has no triples (c′, r, d1), (c′, r, d2) with d1 ̸= d2; and
three triples of the form (c′, r, d), if r is inverse-functional in T —that is, T has no triples (c1, r, d′),
(c2, r, d

′) with c1 ̸= c2. For each triple (c, type, t) ∈ Λ+
train we similarly sampled from N three

triples of the form (c, type, t′) where t′ is disjoint from t type in T , which is defined analogously to
disjoint roles.

As a result, we generate up to 9 negative training examples for each positive example.

We employed the standard cross-entropy loss function and trained for 3,000 epochs using Adam
optimisation with L2 penalty 5e-8. We set as hyper-parameters the number of layers in the GCN (2,
3, or 4), the dimension of vectors in the hidden layers (32, 64, or 128) and the learning rate (0.01 or
0.001) and cross-validated them on each of the benchmarks using the validation sets to obtain a most
favourable (for all benchmarks) setting of 2 layers, vector dimension of 64, and learning rate 0.001.

Our baseline systems are trained similarly as autoencoders. We trained them using their (publicly
available) code and the settings reported in the papers without modifications, including their negative
sampling strategies for training, the values of hyper-parameters, and the number of training epochs.
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Table 3: Results on capturing high-confidence rules, where each entry indicates both the number of
the high-confidence rules of the benchmark represented by the pattern that are captured by the model
and the percentage of the total number of the represented rules.

GraIL-BM / NELL-995.v3 INDIGO-BM

Rule pattern R-GCN GraIL INDIGO R-GCN GraIL INDIGO

(x, _r, y) → (x, _s, y) - - - 2 (9%) 3 (13%) 3 (13%)
(x, type, _t) → (x,type,_u) - - - 89 (20%) 0 207 (46%)
(x, _r, y) → (y, _r,x) 0 0 4 (80%) 8 (33%) 0 14 (58%)

(x, _r, y), (y, _s, z) → (x, _t, z) 0 2 (12%) 2 (12%) 95 (14%) 130 (19%) 150 (22%)
(x, _r, y), (x, _s, y) → (x, _t, y) 0 0 42 (49%) 19 (7%) 19 (7%) 116 (41%)

(x,type,_t),(x,type,_u) → (x,type,_v) - - - 5281 (20%) timeout 12288 (47%)

4.4 Evaluation Results

The results for several indicative metrics (accuracy, AUC, e-Hits@3, and r-Hits@3) of the metric-base
evaluation of the systems on the benchmarks are summarised in Table 2 (the system by Hamaguchi et
al. is not applicable to GraIL-BM and INDIGO-BM due to its limited inductive capabilities); results
for other metrics are given in the appendix. As we can see, INDIGO consistently outperforms, often
by a significant margin, the baselines on almost all metrics. A notable exception is ranking-based
entity metrics e-Hits@k and e-MRR, where INDIGO is often worse than the baselines. This can be
explained by the fact that the baselines use entity corruption in negative sampling for training, which
can be seen as a bias towards these metrics, while our sampling strategy in training is not prejudiced
to any metric. In addition to achieving better results, our system is also significantly faster to train.
For instance, training on Hamaguchi-BM/b-5k dataset took more than 0.5 hours for R-GCN, more
than 4.5 hours for GraIL, 0.9 hours for the system of Hamaguchi et al., and 0.37 hours for INDIGO in
the reported configurations. Detailed time statistics for training and testing is given in the appendix.

4.5 Capturing Logical Rules

We also studied the systems’ ability to learn rules by means of capturing, as discussed in Section 3.5. In
particular, we considered several commonly used rule patterns, which are specified in the first column
of Table 3. Each pattern represents all rules obtained by appropriately substituting its templates
_a by types and relations. We took GRAIL-BM/NELL-995.v3 and INDIGO-BM benchmarks for
experiments, and considered INDIGO, GraIL and R-GCN trained for these benchmarks. For each
benchmark with an incomplete KG Ktest and a set Λ+

test of test triples, and for each rule pattern
we proceeded as follows. We first generated all rules represented by the pattern over the types and
relations in Sig(Ktest). We then identified the rules with confidence at least 0.7, where the confidence
of a rule r in Ktest and Λ+

test is n/m for m the number of assignments σ such that Kσ
r ⊆ Ktest and n

the number of such σ that also satisfy tσr ∈ Ktest ∪Λ+
test. Finally, for each model we computed, using

Proposition 1, the proportion of captured high-confidence rules.

Our results are summarised in Table 3. As we can see, INDIGO was consistently able to capture the
highest number of high-confidence rules for each of the patterns. This suggests that our system is
able to inductively generalise its predictions more effectively than the baselines.

5 Conclusion and Future Work

In this paper we have proposed a novel GNN-based approach to inductive KG completion which
significantly outperforms state-of-the-art approaches. The key novelty of our approach is that it
encodes KGs using a one-to-one correspondence between triples in the KG and elements of nodes’
feature vectors in the graphs processed by the GNN. A current limitation of our approach is that
all predicted triples involve only the relations and types mentioned in the original KG; there has
been recent work on methods that are able to complete the KG with triples over unseen relations and
types [13], and it would be interesting to see if our techniques can be extended to this setting. For
future work, we are also planning to explore the potential applications of our approach in real-world
settings (such as KG-enhanced recommendation systems) in collaboration with our industrial partner.
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