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ABSTRACT

We propose an end-to-end text-to-speech (TTS) latent diffusion model as a sim-
pler alternative to more complicated pipelined approaches for TTS synthesis. In
particular, we show that one can adapt a recently proposed text-to-image diffusion
architecture, U-ViT, as an excellent backbone for audio generation. We identify
and explain the changes required for this adaptation and demonstrate that latent
diffusion is an effective approach for end-to-end speech synthesis, without the
need for phonemizers, forced aligners, or complex multi-stage pipelines. Despite
its simplicity, our proposed approach, Simple-TTS, outperforms more complex
models that rely on explicit alignment components and significantly outperforms
the best open-source multi-speaker TTS system. We will open-source Simple-
TTS upon acceptance, making it the strongest system publicly available to the
community. Due to its straight-forward design, we expect that Simple-TTS can
easily be adapted to many diverse TTS settings — opening the stage to repeat the
success of Stable Diffusion in computer vision, in audio generation.

1 INTRODUCTION

The capabilities of generative models have advanced rapidly across a range of modalities. This
progress has been driven by the emergence of simple, end-to-end solutions that require minimal
supervision and are highly scalable. However, the approaches differ across data modalities. For
discrete domains such as language, the most effective models have been autoregressive transform-
ers (Brown et al., 2020). For continuous domains, such as images and videos, diffusion models
have lately led to impressive improvements (Ho et al., 2020; 2022b). Both lines of approaches are
currently being explored for audio generation (Wang et al., 2023; Le et al., 2023).

Audio generation presents challenges for autoregressive methods due to the large lengths of audio
waveforms at common sampling rates (e.g. 16kHz). To handle such long inputs, recent autoregres-
sive approaches utilize neural models to tokenize the waveform into a shorter sequence of audio
tokens (Borsos et al., 2023). Vall-E, for instance, is an autoregressive TTS system that utilizes a
vector-quantized autoencoder (van den Oord et al., 2017) to tokenize raw waveforms to 600 audio
tokens per second (Wang et al., 2023). A 10 second clip of audio is therefore represented with 6,000
instead of 160,000 discrete values (at a 16kHz sampling rate). Even with such audio tokenization,
autoregressive approaches such as AudioLM and Vall-E still utilize cascades of multiple models that
first generate coarse acoustic features and then finer details (Borsos et al., 2023).

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), on the other hand, are a natural fit
for end-to-end text-to-speech generation. Their iterative sampling procedure enables a single model
to generate audio in a coarse-to-fine manner, while parallel generation improves their scalability to
long sequences. However, so far text-to-speech diffusion models have been rather complex (Shen
et al., 2023; Le et al., 2023). For example, they require explicit phoneme duration annotations to
perform speech synthesis. For training, this means that such systems are limited to datasets with
frame-level phonetic transcripts. For generation, obtaining this alignment requires training external
duration prediction models which introduces potential performance bottlenecks and increases sys-
tem complexity. Further, they typically require multi-stage generation pipelines, specialized tools
such as phonemizers or forced aligners, and additional trainable components.

Recent advances in neural audio autoencoders enable high-fidelity compression of raw audio wave-
forms (Défossez et al., 2022). Building upon this progress, we explore latent diffusion (Rombach
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et al., 2021) as a promising paradigm for generative modeling of audio. We use the publicly avail-
able EnCodec (Défossez et al., 2022) to compress waveforms to a sequence of 75 continuous vectors
per second. For our diffusion network, we adapt the U-Vision Transformer (U-ViT), a recently pro-
posed image diffusion architecture, to operate on 1D sequence data instead of images. Our proposed
architecture, termed the U-Audio Transformer (U-AT), consists of a 1-dimensional U-Net and a
transformer backbone. We apply the U-Net encoder to downsample the lengthy audio features and
then process the downsampled sequence with the transformer backbone. We upsample the features
back to the original sequence length with the U-Net decoder for the final prediction. This design
enables us to efficiently apply a strong transformer backbone to long sequence data. We demonstrate
that U-AT is an excellent backbone for audio generation.

Effective speech synthesis relies on fine-grained language characteristics like spelling, which are dis-
carded by subword tokenization methods such as byte-pair encoding (BPE) (Sennrich et al., 2016).
We therefore condition our network on representations from the byte-level language model ByT5
(Xue et al., 2022) to enable TTS generation. ByT5 is pre-trained with the T5 span corruption ob-
jective (Raffel et al., 2020) upon raw UTF-8 byte sequences. As a result, ByT5 is character-aware,
unlike most popular language models. Because words with similar spelling often have similar pro-
nunciations, character-aware representations can improve generalization. BPE models, on the other
hand, often represent similar words (e.g. chair and chairs) with independent tokens. We empirically
validate that embedding the transcript with ByT5 instead of T5, which is widely used by text-to-
image models (Saharia et al., 2022a), is critical for generating coherent speech.

Balaji et al. (2022) observed that the behavior of text-to-image diffusion models evolves over the
course of the diffusion process. At high noise levels with high uncertainty, the network relies heavily
upon the text description. However, as the level of noise decreases, the model increasingly relies
upon the visual features and ignores the description. To increase our model’s utilization of the
transcript, we modify the diffusion noise schedule to dedicate more training time to high noise levels
where the structure of the speech (duration, word placement, etc.) is uncertain and the transcript is
most useful. This significantly improves the alignment of the synthesized speech with the transcript.

Our latent diffusion model, Simple-TTS, is the first diffusion model capable of end-to-end TTS syn-
thesis. Simple-TTS outperforms strong open-source baselines with explicit alignment components
and is conceptually simpler than existing TTS diffusion models. We compare the system complex-
ity of recent diffusion TTS models in Table 1. Given a transcript, Simple-TTS is the only diffusion
model capable of generating speech without additional conditioning information. To evaluate the in-
telligibility of the synthesized speech, we transcribe it using a pre-trained speech recognition model.
We achieve a word error rate (WER) of 2.4%, outperforming recent TTS systems and nearly match-
ing the reference WER of 2.2% achieved when transcribing natural human speech.

We also extend our system to speaker-prompted TTS synthesis. Given a speaker prompt, Simple-
TTS generates speech that maintains the voice and style of the prompt. In this setting, our system
produces more intelligible speech than the state-of-the-art autoregressive system Vall-E (WER of
3.4% vs. 5.9%). Simple-TTS is also more effective at matching the characteristics of the prompt
than the strongest open-source system YourTTS (speaker similarity of 0.514 vs. 0.337). We conduct
a human evaluation and find that Simple-TTS achieves statistically significant improvements in hu-
man judgements of quality and prompt similarity compared to YourTTS. We present uncurated audio
samples from Simple-TTS in the supplemental material to showcase the effectiveness of our system.
Upon acceptance, we will open-source Simple-TTS, making it the strongest system publicly avail-
able to the community. Our work demonstrates the viability of latent diffusion for text-to-speech
synthesis and paves the way for further scaling and improvements of generative speech systems.

2 RELATED WORK

The most related systems are the proprietary diffusion TTS models, NaturalSpeech2 (Shen et al.,
2023) and the concurrent VoiceBox (Le et al., 2023). We contrast these systems with Simple-TTS
in Table 1. Both systems require phonemizers and a forced aligner to produce frame-level phonetic
transcripts for training, which can be error-prone. Many phonemizers, for instance, operate on
the word-level and ignore neighboring words when predicting the pronunciation (McAuliffe et al.,
2017). Such approaches fail to handle situations where the pronunciation is context-dependent. We
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Method Prerequisites Trained Components Generation Inputs

NaturalSpeech2 (Shen
et al., 2023) • Frame-level phonetic transcripts

• Phonemizer
• Audio autoencoder

• Phoneme duration predictor
• Pitch predictor
• Phoneme encoder
• Speech prompt encoder
• Diffusion network

• Transcript
• Phoneme durations
• Framewise pitch
• Speech prompt

VoiceBox (Le et al.,
2023) • Frame-level phonetic transcripts

• Phonemizer
• HiFi-GAN vocoder

• Phoneme duration predictor
• Diffusion network

• Transcript
• Phoneme durations

Simple-TTS (Ours)
• Text transcripts
• Pre-trained language model
• Audio autoencoder

• Diffusion network • Transcript

Table 1: Comparison of our approach, Simple-TTS, with prior TTS diffusion methods.

demonstrate that the contextual byte representations from a pre-trained ByT5 model can replace
phoneme representations as a strong conditioning signal for TTS synthesis.

Similar to Simple-TTS, NaturalSpeech2 learns a diffusion model in the latent space of an audio au-
toencoder, but they develop their own autoencoder. We demonstrate that publicly available systems,
such as EnCodec, are of sufficient quality to learn an effective latent diffusion model. VoiceBox
generates Mel spectrogram features, which are then decoded to raw waveforms with a HiFi-GAN
vocoder (Kong et al., 2020) trained in addition to their diffusion model.

Both systems require phoneme duration annotations for generation. Using either method therefore
requires training an external duration prediction model. NaturalSpeech2 trains a regression model
for phoneme duration prediction and can therefore only generate speech of a single duration for any
given prompt-text pair. Our system is capable of synthesizing diverse speech across the distribution
of natural durations. VoiceBox overcomes the limitation of regression-based duration models by
learning an additional diffusion model for phoneme duration prediction. The duration diffusion
model can perform one-to-many predictions, but increases the complexity of the overall system.
NaturalSpeech2 also requires framewise pitch annotations during training and generation which
requires training an additional pitch prediction model. The system also requires a speech prompt for
generation and, unlike Simple-TTS, is incapable of text-only generation using just the transcript.

Diffusion models have also been developed for audio applications beyond text-to-speech synthesis.
For instance, diffusion models have been leveraged to develop high-quality neural vocoders, which
synthesize audio waveforms conditioned on the mel spectrogram of the original audio Chen et al.
(2020); Kong et al. (2021). Diffusion models have also been developed for the distinct setting of text-
to-audio generation, as opposed to text-to-speech generation. This involves generating clips of audio
given some text description of the content (e.g. a clip of ”a dog barking”) (Liu et al., 2023; Huang
et al., 2023). However, such text-to-audio models are not capable of generating coherent speech,
which requires fine-grained phonetic, in addition to semantic, language understanding. Simple-
TTS, in contrast, leverages representations from a byte-level language model to capture nuanced
phonetic properties critical for intelligible speech generation.

3 BACKGROUND

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Kingma et al., 2021) are latent vari-
able models with latents z = {zt|t ∈ [0, 1]} given by a forward diffusion process q(z|x), which
defines a gradual transition from the data distribution, x ∼ p(x), to a Gaussian distribution. The
Markovian forward process iteratively adds Gaussian noise to the data over time and satisfies

q(zt|x) = N (zt;αtx, (1− α2
t )I), q(zt|zs) = N (zt;αt|szs, (1− α2

t|s)I)

where αt|s = αt/αs and 0 ≤ s < t ≤ 1. The noise schedule, determined by αt ∈ [0, 1], monoton-

ically decreases the signal-to-noise ratio (SNR), λt =
α2

t

1−α2
t

as a function of the time, t, such that
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the final latent becomes approximately Gaussian, q(z1) ≈ N (0, I). The forward process therefore
defines a transition from the data distribution to a Gaussian distribution.

Diffusion models define a generative process by inverting the forward process. This specifies a
transition from Gaussian noise, which can be sampled analytically, to the unknown data distribu-
tion. Inverting this process can be reduced to learning a denoising network, x̂θ(zt, t, c) ≈ x, that
reconstructs the clean data given some noisy latent, the time, and (optionally) some conditioning
information, c, about the data. The conditioning information could be a textual description of an
image (Saharia et al., 2022a) or, in our case, a textual transcription of some speech. This denoising
network is trained with a regression objective

L(θ) = Et,x,ϵ[w(λt)∥x̂θ(zt, t, c)− x∥22]
with some time-dependent weighting, w(λt), that is set empirically to emphasize noise levels that
are important for downstream perceptual quality (Ho et al., 2020; Nichol & Dhariwal, 2021).

This loss function is the weighted variational lower bound of the log likelihood of the data under
the forward diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020; Kingma et al., 2021).
In practice, the denoising network is often parameterized as a noise prediction network (Ho et al.,
2020) or a velocity prediction network (Salimans & Ho, 2022) where the velocity, v, is defined as
v =

√
αtϵ−

√
1− αtx. These parameterizations can be interpreted as different weighting functions,

λt, for the regression objective (Salimans & Ho, 2022). We adopt the v-parameterization throughout
this work. We use the standard DDPM sampler with 250 sampling steps for generation.

4 SIMPLE-TTS

Latent Audio Diffusion. We utilize the publicly available audio autoencoder, EnCodec (Défossez
et al., 2022), to map waveforms to a sequence of 75 latent vectors per second. EnCodec, like
other audio autoencoders (Zeghidour et al., 2021), applies residual vector quantization to map each
continuous vector to a variable number of discrete tokens that capture increasingly fine details. The
number of quantizers can be adjusted to trade off compression rates and quality. This quantization
produces lengthy representations that are challenging to model. When using all 32 quantizers, the 75
continuous representations are quantized to 2,400 discrete codes. Prior autoregressive approaches
reduce the number of quantizers, which degrades audio quality, and develop multi-stage pipelines
with specialized models for generating tokens from early and late quantizers.

Diffusion models, on the other hand, can directly generate continuous representations, avoiding the
need for discrete tokenization. We take advantage of this by training our model to produce the 128-
dimensional continuous embeddings from the EnCodec encoder, before vector quantization. This
decision significantly reduces the sequence length: with all quantizers, a 10 second clip consists of
750 latents rather than 24,000 (a 32x reduction). The continuous latents generated during inference
can then be quantized and decoded by EnCodec to recover the raw audio waveform.

U-Audio Transformer (U-AT).

For our diffusion network, we adapt the U-Vision Transformer (U-ViT), a recently proposed image
diffusion architecture, to operate on 1D sequence data instead of images. Because we focus on audio
generation, we refer to our model as the U-Audio Transformer (U-AT) and present an overview in
Figure 1. The U-AT consists of a 1D U-Net and a transformer backbone. We apply the U-Net
encoder to downsample the lengthy audio features and then process the downsampled sequence
with the transformer backbone. We upsample the features back to the original sequence length with
the U-Net decoder for the final prediction. We begin with the 2D U-Net design used by Nichol
& Dhariwal (2021) for image diffusion and replace its 2D convolutions with corresponding 1D
convolutions. For instance, we substitute each 2D convolution of size 3x3 with a 1D convolution
of size 3. We make similar substitutions for the downsampling and upsampling operations. These
changes enable the U-Net to handle 1D sequences. We provide complete details of our U-Net
architecture in the appendix.

Transformers are naturally suited for handling 1D sequences. We utilize a pre-normalization trans-
former (Vaswani et al., 2017; Xiong et al., 2020) with RMSNorm (Zhang & Sennrich, 2019) and
GeGLU activations (Shazeer, 2020). Because relative positional encodings tend to be more effec-
tive than absolute positional encodings (Shaw et al., 2018; Gulati et al., 2020), we encode positional
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Figure 1: Overview of Simple-TTS. We learn our diffusion model in the latent space of the En-
Codec audio autoencoder. We downsample the audio features with a 1D U-Net encoder, process it
with a transformer, and upsample it with a 1D U-Net decoder for the final prediction. We condition
our network on representations from a frozen ByT5 encoder.

information with a Dynamic Position Bias (DPB) (Wang et al., 2021; Liu et al., 2022). This intro-
duces a lightweight MLP at the self-attention layers that maps relative offsets between locations,
∆xi,j ∈ {...,−1, 0, 1, 2, ...}, to head-specific bias terms that are added to the self-attention logits
before the softmax.

To condition the network on the level of noise, we utilize α-conditioning (Chen et al., 2021; Saharia
et al., 2022b; Chen, 2023). We map αt to a sinusoidal position embedding (Vaswani et al., 2017) and
pass it through an MLP to obtain a time embedding. We follow standard practice and utilize adaptive
group normalization layers in the residual blocks of the U-Net conditioned on the time embedding
(Ho et al., 2020). For the transformer model, we similarly apply adaptive RMSNorm before the
feedforward layers. We condition on textual representations extracted from a frozen, pre-trained
language model, ByT5-Large. We mean-pool the representations from the ByT5 encoder and pass it
through an MLP to generate a global text embedding that is added to the time embedding. We also
introduce cross-attention layers to the transformer model that cross attend to the text representations.

We let the diffusion model determine the length of the speech during generation. We pad the audio
with variable-length silence up to a maximum length of 20 seconds during training. To effectively
reconstruct the audio representation at high noise levels, the denoising network must therefore learn
to estimate the duration of the speech from the transcript and the optional speaker prompt. Dur-
ing generation, the diffusion model then terminates the speech by generating silence which can be
cheaply trimmed with an audio utility such as Sox. If a duration prediction model is available, it can
likely be incorporated to accelerate generation, but it is not required for generation.

Classifier-Free Guidance. To enable the application of classifier-free guidance (Ho & Salimans,
2021), we drop the text with probability p = 0.1 and therefore jointly train a conditional and uncon-
ditional diffusion model. During inference, we introduce a sampling parameter w, and compute

x̂w
θ (zt, t, c) = x̂θ(zt, t) + w ∗ (x̂θ(zt, t, c)− x̂θ(zt, t)).

When w = 1.0, this reduces to the conditional diffusion model, and setting w > 1.0 increases
the influence of the conditioning information. This technique enables us to trade off fidelity with
sample diversity and is widely used by text-to-image diffusion models (Saharia et al., 2022a). For
the cross-attention layers, we concatenate a learnable null embedding with the text features along
the sequence dimension. We drop the conditioning information by masking out the text embeddings
from the cross-attention mechanism and zeroing the mean-pooled text embedding. We set w = 5.0
by default, and examine the impact of guidance in our ablation studies.

Speaker-Prompted Generation. Diffusion models can perform speaker-prompted generation by
treating it as an inpainting problem (Lugmayr et al., 2022; Le et al., 2023). We train our denoising
network for both text-only and speaker-prompted TTS synthesis in a multi-task fashion. With prob-
ability p = 0.5 we train the network to perform audio inpainting by concatenating a clean audio
latent with a noisy latent vector. We sample a duration d and concatenate the start of the latent
audio representation x[:d] with the end of the noisy latent zt[d:] to construct the input. We also
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introduce a binary embedding to identify corrupted frames, which we sum with the input after the
initial projection. When calculating the loss, we mask out frames corresponding to the clean audio.

For the prompt duration, we sample the proportion of the input, d ∈ [0, 1], to hold out as the clean
prompt. For instance, if we sample d = 0.1 for a 10 second clip of audio, then we use the frames
corresponding to the first second of audio as the clean prompt. We utilize a Beta distribution with
a mode of .01 and a concentration of 5 as our sampling distribution, visualized in Figure 4 in the
appendix. We chose this parameterization because it is bounded on the unit interval and has a strong
leftward skew towards challenging settings with short prompts. Reasonable alternative distributions
would likely be similarly effective. During inference, we preprend some sample audio and the
associated text to the input to generate speech that is consistent with the provided sample.

Diffusion Noise Schedule. The diffusion noise schedule αt influences the weighting placed on dif-
ferent levels of noise during training and is a critical factor in downstream sample quality. The cosine
noise schedule, αt = cos (.5πt), introduced by Nichol & Dhariwal (2021), has become a common
choice across applications and domains (Ho et al., 2022a; Saharia et al., 2022a; Janner et al., 2022;
Chen et al., 2022). However, Hoogeboom et al. (2023) and Chen (2023) found that common noise
schedules, such as the cosine schedule, are implicitly tuned for low-resolution images. Modifying
the noise schedule to emphasize different levels of noise enables replacing pipelined approaches for
high-resolution image diffusion with a single diffusion model. We should therefore not expect, a
priori, that common image noise schedules will be effective for other modalities.

Both Hoogeboom et al. (2023) and Chen (2023) shift an existing noise schedule by some scale factor,
s, to emphasize training at higher levels of noise. Given a noise schedule αt with SNR λt =

α2
t

1−α2
t

,
the shifted noise schedule, αt,s ∈ [0, 1], is defined such that

α2
t,s

1− α2
t,s

= λt,s = λt ∗ s2 =
α2
t

1− α2
t

∗ s2.

Given αt and the scale factor s, the new noise schedule αt,s has a closed-form solution. Using
the fact that α2

t = sigmoid(log(λt)) (see Kingma et al. (2021)), the shifted noise schedule can be
computed in log-space (for numerical stability) as

α2
t,s = sigmoid(log(λt,s)) = sigmoid(log(λt ∗ s2)) = sigmoid(log(λt) + 2 log(s)).

To understand the effect of scaling the noise schedule, we can examine the WER of a pre-trained
ASR model1 on resynthesized audio for re-scaled latents,

zt
αt

=
(αtx+

√
1− α2

t ϵ)

αt
, ϵ ∼ N (0, I),

across time for different noise schedules. The re-scaling ensures that E[zt/αt] = E[x] while main-
taining the SNR imposed by the noise schedule, SNR( zt

αt
) = SNR(zt) = λt.

We visualize shifted cosine noise schedules with different scale factors and plot the WER across time
for the LibriSpeech test-clean set in Figure 2. We observe that using a scale factor s < 1 emphasizes
training at higher levels of noise. The intelligibility of the speech degrades with increasing levels of
noise, and the scale factor controls the rate of degradation. When using the standard cosine noise
schedule, the WER is nearly unaffected for t ∈ [0, .3]. Because we sample t ∈ U(0, 1) during
training, this means that a third of training is dedicated to reconstructing highly intelligible speech.

Decreasing the scale factor increases the amount of training time spent at high noise levels where the
words are being resolved and the transcript must be used to estimate the original data. This dedicates
more diffusion steps to resolving the global structure of the speech, such as duration and word
placement, compared to the standard noise schedule. We employ a shifted cosine noise schedule
with a scale factor of 0.5 and this choice in our ablation studies.

5 EXPERIMENTS

Datasets. We utilize the English subset of the Multilingual LibriSpeech (MLS) dataset, which
consists of 44.5K hours of speech derived from audiobooks from LibriVox (Pratap et al., 2020), to

1https://huggingface.co/facebook/hubert-large-ls960-ft
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Figure 2: Diffusion noise schedules. In the left two plots, we visualize the cosine noise schedule
with different scale factors. In the right plot, we visualize the intelligibility of the speech across time
for different schedules. Reducing the scale factor allocates more time to higher levels of noise and
accelerates the degradation of the speech.

train Simple-TTS. This dataset consists of audio from nearly 5,500 speakers which makes it well-
suited for developing TTS models capable of synthesizing diverse voices. For evaluation, we utilize
the widely studied LibriSpeech (LS) dataset (Panayotov et al., 2015). To enable direct comparison
with prior work (Borsos et al., 2023; Wang et al., 2023; Le et al., 2023), we consider a filtered subset
of LS test-clean consisting of clips between four and ten seconds in length.

Model Implementation. Our U-Net encoder and decoder each have 4 stages which downsample the
input from 1504 frames to 188 frames at the lowest resolution. We utilize a feature dimensionality
of 512 which is increased to 768 for the lowest resolution feature map. The transformer backbone
has 12 layers and a feature dimension of 768. Simple-TTS has 243M trainable parameters, making
it smaller than recent generative speech models such as Vall-E (302M2) and VoiceBox (364M). We
train Simple-TTS for 200k steps with a batch size of 256 audio clips. We observe that our model is
still improving at the end of training and additional training would likely be beneficial.

Baselines. For text-only synthesis, we compare against VITS (Kim et al., 2021), a variational au-
toencoder with adversarial training. We consider both VITS variants released by Kim et al. (2021):
the single-speaker VITS-LJ trained on LJ Speech, and the multi-speaker VITS-VCTK trained on
VCTK. We also compare against English MMS-TTS (Pratap et al., 2023), a recent single-speaker
model utilizing the VITS architecture. For speaker-prompted TTS, we compare against YourTTS
(Casanova et al., 2022), a VITS model conditioned on a speech prompt. Since other recent state-
of-the-art generative models like Vall-E (Wang et al., 2023) and VoiceBox (Le et al., 2023) are not
publicly available, we follow their evaluation protocols and compare against their reported metrics.

Evaluation Metrics. To evaluate the intelligibility of the synthesized audio, we transcribe the speech
with a pre-trained ASR model and compute the WER between the transcribed text and original
transcript. We use the same HuBERT-L model (Hsu et al., 2021) employed by prior work (Borsos
et al., 2023; Wang et al., 2023; Le et al., 2023) to enable direct comparison3. For speaker-prompted
TTS, we evaluate the similarity between the prompt and synthesized speech by utilizing the pre-
trained speaker verification model employed by prior work4 (Wang et al., 2023; Le et al., 2023). We
follow the procedure of Wang et al. (2023) and extract speaker embeddings for the re-synthesized
prompt and synthesized speech and report the cosine similarity between the embeddings.

We also conduct a human study to collect the mean opinion score (MOS) as a subjective evaluation
of audio quality in the speaker-prompted setting. We follow the same setup as Wang et al. (2023)
and select one synthesized utterance per speaker in the LS test-clean subset, leaving us with 40 audio
samples. We recruit 11 human annotators and collect at least 10 annotations per sample. Subjective
evaluations are collected on a 5-point scale, with 1 being the worst and 5 being the best. We follow
Le et al. (2023) and collect a subjective measure of audio quality, the quality MOS (QMOS), and

2This value is estimated from the reported transformer hyperparameters.
3https://huggingface.co/facebook/hubert-large-ls960-ft
4The WavLM-Large model released at https://github.com/microsoft/UniSpeech/tree/

main/downstreams/speaker_verification.
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Method End-to-End LibriSpeech Test-Clean

Intelligibility (WER) ↓ Similarity ↑
Reference Human Speech — 2.2 .754

Speech-to-Speech

GSLM (Lakhotia et al., 2021) ✗ 12.4 .126
AudioLM (Borsos et al., 2023) ✗ 6.0 —

Text-Only TTS

VITS-LJ (Kim et al., 2021) ✓ 4.2 n/a
VITS-VCTK (Kim et al., 2021) ✓ 9.1 n/a
MMS-TTS (Pratap et al., 2023) ✓ 7.2 n/a
Simple-TTS (Ours) ✓ 2.4 n/a

Speaker-Prompted TTS

Vall-E (Wang et al., 2023) ✗ 5.9 .580
VoiceBox (Le et al., 2023) ✗ 1.9 .681
YourTTS (Casanova et al., 2022) ✓ 7.7 .337
Simple-TTS (Ours) ✓ 3.4 .514

Table 2: Automated Evaluation of TTS Systems. Systems in gray are not publicly available.

a subjective measure of the similarity between the prompt and synthesized speech, the similarity
MOS (SMOS). These metrics are not reproducible and cannot be directly compared across studies.
We therefore collect judgements for the strongest open-source system, YourTTS, for comparison.

6 RESULTS

Our results in Table 2 demonstrate that our method can generate high-fidelity, intelligible speech in
a text-only setting, nearly matching the word error rate of the ground truth audio. Notably, our text-
only WER surpasses that of the single-speaker VITS-LJ and MMS-TTS models, while providing the
additional capability of multi-speaker synthesis. When provided a three second speaker prompt, our
model effectively generates high quality speech and maintains the characteristics of the prompt, with
lower a WER than the state-of-the-art autoregressive model, Vall-E, and YourTTS. Additionally, for
speaker similarity, we outperform the strongest open-source baseline, YourTTS, by a wide margin.

We report the results of our human study in Table 3. Simple-TTS synthesizes higher quality audio
that is more similar to the prompt than YourTTS. It achieves statistically significant improvements
on both quality MOS (QMOS) and similarity MOS (SMOS), with gains of +0.52 and +1.46 points
respectively. The human study validates that Simple-TTS produces speech of higher quality and
greater prompt similarity compared to the state-of-the-art publicly available TTS system.

Sampling Configurations. We examine the importance of classifier-free guidance in Figure 3 when
using both the stochastic DDPM sampler and the deterministic DDIM sampler (Song et al., 2020a).
Similar to text-to-image diffusion models, classifier-free guidance is critical for generating speech
that is faithful to the provided transcript. For both settings, the conditional diffusion model (w = 1.0)
exhibits poor intelligibility, but improves rapidly with guidance, outperforming the autoregressive
Vall-E when w = 1.5 in the speaker-prompted setting. The speaker similarity also improves with
stronger guidance, demonstrating that guidance also improves the quality of the speech. Both the
DDPM and DDIM samplers lead to intelligible speech that is well-aligned with the prompt. For
image diffusion models, Karras et al. (2022) observed that stochastic sampling effectively corrects
errors made in earlier sampling steps, but leads to a gradual loss of detail. In our setting, we find that
the DDPM sampler corrects errors that impact intelligibility, leading to consistently lower WERs,
while the deterministic DDIM better preserves fine details concerning the speaker identity.

We present the performance across different numbers of sampling timesteps in Figure 3. In the text-
only setting, we surpass the intelligibility of VITS-LJ using just 15 sampling steps with a WER of
4.2. In the speaker-prompted setting, we achieve a WER of 4.0 with 15 sampling steps, surpassing

8
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Figure 3: Exploration of sampling configurations. In the left two plots, we report the impact of
varying the strength of classifier-free guidance. In the right two plots, we report the effect of using
different numbers of sampling steps.

Source QMOS SMOS

Reference 4.20(4.11,4.28) 3.87(3.76,3.98)

YourTTS 2.05(1.96,2.14) 1.56(1.49,1.64)
Simple-TTS 2.77(2.69,2.85) 3.04(2.94,3.14)

Table 3: Subjective human evaluation. We
report mean and 95% confidence intervals from
bootstrapping.

Text Encoder Noise Schedule WER ↓
ByT5-Large Cosine (s=0.5) 6.0

T5-Large Cosine (s=0.5) 26.6
ByT5-Large Cosine (s=1.0) 13.0
ByT5-Large Cosine (s=0.2) 9.6

Table 4: Ablation studies. Models are trained
for 50k steps.

the state-of-the-art autoregressive model, Vall-E. Increasing the sampling steps generally improves
quality, but the stochasticity gradually degrades speaker similarity with the DDPM sampler.

Ablation Studies. We ablate our choice of pre-trained language model and noise schedule in Ta-
ble 4. For our ablation studies, we train each model for 50k steps and report the WER for text-only
TTS to quantify the speech-text alignment. We observe that utilizing the T5-Large encoder instead
of the ByT5-Large encoder dramatically increases the error rate, by a factor of 4.4×. This demon-
strates the importance of using character-aware language representations instead of BPE encodings.

Re-scaling the cosine noise schedule is also essential for strong alignment. Training our model with
the standard cosine noise schedule increases the error rate by a factor of 2.2× compared to our
noise schedule. We also ablate a more aggressive scale factor of s=0.2 and observe a degradation
in performance compared to s=0.5, although it still outperforms the standard noise schedule. These
ablation studies demonstrate the critical importance of both the character-aware language represen-
tations from ByT5 and of dedicating more time to noise levels where the global structure of the
speech is being resolved with the scaled diffusion noise schedule.

7 CONCLUSION

In this work, we present Simple-TTS, the first diffusion model capable of end-to-end text-to-speech
synthesis. We demonstrate that latent diffusion is an effective approach for speech generation with-
out requiring explicit alignment or duration modeling. The key ingredients in the success of Simple-
TTS are: adapting a vision diffusion backbone for efficient sequence modeling of audio, utilizing a
byte-level language model to capture linguistic properties critical for natural speech synthesis, and
modifying the diffusion noise schedule to improve text-speech alignment. Together, these innova-
tions enable Simple-TTS to perform speech synthesis directly from text, without external alignment
tools, pipelines, or extra components. Simple-TTS generates natural, intelligible speech, nearing
human-level word error rates. We are excited about applications in controllable speech synthesis
and further advancements enabled by end-to-end generative modeling of speech.

9
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8 REPRODUCIBILITY STATEMENT

We conduct this work on publicly available datasets and utilize publicly available models for the
audio autoencoder and pre-trained language model. We outline full implementation details relating
to the model architecture, training setup, and hyperparameters in Appendix C. We will open-source
our implementation upon acceptance and will release the Simple-TTS checkpoint to the community.

9 ETHICS STATEMENT

An effective speech generation model has many positive applications such as improving the quality
of vocal assistants and accessibility tools. However, like any generative modeling technique, it
carries risks if used maliciously. Our system should not be utilized for the unauthorized synthesis or
impersonation of others’ voices without consent. We plan to release our model as a valuable resource
to the community, but urge users to employ it responsibly. We also encourage further research into
the development of methods for automated detection of synthesized or manipulated speech.
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A QUALITATIVE EXAMPLES

We provide uncurated qualitative examples for Simple-TTS in both the text-only and speaker-
prompted setting in the supplemental materials. For reference, we also provide synthesized speech
with YourTTS for the same speech prompts.

B ADDITIONAL FIGURES

We visualize the distribution used for sampling prompt durations for speaker-prompted inpainting
in Figure 4.

Figure 4: Sampling Distribution of Prompt Durations. We utilize a Beta distribution with a mode
of .01 and a concentration of 5 to sample relative prompt durations during training to enable speaker-
prompted inpainting. We selected this distribution to concentrate mass around short durations. The
x-axis shows the prompt duration as a fraction of the full audio length. We sample a relative duration
from this distribution and multiply it by the length of the audio clip to obtain the prompt duration in
seconds.

C IMPLEMENTATION DETAILS

We report hyperparameters for Simple-TTS in Table 5.

U-Net Implementation. Our 1-D U-Net is modeled after the 2-D U-Net used by Nichol & Dhariwal
(2021) for image diffusion. Each stage in the U-Net has two residual blocks. The residual block
consists of a sequence of two pre-activation (He et al., 2016) 1D convolutions with a width of 3.
We downsample the sequence length using a 1D convolution with a width of 4 and a stride of
2. To upsample the sequence length, we perform nearest neighbor upsampling followed by a 1D
convolution of width 3. We also apply a lightweight linear attention mechanism (Shen et al., 2018;
Katharopoulos et al., 2020) before the downsampling and upsampling operations to model global
feature interactions at high resolution stages. We condition the U-Net on the timestep representation
using adaptive group normalization and also follow the recommendation of Peebles & Xie (2022)
and apply a time-conditioned gate to the outputs of the residual connections. We scale the skip
connections in the U-Net by 1√

2
, following Song et al. (2020b); Saharia et al. (2022b).

Transformer Implementation. We utilize a standard pre-normalization transformer (Vaswani et al.,
2017; Xiong et al., 2020) with RMSNorm (Zhang & Sennrich, 2019) and GeGLU activations
(Shazeer, 2020). We condition the transformer on the timestep by applying adaptive RMSNorm
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before the feedforward layers with time-dependent residual gating (Peebles & Xie, 2022). We uti-
lized query-key RMSNorm (Dehghani et al., 2023) for the cross-attention mechanism because we
observed that it improved stability in preliminary experiments. We did not ablate this decision care-
fully for our final model, so this design decision may not be necessary.

Sampling Configuration. We explore both the stochastic DDPM sampler and the deterministic
DDIM sampler. For the stochastic DDPM sampler, the upper and lower bounds on the variance for
the reverse process from time t to time s, where 0 ≤ s < t ≤ 1, are given by σ2

max = 1− α2
t|s

and σ2
min =

1−α2
s

1−α2
t
∗ (1− α2

t|s) respectively. We follow Hoogeboom et al. (2023) and set the vari-
ance for the DDPM sampler to a log-scale interpolation between the upper and lower bounds
σ2 = exp(v log(σ2

max) + (1− v) log(σ2
min)) with v = 0.2. We did not explore this choice in de-

tail and further exploration may improve performance.

Model Configuration

1D U-Net

Audio Sequence Length 1504
EnCodec Feature Dimension 128
U-Net Feature Dimension 512
Residual Blocks Per Stage [2, 2, 2, 2]
Channel Multipliers [1, 1, 1, 1.5]
Linear Attention Head Dim 32
Number of Linear Attention Heads 4

Transformer

Sequence Length 188
Feature Dimension 768
Feedforward Dimension 2048
Number of Layers 12
Attention Head Dim 64
Number of Attention Heads 12
Positional Encoding Dynamic Position Bias (Wang et al., 2021; Liu et al., 2022)

Training Configuration

Optimizer AdamW (Loshchilov & Hutter, 2019)
Adam β1, β2 0.9, 0.999
Learning Rate 1e-4
Weight Decay 0.0
Diffusion Regression Loss L1
Warmup Steps 1000
EMA Decay 0.9999
Learning Rate Schedule Cosine Decay
Gradient Clipping 1.0
Global Batch Size 256
Per-Device Batch Size 16
Gradient Accumulation Steps 2
GPUs 8x Nvidia A10G
Precision bfloat16
Training Steps 200k

Table 5: Implementation details for Simple-TTS.

D HUMAN STUDY INSTRUCTIONS

We present the instructions used in our human study.

D.1 QMOS

Task Instructions. In this task you will hear samples of speech recordings. The purpose of this
test is to evaluate the quality and intelligibility of each file in terms of its overall sound quality and
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the amount of mumbling and unclear phrases in the recording. Please keep in mind that speech
samples can be distorted and noisy, however these are only specific examples. Please use a headset
for listening and adjust your volume level to your comfort during this training, and do not change
later during the experiment. You should give a score according to the following scale, known as the
MOS (mean opinion score) scales:

Score (Quality and Intelligibility of the speech): 1 (Bad) 2 (Poor) 3 (Fair) 4 (Good) 5 (Excellent)

D.2 SMOS

Task Instructions. Your task is to evaluate the similarity of the synthesized speech samples to the
given speech prompt. You should focus on the similarity of the speaker, speaking style, acoustic
conditions, background noise, etc. You should rank the recordings on the scale between 1-5, where
5 is the best quality and 1 is the worst. In other words, please rank the recordings according to their
acoustic similarity to the given prompt, meaning as if they were recorded in the same place by the
same speaker speaking in similar styles. This task typically requires approximately 120 seconds to
complete. Please use a headset for listening and adjust your volume level to your comfort during
this training, and do not change later during the experiment.

Score: 1 (Bad) 2 (Poor) 3 (Fair) 4 (Good) 5 (Excellent)
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