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Abstract

Time Series Imputation (TSI), which aims to recover missing values in temporal
data, remains a fundamental challenge due to the complex and often high-rate miss-
ingness in real-world scenarios. Existing models typically optimize the point-wise
reconstruction loss, focusing on recovering numerical values (local information).
However, we observe that under high missing rates, these models still perform
well in the training phase yet produce poor imputations and distorted latent rep-
resentation distributions (global information) in the inference phase. This reveals
a critical optimization dilemma: current objectives lack global guidance, leading
models to overfit local noise and fail to capture global information of the data.
To address this issue, we propose a new training paradigm, Glocal Information
Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB
framework by introducing a Global Alignment loss, derived from a tractable mutual
information approximation. This loss aligns the latent representations of masked
inputs with those of their originally observed counterparts. It helps the model retain
global structure and local details while suppressing noise caused by missing values,
giving rise to better generalization under high missingness. Extensive experiments
on nine datasets confirm that Glocal-IB leads to consistently improved performance
and aligned latent representations under missingness. Our code implementation is

1 Introduction

Missing values are pervasive in real-world time series due to device malfunctions, transmission
failures, and manual collection errors [S2|[72]. These missing values occur with varying rates and
patterns across domains such as healthcare |69} 41} |43], transportation [25]], and energy systems [18],
20], thus substantially impairing the integrity of time series data and the performance of downstream
tasks [17,165]. Consequently, Time Series Imputation (TSI), which aims to reconstruct missing values
from partially observed data, has emerged as a critical problem with broad practical significance [51].

Missing values disrupt the original structure of time series data, acting as structured noise that corrupts
temporal dependencies and statistical patterns [27,|34]. To address this, existing TSI methods typically
adopt encoder-decoder architectures [30L16], trained by randomly masking observed values to simulate
missingness [58} [13}142]]. The goal is to learn the global data distribution from corrupted observations,
enabling the model to reconstruct masked values during training and serve as a conditional generative
model for imputation at inference time [56} |53]. However, a critical optimization dilemma has
emerged in this paradigm: Under high missing rates, models achieve training losses comparable
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Figure 1: Illustration of optimization dilemma in TSI. We visualize the latent space of two
representative models—TimesNet (a-b) and GPVAE (c)—trained under different missing rates and
training epochs. Training and test losses are shown in green and orange boxes, respectively.

to low-missingness scenarios, suggesting successful convergence, yet suffer drastic performance
degradation in imputation quality. To investigate this discrepancy, we conduct an empirical analysis
of representative TSI models under varying missing rates. Our results highlight a gap between
latent representations learned during training and their utility for accurate imputation. Fig.[T](a-b)
illustrates this phenomenon using TimesNet [60] (a-b) and GPVAE (c) on the ETTh1 dataset [[73]];
additional results are provided in the Appendix [D.I] Our findings highlight two key phenomena:

©® Low training loss does not necessarily imply good imputation. As the missing rate increases, the
model still performs well in reconstructing the training data, but their inference-time imputation
quality drops substantially. Even more surprisingly, reducing the number of training epochs (re-
sulting in slightly higher training loss) achieves better imputation results during inference. This
suggests that the training objective under high missingness fails to guide the model toward gen-
eralizable representations, encouraging memorization of local observations rather than learning
meaningful global structures and information.

@ Well-aligned representations are strongly related to good imputation. We further visualize the
latent space distributions of the models and observe that better imputation performance corre-
sponds to representations that remain well-aligned with those derived from fully observed data.
However, as missingness increases, the distributions become increasingly distorted, despite low
training losses. This distortion correlates with poor imputation, suggesting that reconstruction
losses (e.g., MAE/MSE) fail to preserve globally coherent structure under severe missingness.

These observations suggest that a fundamental limitation of current TSI methods lies in their training
objectives. The focus on local numerical accuracy at each timestamp makes these models sensitive to
temporal noise and redundant patterns [53| [7, [74], hindering their ability to capture the underlying
global distribution. To address this issue, researchers have explored the Information Bottleneck (IB)
principle [19} [T} 47], which encourages representations that discard irrelevant noise while preserving
task-relevant information. However, most IB-based TSI methods [[14], [7] still rely on local recon-
struction loss to increase task-relevant mutual information,which is inadequate for capturing global
structure. As a result, these models remain vulnerable to the same optimization dilemma. For exam-
ple, GPVAE [14], as shown in Fig. |I| (c), suffers from severe latent space distortion and performance
degradation as the missing rate increases. Its MAE degrades to 0.8, similar to the non-IB-based
TimesNet [60] under the same conditions. Therefore, a key research question is raised: Can we
design a training paradigm that encourages TSI models to capture both global and local information
from incomplete data, without overfitting to noise?



Our approach. To answer this question, we propose a new training paradigm, Glocal Information
Bottleneck (Glocal-IB), which is based on the trade-off between compactness (suppressing noise)
and informativeness (preserving both global and local information). Unlike previous IB-based
methods [35} 21}, 132] that rely solely on reconstruction losses to increase the mutual information
between latent representations and imputation targets, Glocal-IB goes one step further. Specifically, it
extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable
mutual information approximation. This loss aligns the latent representations of masked inputs
and their corresponding original inputs. Remarkably, Glocal-IB requires only a single Multilayer
Perceptron (MLP) to implement the alignment loss, making it model-agnostic and easily integrable
into existing encoder-decoder frameworks.

The main contributions of this paper are as follows:

* We identify a critical optimization dilemma in existing TSI methods: under high missing rates,
models achieve low training loss but fail to learn globally semantic latent representations, leading
to substantial degradation in imputation quality and severe latent space distortion.

* We propose a novel IB-based training paradigm, Glocal-IB, which explicitly enforces latent
space consistency via a lightweight global alignment loss, alongside local reconstruction, thereby
improving both global and local feature learning while removing irrelevant noise.

* Our empirical results validate the effectiveness of Glocal-IB. On nine benchmark datasets, it
consistently achieves top imputation performance and helps form a smooth, structured latent space
when applied to a vanilla Transformer. Similar improvements are observed across other backbones,
showing strong generalization and better robustness under high missing rates.

2 Related Work

Time Series Imputation TSI has received increasing attention due to its critical impact in real-
world applications [44, 76} 61]]. Most recent methods adopt an encoder-decoder architecture [53]],
differing mainly in how they capture temporal dependencies. RNN-based models like GRU-D [4] and
BRITS [3]] handle temporal decay and bidirectional inference, while transformer-based models such as
ImputeFormer [36] use attention mechanisms for long-range temporal modeling. Spatial correlations
across variables are modeled by methods like GRIN [8]] and SPIN [31]], which integrate Graph Neural
Networks (GNNs) [24, 149]]. Moreover, CSDI [46], GPVAE [14], CIB [7]], and USGAN [33]] are
proposed to learn probability distributions from the observed data. Despite architectural progress,
most models remain sensitive to noise and temporal redundancy in the observed values [42} 57],
due to the point-wise reconstruction loss. To address this, we introduce a new training paradigm,
Glocal-IB, with a dual emphasis on global structure and local detail, thereby encouraging semantically
stable representations and improving imputation under severe missingness.

Optimization Dilemma Recent studies have observed a mismatch between low training loss and
poor test-time performance. For instance, in latent diffusion models (LDMs) for computer vision [12]
67, [70]], high-capacity models produce over-concentrated latent spaces that capture low-level details
at the cost of semantic coherence. Solutions to this in computer vision, such as VA-VAE [67] and
REPA [70]], leverage vision foundation models [39} 15, [16] to align the latent space, promoting richer
semantics. However, time-series foundation models [45} |29} 154] are primarily trained with predictive
or reconstruction losses and lack sufficient semantic information needed to mitigate this issue. To
address this, we introduce a Global Alignment objective that encourages the latent representations
of masked observed sequences to remain close to those of their original observed counterparts. In
addition, compared to solutions that rely on foundation models, our approach is lightweight and
efficient, requiring only one extra MLP.

3 Methodology

Problem Definition. Given an original multivariate time series X = {z} | i = 1,...,N} €
RNXT where N is the number of variables and 7 is the sequence length. To simulate missingness, a
binary mask M € {0, 1}V *7 is applied, where M** = 1 indicates that ¢ is observed and M** = 0
indicates it is missing. The masked input is then defined as X° = X ©® M. TSI models outputs
the imputed result X € R¥*T based on the X°, aiming at estimating the missing values in X°.
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Figure 2: Framework comparison of three TSI training paradigms. Three paradigms differ in how
to deal with the latent representations and how the key encoder and decoder are updated. (a): The
encoder and decoder are updated end-to-end by back-propagation of reconstruction loss. (b): The
latent representations are aligned with a frozen time series foundation model with original data. (c):
Glocal-IB utilizes the encoder itself and a KL divergence to regularize the latent representations.

Throughout this paper, we refer to X as the imputation target, X° as the masked input, and X as the
model’s imputation result.

Information Bottleneck Theory for Time Series Imputation IB principle provides a theoretical
framework for identifying informative parts of the input by balancing two competing objectives:
compactness (regularization) and informativeness (task performance). This trade-off shapes the latent
representations to retain only the essential structure for solving a specific task.

Let X™® and Y™ denote the original input data and the targets of a specific task, respectively.
To get the balance between regularizing input data and maintaining good performance, there is a
well-designed formula about X', Y™, and the bottleneck variable Z'® as follows:

min [I(ZIB;XIB) . ﬁ . I(YIB, ZIB)], (1)

where I(Z'®; X'B) and I(Y'®; Z'B) represent the mutual information of (Z'®, X'8) and (Y8, Z1B),
and 8 € R is a a Lagrange multiplier that balance the two mutual information. This offers a
good understanding of what contributes most to the task from an information-theoretic perspective.
Furthermore, according to the previous IB literature [[1,164], we can assume a factorization of the
joint distribution as follows:

p(XIB, YvIB7 ZIB> —_ p(ZIB|XIB, YIB)p(YIB|XIB)p(XIB> — p(ZIB|XIB)p<YIB|XIB)p(XIB), (2)

namely, there is a Markov chain Y'B «» X8 «» Z'B indicating that the latent representations Z'®
can not directly depend on the targets Y™®. Then, following Eq. , we can define the TSI as a
supervised IB task as follows:

?ig[lg(Z;Xo) —B-14(X; 2)], &)

where 8 € R and Z € RV *dmu denote a preset hyperparameter and the latent representations,
respectively. 6 and ¢ denote the learnable parameters of the encoder py(-) and the decoder g(-) of
our method Glocal-IB. Therefore, we can accomplish the TSI tasks by modeling crucial information
from the partially observed data while filtering out redundant noise.

3.1 Overview

In this section, we introduce our proposed training paradigm Glocal-IB, which is grounded in the IB
principle, and present the derivation of two components in Eq.[3] As shown in Fig. 2](c), Glocal-IB
is simple to use, adds only one MLP projector for alignment, and can be applied to a wide range
of existing methods. Glocal-IB aims to balance two goals in the latent space: reducing noise and
retaining both global and local information. To achieve this, it minimizes the mutual information
between the masked input X ° and the latent representations Z, which helps remove noise introduced
by incomplete data. Meanwhile, it maximizes the mutual information between Z and the imputation



target X, to capture both fine-grained local details and global semantic features. This combination
encourages the model to learn a well-aligned representation of the original data distribution, thereby
addressing the aforementioned optimization dilemma and achieving accurate imputation.

3.2 Regularizing Partially Observed Input: min /y(Z; X°)

Based on variational inference [50]], we derive an upper bound for the regularization term in Eq.
The full derivation is shown in Appendix[A.T]

fwxwz/Mﬁymmwmmmww—/mwaﬂnMMMMm2
@ - @)
s/Jmfme@uummunm&=EmmDmmwuwmu»

where the inequality follows from the non-negativity of KL divergence. Due to the difficulty in
posterior calculation, we use our encoder py(z | 2°) to approximate the true posterior distribution
p(z | °), so that the Regularization loss is defined as follows:

def

1(Z;X°) < Ep(aoy Dlpo(212°)]1g(2)] = Lreg, ®)
Meanwhile, we set an isotropic Gaussian as the prior distribution of the latent representations Z,
i.e., p(Z) = N(0,I). Therefore, the encoder is defined to model partially observed time series data
through a multivariate Gaussian distribution as shown below:

Po(Z]X°) = N(po(X®), diag(og(X?))), (6)

where 114 (+) and o¢(-) are designed as neural networks with parameter §. During inference, we set
the latent variable as Z = py(X°), and sample from the approximate posterior Z ~ py(Z | X°)
using the reparameterization trick:

Z = pg(X°) 4+ 09(X°) O, @)

where € ~ A/ (0, ) and ® denote element-wise multiplication. Under this formulation, the Regular-
ization loss in Eq.[5|can be computed and differentiated analytically as follows, without the need for
stochastic estimation [23]]:

Dt — ;di:mlj (1 +log (Jéj)(X°)>2 B (N((;j)(XO)>2 B (aéj)(XO))2> . 8)
j=

Here, dinoqel denotes the dimensionality of the latent representations, and péj ) (X°) and oéj )(X °)

represent the j-th elements of the mean and standard deviation vectors, respectively.

3.3 Maximizing Global and Local Inforamtion: max I4(X; Z)

Local Mutual Information Maximization Following the derivations introduced in previous IB-
relevant literature [7, [1], we can obtain a lower bound for the informative term, which aims to
maximize the mutual information between the latent representations Z and the original data X (full
derivation is illustrated in Appendix [A.2.T):

+/¢@»Dmmmvm%uunw,

z
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where the inequality holds due to the non-negativity of KL divergence and entropy. As we assume that
time series data follow a Gaussian distribution with fixed variance [7, 23], i.e, g4(z|2) = N (&, 0%I),
the derived Local loss can be further reduced to the form of a MSE loss as follows:

1 ) T
‘Clqjoc = —Ep@,2) [log g4 (x]2)] = Ep(z,z) ﬁ”x - 1'”2 + 9 log(27ro'2) ) (10)

X IEp(m,z) [”I - i‘”Z] ’



where & denotes the imputation results generated by the model, and T is the length of the time
series. However, although this MSE-based Local loss provides a valid way to maximize I(X; Z), it
inherently emphasizes accurate reconstruction of local numerical values. These values often contain
noise introduced by data collection errors and provide little guidance at the global level. Consequently,
under high missing rates, the model tends to memorize these noisy details rather than learn the true
data distribution, leading to poor generalization, degraded imputation quality, and severe distortion
in the latent space. We identify this noise memorization as the key reason why both non-IB and
IB-based TSI methods fail in such settings.

Global Mutual Information Maximization To overcome the limitations of point-wise reconstruction
losses, we introduce a complementary formulation that explicitly targets the global (semantic-level)
mutual information between the latent representations Z and the original data X. Inspired by
the InfoNCE objective from contrastive learning [38]], we derive an alternative lower bound of
I(X; Z) (full derivation is illustrated in Appendix [A.2.2):

p(z) plz)
[(X;2) = —Epo.) |1 N ) —logN| = ~Ep - |1 N
(X; 2) p<,>[og(p(x|z) ) %8 } p<*>{°g(p<x|z>
o "
p(z
2 Ep(a,z) |log ) |y pls)
p@) T K P

Instead of reconstructing z directly with a decoder ¢,(x|z), we model a density ratio f(x,z) =
exp(proj(z) T - pg(z)) that preserves mutual information I(X; Z), as it is proportional to %. And
we denote Z' = py(x). This yields the following Global Alignment loss:

f(=z,2) def o
f(xv Z) + Z f(xja Z) Glo-1?

@ EXTee

I(X;Z) > Ey(ay |log (12)

where proj(-) and py(-) are a simple one-layer MLP and the model’s encoder, respectively. Since our
goal is to maximize global semantic-level mutual information, we treat the embedding of the original
data at the same timestamp as the positive sample for the partially observed input. For negatives, we
use embeddings from other timestamps of the original data. This setup pushes the model to align
partially observed inputs with their original counterparts, encouraging it to capture semantic-level
features such as temporal dynamics and global data distribution.

Moreover, considering the evolution of the training paradigm of the contrastive learning [[15 5], we
can further simplify the Global Alignment loss ‘Cgloj to a simple alignment loss as follows:
. def
E(éloJ ~ —Epa.z) [f(2,2)] = Epaz) [exp (pI’OJ(Z)T ~enc(z))] = ‘Cgloj' (13)
3.4 Opverall Training Objective

We now present the overall training objective of our proposed training paradigm Glocal-IB. This
framework is simple to apply to any encoder-decoder architecture and requires only one additional
MLP. By combining all components, including Regularization loss Eﬁeg, Local loss Kfoc, and Global
Alignment loss Eglo, we optimize the time series imputation objective defined in Eq.

Haliqbn Q- Lgeg + 61 Ll(foc + P2 Eglo} ) (14)
where «, 31, and P are hyper-parameters that balance the mutual information. Global Alignment
loss ,Cgk, can be implemented by Eglo_l or ,Cglo_z.

4 Experiments

4.1 Experimental Settings

Datasets: Comprehensive experiments are conducted on nine public time-series datasets [59, [75, 26|
73|, including ETTh1, ETTh2, ETTm1, ETTm2, Beijing Air, PEMS-Traffic, Electricity, Weather, and



Table 1: Imputation performance on 9 datasets (average MAE and MSE across 10% to 90% missing
rates). Best is bold and second-best is underlined. We use OOM to denote out of memory.

Models IMP  Ours SAITS  Transformer DLinear  TimesNet FreTS PatchTST iTransformer GPVAE TimeMixer

Metric  MSE IMAE MSE|MAE MSE|MAE MSE [MAE MSE|MAE MSE|MAE MSE|MAE MSE|MAE MSE |[MAE MSE|MAE MSE

ETThI | 38% [0.283 0.197]0.402 0.376]0.399 0.373]0.390 0.316]0.602 0.702]0.446 0.394|0.624 0.780|0.441 0.406]0.731 0.928]0.678 0.886

ETTh2 | 40% [0.249 0.132[0.340 0.2560.307 0.218]0.352 0.243]0.800 1.140]0.434 0.370[0.525 0.5750.413 0.321[0.686 0.769]0.529 0.535

ETTml | 28% [0.157 0.069]0.206 0.099|0.202 0.096(0.284 0.172]0.789 1.087|0.310 0.195]0.294 0.188|0.315 0.208[0.588 0.627|0.359 0.242

ETTm2 | 25% [0.157 0.069]0.206 0.099|0.202 0.096(0.284 0.172]0.789 1.087(0.310 0.195]0.294 0.188[0.315 0.208[0.588 0.627|0.359 0.242

Beijing Air | 7% [0.223 0.320[0.256 0.353]0.268 0.375[0.279 0.338]0.264 0.370]0.289 0.349]0.365 0.472[0.365 0.473 |0.380 0.483(0.448 0.628

PEMS-Traffic| 6% [0.318 0.630[0.336 0.674]0.355 0.695[0.401 0.696]0.336 0.683]0.441 0.745(0.472 0.870|0OM OOM [0.383 0.680[0.528 1.018

Electricity | 8% [0.372 0.296/0.397 0.343]0.410 0.358|0.483 0.433[0.390 0.322(0.544 0.534]0.676 0.783(0.440 0.363[0.443 0.394/0.648 0.724

Weather | 34% |0.096 0.056/0.136 0.093(0.139 0.091[0.161 0.089[0.262 0.211[0.167 0.085(0.188 0.1110.182 0.102 [0.278 0.195]0.239 0.180

Metr-LA | 17% [0.267 0.293[0.301 0.392/0.306 0.387[0.387 0.412]0.289 0.354|0.414 0.453]0.423 0.5440.427 0.477 |0.420 0.463(0.607 1.000

Metr-LA. During the experiments, we follow the point-wise missing patterns to randomly mask the
time series [[L1]. We follow the standard train/validation/test splits provided by PyPOTS'|[9]]. More
details are shown in the Appendix B}

Baselines: We select nine representative time series methods as our baselines, including:
(1) Transformer-based methods: SAITS [10], Transformer [48]], PatchTST [37], iTransformer [28]];
(2) Linear-based methods: DLinear [71]], FreTS [68]], TimeMixer [55]; (3) Generative-based method:
GPVAE [14]]; and (4) CNN-based method: TimesNet [60]].

Evaluation Metrics: Following previous studies [62, 163]], we utilize MAE and MSE to evaluate the
imputation performance by measuring feature-wise imputation quality. Lower values indicate better.

Implementation Details: To demonstrate the effectiveness of Glocal-IB, we apply it to a vanilla
2-layer Transformer. This simple backbone, equipped with our training strategy, serves as our
demonstration model and is compared against all baselines. More information is in Appendix [C]

4.2 Overall Comparison

We comprehensively compare the imputation performance of different methods over 9 datasets with
various missing rates and visualize the latent representation distributions of SAITS, TimesNet, and our
proposed method, which are the best three TSI methods. Due to space limits, we report the average
imputation results over five missing rates (0.1, 0.3, 0.5, 0.7, and 0.9) in Table E} Full results are
provided in Appendix Based on the comparison results, we summarize our observations (Obs.):

Obs. @: Glocal-IB demonstrates superior performance improvement in TSI tasks. As shown in
Table[T]and 2} Glocal-IB achieves the lowest MAE and MSE across all 9 datasets, with several cases
showing a substantial margin. Notably, on ETTh1, ETTh2, ETTmI, and ETTm2, Glocal-IB shows
substantial reductions in MSE (up to 40%) compared to all baselines. Even on more challenging
real-world datasets like Beijing Air, PEMS-Traffic, Electricity, and Metr-LA, which contain complex
temporal patterns and noise that the vanilla Transformer is not good at processing, Glocal-IB helps
the Transformer to surpass SAITS and TimesNet by non-trivial margins in both MAE and MSE.
Moreover, on the Weather dataset, Glocal-IB outperforms the second-best method by a large margin,
reflecting strong robustness to seasonal patterns.

Obs. O: The distortions of the latent representation distribution can be well solved by Glocal-IB.
As shown in the Fig. 8] existing representative TSI methods produce increasingly distorted latent
distributions as the missing rate increases. These distortions suggest that the models fail to preserve
the underlying temporal or structural properties of the original data under high missingness. In
contrast, our proposed Glocal-IB maintains a stable and coherent latent structure from 10% to 70%
missing rates. Even at 90% missingness, Glocal-IB still enables the model to capture the global

"https://github. com/WenjieDu/PyPOTS
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Figure 3: Imputation performance on the ETTh1 dataset of Transformer, TimesNet, and SAITS with
four different training methods.
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Figure 4: Latent space of SAITS and TimesNet with Glocal-IB on the ETTh1 dataset. Comparison
with original models is in the Appendix [D.T]

shape of the original distribution, while other methods show significant collapse or fragmentation
in the latent space. This observation supports that Glocal-IB preserves informative global-local
dependencies under extreme data degradation.

4.3 Generality Analysis

We conduct a series of studies to investigate how different training paradigms affect the performance
of TSI models. Specifically, we select two of the most effective TSI methods—TimesNet and
SAITS—and evaluate them under four training paradigms: (1) Ori: Standard reconstruction-based
training without any external alignment. (2) FM_align: Representation alignment with a time series
foundation model, specifically using the latest Time-MoE [45]]. (3) Glo_1: Employ Eq. @ as the

usage of Global Alignment loss Eglo. And (4) Glo_2: Employ Eq. as the usage of Global
Alignment loss Ef;lo to compare with Glo_1. From Fig. [3|and 4] we observe that:

Obs. ©: Glocal-IB improves the learning capability of existing imputation models. From 10%
to 70% missing, models trained with Glo_1 or Glo_2 consistently outperform the original version
of baselines (Ori) and foundation model-aligned (FM_align) counterparts. Even under an extreme
missing rate of 90%, where global information is little in only 10% observed data, Glocal-IB continues
to enhance performance for both Transformer and SAITS, highlighting its effectiveness to boost TSI
methods. Importantly, this improvement is achieved with minimal architectural modifications—only
a lightweight MLP is introduced.
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Figure 5: Different Missing Pattern Imputation and Efficiency results. (a, b): Comparison of
imputation performance on the ETTh2 dataset with 50% Point and Block missing rates. Additional
results for various missing rates are presented in Appendix [D.3] (¢, d): Efficiency comparison of four
representative models on the ETTh1 dataset, evaluating the original models against their variants with
Glocal-IB and foundation model alignment (Time-MoE). The radial axes are on a logarithmic scale.

Obs. @: The Time series foundation model provides limited benefit. We observe that Time-MoE-
based alignment yields only marginal improvements for TSI tasks. This discrepancy is likely due to the
nature of the pretraining objectives used in current time series foundation models [45} 29, 54], which
are predominantly forecasting tasks. Such tasks may not impose sufficient semantic constraints on
the learned representations, thereby limiting the benefit of alignment when transferred to imputation.

Obs. ©: Glocal-IB mitigates latent representation distortion. Figure ] and []illustrate the impact
of Glocal-IB on latent representations. In the original SAITS and TimesNet model, the upper portion
of the latent space becomes increasingly distorted as the missing rate grows from 10% to 30%.
From 50% to 90% missing, the latent distribution collapses, indicating that the model fails to capture
meaningful structure. In contrast, when they are trained with Glocal-IB, the latent distributions remain
well-structured up to a 90% missing rate. This indicates that Glocal-IB introduces strong global
regularization, enabling the model to preserve semantic coherence even under severe missingness.

4.4 Missing Pattern and Efficiency Analysis

We conduct experiments to analyze the effectiveness of Glocal-IB under various missing patterns and
its efficiency. Our evaluation includes a suite of representative baselines: USGAN [33], DLinear [71]],
TCN [2], SAITS [10], and TimesNet [60]. Based on the results, we have the following observations:

Obs. ®: Our proposed method remains highly effective even for challenging block-wise missing
patterns. Figure [5] (b) shows that when contiguous blocks of data are missing—a scenario that
disrupts local temporal dependencies—our method still achieves the lowest MAE by a significant
margin. This demonstrates its robustness and superior capability in reconstructing structured data
loss compared to other baselines.

Obs. @: Glocal-IB enhances the capability of existing models across different missing patterns.
As shown in Figures [3] (a,b), applying Glocal-IB on current methods (e.g., DLinear_GIB and
TCN_GIB) leads to improved imputation accuracy over the base models. This enhancement is
particularly significant in the more challenging Block Missing scenario, where both DLinear_GIB
and TCN_GIB achieve a lower MAE. This demonstrates Glocal-IB’s broad utility in strengthening
existing imputation methods.

Obs. ®: Glocal-IB is a computationally efficient module. Figures 3] (c,d) reveal that augmenting
existing models with our proposed Glocal-IB (w/ Glocal-IB) results in only a marginal increase
in memory footprint and execution time compared to the original (Ori) versions. This efficiency
stands in stark contrast to the Foundation Align based on the Time-MOE [45] method, which incurs
substantial computational overhead. This highlights Glocal-IB as a practical, lightweight solution for
enhancing model performance.
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Figure 7: Visualization of ablation study results on ETTh1 dataset. More results are in Appendix

4.5 Ablation Study and Sensitivity Analysis

‘We conduct an ablation study and a parameter sensitivity analysis to examine the contribution and
robustness of each component in Glocal-IB. The experiments are performed on four datasets: ETTh1,
ETTh2, ETTml, and ETTm2. In the Ablation Study (Fig. [7a)and [7b), we compare the following
configurations: (1) Entire: the full Glocal-IB method. (2) w/o Reg: Glocal-IB without the mutual
information minimization term, Regularization loss. (3) w/o Glo: Glocal-IB without the global
mutual information maximization, Global Alignment loss. (4) only Loc: only the reconstruction
objective, i.e., Local loss, is used, corresponding to local mutual information maximization. In the
Sensitivity Analysis (Fig. EI), we vary the weights assigned to the Local loss L‘g,o, Regularization

loss Egeg, and Global Alignment loss Efoc to study how each impacts model performance.

Obs. ©: Both the Ef{eg and Eglo are critical for improving imputation quality. As demonstrated

in Fig. El when either the Regularization loss Eﬁeg or the Global Alignment loss Cglo is removed, the
model performance deteriorates more significantly as the missing rate increases. This indicates that
the Eﬁeg is effective at suppressing irrelevant variations in the latent space, while the Eglo helps the
model maintain global semantic information of the data.

Obs. @: Imputation quality is sensitive to the weight of Lﬁeg. As shown in Fig. EI, increasing

the weight of the Global Alignment loss ﬁglo or Local loss lejoc leads to stable performance trends.
However, the imputation quality drops sharply when the weight of Regularization loss £%., exceeds
0.01. This suggests that a small amount of KL regularization is beneficial for filtering noise, but
excessive regularization would suppress useful latent information excessively, resulting in significantly
degraded imputation performance.

5 Conclusion

This paper studies the optimization dilemma in current TSI methods. To address this issue, we
introduce a novel training paradigm, Glocal-IB. It extends standard IB-based objectives by adding a
Global Alignment loss based on a tractable mutual information approximation. This loss encourages
the latent representations of masked inputs to match those of their fully observed counterparts, helping
the model retain global structure and local detail while reducing the impact of noise. Extensive
experiments on nine datasets show that Glocal-IB consistently improves imputation accuracy and
leads to more stable latent representation distributions under varying missing rates.
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A Theoretical Analysis

A.1 Variational Approximation of Mutual Information Minimization for EReg

Following prior work [1}[7], we approximate I(Z; X°) using a variational upper bound. We begin by
rewriting the mutual information definition into an equivalent KL form:

X% =By o8 5705
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To make the equation tractable, we follow the variational inference by introducing a variational
marginal ¢(z). We can convert I (Z; X°) as follows:
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where the first and second terms are both calculations of KL divergence, so we can get as follows:
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where the last inequality follows from the non-negativity of KL divergence.

A.2  Approximation of Mutual Information Maximization £Loc and E&O

A.2.1 Derivation of Lfoc

Here, we illustrate the entire derivation of the mutual information (X; Z) as in Eq. @ Similar to the
calculation in Eq. . by utilizing variational inference, we can get a lower bound of 1(X; Z):
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Note that the second term can be calculated as a KL divergence, so we calculate as follows:
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Finally, because of the non-negativity of KL divergence:
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A.2.2 Derivation of Lglo

To provide the model with global-level guidance, we approximate the I(X; Z) into a contrastive
form, which is similar to the CPC [38]].
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Here, we use a mini-batch approach [7]] that X "°¢ is chosen from other timestamps’ data in the same

mini-batch. And f(z, 2) is a density ratio that is proportional to (f|§)

Moreover, inspired by the evolution of the contrastive learning [[15} 5, [77], we further simplify the

Eq.[21] as shown below:
Therefore, we get a simpler alignment loss in Eq. [13]
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B Datasets

We conduct experiments on 9 real-world datasets to evaluate the imputation performance. Now we
describe the detailed information of these 9 datasets as follows:

* ETT [75] records 7 power-related factors from electricity transformers between 2016/07 and
2018/07. It includes four subsets: ETTh1 and ETTh2 are sampled hourly, while ETTm1
and ETTm2 are sampled every 15 minutes.

* Beijing Air [73] provides hourly air quality data from 12 monitoring stations in Beijing,
collected from 2013/03/01 to 2017/02/08. Each station measures 11 variables, resulting in
132 combined features.

o PEMS-Traffic [59] contains hourly road occupancy rates from 862 sensors on San Francisco
Bay area highways, spanning 2015/01 to 2016/02.

* Electricity [59] records hourly electricity usage of 321 clients from 2012 to 2014.

* Weather [59] includes 21 meteorological variables collected every 10 minutes at the Max
Planck Biogeochemistry Institute throughout 2021.

* Metr-LA [26] captures traffic speeds every 5 minutes from 207 road sensors across Los
Angeles County, covering the period from 2012/03 to 2012/06.

C Implementation Details

We follow the data processing and split protocol from PyPOTS [9]. The training, validation, and test
sets are divided (60%, 20%, and 20%) in chronological order to avoid data leakage. For all datasets,
the input sequence length is set to 96.

All experiments are implemented in PyTorch [40] 2.6.0 and run on a single NVIDIA 4090 GPU with
24GB memory. We use the Adam optimizer [22] with a learning rate of 0.001. The batch size is 64,
and the number of training epochs is fixed to 30. The hidden dimension is set to 256.

All baseline models are built upon the PyPOTS [9]] benchmark, where each model follows the settings
from its original paper and official implementation. We report the average results over 5 different
random seeds in this paper.

D Full Experiments

D.1 Full Comparison Results

Table |2| provides a comprehensive comparison of Globcal-IB with a vanilla Transformer against
baseline methods, with results of missing rate of 10%, 30%, 50%, 70%, and 90% listed separately.
Additionally, we visualize the latent space of ours and three representative TSI methods in Fig. [§]

D.2 Generality Analysis

Fig. 9| provides the latent space of TimesNet, SAITS, and their Glocal-IB counterparts, across missing
rate 10%, 30%, 50%, 70%, and 90%. Glocal-IB remarkably improves the alignment of the latent
space while the missing rate increases.

D.3 Missing Pattern Analysis

Fig. [I0] [IT} [12} and [T3] provide the entire performance comparison results on ETTh1, ETTh2,
ETTml, and ETTm?2, across missing rate 10%, 30%, 50%, 70%, and 90%. These indicate that
our proposed method achieves the best imputation performance while remarkably improving the
imputation performance of current methods.

D.4 Ablation Study and Sensitivity Analysis

Fig. @] illustrates all the ablation studies on 4 datasets, including ETTh1, ETTh2, ETTml, and
ETTm?2.
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Fig.[T4]demonstrates all the parameter sensitivity analyses on 4 datasets, including ETTh1, ETTh2,
ETTm]l1, and ETTm?2.

E Societal Impact Statement

Similar to previous TSI works [66, 3], the development of Glocal-IB has the potential to benefit a
wide range of real-world applications. In healthcare, for example, improved imputation models can
enhance the reliability of patient monitoring systems by recovering missing clinical measurements.
This may support earlier diagnosis, enable timely interventions, and help reduce overall medical costs
by facilitating more informed decision-making.

However, the deployment of advanced imputation techniques also introduces several risks. In sensitive
domains such as surveillance, these models may reconstruct incomplete data in ways that raise privacy
concerns, particularly if used to infer personal information without consent. Moreover, over-reliance
on automated imputation may lead to overlooked errors, potentially resulting in biased or unreliable
decisions in downstream tasks.

To mitigate these risks, it is important to establish clear guidelines for the ethical use of imputation
models. This includes enforcing data protection regulations, ensuring transparency in model behavior,
and incorporating fairness-aware validation protocols. Broadening access to such technologies and
conducting regular audits can further promote responsible deployment and prevent unintended harm.

F Limitation and Discussion

Due to computational constraints, we only apply Glocal-IB to three representative back-
bones—TimesNet, SAITS, and Transformer—on four datasets from the ETT benchmark: ETTh1,
ETTh2, ETTm1, and ETTm2. While these results are sufficient to demonstrate the effectiveness of
our approach, future work can explore broader model families and larger-scale datasets to further
validate generalization.

We also observe that the performance gain under extreme missingness (e.g., 90%) is less pronounced
than at moderate levels (10%—70%). A possible reason is that in the inference phase when only a
small portion of the input is available (e.g., 10%), the preserved global structure is too weak to offer
meaningful alignment signals. In such cases, the model has limited capacity to distinguish signal
from noise, resulting in less reliable imputation.

This limitation highlights an important future direction: how to enhance global guidance under
limited observations. One possible solution is to incorporate stronger structural priors or pretrained
knowledge to better inform the latent space.
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Figure 8: Latent space comparison of Glocal-IB on Transformer and three representative TSI methods,
including SAITS, TimesNet, and GPVAE.
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implementations.
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Table 2: Imputation performance on 9 datasets (average MAE and MSE across 10% to 90% missing
rates). Best is bold and second-best is underlined. We use OOM to denote out of memory.

Models IMP  Ours SAITS Transformer DLinear TimesNet FreTS  PatchTST iTransformer GPVAE TimeMixer

Metric MEE‘MAE MSE|MAE MSE|MAE MSE |[MAE MSE|MAE MSE|MAE MSE|MAE MSE|MAE MSE |MAE MSE|MAE MSE

0.1 |50%0.165 0.060(0.245 0.121|0.251 0.132]0.281 0.158]0.329 0.209]|0.324 0.191]0.494 0.480|0.350 0.246 [0.664 0.736|0.626 0.730
0.3 |49%0.204 0.096{0.306 0.190(0.308 0.19410.316 0.193]0.506 0.464|0.348 0.221]0.583 0.743]|0.368 0.267 [0.690 0.827|0.655 0.824
0.5 |47%0.239 0.128]0.356 0.257|0.360 0.267 |0.356 0.244/0.617 0.706|0.384 0.267|0.546 0.614/0.401 0.314 |0.735 0.901|0.683 0.925
0.7 (36% (0.303 0.202(0.443 0.422(0.443 0.455(0.410 0.315/0.718 0.917(0.463 0.382(0.700 0.927(0.453 0.401 {0.760 1.009{0.703 0.968
0.9 {26%0.506 0.497|0.658 0.890|0.633 0.814 |0.585 0.670(0.839 1.216|0.712 0.909|0.796 1.134/0.633 0.799 [0.808 1.166(0.721 0.983

ETThl

0.1 {50%0.180 0.063|0.265 0.142(0.235 0.126(0.289 0.157]0.423 0.342|0.315 0.189(0.396 0.312|0.419 0.318 |0.522 0.458|0.463 0.390
0.3 |48%10.205 0.080(0.276 0.167|0.260 0.155(0.317 0.192{0.756 0.955|0.383 0.271]0.423 0.347|0.387 0.282 |0.545 0.496|0.465 0.383
0.5 [37%0.243 0.115/0.309 0.209(0.286 0.183 |0.340 0.223]0.862 1.222]0.401 0.306|0.419 0.327(0.416 0.321 |0.640 0.649|0.495 0.449
0.7 |44%0.254 0.132(0.350 0.2560.324 0.235(0.363 0.262(0.957 1.511]|0.456 0.381]0.525 0.520|0.381 0.267 |0.764 0.889|0.531 0.549
0.9 {30%0.361 0.270|0.498 0.508|0.432 0.390 |0.451 0.384[1.002 1.672|0.613 0.702|0.864 1.368|0.460 0.415 [0.958 1.351|0.692 0.903

ETTh2

0.1 |45%0.097 0.024(0.138 0.042|0.145 0.047|0.215 0.095|0.707 0.876|0.245 0.119]0.218 0.094]|0.243 0.123 |0.469 0.377(0.318 0.187
0.3 |35%0.117 0.036{0.158 0.055|0.162 0.059(0.230 0.110{0.762 1.012]|0.258 0.131]0.237 0.112]0.262 0.137 |0.520 0.460(0.321 0.195
0.5 |35%|0.135 0.049|0.186 0.075/0.185 0.075(0.251 0.129(0.799 1.112]|0.279 0.151]0.248 0.122|0.294 0.168 |0.546 0.514|0.335 0.208
0.7 {30%0.165 0.070{0.226 0.107|0.215 0.101 |0.292 0.169(0.832 1.206|0.318 0.193]0.294 0.165|0.324 0.201 [0.627 0.680(0.360 0.236
0.9 [15%0.271 0.167|0.324 0.217|0.304 0.197|0.430 0.358|0.844 1.231]|0.452 0.381]0.473 0.445|0.450 0.411 [0.777 1.102(0.463 0.381

ETTml

0.1 |{18%0.113 0.032|0.151 0.043|0.139 0.039]0.229 0.101{0.751 0.974]|0.267 0.141]0.241 0.109|0.316 0.206 [0.466 0.381|0.337 0.209
0.3 (25%0.126 0.039(0.160 0.052(0.169 0.056 [0.253 0.129]0.866 1.263(0.287 0.155(0.305 0.177(0.317 0.207 {0.479 0.407{0.319 0.193
0.5 |37%0.138 0.042(0.183 0.065/0.183 0.065 |0.290 0.169(0.933 1.450]|0.291 0.165|0.287 0.162|0.334 0.230 [0.482 0.404|0.320 0.199
0.7 |18%0.169 0.063|0.231 0.102(0.199 0.078 |0.305 0.188]0.978 1.588|0.337 0.222/0.288 0.162|0.330 0.220 [0.498 0.439|0.363 0.265
0.9 {23%0.227 0.109{0.290 0.169|0.259 0.142]0.392 0.313{1.011 1.694|0.412 0.326|0.385 0.289]|0.375 0.273 |0.746 0.872|0.452 0.405

ETTm?2

0.1 | 9% |0.192 0.289(0.216 0.291|0.231 0.344]0.253 0.294/0.231 0.359|0.272 0.316|0.320 0.382|0.298 0.362 [0.339 0.422|0.440 0.606
0.3 | 7% |0.202 0.299|0.231 0.325/0.247 0.352]0.263 0.312(0.242 0.342|0.271 0.318]0.309 0.389]|0.327 0.418 |0.350 0.436(0.451 0.627
0.5 | 6% |0.215 0.312]0.250 0.343|0.260 0.363 |0.269 0.336|0.244 0.337|0.276 0.336(0.324 0.407|0.347 0.445 [0.371 0.471|0.435 0.602
0.7 | 5% |0.234 0.327|0.267 0.376/0.277 0.380|0.287 0.341]0.255 0.353]|0.296 0.359/0.392 0.497|0.373 0.474 |0.388 0.490(0.448 0.628

0.9 [5% (0.272 0.374/0.317 0.431|0.324 0.436 |0.322 0.406|0.348 0.462(0.333 0.417]0.478 0.686(0.480 0.666 |0.454 0.597|0.466 0.674

Beijing Air

0.1 [9% (0.303 0.602(0.330 0.664(0.347 0.685 [0.394 0.668|0.333 0.681{0.455 0.770(0.440 0.783]OOM OOM |0.388 0.680(0.522 0.984
0.3 | 7% |0.308 0.624|0.331 0.670|0.346 0.691 |0.396 0.680(0.333 0.677|0.439 0.742|0.458 0.844/OOM OOM |0.383 0.680(0.525 1.014
0.5 | 6% |0.318 0.630|0.334 0.674/0.349 0.691 |0.393 0.678|0.333 0.688|0.439 0.740/0.462 0.855|00OM OOM |0.374 0.671|0.526 0.998
0.7 | 5% |0.324 0.638|0.332 0.673|0.357 0.699 |0.403 0.697|0.336 0.679|0.448 0.744/0.498 0.905/O0OM OOM |0.376 0.674(0.528 1.028
0.9 | 5% |0.339 0.657|0.354 0.691|0.375 0.710(0.417 0.757(0.345 0.693|0.425 0.728]0.500 0.962]/OOM OOM [0.394 0.693|0.536 1.067

S

PEMS-Traffic

S

0.1 | 5% |0.340 0.252(0.351 0.278|0.360 0.286 |0.459 0.390(0.370 0.297|0.498 0.456|0.666 0.770|0.375 0.266 [0.430 0.373|0.651 0.727
0.3 | 7% |0.349 0.261]0.355 0.282|0.366 0.294 0.465 0.399(0.373 0.300|0.571 0.582(0.696 0.811|0.393 0.289 [0.430 0.373|0.655 0.739
0.5 | 5% |0.354 0.275|0.360 0.290|0.374 0.303 |0.471 0.415]0.376 0.304|0.524 0.496|0.642 0.718|0.419 0.324 0.436 0.384(0.652 0.731
0.7 [ 4% (0.379 0.310/0.435 0.393|0.455 0.422 ]0.483 0.434]0.392 0.324/0.579 0.597|0.694 0.812/0.456 0.378 |0.447 0.401|0.643 0.712
0.9 | 1% |0.437 0.380|0.486 0.473|0.495 0.485(0.538 0.526|0.440 0.384|0.548 0.539(0.683 0.805|0.560 0.559 [0.474 0.441|0.639 0.710

S

Electricity

0.1 |35%0.070 0.034|0.103 0.072(0.111 0.069 |0.150 0.068|0.115 0.053|0.156 0.065|0.164 0.084|0.144 0.080 [0.239 0.151|0.224 0.167
0.3 |41%0.073 0.039{0.110 0.075/0.118 0.076|0.150 0.073]0.135 0.075|0.149 0.066|0.157 0.087|0.158 0.083 0.252 0.161|0.235 0.170
0.5 [42%(0.084 0.047/0.125 0.080(0.136 0.085 [0.154 0.080(0.175 0.120{0.165 0.081]0.178 0.100{0.172 0.089 [0.273 0.179|0.229 0.174
0.7 |32%0.103 0.059|0.143 0.0910.142 0.093 |0.159 0.093|0.336 0.269|0.165 0.087|0.204 0.118/0.199 0.110 |0.265 0.180(0.235 0.175
0.9 {19%0.150 0.101{0.202 0.1460.188 0.134]0.193 0.129]0.547 0.537|0.203 0.125|0.238 0.164|0.238 0.149 [0.360 0.302(0.270 0.211

‘Weather

0.1 {23%0.247 0.250{0.281 0.350/0.290 0.353|0.381 0.383]0.267 0.323|0.409 0.423|0.388 0.459|0.383 0.381 [0.409 0.436|0.646 1.045
0.3 |21%0.251 0.262|0.283 0.362(0.292 0.363 |0.391 0.403|0.271 0.331]0.411 0.432|0.392 0.468|0.397 0.410 |0.383 0.414|0.608 0.966
0.5 (20% (0.259 0.277(0.292 0.375(0.298 0.372 [0.380 0.397/0.279 0.346(0.439 0.509(0.420 0.509(0.420 0.464 (0.380 0.411{0.605 1.003
0.7 |20%0.267 0.294|0.305 0.391|0.311 0.393 |0.379 0.411{0.290 0.366|0.401 0.432|0.406 0.534/0.439 0.508 |0.436 0.487|0.580 0.963
0.9 | 5% |0.308 0.383|0.345 0.482|0.342 0.456|0.406 0.468|0.336 0.404|0.412 0.472|0.509 0.750|0.498 0.624 [0.494 0.567|0.597 1.025

Metr-LA
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(a) ETTh1-10% Missing Rate

(b) ETTh1-30% Missing Rate

(c) ETTh1-50% Missing Rate

(d) ETTh1-70% Missing Rate

(¢) ETTh1-90% Missing Rate
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Figure 10: Full comparison results on ETTh1 with Point and Block missing patterns.

21



(a) ETTh2-10% Missing Rate
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Figure 11: Full comparison results on ETTh2 with Point and Block missing patterns.
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(a) ETTm1-10% Missing Rate

(b) ETTm1-30% Missing Rate
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Figure 12: Full comparison results on ETTm1 with Point and Block missing patterns.
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(a) ETTm2-10% Missing Rate
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Figure 13: Full comparison results on ETTm?2 with Point and Block missing patterns.
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Figure 14: Full sensitivity results on ETTh1, ETTh2, ETTm1, and ETTm2.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Appendix [F}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We include the theoretical proof in Appendix [A]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the detailed experimental settings in Section[4.1]and Appendix [C]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The anonymous source code and datasets are available on https://
anonymous . 4open.science/r/NeurIPS-25-Glocal-IB-E1F0/.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We include the detailed experimental settings in Section[4.T]and Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the results averaged from five experiments with different random
seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the necessary computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: In every respect in the paper, we follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include the impact statement in Appendix
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All data, models, and code in the paper respect the license.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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