
Semialgebraic Representation of Monotone Deep
Equilibrium Models and Applications to Certification

Tong Chen
LAAS-CNRS

Université de Toulouse
31400 Toulouse, France

tchen@laas.fr

Jean-Bernard Lasserre
LAAS-CNRS & IMT

Université de Toulouse
31400 Toulouse, France
lasserre@laas.fr

Victor Magron
LAAS-CNRS

Université de Toulouse
31400 Toulouse, France
vmagron@laas.fr

Edouard Pauwels
IRIT & IMT

Université de Toulouse
31400 Toulouse, France

edouard.pauwels@irit.fr

Abstract

Deep equilibrium models are based on implicitly defined functional relations and
have shown competitive performance compared with the traditional deep networks.
Monotone operator equilibrium networks (monDEQ) retain interesting performance
with additional theoretical guaranties. Existing certification tools for classical deep
networks cannot directly be applied to monDEQs for which much fewer tools exist.
We introduce a semialgebraic representation for ReLU based monDEQs which
allows to approximate the corresponding input output relation by semidefinite
programming (SDP). We present several applications to network certification and
obtain SDP models for the following problems : robustness certification, Lipschitz
constant estimation, ellipsoidal uncertainty propagation. We use these models to
certify robustness of monDEQs w.r.t. a generalLq norm. Experimental results show
that the proposed models outperform existing approaches for monDEQ certification.
Furthermore, our investigations suggest that monDEQs are much more robust to
L2 perturbations than L∞ perturbations.

1 Introduction

With the increasing success of Deep Neural Networks (DNN) (e.g. computer vision, natural language
processing), one witnesses a significant increase in size and complexity (topology and activation
functions). This generates difficulties for theoretical analysis and a posteriori performance evaluation.
This is problematic for applications where robustness issues are crucial, for example inverse problems
(IP) in scientific computing. Indeed such IPs are notoriously ill-posed and as stressed in the March
2021 issue of SIAM News [1], “Yet DL has an Achilles’ heel. Current implementations can be highly
unstable, meaning that a certain small perturbation to the input of a trained neural network can
cause substantial change in its output. This phenomenon is both a nuisance and a major concern
for the safety and robustness of DL-based systems in critical applications—like healthcare—where
reliable computations are essential". Indeed, the Instability Theorem [1] predicts unavoidable lower
bound on Lipschitz contants, which may explain the lack of stability of some DNNs, over-performing
on training sets. This underlines the need to evaluate precisely a posteriori critical indicators, such as
Lipschitz constants of DNNs. However, obtaining an accurate upper bounds on the Lipschitz constant
of a DNN is a hard problem, it reduces to prove a global inequality “Ψ(x) ≥ 0 for all x in a domain”,

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

i.e., to provide a proof of positivity for a function Ψ, which has no simple explicit expression. Even
for modest size DNNs this task is practically challenging, previous successful attempts [8, 28] were
restricted in practice to no more than two hidden layers with less than a hundred nodes. More broadly
existing attempts to DNN certification rely either on zonotope calculus, linear programming (LP) or
hierarchies of SDP based on positivity certificates from algebraic geometry [34], which may suffer
from the curse of dimensionality.

Recently, implicit deep learning [12] arises as a generalization of the recursive rules of traditional
feedforward neural networks. Specifically, Deep Equilibrium Models (DEQ) [2] have emerged as
a potential alternative to classical DNNs. With their much simpler layer structure, they provide
competitive results on machine learning benchmarks [2, 3]. Training DEQs involves solving fix-point
equations, which requires further conditions to make the iteration converge. Fortunately, Monotone
operator equilibrium network (monDEQ) introduced in [45] satisfies such conditions. Moreover,
the authors in [33] provide explicit bounds on global Lipschitz constant of monDEQs (w.r.t. the
L2-norm) which can be used for robustness certification.

From a certification point of view, DEQs have the definite advantage of having only one implicit
layer compared to DNNs and therefore is potentially more amenable to sophisticated techniques
(e.g. algebraic certificates of positivity) which rapidly face their limit even for classical DNNs with
modest size (but long depth). Therefore monDEQs constitute a class of DNNs for which robustness
certification, uncertainty propagation or Lipschicity could potentially be investigated in a more
satisfactory way than classical networks. Contrary to DNNs, for which a variety of tools have been
developped, certification of DEQ modeld is relatively open, the only available tool is the Lipschitz
bound in [33].

Contribution

We present three general semialgebraic models of ReLU monDEQ for certification (p ∈ Z+∪{+∞}):
• Robustness Model for network Lp robustness certification.

• Lipschitz Model for network Lipschitz constant estimation with respect to any Lp norm.

• Ellipsoid Model for ellipsoidal outer-approximation of the image by the network of a polyhedra or
an ellipsoid.

All these models can be used for robustness certification, a common task which we consider experi-
mentally. And the main originality of this work is to successfully apply the proposed techniques to
monDEQ networks (especially for the Ellipsoid model which is a novel form of reachability analysis),
which was not proposed before. Both Lipschitz and Ellipsoid models can in addition be used for
further a posteriori analyses. Interestingly, all three models are given by solutions of semidefinite
programs (SDP), obtained by Shor relaxation of a common semialgebraic representation of ReLU
monDEQs. Our models are all evaluated to simple ReLU monDEQs on MNIST dataset similar as
[45, 33] on the task of robustness certification. We demonstrate that all three models ourperform the
approach of [33] and the Robustness Model being the most efficient. Our experiments also suggest
that DEQs are much less robust to L∞ perturbations than L2 perturbations, in contrast with classical
DNNs [36] which have been shown to be robust on MNIST dataset to the level we are considering
(ε = 0.1).

Related works

Neural network certification is a challenging topic in machine learning, contributions include:

Robustness certification of DNNs Even with high test accuracy, DNNs are very sensitive to tiny
input perturbations, see e.g. [42, 16]. Robustness to input perturbation has been investigated in
many different works with various techniques, including SDP relaxation in SDP-cert [36], first-order
dual SDP method [10], abstract interpretation with ERAN [15, 41], multi-neuron convex relaxations
with PRIMA [31], GPU-based method GPUPoly [30] which can scale to large networks with one
million neurons and 34 layers, scalable quantitative verification framework with PROVERO [4], LP
relaxation in Reluplex [25], analytical certification with Fast-lin [44] and CROWN [47], and their
extension to convolutional neural networks with CNN-Cert [7]. All these methods are restricted to
DNNs or CNNs and do not directly apply to DEQs.

2

Lipschitz constant estimation of DNNs Lipschitz constant of DNNs can be used for robustness
certification [42, 18]. Existing contributions include naive layer-wise product bound [22, 43], con-
trolled ordinary differential equations (ODE) method [20], zonotope-based method [24] which can be
further extended to generative models, Mixed-Integer Programming (MIP) [23] for exactly computing
the local Lipschitz constant of ReLU networks, the LP relaxations for CNNs [48] and DNNs [28], as
well as SDP relaxations [35, 14, 8].

Lipschitz constant estimation of DEQs The authors in [33] provide an optimization-free upper
bound of the Lipschitz constant of monDEQs depending on network weights. This bound is valid
for L2 norm and we present a general model for arbitrary Lp norm. Based on the works of [33],
the authors in [38] introduced new parameterizations of DEQs that admit a Lipschitz bound during
training via unconstrained optimization.

2 Preliminary Background and Notations

We consider the monotone operator equilibrium network (monDEQ) [45], with a single implicit
hidden layer. The main difference between monDEQ and deep equilibrium network (DEQ) [2] is
that strong monotonicity is enforced on weight matrix and activation functions to guarantee the
convergence of fixed point iterations. The authors in [45] proposed various structures of implicit
layer, we only consider fully-connected layers, investigation of more advanced convolutional layers
is in our list of future works.

Network description: Denote by F : Rp0 → RK a fully-connected monDEQ for classification,
where p0 is the input dimension and K is the number of labels. Let x0 ∈ Rp0 be the input variable
and z ∈ Rp be the variable in the implicit layer. We consider the ReLU activation function, which is
simply defined as ReLU(x) = max{0, x}, and the output of the monDEQs can be written as

F (x0) = Cz + c, z = ReLU(Wz + Ux0 + u), (monDEQ)

where W ∈ Rp×p,U ∈ Rp×p0 ,u ∈ Rp,C ∈ RK×p, c ∈ RK are parameters of the network. The
vector-valued function F (x0) provides a score for each label i ∈ {1, . . . ,K} associated to the input
x0, the prediction corresponds to the highest score, i.e., yx0

= arg maxi=1,...,K F (x0)i. As in [45],
the matrix Ip −W is strongly monotone: there is a known m > 0 such that Ip −W � mIp, this
constraint can be enforced by specific parametrization of the matrix W. With the monotonicity
assumption, the solution to equation z = ReLU(Wz + Ux0 + u) is unique and can be evaluated
using convergent algorithms, see [45] for more details.

Robustness of monDEQs: Given an input x0 ∈ Rp0 , a norm ‖ · ‖, and a network F : Rp0 → RK
, let y0 be the label of input x0, i.e., y0 = arg maxi=1,...,K F (x0)i. For ε > 0, denote by E =
B(x0, ε, ‖ · ‖) the ball centered at x0 with radius ε for norm ‖ · ‖. If for all inputs x ∈ E , the label
of x equals y0, i.e., y = arg maxi=1,...,K F (x)i = y0, then we say that the network F is ε-robust at
input x0 for norm ‖ · ‖. An equivalent way to verify whether the network F is ε-robust is to check
that for all labels i 6= y0, F (x)i − F (x)y0 < 0.

Semialgebraicity of ReLU function: The key reason why neural networks with ReLU activation
function can be tackled using polynomial optimization techniques is semialgebraicity of the ReLU
function, i.e., it can be expressed with a system of polynomial (in)equalities. For x, y ∈ R, we have
y = ReLU(x) = max{0, x} if and only if y(y−x) = 0, y ≥ x, y ≥ 0. For x,y ∈ Rn, we denote by
ReLU(x) the coordinate-wise evaluation of ReLU function, and by xy the coordinate-wise product
of x and y. A subset of Rn defined by a finite conjunction of polynomial (in)equalities is called a
basic closed semialgebraic set. The graph of the ReLU function is a basic closed semialgebraic set.

Going back to equation (monDEQ), we have the following equivalence:

z = ReLU(Wz + Ux0 + u)⇔ z(z−Wz−Ux0 − u) = 0, z ≥Wz + Ux0 + u, z ≥ 0, (1)

where the right hand side is a system of polynomial (in)equalities. For the rest of the paper, mention
of the ReLU function will refer to the equivalent polynomial system in (1).

POP and Putinar’s positivity certificate: In general, a polynomial optimization problem (POP) has
the form

ρ = max
x∈Rn

{f(x) : gi(x) ≥ 0, i = 1, . . . , p} , (POP0)

3

where f and gi are polynomials whose degree is denoted by deg. The robustness certification model
(3.1), Lipischitz constant model (3.2) and ellipsoid model (3.3) are all POPs.

In most cases, the POPs are non-linear and non-convex problems, which makes them NP-hard. A
typical approach to reduce the complexity of these problems is replacing the positivity constraints by
Putinar’s positivity certificate [34]. The problem (POP0) is equivalent to

ρ = min
λ∈R
{λ : λ− f(x) ≥ 0, gi(x) ≥ 0, i = 1, . . . , p, ∀x ∈ Rn} . (POP)

In order to reduce the size of the feasible set of problem (POP), we replace the positivity constraint λ−
f(x) ≥ 0 by a weighted sum-of-square (SOS) polynomial decomposition, involving the polynomials
gi. Let d be a non-negative integer. Denote by σd0(x), σdi (x) some SOS polynomials of degree at
most 2d, for each i = 1, . . . , p. Note that if d = 0, such polynomials are non-negative real numbers.
Then the positivity of λ− f(x) is implied by the following decomposition

λ− f(x) = σd0(x) +

p∑
i=1

σd−ωi
i (x)gi(x) , ωi = ddeg gi/2e , ∀x ∈ Rn , (2)

for any d ≥ maxi ωi. Equation (2) is called the order-d Putinar’s certificate. By replacing the
positivity constraint f(x) − λ ≥ 0 in problem (POP) by Putinar’s certificate (2), we have for
d ≥ maxi ωi,

ρd = min
λ∈R
{λ : λ− f(x) = σd0(x) +

p∑
i=1

σd−ωi
i (x)gi(x) , ωi = ddeg gi/2e,∀x ∈ Rn} . (POP-d)

It is obvious that ρd ≥ ρ for all d ≥ maxi ωi. Under certain conditions (slightly stronger than
compactness of the set of constraints), it is shown that limd→∞ ρd = ρ [27]. The main advantage of
relaxing problem (POP) to (POP-d) is that problem (POP-d) can be efficiently solved by semidefinite
programming (SDP). Indeed a polynomial f of degree at most 2d is SOS if and only if there exists a
positive semidefinte (PSD) matrix M (called a Gram matrix) such that f(x) = v(x)TMv(x), for all
x ∈ Rp, where v(x) is the vector of monomials of degree at most d.

Problem (POP-d) is also called the order-d Lasserre’s relaxation. When the input polynomials are
quadratic, the order-1 Lasserre’s relaxation is also known as Shor’s relaxation [40]. All our models
are obtained using variations of Shor’s relaxation applied to different POPs, see Section 3.3 for more
details.

3 Semialgebraic Models for Certifying Robustness of Neural Networks

In this section, we introduce several models for certification of monDEQs. All the models are based
on semialgebraicity of ReLU and ∂ReLU (the subgradient of ReLU, see Section 3.2) to translate
our targeted problems to POPs. Then we use Putinar’s certificates, defined in Section 2 to relax the
non-convex problems to convex SDPs which can be solved efficiently using modern solvers.

Notation: Throughout this section, we consider a monDEQ for classification, denoted by F , with
fixed, given parameters, W ∈ Rp×p,U ∈ Rp×p0 ,u ∈ Rp,C ∈ RK×p, c ∈ RK , where p0 is the
number of input neurons, p is the number of hidden neurons, and K is the number of labels. For
q ∈ Z+ ∪ {+∞}, ‖ · ‖q is the Lq norm defined by ‖x‖q := (

∑p0
i=1 |xi|q)1/q for all x ∈ Rp0 .

Throughout this section ε > 0 and x0 ∈ Rp0 are fixed, we denote by E := B(x0, ε, ‖ · ‖q) = {x ∈
Rp0 : ‖x − x0‖q ≤ ε} the ball centered at x0 with radius ε for Lq norm, a perturbation region. If
q < +∞, i.e., q is a positive integer, ‖x − x0‖q ≤ ε is equivalent to the polynomial inequality
‖x − x0‖qq ≤ εq; if q = ∞, ‖x − x0‖q ≤ ε is equivalent to |x − x0|2 ≤ ε2 (where |x| denotes
the vector of absolute values of coordinates of x) which is a system of p0 polynomial inequalities.
Hence the input set E is a semialgebraic set for all considered Lq norms. For a matrix A ∈ Rm×n,
its operator norm induced by the norm ‖ · ‖ is given by |||A||| := inf{λ : ‖Ax‖ ≤ λ‖x‖,∀x ∈ Rn}.

3.1 Robustness Model

Let y0 be the label of x0 and let z ∈ Rp be the variables in the monDEQ implicit layer. The proposed
model directly estimates upper bounds on the gap between the score of label y0 and the score of labels

4

different from y0. Precisely, for i ∈ {1, . . . ,K} such that i 6= y0, denote by ξi = (Ci,:−Cy0,:)
T . For

x ∈ E , the gap between its score of label i and label y0 is F (x)i − F (x)y0 = ξTi z. The Robustness
Model for monDEQ reads:

δi := max
x∈Rp0 ,z∈Rp

{ξTi z : z = ReLU(Wz + Ux + u), x ∈ E} . (CertMON-i)

Using the semialgebraicity of both ReLU in (1), and set E , problem (CertMON-i) is a POP for all i.
As discussed in Section 2, one is able to derive a sequence of SDPs (Lasserre’s relaxation) to obtain a
converging serie of upper bounds of the optimal solution of (CertMON-i). For Robustness Model,
we consider only the order-1 Lasserre’s relaxation (Shor’s relaxation), and denote by δ̃i the upper
bound of δi by Shor’s relaxation, i.e., δi ≤ δ̃i. Recall that if for all label i different from y0, we have
F (x)i < F (x)y0 , then the label of x is still y0. This justifies the following claim:

Certification criterion: If δ̃i < 0 for all i 6= y0, then the network F is ε-robust at x0.

Robustness Model for DNNs has already been investigated in [36], where the authors also use Shor’s
relaxation as we do. Different from DNNs, we only have one implicit layer in monDEQ. Therefore,
the number of variables in problem (CertMON-i) only depends on the number of input neurons p0
and hidden neurons p.

3.2 Lipschitz Model

We bound the Lipschitz constant of monDEQ with respect to input perturbation. Recall that the
Lipschitz constant of the vector-valued function F (resp. z) w.r.t. the Lq norm and input ball S ⊃ E ,
denoted by LqF,S (resp. Lqz,S), is the smallest value of L such that ‖F (x)− F (y)‖q ≤ L‖x− y‖q
(resp. ‖z(x)− z(y)‖q ≤ L‖x− y‖q) for all x,y ∈ S . For x,x0 ∈ S , with ‖x− x0‖q ≤ ε, we can
estimate the perturbation of the output as follows:

‖F (x)− F (x0)‖q ≤ LqF,S · ‖x− x0‖q ≤ εLqF,S , (3)

‖F (x)− F (x0)‖q ≤ |||C|||q · L
q
z,S · ‖x− x0‖q ≤ ε|||C|||q · L

q
z,S . (4)

The authors in [33] use inequality (4) with q = 2, as they provide an upper bound of L2
z,S . In contrast,

our model provides upper bounds on Lipschitz constants of F or z for arbitrary Lq norms. We directly
focus on estimating the value of LqF,S instead of Lqz,S .

Since the ReLU function is non-smooth, we define its subgradient, denoted by ∂ReLU, as the
set-valued map ∂ReLU(x) = 0 for x < 0, ∂ReLU(x) = 1 for x > 0, and ∂ReLU(x) = [0, 1] for
x = 0. Similar to ReLU function, ∂ReLU is also semialgebraic.

Semialgebraicity of ∂ReLU: If x, y ∈ R, we have y ∈ ∂ReLU(x), if and only if y(y−1) ≤ 0, xy ≥
0, x(y − 1) ≥ 0. If x,y ∈ Rn, then ∂ReLU(x) denotes the coordinate-wise evaluation of ∂ReLU.
Going back to monDEQ, let s be any subgradient of the implicit variable: s ∈ ∂ReLU(Wz+Ux+u).
We can write equivalently a system of polynomial inequalities:

s(s− 1) ≤ 0, s(Wz + Ux + u) ≥ 0, (s− 1)(Wz + Ux + u) ≥ 0 . (5)

For the following discussion, ∂ReLU will refer to the equivalent polynomial systems (5).

With the semialgebraicity of ReLU in (1) and ∂ReLU in (5), one is able to compute upper bounds of
the Lipschitz constant of F via POPs. The proof of the next Lemma is postponed to Appendix A.1.

Lemma 1 Define

L̃qF,S = max{tTUTy : t,x ∈ Rp0 , s, z,y, r ∈ Rp, v,w ∈ RK , x ∈ S,

‖t‖q ≤ 1, wTv ≤ 1, ‖w‖q ≤ 1, r−WTy = CTv, y = diag(s) · r;

s ∈ ∂ReLU(Wz + Ux + u), z = ReLU(Wz + Ux + u)} . (LipMON)

Then L̃qF,S is an upper bound of the Lipschitz constant of F w.r.t. the Lq norm, i.e., LqF,S ≤ L̃
q
F,S .

Since problem (LipMON) is a POP, we also consider Shor’s relaxation and denote by L̂qF,S the upper
bound of L̃qF,S by Shor’s relaxation, i.e., L̃qF,S ≤ L̂

q
F,S . Define δ := εL̂qF,S . By equations (3), (4), if

5

E ⊂ S , using Lemma 1 and the fact that ‖ · ‖∞ ≤ ‖ · ‖q , we have ‖F (x)− F (x0)‖∞ ≤ δ, yielding
the following criterion:

Certification criterion: Let y0 be the label of x0. Define τ := F (x0)y0 − maxk 6=y0 F (x0)k. If
2δ < τ , then the network F is ε-robust at x0.

Remark: In order to avoid some possible numerical issues, we add some bound constraints and
redundant constraints to problem (LipMON), see Appendix A.2 for details. Shor’s relaxation of
Lipschitz Model for DNNs has already been extensively investigated in [14, 8]. If one want to certify
robustness for several input test examples, then one may choose S to be a big ball containing all such
examples with an additional margin of ε. Choosing a big ball for all input points requires to solve
only one optimization problem, while choosing one ball for each input point (say among N) requires
to solve N optimization problems, which is much more costly. In this case it is more favorable to use
the Certification Model directly.

3.3 Ellipsoid Model

As above, the input region E is a neighborhood of input x0 ∈ Rp0 with radius ε for the Lq norm, i.e.,
E = {x ∈ Rp : ‖x− x0‖q ≤ ε}. More generally, E could be other general semialgebraic sets, such
as polytopes or zonotopes. Denote by F (E) the image of E by F . In this section, we aim at finding a
semialgebraic set C such that F (E) ⊆ C. We choose C to be an ellipsoid which can in turn be used
for robustness certification. Our goal is to find such outer-approximation ellipsoid with minimum
volume. Let C := {ξ ∈ RK : ‖Qξ + b‖2 ≤ 1} be an ellipsoid in the output space RK parametrized
by Q ∈ SK and b ∈ RK , where SK is the set of PSD matrices of size K × K. The problem of
finding the minimum-volume ellipsoid containing the image F (E) can be formulated as

max
Q∈SK ,b∈RK

{det(Q) : x ∈ E , ‖Q(Cz + c) + b‖2 ≤ 1, z = ReLU(Wz + Ux + u)} .

(EllipMON-POP)

By semialgebraicity of both ReLU in (1) and C, problem (EllipMON-POP) can be cast as a POP
(the determinant being a polynomial). We no longer apply Shor’s relaxation, we rather replace the
non-negativity output constraint 1−‖Q(Cz+c)+b‖2 ≥ 0 by a stronger Putinar’s certificate related
to both ReLU and input constraints. We can then relax the non-convex problem (EllipMON-POP) to
a problem with SOS constraints, which can be reformulated by (convex) SDP constraints. This is due
to the fact that a polynomial f of degree at most 2d is SOS if and only if there exists a PSD matrix M
(called a Gram matrix) such that f(x) = v(x)TMv(x), for all x ∈ Rp, with v(x) being the vector
containing all monomials of degree at most d. In summary, we relax problem (EllipMON-POP) to an
SOS constrained problem keeping the determinant unchanged:

max
Q∈SK ,b∈RK

{det(Q) : 1− ‖Q(Cz + c) + b‖22 = σ0(x, z) + σ1(x, z)T gq(x− x0)

+ τ(x, z)T (z(z−Wz−Ux− u)) + σ2(x, z)T (z−Wz−Ux− u) + σ3(x, z)T z} .
(EllipMON-SOS-d)

where gq(x) = εq − ‖x‖qq for q < +∞ and gq(x) = ε2 − |x|2 for q = +∞, σ0 is a vector of SOS
polynomials of degree at most 2d, σ1 is a vector of SOS polynomials of degree at most 2(d− dq/2e)
for q < +∞ and 2d − 2 for q = +∞, σ2, σ3 are vectors of SOS polynomials of degrees at most
2d− 2, τ is a vector of polynomials of degree at most 2d− 2. Problem (EllipMON-SOS-d) provides
an ellipsoid feasible for (EllipMON-POP), that is an ellipsoid which contains F (E). In practice,
the determinant is replaced by a log-det objective because there exist efficient solver dedicated
to optimize such objectives on SDP constraints. By increasing the relaxation order d in problem
(EllipMON-SOS-d), one is able to obtain a hierarchy of log-det objected SDP problems for which
the outer-approximation ellipsoids have decreasing volumes.

In this paper, we only consider the case p = 2,∞, and order-1 relaxation (d = 1). Therefore, σi and
τ are all (vectors of) real (non-negative) numbers for i = 1, 2, 3, except that σ0 is an SOS polynomial
of degree at most 2. In this case, problem (EllipMON-SOS-d) is equivalent to a problem with log-det
objective and SDP constraints, as the following lemma states (proof postponed to Appendix A.3):

Lemma 2 For p = 2 or p =∞, problem (EllipMON-SOS-d) with d = 1 is equivalent to

max
Q∈SK ,b∈RK ,σ1,σ2,σ3≥0,τ∈Rp

{log det(Q) : −M � 0} . (EllipMON-SDP)

6

where M ∈ S(p0+p+1)×(p0+p+1) is a symmetric matrix parametrized by the decision variables
(Q,b), the coefficients (σ1, σ2, σ3, τ), and the parameters of the network (W,U,u,C, c).

Since the outer-approximation ellipsoid C = {ξ ∈ RK : ‖Qξ + b‖2 ≤ 1} contains the image
F (E), i.e., all possible outputs of the input region E , one is able to certify robustness by solving the
following optimization problems.

Certification criterion: Let y0 be the label of x0. For i 6= y0, define δi := maxξ∈RK{ξi − ξy0 :
‖Qξ + b‖2 ≤ 1}. If δi < 0 for all i 6= y0, then the network F is ε-robust at x0.

The certification criterion for Ellipsoid Model has a geometric explanation: for i 6= y0, denote
by Pi the projection map from output space RK to its 2-dimensional subspace Ry0 × Ri, i.e.,
Pi(ξ) = [ξy0 , ξi]

T for all ξ ∈ RK . Let Li be the line in subspace Ry0 × Ri defined by {[ξy0 , ξi]T ∈
Ry0 × Ri : ξy0 = ξi}. Then the network F is ε-robust if the projection Pi(C) lies strictly below the
line Li for all i 6= y0. We give an explicit example in Section 4.3 to visually illustrate this.

3.4 Summary of the Models

We have already presented three models which can all be dedicated to certify robustness of neural
networks. However, the size and complexity of each model are different. We summarize the number
of variables in each model and the maximum size of PSD matrices in the resulting Shor’s relaxation,
see Table 1. The complexity of our models only depends on the number of neurons in the input layer
and implicit layer. The size of PSD matrices is a limiting factor for SDP solvers, our models are
practically restricted to network for which such size can be handled by SDP solvers. For the popular
dataset MNIST [46], whose input dimension is 28× 28 = 784, we are able to apply our model on
monDEQs with moderate size implicit layers (87) and report the corresponding computation time.

Table 1: Summary of the number of variables the three models
Robustness Model Lipschitz Model Ellipsoid Model

Num. of variables p0 + p 2p0 + 4p+ 2K p0 + 3p+K +K2

Max. size of PSD matrices 1 + p0 + p 1 + 2p0 + 4p+ 2K 1 + p0 + p

4 Experiments

In this section, we present the experimental results of Robustness Model, Lipschitz Model and
Ellipsoid Model described in Section 3 for a pretrained monDEQ on MNIST dataset. The network we
use consists of a fully-connected implicit layer with 87 neurons and we set its monotonicity parameter
m to be 20. The training hyperparameters are set to be the same as in Table D1 of [45], where
the training code (in Python) is available at https://github.com/locuslab/monotone_op_net.
Training is based on the normalized MNIST database in [45], we use the same normalization setting
on each test example with mean µ = 0.1307 and standard deviation σ = 0.3081, which means
that each input is an image of size 28× 28 with entries varying from −0.42 to 2.82. And for every
perturbation ε, we also take the normalization into account, i.e., we use the normalized perturbation
ε/σ for each input.

Since all our three models can be applied to certify robustness of neural networks, we first compare
the performance of each model in certification of the first 100 test MNIST examples. Then we
compare the upper bounds of Lipschitz Model with the upper bounds proposed in [33]. Finally we
show that Ellipsoid Model can also be applied for reachability analysis. For Certification model and
Lipschitz model, we implement them in Julia [5] with JuMP [11] package; for Ellipsoid model, we
implement it in Matlab [39] with CVX [17] package. For all the three models, we use Mosek [29]
as a backend to solve the targeted POPs. All experiments are performed on a personal laptop with
an Intel 8-Core i7-8665U CPU @ 1.90GHz Ubuntu 18.04.5 LTS, 32GB RAM. The code of all our
models is available at https://github.com/NeurIPS2021Paper4075/SemiMonDEQ.

7

https://github.com/locuslab/monotone_op_net
https://github.com/NeurIPS2021Paper4075/SemiMonDEQ

4.1 Robustness certification

We consider ε = 0.1 for the L2 norm and ε = 0.1, 0.05, 0.01 for the L∞ norm. For each model, we
compute the ratio of certified test examples among the first 100 test inputs. Following [33], we also
compute the projected gradient descent (PGD) attack accuracy using Foolbox library [37], which
indicates the ratio of non-successful attacks among our 100 inputs. Note that the ratio of certified
examples should always be less or equal than the ratio of non-successful attacks. The gaps between
them shows how many test examples there are for which we are neither able to certify robustness nor
find adversarial attacks.

Remark: For Lipschitz Model, we use inequality (3) to test robustness, i.e., we compute directly the
upper bound of the Lipschitz constant of F rather than z (seen as a function of x) where S is a big
ball containing all test examples.

From Table 2, we see that the monDEQ is robust to all the 100 test examples for the L2 norm and
ε = 0.1 (the only example that we can not certify is because the label itself is wrong). However, it is
not robust for the L∞ norm at the same level of perturbation (all our three models cannot certify any
examples), and the PGD algorithm finds adversarial examples for 85% of the inputs. The network
becomes robust again for the L∞ norm when we reduce the perturbation ε to 0.01. Overall, we
see that Robustness Model is the best model as it provides the highest ratio, Ellipsoid Model is the
second best model compared to Robustness Model, and Lipschitz Model provides the lowest ratio.
As a trade-off, for each test example, Robustness Model requires to consider at most 9 optimization
problems, each one being solved in around 150 seconds, while Ellipsoid Model requires to consider
only one problem, which is solved in around 500 seconds. We only need to calculate one (global)
Lipschitz constant, which takes around 1500 seconds, so that we are able to certify any number of
inputs. Each model we propose provide better or equal certification accuracy compared to [33], and
significant improvements for L∞ perturbations.

Table 2: Ratio of certified test examples and running time per example by different methods. We
consider L2 norm with ε = 0.1 and L∞ norm with ε = 0.1, 0.05, 0.01. The ratio is based on the first
100 MNIST test examples, and we count the average computation time (with unit second) for one
example of each method. The ratio in parentheses of the column “Lipschitz Model” are computed by
the Lipschitz constant given in [33] (see Section 4.2 for details). Exact binomial 95% confidence
intervals are given in bracket.

Norm ε
Robustness Model Lipschitz Model Ellipsoid Model PGD Attack(1350s / example) (1500s in total) (500s / example)

L2 0.1 99% [>94] 91% (91%) [>83] 99%[>94] 99%[>94]

L∞
0.1 0% [<4] 0% (0%) [<4] 0%[<4] 15% [8, 24]
0.05 24% [16, 34] 0% (0%) [<4] 0% [<4] 82% [73, 89]
0.01 99% [>94] 24% [16, 34] (0%) [<4] 92% [>84] 99% [>94]

Figure 2 in Appendix A.4 shows the original image of the first test example (2a) and an adversarial
attack (2b) for the L∞ norm with ε = 0.1 found by the PGD algorithm in [37].

4.2 Comparison with Lipschitz constants

In this section, we compare the upper bounds of Lipschitz constants computed by Lipschitz Model
with the upper bounds proposed in [33]. Notice that the upper bounds in [33] only involve the function
z(x), hence we are only able to use inequality (4) to test robustness. In fact the quantity |||C|||q ·L

q
z,S

can be regarded as an upper bound of LqF,S , the Lipschitz constant of F . We denote by UB2
z the upper

bound of the Lipschitz constant of z w.r.t. the L2 norm, given by UB2
z = |||U|||2/m according to [33],

where U is the parameter of the network and m is the monotonicity factor. We can then compute
the upper bound w.r.t. the L∞ norm by UB∞z =

√
p0 · UB2

z where p0 is the input dimension. The
upper bound of Lipschitz constant of F is computed via the upper bound of z: UBqF = |||C|||q · UBqz.
Denote similarly by SemiUBqF the upper bounds of Lipschitz constants of F provided by Lipschitz
Model, w.r.t. the Lq norm.

8

Table 3: Comparison of upper bounds of Lipschitz constant for L2 and L∞ norm, and the correspond-
ing computation time (with unit second).

q = 2 q =∞
bound time (s) bound time (s)

UBqF 4.80 - 824.14 -
SemiUBqF 4.67 1756.58 108.84 1898.65

From Table 3, we see that Lipschitz Model provides consistently tighter upper bounds than the ones in
[33]. Especially for L∞ norm, the upper bound computed by |||C|||∞ ·UB∞z is rather crude compared
to the bound obtained directly by Lipschitz Model. Therefore, we are able to certify more examples
using SemiUBqF than UBqF , see Table 2.

4.3 Outer ellipsoid approximation

In this section, we provide a visible illustration of how Ellipsoid Model can be applied to certify
robustness of neural networks.

Take the first MNIST test example (which is classified as 7) for illustration. For ε = 0.1, this example
is certified to be robust for the L2 norm but not for the L∞ norm. We show the landscape of the
projections onto R7 × R3, i.e., the x-axis indicates label 7 and the y-axis indicates label 3. In Figure
1, the red points are projections of points in the image F (E), for E an L2 or L∞ norm perturbation
zone, the black circles are projections of some (successful and unsuccessful) adversarial examples
found by the PGD algorithm. Notice that the adversarial examples also lie in the image F (E). The
blue curve is the boundary of the projection of the outer-approximation ellipsoid (which is an ellipse),
and the blue dashed line plays the role of a certification threshold. Figure 1a shows the landscape for
the L2 norm, we see that the ellipse lies strictly below the threshold line, which means that for all
points ξ ∈ C, we have ξ3 < ξ7. Hence for all ξ ∈ F (E), we also have ξ3 < ξ7. On the other hand,
for the L∞ norm, we see from Figure 1b that the threshold line crosses the ellipse, which means
that we are not able to certify robustness of this example by Ellipsoid Model. Indeed, we can find
adversarial examples with the PGD algorithm, as shown in Figure 1b by the black circles that lie
above the threshold line. The visualization of one of the attack examples is shown in Figure 2 in
Appendix A.4.

(a) Certified example for the L2 norm (b) Non-certified example for the L∞ norm

Figure 1: Visualization of the outer-approximation ellipsoids and outputs with ε = 0.1 for L2 norm
(left) and L∞ norm (right). The red points are image of the input region, the blue curve is the ellipsoid
we compute, the blue dashed line is the threshold line used for certifying robustness of inputs, and
the black circles are attack examples found by PGD algorithm.

9

5 Conclusion and Future Works

In this paper, we introduce semialgebraic representations of monDEQ and propose several POP
models that are useful for certifying robustness, estimating Lipschitz constants and computing outer-
approximation ellipsoids. For each model, there are several hierarchies of relaxations that allow us to
improve the results by increasing the relaxation order. Even though we simply consider the order-1
relaxation, we obtain tighter upper bounds of Lipschitz constants compared to the results in [33].
Consequently, we are able to certify robustness of more examples.

Our models are based on SDP relaxation, hence requires an efficient SDP solver. However, the stat-
of-the-art SDP solver Mosek (by interior-point method) can only handle PSD matrices of moderate
size (smaller than 5000). This is the main limitation of our method if the dimension of the input
gets larger. Moreover, we only consider the fully-connected monDEQ based on MNIST datasets for
illustration. One important and interesting future work is to generalize our model to single and multi
convolutional monDEQ, and to other datasets such as CIFAR [26] and SVHN [32]. Directly using
off-the-shelves interior point SDP solvers to solve the problems for convolutional networks is not
possible because of their current size limitation. Fortunately, a convolutional layer can be regarded as
a fully-connected layer with a larger (but sparse) weight matrix. Hence one is able to build similar
models via sparse polynomial optimization tools.

The authors in [10] provide an interesting and promising first-order method as an alternative to
the costly interior point methods for solving semidefinite relaxations associated with robustness
certification of DNNs. What is crucial in [10] is to exploit the network layer structure for efficient
back-propagation in gradient computation. In particular, the algorithm requires memory only linear
in the total number of network activations and only requires a fixed number of forward/backward
passes through the network per iteration. This enables the algorithm to certify robustness of large-
scaled networks more efficiently and accurately. However, the auto-differentiation technique for
computing subgradients in DNNs does not apply directly to monDEQs, since computing subgradients
in monDEQs involves solving fixed-point equations. Therefore, adapting the approach of [10] for
solving more efficiently our semidefinite relaxations associated with monDEQs is certainly worth
considering but not straightforward. It is a topic of further investigation.

The authors in [33] showed that we can train DEQs with small Lipschitz constants for the L2 norm,
by controlling the monotonicity of the weight matrix. This guarantees the robustness of monDEQ
w.r.t. the L2 norm but not for the L∞ norm. A natural investigation track is to adapt this training
technique to the L∞ norm with a better control of the associated Lipschitz constant.

Acknowledgments and Disclosure of Funding

The authors acknowledge the support of AI Interdisciplinary Institute ANITI funding, through the
French “Investing for the Future – PIA3” program under the Grant agreement ANR-19-PI3A-0004.
Edouard Pauwels acknowledges the support of Air Force Office of Scientific Research, Air Force
Material Command, USAF, under grant numbersFA9550-19-1-702 6and ANR MaSDOL 19-CE23-
0017-01. This work was supported by the National Research Foundation, Prime Minister’s Office,
Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE)
programme. Victor Magron was supported by the FMJH Program PGMO (EPICS project) and EDF,
Thales, Orange et Criteo, as well as from the Tremplin ERC Stg Grant ANR-18-ERC2-0004-01
(T-COPS project). This work has benefited from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie Actions.

References

[1] Vegard Antun, Nina M. Gottschling, Anders C. Hansen, and Ben Adcock. Deep learning in
scientific computing: Understanding the instability mystery. SIAM NEWS MARCH 2021, 2021.

[2] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

10

[3] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale deep equilibrium models. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 5238–5250. Curran Associates, Inc., 2020.

[4] T. Baluta, Z. Chua, K. S. Meel, and P. Saxena. Scalable quantitative verification for deep
neural networks. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 248–249, Los Alamitos, CA, USA, may
2021. IEEE Computer Society.

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[6] Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming, pages 1–33, 2020.

[7] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. Cnn-cert: An
efficient framework for certifying robustness of convolutional neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 3240–3247, 2019.

[8] Tong Chen, Jean B Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic optimization
for lipschitz constants of relu networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
19189–19200. Curran Associates, Inc., 2020.

[9] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley New York, 1983.

[10] Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan
Uesato, Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang, and
Pushmeet Kohli. Enabling certification of verification-agnostic networks via memory-efficient
semidefinite programming. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 5318–5331.
Curran Associates, Inc., 2020.

[11] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for mathematical
optimization. SIAM review, 59(2):295–320, 2017.

[12] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit
deep learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

[13] Mahyar Fazlyab, Manfred Morari, and George J. Pappas. Probabilistic verification and reacha-
bility analysis of neural networks via semidefinite programming. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pages 2726–2731, 2019.

[14] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[15] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2018.

[16] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

[17] Michael Grant and Stephen Boyd. Cvx: Matlab software for disciplined convex programming,
version 2.1, 2014.

[18] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

11

[19] Didier Henrion, Jean-Bernard Lasserre, and Johan Löfberg. Gloptipoly 3: moments, opti-
mization and semidefinite programming. Optimization Methods & Software, 24(4-5):761–779,
2009.

[20] Calypso Herrera, Florian Krach, and Josef Teichmann. Estimating full lipschitz constants of
deep neural networks. arXiv preprint arXiv:2004.13135, 2020.

[21] Haimin Hu, Mahyar Fazlyab, Manfred Morari, and George J. Pappas. Reach-sdp: Reachability
analysis of closed-loop systems with neural network controllers via semidefinite programming.
In 2020 59th IEEE Conference on Decision and Control (CDC), pages 5929–5934. IEEE, 2020.

[22] Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the lipschitz constant as a
defense against adversarial examples. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 16–29. Springer, 2018.

[23] Matt Jordan and Alexandros G. Dimakis. Exactly computing the local lipschitz constant of
relu networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 7344–7353. Curran
Associates, Inc., 2020.

[24] Matt Jordan and Alexandros G. Dimakis. Provable lipschitz certification for generative models.
In International Conference on Machine Learning, pages 5118–5126. PMLR, 2021.

[25] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient smt solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97–117. Springer, 2017.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[27] Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on optimization, 11(3):796–817, 2001.

[28] Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural
networks via sparse polynomial optimization. In International Conference on Learning Repre-
sentations, 2020.

[29] ApS Mosek. The mosek optimization toolbox for matlab manual, 2015.

[30] Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Scaling polyhedral neural network verification on gpus. In A. Smola, A. Dimakis, and I. Stoica,
editors, Proceedings of 4th MLSys Conference, volume 3, pages 733–746, 2021.

[31] Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Prima: Precise and general neural network certification via multi-neuron convex relaxations.
arXiv preprint arXiv:2103.03638, 2021.

[32] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[33] Chirag Pabbaraju, Ezra Winston, and J. Zico Kolter. Estimating lipschitz constants of monotone
deep equilibrium models. In International Conference on Learning Representations, 2021.

[34] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University
Mathematics Journal, 42(3):969–984, 1993.

[35] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. In International Conference on Learning Representations, 2018.

[36] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

12

[37] Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel. Foolbox native:
Fast adversarial attacks to benchmark the robustness of machine learning models in pytorch,
tensorflow, and jax. Journal of Open Source Software, 5(53):2607, 2020.

[38] Max Revay, Ruigang Wang, and Ian R Manchester. Lipschitz bounded equilibrium networks.
arXiv preprint arXiv:2010.01732, 2020.

[39] Gaurav Sharma and Jos Martin. Matlab®: a language for parallel computing. International
Journal of Parallel Programming, 37(1):3–36, 2009.

[40] Naum Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems
Sciences, 25:1–11, 1987.

[41] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast
and effective robustness certification. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[42] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference
on Learning Representations, 2014.

[43] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[44] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In
International Conference on Machine Learning, pages 5276–5285. PMLR, 2018.

[45] Ezra Winston and J. Zico Kolter. Monotone operator equilibrium networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 10718–10728. Curran Associates, Inc., 2020.

[46] LeCun Yann, Cortes Corinna, and Burges Christopher J. C. Mnist handwritten digit database.
2010. [ATT Labs Online].

[47] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[48] Dongmian Zou, Radu Balan, and Maneesh Singh. On lipschitz bounds of general convolutional
neural networks. IEEE Transactions on Information Theory, 66(3):1738–1759, 2019.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] All the claims made in the abstract are justified in
methodological sections 2 and 3 or experimental section 4.

(b) Did you describe the limitations of your work? [Yes] We restrict ourselves to fully-
connected ReLU monDEQs as presented in Sections 2 and 5. We also discuss the
limitation due to the size of PSD matrices which can be handled by SDP solvers in
Section 3.4.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
is methodological and we do not foresee any direct negative societal impact of this
work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] The paper conforms to the guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] As presented

in Section 2 we consider monDEQ models, which is our main assumption, no further
assumption is required for all our models.

(b) Did you include complete proofs of all theoretical results? [Yes] The methodological
sections 2 and 3 describe all proof arguments for the soundness of our models. Proofs
of some technical lemmas are postponed to the appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] The code is
available at https://github.com/NeurIPS2021Paper4075/SemiMonDEQ which
is included in the main text.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We discuss training details in Section 4, we report the code used
for training at https://github.com/locuslab/monotone_op_net.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report exact 95% binomial confidence intervals for
proportions reported in Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We report in Section 4 the number
of experiments, the average computation time and the type of personal computer used
to perform all these experiments.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited references

for all the software used in our experiments.
(b) Did you mention the license of the assets? [Yes] We report licenses for all assets used

in the paper in Appendix A.5.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include code to reproduce our experiments as a separate URL.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We did not obtain any kind of new data.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] We did not obtain any kind of new data.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We did not use crowdsourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We did not use crowdsourcing.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We did not use crowdsourcing.

14

https://github.com/NeurIPS2021Paper4075/SemiMonDEQ
https://github.com/locuslab/monotone_op_net

