
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DCTS: FUSING DISCRETE AND CONTINUOUS INFOR-
MATION FOR TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

In time series analysis, data is usually treated as a set of continuous values. Con-
ventional methods do all the computations, from inputs to outputs, in continuous
form. While this continuous representations are highly expressive, it can also
pay too much attention to fine-grained details. This risks introducing noise and
overlooking critical information. In contrast, discrete representations can assign
a single code to each temporal pattern. In this way, key patterns underlain in
the data are extracted more effectively, while some informative details are prob-
ably filtered out along with noises. In order to combine the advantages of both,
we propose fusing discrete and continuous information for time series forecast-
ing (DCTS), that incorporates both continuous and discrete approaches, it fuses
the expressive power of continuous encoding and pattern-abstracting ability of
discrete encoding. It uses a codebook learned via vector quantization to extract
discrete encoding from the time series and then fuses it with the continuous en-
coding. In doing so, the model can benefit from the strengths of both continuous
and discrete representations. Additionally, we use multiple codebooks to encode
the time series. A single code can hardly cover the entire feature space of a time
series. In contrast, multiple discrete values can be combined, exponentially ex-
panding the encoding space and achieving much stronger expressive power. We
evaluated our proposed method on multiple real-world datasets and achieved the
best performance compared to the baseline methods.

1 INTRODUCTION

Time series data is prevalent across various fields(Jin et al., 2024), including weather(Bi et al.,
2023), transportation(Li et al., 2023), energy(Jiao et al., 2021), and the environment(Liang et al.,
2023). With the rapid advancements in internet and sensor technologies in recent years, time se-
ries analysis techniques have become crucial in many domains. As time series data describes the
changes of systems over continuous time, most time series analysis methods focus on the continuous
information within the data.

Recent research has focused on time series embedding methods. Initially, information from each
time point was used as positional embedding(Vaswani et al., 2017). Later, single time series were
segmented into patches, with each patch being embedding(Nie et al., 2022). Another strategy in-
volved treating each variable as a token to encode the entire time series(Liu et al., 2023). These
embedding methods have propelled the development of time-series forecasting. However, existing
methods are largely limited to continuous features. Previously, these approaches mapped continu-
ous time series data into different dimensional continuous vectors, and do all the computations, from
inputs to outputs, in continuous form.

Inspired by pre-trained large models in NLP (Natural Language Processing) and CV (Computer
Vision), as language and image data can also be considered continuous, many researchers have
attempted to apply techniques from these fields to time series data for analyzing its continuous
characteristics. Recently, methods based on Vector Quantization for obtaining discrete e from data
have seen widespread application. Vector Quantization(Van Den Oord et al., 2017) method quantizes
continuous data processed by an encoder layer using a trainable codebook. This process obtains
discrete encoding, such as image backgrounds or skin tones. Compared to traditional methods, this

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Color: White

Eyes: Blue

Background：Lawn

Date：Workday

Pattern1: Morning Peak

Pattern2: Evening Peak

Date：Weekend

Pattern1: Midday Peak

Figure 1: The figure above shows that time series data has clear discrete features, such as different
data patterns. This is similar to how the cat in the picture has discrete features like its fur color, eye
color, and background.

discrete approach can generate higher-quality images more targeted(Razavi et al., 2019). These
methods can also be extended to the field of time series analysis.

Different time series on different days often show distinct patterns in time series data. For instance,
as illustrated in Figure 1, traffic volume on weekdays increases significantly around 8 AM and 5 PM,
which are peak commute hours. In contrast, on weekends, travel demand is more evenly spread out
and not clustered in the morning and evening. Discrete encoding is well-suited for learning these
different modes of behavior. Alternatively, traditional continuous encoding methods are effective
at capturing the continuous nature of a time series, including fine-grained changes, and they are
computationally efficient. Their drawback, however, includes boundary and numerical errors. A
classic example is encoding days of the week: Monday follows Sunday, but a continuous encoding
might place them at opposite ends of a scale. This creates a large artificial distance and can imply a
flawed numerical relationship (e.g., Sunday > Monday). Since discrete codes represent categories
without numerical order, supplementing continuous data with them can prevent these issues.

Currently, there are also some studies that apply vector quantization to time series tasks. For in-
stance, SDFormer(Chen et al., 2024) applies Vector Quantization to time series generation tasks. It
uses similarity-driven vector quantization, grouping similar time series into categories stored in a
codebook. VQShape(Wen et al., 2024) quantizes abstract shapes and offsets of subsequences for
time series classification. However, these methods are limited to the traditional Vector Quantization
approach with a single codebook. A one-dimensional encoding space struggles to represent all time
series data effectively.

Addressing these limitations and targeting time series prediction tasks, we propose DCTS. By adding
discrete encoding to traditional models designed for continuous representation, we enhance the
model’s expressive power through the fusion of discrete and continuous encoding. First, we en-
code time series data through an encoder layer and quantize it using a learnable codebook.

Traditional quantization relies on a single codebook, which assigns only one discrete code to an
entire time series. Such a one-dimensional code is insufficient to cover the full feature space. To
address this, we adopt a multi-codebook method. An analogy can be made: the traditional approach
uses a single ”letter” to describe a time series, whereas our method combines multiple ”letters”
to create a ”word.” Given the same number of quantization vectors, these multiple discrete codes
can form thousands of different ”words.” This results in an exponential expansion of the discrete
encoding space, which enhances the model’s expressive capabilities. Furthermore, to better suit
the prediction task, we use a decoder to interpret the resulting codes. We then integrate this discrete
encoding into the embedding layer of a model that processes continuous information, supplementing
it with discrete information. Our main contributions are summarized as follows:

• We propose a based on Vector Quantization method that quantizes multivariate time series
data using a learnable codebook to obtain its discrete information, which are then incor-
porated into a continous model. This allows the model to fuse discrete and continuous
features, thereby improving its performance.

• Unlike traditional single codebooks, we use multiple codebooks for quantizing, extending
the one-dimensional code space to multiple dimensions. This enhances the model’s ability
to represent data features without increasing the codebook size or vector dimensions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We conducted extensive experiments on multiple real-world datasets and achieved state-of-
the-art results, demonstrating the effectiveness and validity of our method.

2 RELATED WORK

2.1 TIME SERIES FORECASTING

Time series forecasting has been a key research topic in both academia and industry for decades. It
has a wide range of applications in fields like finance(Ding et al., 2015), weather(Bi et al., 2023), and
energy(Jiao et al., 2021). Early research on time series forecasting focused on traditional statistical
machine learning methods. These included models like the Autoregressive Integrated Moving Aver-
age (ARIMA)(Box & Pierce, 1970), Support Vector Regression (SVR)(Cao & Tay, 2003), Gradient
Boosting Decision Tree (GBDT)(Xia & Chen, 2017), and Vector Autoregression (VAR)(Biller &
Nelson, 2003). These methods were good at handling non-linear relationships and were very effi-
cient. However, because of their simple structure, they could not accurately model complex variable
relationships.

Later, the development of deep learning changed the field completely. This included Recurrent Neu-
ral Networks (RNNs)(Rangapuram et al., 2018) and Long Short-Term Memory (LSTM) networks
for dynamic time series data(Salinas et al., 2020), as well as the Transformer model, which is ex-
cellent at capturing relationships in long sequences(Zhou et al., 2021)(Wu et al., 2021)(Zhou et al.,
2022). Compared to traditional machine learning, deep learning can capture deeper, more abstract
features in the data. This has significantly improved prediction accuracy and the ability to handle
datasets with complex variable relationships.

In recent years, to address the low efficiency of Transformer-based models, some researchers
have proposed lighter models. These include models based on Convolutional Neural Networks
(CNNs)(Zhao et al., 2017)(Borovykh et al., 2017) and Multilayer Perceptrons (MLPs)(Wang et al.,
2024)(Han et al., 2024), which analyze long-term information by using 1D convolutions or by de-
compose the series into trend and seasonal components. At the same time, to offer a new way of
looking at time series, some scholars have introduced frequency-domain analysis(Xu et al., 2023).
This method transforms data from the time domain to the frequency domain to analyze the relation-
ships between different frequency components.

2.2 TIME SERIES EMBEDDING

In current time series forecasting models, various embedding methods are often used to map raw
data into higher-dimensional continuous vector representations. This allows the model to fully un-
derstand the data’s context. Initially, to solve the problem that the self-attention mechanism lacks
sequence order information, sine and cosine functions were used to add positional information to
each time point(Vaswani et al., 2017). This created time series embeddings that included sequential
order. Some researchers also added calendar timestamp information, such as the day of the week
or distinctions between workdays and holidays, to analyze data differences. Later, PatchTST in-
troduced Patch Embedding(Nie et al., 2022), which segments the time series into patches and then
embeds them. Each embedding contains information from a nearby time period, so time points are
no longer isolated. Each embedding represents a local pattern over a period of time. More recently,
iTransformer proposed inverted embedding(Liu et al., 2023). This method treats the entire time
series of a variable as a single embedding unit, rather than individual time points or patches. This al-
lows the model to directly learn the relationships between variables. These methods have advanced
time series analysis, but they only focus on the continuous information in the time series and ignore
the discrete information.

Based on vector quantization(Van Den Oord et al., 2017) learns a codebook to map complex, high-
dimensional continuous data into a discrete latent space. In the fields of CV(Razavi et al., 2019) and
NLP(Baevski et al., 2019), converting images and audio clips into discrete tokens has been shown
to generate more realistic images and audio compared to traditional methods. This idea has also
been brought into time series analysis. In time series generation tasks, SDFormer(Chen et al., 2024)
uses similarity-driven vector quantization to group similar time series into one category stored in the
codebook. In time series classification, VQShape uses a codebook to learn abstract shape and offset

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Discrete Module (CI)

Em
bedding

O
utput Layer

LPF

Continuous Module (CD)

Va
lu

e

Time

Multi-Codebook

1 3 2

1
42

4 1

3

Encoder

M
LP

D
ecoder

Mapping

Vector Quantization

Pool

Concat

Figure 2: This figure shows the DCTS model architecture, which is comprised of two modules: 1)
Discrete Module to get discrete information, 2) Continuous Module to fuse the continuous and
discrete information.

information from the time series(Wen et al., 2024). However, these methods are limited to a single
codebook, which results in a small encoding space that struggles to describe the entire feature space.

3 METHODOLOGY

We introduce DCTS to overcome the limitations of previous methods. The core idea is to enhance
the model’s expressive power by incorporating discrete information into a model built for contin-
uous data. The complete model architecture is illustrated in Figure 2. DCTS is composed of two
components: 1) the discrete module: responsible for discretely encoding the original data; 2) the
continuous module: fuses the discrete information with the continuous information to yield the final
forecast.

3.1 DISCRETE MODULE

To obtain discrete information for the time series, we introduce a method based on vector quan-
tization. It uses a two-layer convolutional network for both the encoder and decoder. Based on
the channel-independent(CI) mechanism, the encoder processes each time series, and its output
ze(x) ∈ RN×d is quantized by a learnable codebook, N is represents the N variables, d is the
length of the codebook vector.. Finally, the decoder reconstructs the series from the quantized code.
Traditional based on vector quantization typically use a single codebook to quantize a time series,
resulting in a single discrete code to describe the data. However, one discrete code is clearly not
enough to fully capture the feature space of the entire time series, which limits the model’s expres-
sive power.

To address this issue, we employ multiple codebooks to encode the time series, allowing each code-
book to learn features independently, ei represents the i-th codebook. This approach significantly
expands the discrete encoding space, transforming it from a single dimension to a multi-dimensional
one. We measure similarity between the time series and the codes in each codebook using Euclidean
distance, consistent with the original vector quantization method. As a result, each codebook inde-
pendently generates a discrete code eik. The collection of these codes E jointly represents the time
series. This is then passed through a linear layer to compute a final, weighted discrete representation.
following these formulas:

zq(x) = Linear(E), E = {e1k, e2k, ...edk} where k = argmin||ze(x)− ei||2 (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In traditional pre-trained vector quantization models, the decoder is used to reconstruct the original
time series from the discrete codes to serve various downstream tasks. However, to make our model
more suitable for forecasting, we use the decoder to process the discrete codes. This produces
an output containing the discrete information of the time series, which is then integrated into the
downstream forecasting task.

3.2 CONTINUOUS MODULE

In this section, we design the Continuous Module, which fuses the discrete and continuous informa-
tion from the time series to generate the final forecast. The process begins by applying the Fourier
Transform to convert the time series into the frequency domain. A low-pass filter (LPF) is then used
to filter out high-frequency information, which is typically considered noise. Removing this noise
smooths the time series, allowing for a focus on more critical patterns. Next, the filtered spectrum is
projected to the forecast length by a linear layer and converted back to the time domain. This step
yields an initial forecast Y ,which captures the fundamental trend and periodic components.

We then merge the raw input with the discrete output from the Discrete Module and feed it into
an embedding layer. This process yields a fused representation X̂ , containing both the discrete
and continuous information of each time series. Subsequently, these representations are pooled and
fused to create a summary of the global information across all variables.

Finally, we concatenate this global information with the preliminary forecast for each variable Y ,
from the previous stage. The result is processed by a linear layer that performs a weighted fusion.
By doing this, every variable can incorporate the global context from all other variables, allowing the
model to better learn their correlations and improve the final forecast Ŷ . following these formulas:

Ŷ = Linear(Concat(Y , X̂)) where Y = Linear(LPF(X)) (2)

Table 1: Statistics of datasets for our experiments.

Datasets Weather Electricity Traffic Solar ETTh1 ETTh2 ETTm1 ETTm2

Features 21 321 862 137 7 7 7 7
Timesteps 52696 26304 17544 52560 17420 17420 69680 69680
Frequency 10 min Hourly Hourly 10 min Hourly Hourly 15 min 15 min

4 EXPERIMENTS

4.1 DATASETS

To evaluate the forecasting capability of DCTS on real-world time series data, we conducted ex-
periments on eight datasets, namely ETTm1, ETTm2, ETTh1, ETTh2, Weather, Solar, Traffic, and
Electricity(Lai et al., 2018). Among these datasets are widely used for various benchmark tests.
Table 1 presents the statistical data of these datasets.

4.2 BASELINES

We selected eight time series forecasting models for comparison with our model, including
the Transformer-based iTransformer(Liu et al., 2023), PatchTST(Nie et al., 2022) and Cross-
former(Zhang & Yan, 2023) models, linear model SOFTS(Han et al., 2024), TSMixer(Ekambaram
et al., 2023), TiDE(Das et al., 2023), the TimesNet(Wu et al., 2022) model based on periodic decom-
position, with SOFTS maintaining state-of-the-art performance in long-term time series forecasting.

4.3 EXPERIMENTAL SETUP

The experiments were conducted using an NVIDIA Tesla A40 48G GPU. We trained the models
using Mean Squared Error (MSE) loss. The lookback window size for all models was set to L = 96,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Forecast results with 96 review window and prediction length {96, 192, 336, 720}. The
best result is represented in red bold, followed by bule underline. Results are averaged from all
prediction lengths

Models Ours SOFTS iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.315 0.353 0.325 0.361 0.334 0.368 0.329 0.365 0.323 0.363 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372
192 0.360 0.378 0.375 0.389 0.377 0.391 0.380 0.394 0.376 0.392 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389
336 0.397 0.405 0.405 0.412 0.426 0.420 0.400 0.410 0.407 0.413 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413
720 0.470 0.447 0.466 0.447 0.491 0.459 0.475 0.453 0.485 0.459 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453

Avg 0.385 0.395 0.393 0.403 0.407 0.410 0.396 0.406 0.398 0.407 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407

ETTm2

96 0.172 0.256 0.180 0.261 0.180 0.264 0.184 0.264 0.182 0.266 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292
192 0.236 0.298 0.246 0.306 0.250 0.309 0.246 0.306 0.249 0.309 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362
336 0.300 0.338 0.319 0.352 0.311 0.348 0.308 0.346 0.309 0.347 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427
720 0.406 0.400 0.405 0.401 0.412 0.407 0.409 0.402 0.416 0.408 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522

Avg 0.278 0.323 0.287 0.330 0.288 0.332 0.287 0.330 0.289 0.333 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401

ETTh1

96 0.377 0.400 0.381 0.399 0.386 0.405 0.394 0.406 0.401 0.412 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400
192 0.431 0.428 0.435 0.431 0.441 0.436 0.440 0.435 0.452 0.442 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432
336 0.477 0.451 0.480 0.452 0.487 0.458 0.491 0.462 0.492 0.463 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459
720 0.496 0.480 0.499 0.488 0.503 0.491 0.487 0.479 0.507 0.490 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516

Avg 0.445 0.439 0.449 0.442 0.454 0.447 0.453 0.446 0.463 0.452 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452

ETTh2

96 0.295 0.347 0.297 0.347 0.297 0.349 0.288 0.340 0.319 0.361 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387
192 0.376 0.396 0.373 0.394 0.380 0.400 0.376 0.395 0.402 0.410 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476
336 0.418 0.430 0.410 0.426 0.428 0.432 0.440 0.451 0.444 0.446 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541
720 0.429 0.447 0.411 0.433 0.427 0.445 0.436 0.453 0.441 0.450 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657

Avg 0.379 0.405 0.373 0.400 0.383 0.407 0.385 0.410 0.401 0.417 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515

ECL

96 0.136 0.231 0.143 0.233 0.148 0.240 0.164 0.251 0.157 0.260 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282
192 0.155 0.249 0.158 0.248 0.162 0.253 0.173 0.262 0.173 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285
336 0.166 0.262 0.178 0.269 0.178 0.269 0.190 0.279 0.192 0.295 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301
720 0.191 0.287 0.218 0.305 0.225 0.317 0.230 0.313 0.223 0.318 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333

Avg 0.162 0.257 0.174 0.264 0.178 0.270 0.189 0.276 0.186 0.287 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300

Traffic

96 0.407 0.256 0.376 0.251 0.395 0.268 0.427 0.272 0.493 0.336 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396
192 0.443 0.270 0.398 0.261 0.417 0.276 0.454 0.289 0.497 0.351 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370
336 0.466 0.287 0.415 0.269 0.433 0.283 0.450 0.282 0.528 0.361 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373
720 0.504 0.298 0.447 0.287 0.467 0.302 0.484 0.301 0.569 0.380 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394

Avg 0.455 0.277 0.409 0.267 0.428 0.282 0.454 0.285 0.522 0.357 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383

Weather

96 0.155 0.200 0.166 0.208 0.174 0.214 0.176 0.217 0.166 0.210 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255
192 0.206 0.248 0.217 0.253 0.221 0.254 0.221 0.256 0.215 0.256 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296
336 0.262 0.289 0.282 0.300 0.278 0.296 0.275 0.296 0.287 0.300 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335
720 0.348 0.344 0.356 0.351 0.358 0.347 0.352 0.346 0.355 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381

Avg 0.242 0.270 0.255 0.278 0.258 0.278 0.256 0.279 0.256 0.279 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317

Solar

96 0.197 0.234 0.200 0.230 0.203 0.237 0.205 0.246 0.221 0.275 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378
192 0.226 0.258 0.229 0.253 0.233 0.261 0.237 0.267 0.268 0.306 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398
336 0.237 0.269 0.243 0.269 0.248 0.273 0.250 0.276 0.272 0.294 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415
720 0.245 0.275 0.245 0.272 0.249 0.275 0.252 0.275 0.281 0.313 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413

Avg 0.226 0.259 0.229 0.256 0.233 0.262 0.236 0.266 0.260 0.297 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401

with prediction lengths of T = {96, 192, 336, 720}. For the baselines, data related to SOFTS was
utilized. The specific experimental data are presented in Table 2.

4.4 RESULTS AND ANALYSIS

Table 2 summarizes the forecasting performance of all methods on eight real-world time series
datasets, demonstrating the superior performance of DCTS. Specifically, across different prediction
lengths, it achieved the best performance on six datasets and the second-best performance on two
dataset. On the six datasets where it surpasses the SOTA model SOFTS, DCTS achieves perfor-
mance improvements of 2.7% (in MSE) and 1.5% (in MAE). Although SOFTS also samples the
time series representation, its performance is not as good because it only focuses on continuous
encoding, and because of the strong representation ability of continuous encoding, the model is
prone to learn more noise. This makes the sampled information lack the discrete patterns in the
time series. Meanwhile, the channel-independent mechanism used by PatchTST, while improving
robustness, also loses the correlation information between variables.

4.5 ABLATION ANALYSIS

This section presents several ablation studies to validate the design of DCTS. We conduct two
main ablation experiments and perform evaluations on four datasets (ETTh1, ETTh2, ETTm1, and
ETTm2). The following are the explanations for each variant:

1. w/o-D: In this variant, we remove the Discrete Module. The embedding process relies
solely on the original continuous information for encoding.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2. w/o-C: In this variant, we remove the Continuous Module. The model only encodes the
time series discretely, and the decoder’s output is directly projected to the forecast horizon
to be the final prediction.

Table 3 shows the results of all ablation studies. Specifically, our summary and explanation of the
two ablation experiments are as follows:

1. Discrete Module: For this experiment, we removed the Discrete Module, relying solely
on continuous information for time series encoding. The results indicate that incorporating
discrete encoding allows the model to capture diverse patterns in the time series, leading to
an average performance gain of 2.1% in MSE and 1.3% in MAE.

2. Continuous Module: For this experiment, we removed the Continuous Module and relied
solely on the Discrete Module for forecasting. As the results show, this caused a drastic
decline in performance: a 16.8% drop in MSE and an 11.7% drop in MAE. The reason is
that time series data consists mainly of continuous information because it represents the
changes in a dynamic system. Relying only on discrete patterns to represent the time series
causes a significant loss of detail, which in turn degrades the model’s performance.

Table 3: The table above shows the ablation results for ETT. The results represent the loss of MSE
and MAE for forecast lengths {96, 192, 336, 720}, with the best results highlighted in bold.

Model T=96 T=192 T=336 T=720 Avg

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ours

ETTh1 0.377 0.400 0.431 0.428 0.477 0.451 0.496 0.480 0.445 0.439
ETTh2 0.295 0.347 0.376 0.396 0.418 0.430 0.429 0.447 0.379 0.405
ETTm1 0.315 0.353 0.360 0.378 0.397 0.405 0.470 0.447 0.385 0.395
ETTm2 0.172 0.256 0.236 0.298 0.300 0.338 0.406 0.400 0.278 0.323

w/o-D

ETTh1 0.384 0.402 0.440 0.432 0.485 0.458 0.499 0.487 0.452 0.444
ETTh2 0.297 0.348 0.376 0.396 0.419 0.431 0.449 0.458 0.385 0.408
ETTm1 0.330 0.366 0.371 0.386 0.407 0.410 0.475 0.449 0.395 0.402
ETTm2 0.177 0.260 0.245 0.306 0.309 0.347 0.413 0.405 0.286 0.329

w/o-C

ETTh1 0.461 0.458 0.563 0.511 0.594 0.530 0.551 0.519 0.542 0.504
ETTh2 0.352 0.386 0.428 0.429 0.455 0.455 0.466 0.468 0.425 0.434
ETTm1 0.459 0.451 0.484 0.461 0.510 0.476 0.564 0.502 0.504 0.472
ETTm2 0.211 0.293 0.284 0.338 0.338 0.396 0.433 0.419 0.316 0.361

4.6 CONTRASTIVE ANALYSIS

Traditional vector quantization methods use a single codebook to discretize data. Each data point
is assigned a single, unique discrete code. This method of using a single discrete code struggles
to cover the entire feature space of a time series. Therefore, we use a multi-codebook approach to
exponentially expand the discrete space.

In Figure 3, we compare the performance of single-codebook and multi-codebook models on the
ETTm1, ETTm2, Electricity and Solar datasets. The figure shows that for the same individual
codebook size, introducing multiple codebooks improves model performance compared to using a
single one. Across all prediction windows, the average performance improved on the Solar dataset
by 9.6% in MSE and 6.2% in MAE. On the Electricity dataset, it improved by 1.2% in MSE and
0.8% in MAE. On ETTm2, the improvement was 1.1% in MSE and 0.9% in MAE, and on ETTm1,
it was 0.5% in MSE and 0.5% in MAE. Additionally, the multi-codebook method changes the data’s
representation from a single ”letter” to a ”word.” This allows us to use smaller codebooks that work
together to create a joint representation, achieving a larger encoding space than a single codebook.

To prove that adding discrete information to continuous models is necessary, we added our Discrete
Module to other continuous models. We chose PatchTST and iTransformer as our baseline models.
The detailed experimental results are in Table4. We conducted these comparative experiments on
the ETTm1 and ETTm2 datasets. The models ”PatchTST+VQ” and ”iTrans+VQ” represent the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MSE MAE
0.380

0.383

0.386

0.389

0.392

0.395

0.398
ETTm1

Single
Multi

(a)

MSE MAE
0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33
ETTm2

Single
Multi

(b)

MSE MAE
0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28
Solar

Single
Multi

(c)

MSE MAE
0.15

0.17

0.19

0.21

0.23

0.25

ECL
Single
Multi

(d)

Figure 3: On the ETTm1, ETTm2, Electricity and Solar dataset, we presented the comparison results
of single-codebook and multi-codebook approaches. The result is the average value of the predicted
length of {96, 192, 336, 720}.

original PatchTST and iTransformer with discrete information module added. We did not change
the parameters of the original backbone models.

The findings indicate that adding discrete encoding boosts performance for all forecast horizons on
both datasets. Across all experiments, the average improvement for PatchTST was 3.5% (MSE) and
2.7% (MAE), while for iTransformer it was 2.3% (MSE) and 1.3% (MAE). This demonstrates that
even though time series data is mainly continuous, jointly modeling both discrete and continuous
information enhances a model’s expressive capabilities. Therefore, discrete coding is necessary for
time series analysis.

Table 4: The table above shows the contrast results for add discrete information with original. The
results represent the loss of MSE and MAE for forecast lengths {96, 192, 336, 720}, with the best
results highlighted in bold.

Model PatchTST+VQ PatchTST iTrans+VQ iTrans

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.325 0.362 0.329 0.365 0.326 0.364 0.334 0.368
192 0.361 0.380 0.380 0.394 0.370 0.388 0.377 0.391
336 0.390 0.407 0.400 0.410 0.409 0.413 0.426 0.420
720 0.459 0.443 0.475 0.453 0.476 0.450 0.491 0.459

Avg 0.383 0.398 0.396 0.406 0.395 0.404 0.407 0.410

ETTm2

96 0.171 0.253 0.184 0.264 0.175 0.258 0.180 0.264
192 0.237 0.296 0.246 0.306 0.247 0.308 0.250 0.309
336 0.300 0.337 0.308 0.346 0.308 0.346 0.311 0.348
720 0.392 0.392 0.409 0.402 0.408 0.404 0.412 0.407

Avg 0.275 0.319 0.287 0.330 0.284 0.329 0.288 0.332

4.7 CASES OF VISUALIZATION

In this section, we present visual examples of the discrete encodings to demonstrate our approach.
As illustrated in Figure 4, we show how one codebook assigns discrete codes to six different time
series samples from the ETTh1 dataset. Samples marked with the same color have been assigned
the same discrete code.

It is clear that different discrete codes correspond to different time series patterns. As we can ob-
serve, the samples in Figure 4b mostly include four troughs, while those in Figure 4b primarily
feature four peaks. The samples in Figure 4c, however, are comparatively more stable and show
fewer fluctuations than the others. This demonstrates that the different vectors within one codebook

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

learn distinct time series patterns. This allows the codebook to assign a specific discrete code to any
variable that matches one of the learned patterns.

0 20 40 60 80 100

4

3

2

1

0

1

2

3

4

(a) Code 4

0 20 40 60 80 100

4

3

2

1

0

1

2

3

4

(b) Code 5

0 20 40 60 80 100

4

3

2

1

0

1

2

3

4

(c) Code 6

Figure 4: One of the codebooks performs discrete encoding on different samples of ETTh1. For the
same color, the discrete encoding is the same.

On the ETTm2 dataset, we also visualized the impact of discrete encoding on model performance.
As illustrated in Figure 5, we incorporated discrete encoding into the PatchTST model and compared
it against the original version. We can see that compared to the original model, the predictions of
the model with discrete encoding are closer to the ground truth. Furthermore, the patterns in the
forecast align better with the ground truth patterns. A model with only continuous encoding can
be so expressive that it over-focuses on minor details, which weakens its ability to identify the
main underlying patterns. By adding discrete encoding, the model’s pattern-learning capabilities are
strengthened. This combination ensures that the final predictions are both expressive and better at
recognizing overall patterns.

PatchTST+VQ PatchTST+VQPatchTST PatchTST

Figure 5: The above figure shows the comparison between the output visualization results of the
PatchTST model with discrete encoding and the original model.

5 CONCLUSION

In this work, we introduced DCTS to address the issues that arise from using purely continuous
encoding in time series forecasting. Our model combines continuous and discrete encoding, giving
it the high expressive power of continuous representations as well as the ability of discrete codes
to learn overall patterns. Extensive experiments on real-world datasets demonstrate that DCTS is
superior to existing models for forecasting tasks. Furthermore, our ablation and comparative studies
confirm that discrete encoding is a necessary component for time series analysis.

Looking ahead, one limitation of current vector quantization is its reliance on Euclidean distance for
similarity. When a time series sample is phase-shifted, this distance metric can be easily increased,
which may lead to the sample being assigned the wrong discrete code. Dynamic Time Warping
(DTW) is an algorithm that also measures the similarity between sequences. Unlike Euclidean
distance and cosine similarity, DTW is more focused on the shape similarity of time series, which
can make it more effective for handling samples that are shifted in time. The trade-off, however,
is that DTW is not very efficient. Its computation time is significantly longer than that of both
Euclidean distance and cosine similarity. A key area for future work, therefore, is to develop better
methods for quantizing time series data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research complies with the ICLR ethical guidelines. Our work does not involve any experiments
on humans or animals. All datasets used in this study are public, and we have followed their usage
guidelines to protect privacy. We have avoided any biased or discriminatory results. No personally
identifiable information was used, nor did we conduct any experiments that could pose privacy or
security risks. We have maintained transparency and integrity throughout this research.

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of the results in this paper. Part of our code and all of our running
scripts are publicly available in the supplementary materials. We have provided detailed descrip-
tions of our experimental setup and hardware specifications. All datasets used are public, which
ensures that our results are consistent and repeatable. We believe these measures will enable other
researchers to replicate our work and help advance the field.

REFERENCES

Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-supervised learning of
discrete speech representations. arXiv preprint arXiv:1910.05453, 2019.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619(7970):533–538, 2023.

Bahar Biller and Barry L Nelson. Modeling and generating multivariate time-series input processes
using a vector autoregressive technique. ACM Transactions on Modeling and Computer Simula-
tion (TOMACS), 13(3):211–237, 2003.

Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Conditional time series forecasting
with convolutional neural networks. arXiv preprint arXiv:1703.04691, 2017.

George EP Box and David A Pierce. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American statistical Association,
65(332):1509–1526, 1970.

Li-Juan Cao and Francis Eng Hock Tay. Support vector machine with adaptive parameters in finan-
cial time series forecasting. IEEE Transactions on neural networks, 14(6):1506–1518, 2003.

Zhicheng Chen, FENG SHIBO, Zhong Zhang, Xi Xiao, Xingyu Gao, and Peilin Zhao. Sdformer:
Similarity-driven discrete transformer for time series generation. Advances in Neural Information
Processing Systems, 37:132179–132207, 2024.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan. Deep learning for event-driven stock prediction.
In Ijcai, volume 15, pp. 2327–2333, 2015.

Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings
of the 29th ACM SIGKDD conference on knowledge discovery and data mining, pp. 459–469,
2023.

Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. Softs: Efficient multivariate time series
forecasting with series-core fusion. arXiv preprint arXiv:2404.14197, 2024.

Xuan Jiao, Xingshuo Li, Dingyi Lin, and Weidong Xiao. A graph neural network based deep
learning predictor for spatio-temporal group solar irradiance forecasting. IEEE Transactions on
Industrial Informatics, 18(9):6142–6149, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb, Irwin
King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting, classifi-
cation, imputation, and anomaly detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95–104, 2018.

Haoran Li, Zhiqiang Lv, Jianbo Li, Zhihao Xu, Yue Wang, Haokai Sun, and Zhaoyu Sheng. Traf-
fic flow forecasting in the covid-19: A deep spatial-temporal model based on discrete wavelet
transformation. ACM Transactions on Knowledge Discovery from Data, 17(5):1–28, 2023.

Yuxuan Liang, Yutong Xia, Songyu Ke, Yiwei Wang, Qingsong Wen, Junbo Zhang, Yu Zheng, and
Roger Zimmermann. Airformer: Predicting nationwide air quality in china with transformers.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 14329–14337,
2023.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International journal of forecasting, 36(3):1181–
1191, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv
preprint arXiv:2405.14616, 2024.

Yunshi Wen, Tengfei Ma, Lily Weng, Lam Nguyen, and Anak Agung Julius. Abstracted shapes as
tokens-a generalizable and interpretable model for time-series classification. Advances in Neural
Information Processing Systems, 37:92246–92272, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Ying Xia and Jungang Chen. Traffic flow forecasting method based on gradient boosting decision
tree. In 2017 5th International Conference on Frontiers of Manufacturing Science and Measuring
Technology (FMSMT 2017), pp. 413–416. Atlantis Press, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. arXiv
preprint arXiv:2307.03756, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Convolutional
neural networks for time series classification. Journal of systems engineering and electronics, 28
(1):162–169, 2017.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268–27286. PMLR, 2022.

A APPENDIX

A.1 LLM USAGES

Large Language Models (LLMs) were used to assist in writing and refining this manuscript. Specifi-
cally, we used LLMs to improve the language, enhance the paper’s readability, and ensure the clarity
of each section. The image of the cat in Figure 1 was also generated by a generative model, but this
was for illustrative purposes only and is not related to our research methodology. The LLMs were
not involved in the conceptualization, research methods, or experimental design of this paper. All
concepts, ideas, and analyses were developed and implemented solely by the authors. The contribu-
tion of the LLMs was strictly limited to improving the linguistic quality of the text; they played no
role in the scientific content or data analysis. The authors take full responsibility for the content of
this manuscript. We have ensured that any text generated by the LLM adheres to ethical guidelines
and is free from plagiarism and academic misconduct.

12

	Introduction
	Related Work
	Time Series Forecasting
	Time Series Embedding

	Methodology
	Discrete Module
	Continuous Module

	Experiments
	Datasets
	Baselines
	Experimental Setup
	Results and Analysis
	Ablation Analysis
	Contrastive Analysis
	Cases of Visualization

	Conclusion
	Appendix
	LLM Usages

