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Abstract

Research on neural networks for time series has mostly focused on developing
models that learn patterns about the target signal without the use of additional
auxiliary or exogenous information. In applications such as selling products on
a marketplace, the target signal is influenced by these variables, and leveraging
exogenous variables is important. In particular, knowing that a product would go
into promotion would mostly likely generate a spike in its demand; and ignoring
this information would degrade the forecasting ability of the models. In such
applications, the exogenous information comes as a mixture of categorical and
real variables on different scales. In this paper we develop a decoder method
that leverages the time structure of exogenous information through structured
state-space model layers and learns relationships between the variables through
MLPs. We show that this decoder method can be applied to a wide variety of
models such as NBEATS, NHITS, PatchTST, and S4, yielding notable performance
improvements across a different datasets.

1 Introduction

Most of the current research on neural forecasters has centered on developing models that rely on the
transformer architecture. Some of the research focuses on using large language models for zero-shot
prediction as in Gruver et al. [8], Dooley et al. [7], Chronos [1], TimeLLM [10], and LagLlama [18].
Other methods aim to improve the performance of transformers for time series predictions, such as
PatchTST [14], iTransformer [13], MQT [3], and DFR [17]. While another research thrust focuses
on using transformers for long-horizon prediction with methods like TiDE [6], Autoformer [21],
FEDformer [24], Triformer [5], Pyraformer [12], and Informer [23].

Unfortunately, all of the aforementioned models focus on learning specific patterns that occur in a
target signal without the use of additional information (exogenous variables). Not using exogenous
variables severely hampers the application of these recently developed models to important real-life
applications. For example, the price of electricity is directly affected by factors such as the weather
and system load, or the demand of a product is likely to spike if it is in promotion. Regardless of how
accurate a neural forecaster might be at capturing time patterns in a target signal, it will fail to predict
abrupt changes if it is not using the exogenous information that might explain the change.

Furthermore, the reliance of the aforementioned models on the transformer architecture makes the
addition of exogenous information a non-trivial task. The models that rely on large language models
tokenize the target signal, and this tokenization process is not directly applicable to exogenous
categorical variables such as brand or geographic location. Moreover, most of the models use the
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attention mechanism in an idiosyncratic manner, and it is therefore unclear if each case requires an
ad-hoc method to incorporate exogenous information.

In this work, we develop a universal method, which we call RevPred (Revisiting Predictions), to
effectively incorporate exogenous information into different neural forecasters. The main idea is that
once a neural forecaster makes a prediction, we will revisit this prediction with a decoder model
that depends on the exogenous information. This decoder learns linear embeddings for categorical
variables and it is able to exploit the time structure of the other exogenous variables through a mixture
of state-space model (SSM) and feed-forward layers, inspired by Gu et al. [9]. It is worth noting that
our work is not the first one to incorporate exogenous information to neural forecasters. However,
it is the first to propose a universal method to do so, as most of the existing methods such as TFT
[11], TSMixer [4], TimeMixer [20], BitCN [19] NBEASTx [15], and NHITS [2] rely on approaches
that are specific to each model and hence not compatible with others.

2 Problem Formulation and Data Description

For a target signal y1:T = (y1, . . . , yT ) and some exogenous information x(s), x(h)
1:T and x

(f)
1:T+H

we want to produce a forecast ŷT+1:T+H = Fθ(y1:T ,x
(s),x

(h)
1:T ,x

(f)
1:T+H), where Fθ (·) is a neural

network and θ its trainable parameters. Here x(s) represents static exogenous information that is
constant through time, such as the category or brand of a product. Additionally, x(h)

1:T corresponds to
exogenous information that is available in the same span of history 1, . . . , T but that it is unknown
for T + 1, . . . ,H , such as current and historic weather measurements. Finally, x(f)

1:T+H represents
exogenous information that is known for both the historic and future horizon times, such as the
promotional activity of a product. Most of the models in Section 1 produce forecasts only using
y1:T as ŷT+1:T+H = Fθ(y1:T ) which severely hampers the predictive capacity of Fθ (·) as seen in
Section 4.

Our goal is to exploit the exogenous information for forecasting. Unfortunately, the vast majority of
time series benchmarks do not contain exogenous information complicating off-the-shelf comparisons.
Nonetheless, there are two categories of publicly available data that we found suitable for our
investigation: electric price forecasting and grocery demand forecasting.

For predicting electric prices [15] we have 5 datasets: the Nord pool (NP) market which is one of the
largest European power markets containing hourly measurements from 2023-01-01 to 2018-12-24.
The NP dataset comes with exogenous variables measuring the grid load and wind power. We
then have the zonal prices for the COMED area of Pennsylvania, New Jersey and Maryland (PJM)
containing hourly measurements from 2023-01-01 to 2018-12-14. The PJM dataset comes with
exogenous measurements of the system load and zonal load. Next, we have the French electricity
market (FR) containing hourly measurements from 2011-01-09 to 2016-12-31. The FR dataset
contains exogenous measurements of system load and power generation. Then, we have the Belgian
electricity market (BE) containing hourly measurements from 2011-01-09 to 2016-12-31. The BE
dataset contains exogenous measurements of system load and power generation. Finally, we have the
German electricity market (DE) containing hourly measurements from 2012-01-09 to 2017-12-31.
The DE dataset contains exogenous measurements of zonal load and both solar and wind generation
measurements. The dataset can be found here https://zenodo.org/records/4624805.

For grocery demand forecasting, we have the data from the ecuadorian Corporación Favorita
(Favorita). This datasets consist of weekly unit demand across several products with indicators
of promotional activity that we use as exogenous information. The dataset can be found here
https://www.kaggle.com/c/favorita-grocery-sales-forecasting.

3 RevPred

We propose the RevPred decoder to facilitate the use of exogenous information for any neural
forecaster. Intuitively, the decoder starts with the predictions of a given neural forecaster and then
revisits this prediction based on the exogenous features. It does so by concatenating all the features
(both target and exogenous) and then passing that through blocks of state-space model (SSM) layers
and MLP mixer layers. The SSM layers leverage the time structure of the input and the MLP layers
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generate useful representations. Concretely, RevPred is constructed in the following manner. Given
a neural forecaster model Fθ (·) that only uses y1:T as input, we then have that our RevPred decoder
Dϕ would use the predictions of Fθ and the rest of the exogenous information to create a refined
prediction as

ŷT+1:T+H = Dϕ(Fθ(y1:T ),y1:T ,x
(s),x

(h)
1:T ,x

(f)
1:T+H).

The decoder operates as follows. First, it embeds any categorical variable into a vector through an
index to vector look-up. Thus, we can now assume that all the exogenous variables are embedded as
real vectors, x(s) ∈ RDs , x(h)

1:T ∈ RT×Dh and x
(f)
1:T+H ∈ R(T+H)×Df . Second, it constructs three

variables ỹ1:T+H , x̃(s)
1:T+H , and x̃

(h)
1:T+H as follows

ỹ1:T = y1:T and ỹT+1:T+H = Fθ (y1:T ) ,

x̃
(s)
t = x(s) for all t = 1, . . . , T +H

x̃
(h)
1:T = x

(h)
1:T and x̃

(h)
T+1:T+H = Wx

(h)
1:T

where W : RT → RH is a linear projection applied to the time axis. Once the three
variables are constructed, the decoder then concatenates all the variables to create z1:T+H =

(ỹ1:T+H , x̃
(s)
1:T+H , x̃

(h)
1:T+H ,x

(f)
1:T+H) ∈ R(T+H)×D where D = 1 + Ds + Dh + Df . To pro-

duce a forecast, the decoder applies, in blocks, a structured state-space model layer (SSM) [9] on
the time axis and then a two-layered MLP on the dimensionality axis. In other words, z1:T+H ←
MLP(SSM(z1:T+H)) repeatedly. A visual representation of this process can be found on Appendix A.1.
Finally, the decoder makes a prediction by applying two linear projections, one on the time axis
Wtime : RT+H → RH and one on the feature axis Wfeat : RD → R such that

ŷT+1:T+H = Wtime Wfeatz1:T+H .

We chose the combination of a SSM and MLP layers both to exploit the time structure of the input and
to be parameter efficient. Similar to multi-head attention (MHA), SSM layers are sequence to sequence
models that aim to find what previous parts of a sequence are important to predict the next parts of it.
In contrast to MHA, SSMs are not permutation invariant but rather place larger emphasis on the most
recent times when making a prediction. As argued in Zeng et al. [22], using MHA has many drawbacks
for time series forecasting which SSMs do not posses. In terms of parameter efficiently, a simple
approach that applies an MLP to the flattened and concatenated input would incur inO((T +H)2D2)
memory and compute whereas our decoder uses O ((T +H) log(T +H)D) for the SSM layer and
O(D2(T +H)) for the MLP layer which, in total, is a substantial reduction in number of parameters.

We then train both neural network models Fθ and Dϕ by minimizing the MAE loss

L (θ,ϕ) =
1

H

T+H∑
t=T+1

|yt − ŷt(θ,ϕ)| .

4 Results

Electric Price Forecasting In Table 1 we show the performance of adding the RevPrev decoder to
multiple popular and performant neural forecasters. Namely, NBEATS [16, 15], NHITS [2], PatchTST
[14] and S4 [9]. The first two models are based on MLP architectures and do have a variant that
incorporates exogenous information (we compare against that as well). PatchTST is a transformer
based model and S4 is an state-space based model. For this task we split the train and test sets on a
80% and 20% respectively.

Grocery Sales In this task we want to predict the weekly demand volume of roughly 3K different
products from 2014 to 2016. In contrast to the previous task, we do not have high frequency hourly
observations but rather weekly. However, the main challenge is that we now the model has to fit
the different patterns present in the myriad of products. In Figure 1 we show that also RevPrev
consistently improves the performance across various neural forecasters although in a less dramatical
manner as seen for the electric price forecasting task. For this task we as well the train and test sets
on a 80% and 20% respectively.

3



NBEATS NHITS PatchTST S4
- Or RP - Or RP - RP - RP

BE 5.0627 2.3038 2.0129 5.2694 3.2859 2.1017 4.9244 2.4149 4.4321 2.4781
DE 9.1409 5.1628 2.2588 11.2157 2.2127 2.2133 11.4733 1.8857 12.7094 2.0194
FR 6.3306 2.7559 2.4095 6.8629 2.2568 2.6892 6.4160 3.0004 5.7751 2.8840
NP 0.8485 0.7971 0.3823 0.8090 0.9209 0.2763 1.0315 0.7320 0.5603 0.8314
PJM 1.0921 0.7844 0.4410 1.1839 0.5832 0.4858 1.1401 0.4588 0.9140 0.4263

Table 1: RevPrev significantly reduces the test MAE across several neural forecasters. We
report unnormalized test MAE (lower is better) across 5 electric price forecasting datasets for 4
different neural forecasters. The symbol - refers to the model variant that does not use exogenous
information. Or refers to the original variant of the model that uses exogenous information [15, 2]
and RP stands for the model variant that uses the RevPrev decoder.
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Figure 1: RevPrev also improves performance of various neural forecasters for Favorita. We
report test MAE (lower is better) for the task of forecasting the national weekly demand. The legend
RP implies that the model is using the RevPrev decoder. For NHITS and NBEATS we use the model
variant that allows for exogenous variables.

5 Conclusion

A pervasive and major shortcoming of the current research in large neural network models for time
series is to largely ignore the use of exogenous information that might influence severely the behavior
of the time series. As seen in Section 4, ignoring exogenous information hinders the predictive ability
of a model, regardless of its complexity. Yet, it is unclear how to best incorporate the exogenous
information in these large neural network models. To circumvent this limitation we propose our
RevPred decoder which can be easily applied to any neural forecaster and which improves empirical
performance.

Although not evidenced by the experiments, RevPred’s main strength of being easily applied as
a decoder at the end of the forecasting process could also be an important limitation. It seems
plausible that incorporating the exogenous information earlier in the forecasting process might
improve performance but that would also require developing an ad-hoc process that is not widely
applicable. To strengthen RevPred’s appeal, it would be worth applying this decoder to more neural
forecasters and also investigating other parameter efficient decoder structures beyond SSMs.
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A Appendix

A.1 Depiction of decoder process

Figure 2: Depiction of a block in the RevPrev decoder. From left to right. First RevPrev receives
different time series information, both the target sequence and the exogenous information. Then
RevPrev uses an SSM layer to find the relationships of the information across time. Next RevPrev
mixes the feature information with a MLP layer creating another representation with both time structure
that gets passed to the next block.
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