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ABSTRACT

Training language models currently requires pre-determining a fixed compute bud-
get because the typical cosine learning rate schedule depends on the total number
of steps. In contrast, the Warmup-Stable-Decay (WSD) schedule uses a constant
learning rate to produce a main branch of iterates that can in principle continue
indefinitely without a pre-specified compute budget. Then, given any compute
budget, one can branch out from the main branch at a proper time with a rapidly
decaying learning rate to produce a strong model. Empirically, WSD generates
an intriguing, non-traditional loss curve: the loss remains elevated during the
stable phase but sharply declines during the decay phase. Towards explaining this
phenomenon, we conjecture that pretraining loss exhibits a river valley landscape,
which resembles a deep valley with a river at its bottom. Under this assumption,
we show that during the stable phase, the iterate undergoes large oscillations due
to the high learning rate, yet it progresses swiftly along the river. During the
decay phase, the rapidly dropping learning rate minimizes the iterate’s oscillations,
moving it closer to the river and revealing true optimization progress. Therefore,
the sustained high learning rate phase and fast decaying phase are responsible
for progress in the river and the mountain directions, respectively, and are both
critical. Our analysis predicts phenomenons consistent with empirical observations
and shows that this landscape can naturally emerge from pretraining on a simple
bi-gram dataset. Inspired by the theory, we introduce WSD-S, a variant of WSD that
reuses previous checkpoints’ decay phases and keeps only one main branch, where
we resume from a decayed checkpoint. WSD-S empirically outperforms WSD and
Cyclic-Cosine in obtaining multiple pretrained language model checkpoints across
various compute budgets in a single run for parameters scaling from 0.1B to 1.2B.

1 INTRODUCTION

Pre-training large language models (LLMs) typically involves following a learning rate schedule that
decreases over a pre-determined number of steps, such as a cosine schedule (Loshchilov & Hutter,
2017; Touvron et al., 2023), where the learning rate starts high and gradually decreases in a smooth
curve following the shape of a cosine function. This inflexible approach makes it difficult to adapt to
additional compute or data, as the learning rate schedule for all the data is not a natural continuation
of the schedule used with past data. Additionally, fitting scaling laws is costly because each compute
budget requires a retraining to adjust the learning rate schedule (Hoffmann et al., 2022).

In contrast to the cosine learning rate, recent work Hu et al. (2024) introduces the warmup-stable-
decay (WSD) schedule, which does not require committing to a pre-specified total compute budget.
After a standard warm-up period, the WSD schedule maintains a main “branch” using a constant
learning rate indefinitely and branches off using a fast-decaying learning rate schedule to obtain
intermediate checkpoints (see the second row of Figure 2b). Using the WSD schedule, one can
continue training from a checkpoint in the main branch by resuming with the same constant learning
rate and can obtain training losses for multiple compute budgets with a single run.

Empirically, the WSD schedule produces a non-traditional loss curve (see Figure 1): during the
constant learning rate phase, the loss remains higher than the loss using other schedules like the
cosine schedule; but during the decay phase, it drops sharply, often leading to better final performance
compared to the cosine schedule. This raises the main question the paper aims to address:
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Figure 2: We demonstrate a river valley loss landscape in Figure 2a to explain the effectiveness of Warmup-
Stable-Decay (WSD) schedule(demonstrated ). The stable phase adopts a large learning rate and the iterate will
progress along the river while oscillating between the sharp hillsides. Due to the large oscillation caused by
the large learning rate, the run will potentially show a higher loss compared to a run using a smaller learning
rate in this phase. During the decay phase, the learning rate is dropped rapidly to ease the oscillation of the
iterates, driving it closer to the river, revealing the optimization progress. Based on our theory, we propose
WSD-Simplified (WSD-S), an effective simplification of the WSD schedule in continual learning, where we
start directly using a high learning rate from previous intermediate checkpoints. We visualize the learning rate
schedule in Figure 2b. The arrow in the second row of Figure 2b indicates WSD reinitializes the checkpoint
from the last checkpoint of the constant learning rate phase instead.
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Figure 1: The Non-traditional Loss Curve
produced by WSD. A constant learning rate
phase, characterized by slow loss improve-
ments, eventually leads to better validation
loss after learning rate decay.

Why does WSD work, especially with such a non-
traditional loss curve? Specifically, why does a constant
learning rate phase, characterized by slow loss improve-
ments, eventually lead to superior performance?

The first contribution of this paper is a theoretical frame-
work to explain the underlying mechanism of WSD. We
characterize a type of loss landscape, called the river val-
ley landscape (Definition 3.1), and theoretically show that
WSD has superior performance on such loss landscapes.
We show that the river valley landscape can provide mul-
tiple theoretical predictions matching the empirical obser-
vations and hence can serve as a useful conceptual picture
for understanding the pretraining optimization process.

As the name suggests, a river valley landscape intuitively
features steeply sloping hillsides with a river winding
through the bottom of the gorge (see Figure 2a). Dur-
ing the stochastic gradient-based optimization process, the iterate bounces between the hillsides
as it slowly and implicitly progresses along the river direction. The loss in this landscape can be
decomposed into two components: the river component, which represents the primary loss along
the river at the bottom of the hills, and the hill component, which accounts for the additional loss
caused by deviations in height from the river’s course. Progress is determined primarily by the
river component in the long run. We demonstrate that when the loss function exhibits this type of
landscape, a learning rate schedule should satisfy the following two key properties to effectively
minimize the loss.
1. Sustained high learning rate. It is advantageous to maintain a large learning rate for as long as

possible during training, even at the cost of less reduction in the loss. A large learning rate yields
larger bouncing due to the stochasticity of the gradient, increasing the hill component of the loss,
but it also makes faster progress in the river direction. In contrast, a small learning rate results
in less bouncing, keeping the iterate close to the river, but progress along the river direction is
slower. Therefore, a larger learning rate leads to faster fundamental progress in minimizing the
river component, which is obscured by the oscillation in the hill component. This progress will be
revealed by the decay phase discussed below.
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2. Final low learning rate. As training nears completion, it becomes essential to reduce the learning
rate. This decay minimizes the oscillations in the mountain direction to decrease the hill component
and ensures that the iterates converge to a point close to the river, which has a lower loss than any
nearby points up the hills.

In Section 3, we provide formal theoretical statements analyzing the trajectories of (stochastic)
gradient descent on the river valley landscape, fleshing out the intuitions above. Among our synthetic
and real-world studies supporting the river valley landscape hypothesis, an intriguing observation in
language model pretraining is that the loss on the linear interpolation of two checkpoints in the stable
phase exhibits a convex and unimodal shape, resembling a valley, whereas between two checkpoints
in the decay phase, the loss shows a smooth monotone decay.

All the theoretical results above assume a river valley landscape. How likely does the next-token
prediction loss follow this pattern, and why? We hypothesize the river valley landscape can naturally
arise from the heterogeneity in the stochasticity of different tokens: highly deterministic tokens (which
often involve facts and knowledge) contribute to the "river" direction, while uncertain tokens (which
often involve flexibility and ambiguity in the language) create the steep hillsides. We demonstrate
this insight by showing in Section 4 that under a bigram toy model, indeed the loss has a river valley
landscape, and empirically, most properties of the loss curves under various learning rates on the real
datasets are still seen in this toy model. We further show that the stable learning rate phase learns the
deterministic tokens, whereas the decay phase learns better the stochastic tokens.

Finally, motivated by the theoretical insights, we propose a simplification and improved version of
WSD, called WSD-S in continual learning. In WSD, after obtaining an intermediate checkpoint, the
model and optimizer are rolled back to the end of the stable phase before continuing with a constant
learning rate. However, our theory predicts that the decay phase also makes progress along the
river direction and thus there is no reason to discard that part of the progress. Concretely, WSD-S
immediately continues training from the intermediate checkpoint with a high constant learning rate,
instead of rolling the model back to a checkpoint before decaying.

We evaluate the effectiveness of WSD-S with extensive experiments on LLMs from 0.1B to 1.2B
parameters in a continual learning setting with 50B, 100B, and 200B tokens as the three target compute
budgets. We empirically show that WSD-S has performance comparable with independent oracle
runs with cosine learning rate schedules optimally tuned for each of the three budgets. Furthermore,
WSD-S leads to a better validation loss than WSD under the same compute budgets due to the re-use of
the decay period. We also show through ablation studies that the performance is relatively insensitive
to the precise fraction of time spent decaying as long as it is near 10% and the decay does not start
shortly after a coincidental loss spike.
2 RELATED WORK
We discuss related work in two main areas: learning rate schedules and theoretical understandings of
the loss landscape. We defer the detailed discussion to Appendix A.

Learning Rate Schedules. Prior research has explored various choices of learning rate sched-
ules (Smith, 2017; Loshchilov & Hutter, 2017). Recent studies have focused on optimizing these
schedules for language model pretraining (Hu et al., 2024; Raffel et al., 2023; Defazio et al., 2023).

Theoretical Understanding on Loss Landscape. A substantial body of research seeks to elucidate
the properties of the loss landscape in deep learning. The closest ones related to our work include the
impact of gradient noise and curvature (Zhang et al., 2020a; Pan & Li, 2023), the benefits of large
learning rates for finding flatter minima (Kong & Tao, 2020; Wang et al., 2022), and the interplay
between loss landscape geometry and feature learning dynamics (Nakkiran et al., 2019; Rosenfeld &
Risteski, 2023). Among these works, Xing et al. (2018) has presented a similar conceptual picture
with us, arguing that SGD locally bounces around the valley on top of a valley floor. The iterates will
explore the uneven valley floor to find a more generalizable solution. In contrast, we focus on the
optimization perspective and assume the existence of the river at the bottom of the hillsides, where
the loss monotonously decreases. We build a formal theoretical framework on top of this picture,
leading to multiple quantifiable theoretical predictions.
3 THEORETICAL ANALYSIS WITH RIVER VALLEY LOSS LANDSCAPES

3.1 SETTING AND ASSUMPTIONS

We prove in the theorem below that the gradient flow starting from w will eventually converge
near the river and remain close to it. Subsequently, if we project the iterate w(T ) onto the river,
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Figure 3: Validation of Theory on a 2D Function. We validate Theorems 3.2 to 3.4 using a 2D example
with the loss function L(x1, x2) = (x2 − sin(x1))

2 + 0.2|10 − x1|. The blue curve represents the "river",
where the gradient aligns with the minimal eigenvector of the Hessian. (1) On the left, we observe that multiple
randomly initialized gradient flows converge near the river and follow it closely thereafter, consistent with
Theorem 3.2. (2) In the middle, we show that discrete gradient descent with a learning rate η = 0.6 shows
similar behavior: after initial oscillations, the gradient descent iterates align closely with their projections on the
river. The inset illustrates that the t-th projection’s progress along the reference flow (eq. (1)) approximately
equals ηt, as predicted by Theorem 3.3. (3) On the right, we further illustrate that stochastic gradient descent
(SGD) also tracks the river. In contrast to the discrete-step gradient descent, the iterates oscillate around the
river rather than staying on it. The trajectory with a larger learning rate exhibits both faster progress and greater
oscillations compared to the trajectory with a smaller learning rate, as predicted by Theorem 3.4.

the projection will move along the river at a pace similar to the reference flow x(·) (eq. (1)). This
phenomenon is visualized on Figure 3a. We will now formally present our theory. We use w ∈ Rd to
denote the parameters and L to denote the loss. Further, we use λk (H) and vk (H) to denote the
k-th largest eigenvalue and eigenvector of a matrix H , respectively. The “river” in the river valley is
a 1-dimensional manifold M formalized below.
Assumption 1. We assume the existence of a “river”, which is a 1-dimensional manifold M such
that any point w ∈ M has a gradient ∇L(w) that is in the same direction as the minimal eigenvector
direction of the Hessian, vd

(
∇2L(w)

)
.

Under this assumption, at every point on the river, the gradient ∇L(w) will align with the locally
flattest direction, vd

(
∇2L(w)

)
, which we refer to as the river direction. All other directions

orthogonal to the river direction are considered as the mountain directions, corresponding to the steep
hillsides in our conceptual picture.

We will consider a neighborhood U of the river M with the following technical assumptions.

Assumption 2 (Regularity Assumption). There exists an open set U containing M satisfying the
following assumptions:

1. Analyticity. L(w) is analytic with respect to w.
2. Bounded Hessian. There exists a constant γmax > 0, such that ∀w ∈ U, ∥∇2L(w)∥op ≤ γmax.

3. Existence of Eigengap. There exist constants γflat, γ > 0, such that ∀w ∈ U, λd−1

(
∇2L(w)

)
>

γ + 4γflat, |λd

(
∇2L(w)

)
| < γflat.

4. Slow Spinning of vd. There exist constants ∆ > ∆min > 0, κ ∈ [0, 0.01), such that ∀w ∈
U,∆min < ∥∇L(w)∥2 ≤ ∆, and ∥∇vd

(
∇2L(w)

)
∥op ≤ κγ/(2∆). This means that the river

direction vd changes slowly during optimization.
5. Uniqueness of M. For any point w ∈ U−M, the gradient ∇L(w) is not parallel to vd(∇2L(w)).
6. Conservation of Gradient Flows. There exists an open subset V ⊂ U and a constant r > 10∆

γ for
γ defined in Assumption 2.3 such that ∀w ∈ V , the r-neighborhood of the gradient flow starting
from w stays in U for continuous time Tmax ≥ 10 log(2∆/(κ∆min))/γ.

Throughout the analysis, κ should be treated as a small dimensionless constant, indicating the river
spins slowly.

Definition 3.1 (River Valley Landscape). If a loss function L satisfies Assumptions 1 and 2, then we
will claim that the loss function is a river valley.

One simple example of a river valley landscape is the quadratic loss L(x1, x2) =
γx2

1

2 − x2 with κ
equals to 0. In this case, the river is simply the line x2 = 0. However, the river valley landscape can
also be more complex and non-convex, see Figure 3 for an illustration. We will prove that the iterates
will follow the river with a predictable pace, which is characterized by the reference flow.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Reference Flow. We introduce a Riemannian gradient flow constrained to the river M, serving as a
reference in the following theorems. This flow intuitively represents the dynamics of iterates during
a gradient flow on the loss constrained by the river. We will denote the projection to the tangent
space of the river as PM(w) for w ∈ M and choose an arbitrary starting point x0 on the river. The
reference flow is defined as

dx(T ) = −PM (x (T ))∇L(x(T ))dT, x(0) = x0. (1)

Here, we use x to represent a point on the river, distinguishing it from w, which denotes a weight in
the original space. T refers to the continuous time variable.

3.2 MAIN RESULTS

Gradient Flow Dynamics. We will now consider gradient flow in the river valley landscape starting
from a point w ∈ V , with V defined in Assumption 2.6:

dw(T ) = −∇L(w(T ))dT,w(0) = w ∈ V. (2)

Theorem 3.2. If a loss L is a river valley (Definition 3.1), for the gradient flow w(T ) defined
in Equation (2), the iterate will obey the following dynamics:

1. Converge to a neighborhood of the river after a constant time Tconverge = 2 log(2∆/(κ∆min))/γ.

dist(w(Tconverge),M) = minT ∥x(T )− w(Tconverge)∥2 ≤ 2κ∆/γ.

2. Track the river closely with the same pace as the reference flow. There exists a time shift T0

depending on w(Tconverge), such that for any T ∈ [Tconverge, Tmax] for Tmax defined in Assump-
tion 2.6, there exists a T̃ ∈ [(1− ϵ)T, (1+ ϵ)T ] satisfying that, ∥x(T0+ T̃ )−w(T )∥2 ≤ 2κ∆/γ,
for ϵ = 30κ.

The proof is deferred to Appendix C.5. In this theorem, the lower bound on T represents the time
required for the iterate to converge near the river. Here x(T0 + T̃ ) can be viewed as a projection of
w(T ) onto the river. As both the geometric error (2κ∆/γ) and the time-alignment error (ϵ) vanish
when κ is small, this projection is not only close to w(T ) but also moves at nearly the same rate as
the reference flow. Here the term T0 acts as a shift, reflecting the dependence on the initialization, as
optimization trajectories starting from different initial points will enter the river at distinct locations.
The term T̃ represents the progress made along the river, consistent in the subsequent sections.

Gradient Descent Dynamics We will proceed to gradient descent with a discrete learning rate.
Similar to the continuous case, an iterate far from the river will converge to the river (as visualized
in the first few steps of Figure 3b). To ease our analysis, we will skip the convergence analysis and
assume the starting point w lies on the course of the river.

wη(k + 1)− wη(t) = −η∇L(wη(t)), wη(0) = w ∈ M. (3)

Here we use t to denote the discrete time step, in contrast to the continuous time variable T used in the
previous section. In this case, the progress along the reference flow over t steps will be approximately
ηt, as shown in the following theorem.
Theorem 3.3. If a loss L is a river valley (Definition 3.1), when η < γ

2γ2
max

, for the gradient descent
wη(T ) defined in Equation (2) with initialization w on the river, there exists a time shift T0 depending
on w and η, satisfying that for any t ≤ Tmax/η, there exists a T̃ ∈ [(1− ϵ)ηt, (1 + ϵ)ηt] satisfying
that, ∥x(T0 + T̃ )− wη(t)∥2 ≤ 10κ∆/γ for ϵ = 30κ+ 4ηγflat.

The proof is deferred to Appendix C.6. We observe that the distance of the iterates from the river
remains on the same order as in Theorem 3.2. Finally, the Theorem 3.3 predicts that a larger learning
rate η will induce higher progress ηt down the river given the same number of steps t, which is
verified in the inset of Figure 3b.

Stochastic Gradient Descent Dynamics. The above analysis holds for deterministic dynamics and
we will now proceed to model the stochasticity in the optimization process. This stochasticity will
stop the iterate from fully converging to the river and lead to oscillation in the mountain direction. To
simplify the analysis, we will consider a special case where the river direction is a constant and the
river reduces to a straight line.
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Assumption 3 (Straight River). For U in Assumption 2, ∀w ∈ U, ∥∇vd(∇2L(w))∥2 = 0. In this
case, the river is a straight line parallel to the direction of vd(∇2L(w)).

Under Assumption 3, vd(∇2L(w)) is a constant vector for w ∈ U and we will use vd to denote
this vector. We will also assume that the update is deterministic in the direction of the river, which
simplifies our proof while still capturing the essential dynamics of SGD. Consequently, we can
express the SGD update as follows:

w̃(k + 1) = w̃(t)− ηk∇L (w̃ (t)) + ηkgk, gk ∼ N
(
0, σ2

(
Id − vdv

T
d

))
, w̃(0) = w ∈ M. (4)

Here N (µ,Σ) indicates the normal distribution with mean µ and covariance Σ. Compared to
deterministic gradient descent, the introduced noise gk causes the iterates to deviate from the river
instead of fully converging to it (see the difference between Figure 3b and Figure 3c). Consequently,
we need to impose additional assumptions (deferred to Assumption 5 in appendix) on the loss.

Stable Phase. We start with the stable phase, where the learning rate ηk = η remains constant. This
theorem provides a formal basis for decomposing the loss into its river and hill components.
Theorem 3.4. Suppose a loss L is a river valley (Definition 3.1) and satisfies Assumptions 3
and 5. Then, for any constants δ ∈ (0, 1) and T ≤ Tmax, for sufficiently small learning rate η
depending on the regularity constants, (Deferred to Assumption 7 in Appendix) the SGD iterates
(defined in Equation (4)) with ηk = η satisfies that for any integer t ∈ [1/ηγ, T/η], there exists a
T̃ ∈ [(1 − ϵt)ηt, (1 + ϵt)ηt] satisfying that, E[L (w̃(t))] − L(x(T̃ )) = (d− 1)ησ2/2 + ϵL where
ϵt = 4ηγflat and |ϵL| ≪ (d− 1)ησ2 (defined in Appendix C.7).
The proof is deferred to Appendix C.7. In Theorem 3.4, the error term in the approximation of the
pace of the projection remains the same as in the deterministic case (Theorem 3.3). However, the
stochasticity introduces an additional hill component (d− 1)ησ2/2 to the expected loss at the iterate.
The hill component increases linearly with the learning rate. We conjecture that the theorem can be
extended to a general setting and verify this conjecture on a toy loss (see Figure 3c).

Decay Phase. Finally, we will consider the decay phase in training and will show that a proper
decaying schedule can reduce the hill component of the loss rapidly. We will first define our decaying
schedule, starting from step ts = ⌈T/η⌉:ηk = η

2+(t−ts)ηγ
, ts ≤ t ≤ 1.1ts. We choose this schedule

to maximize the loss decrease rate on a quadratic function (see Appendix C.2) because we perform
quadratic approximations of the loss near the river in our analysis. Our theorem predicts that the hill
component of the loss will decrease linearly with the learning rate under this learning rate schedule,
consistent with the empirical findings in Hu et al. (2024).
Theorem 3.5. Under the setting of Theorem 3.4, the SGD iterates (defined in Equation (4)) with
the decaying learning rate schedule satisfies that for any integer t ∈ [ts, 1.1ts], there exists a
T̃ ∈ [(1− ϵt)T (t), (1+ ϵt)T (t)] satisfying that, E[L (w̃(t))]−L(x(T̃ )) ≤ (d− 1)ηkσ

2/2+ ϵL with

T (t) = T +
t∑

k=ts

ηk.

Lr Decay
Iteration

Pr
ed

ict
ed

 L
os

s WSD
Small LR

Figure 4: Predicted Loss Curve of
SGD By Theorems 3.4 and 3.5 on
Loss L(x1, x2) = γx2

2/2− x1.

The formal proof is deferred to Appendix C.8. Compared
with Theorem C.32, the hill component is now dominated by
(d − 1)ηkσ

2/2, scaling linearly with the decaying learning
rate. When the oscillation level σ is large compared to the
loss changes along the river, the loss decrease can then appear
faster in the decay phase than in stable phases (see Figure 4).
Further, the decaying phase also makes progress along the river,
which corresponds to the term

∑t
k=ts

ηk in the theorem. Finally,
the terms used in our theorem match the scaling law formulation
in the concurrent work (Tissue et al., 2024).

3.3 VISUALIZING THE RIVER VALLEY.

We use a direct probing method to verify our theory. Our theory suggests that when the learning rate
is large, the model will bounce back and forth between the sharp valleys. However, in the decay
phase, the model will move downwards the hillside to approach the river. This suggests that if we
connect two checkpoints in the stable phase, we should expect to see a projection of the valley, and if
we connect two checkpoints in the decay phase, we should expect to see smooth decreasing curves.
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Figure 5: Probing Loss Landscape.
We validate the river valley analogy by
interpolating stable and decay phases
in GPT-2 pretraining experiments. We
observe that loss resembles a valley
when constrained on the segment con-
necting two models during the stable
phase and smoothly decreases when
connecting two models during the de-
cay phase.

To verify this, we pretrain a 124M GPT-2 model on OpenWebText. In the first run, we train the
model with a constant learning rate for 25B tokens and interpolate between two checkpoints at 20B
and 25B tokens (Figure 5a). In the second run, we branch off from the first run at 20B tokens and
decay the learning rate for 5B tokens, and we interpolate between two checkpoints at 20B and 25B
tokens (Figure 5b). The interpolation results closely resemble our theory. This observation is also
consistent with Sanyal et al. (2023) which shows weight averaging improves model performance
in the earlier part of the cosine training runs, where the learning rates are higher. Additionally, the
smooth decreasing curves we observed when connecting two checkpoints in the decay phase are
consistent with the findings in Hägele et al. (2024).

4 UNCERTAINTY VARIATION IN DATA DISTRIBUTION SHAPES THE RIVER
VALLEY LANDSCAPE

What causes the loss landscape to resemble a river valley structure? In this section, we propose and
validate the hypothesis that variations in next-token uncertainty shape the loss landscape. When
predicting a deterministic fact, a large learning rate can boost the model’s confidence, accelerating
learning. However, when the next token is inherently ambiguous—such as the continuation of a
phrase like "I am"—the model must learn a calibrated distribution, which may necessitate a smaller
step size. This variation in uncertainty leads to differences in sharpness across the loss landscape,
resulting in the river valley structure.

Stochastic

Deterministic

Ken

Bob

Alex

0.9

0.1

0.3

0.4

0.3

Figure 6: Visualization of Toy Bi-
gram Language. We design a syn-
thetic dataset where each city has
a unique name distribution. The
left shows the name distributions for
two cities, one deterministic and one
stochastic.

A Toy Bigram Language. We formalize this intuition using a
synthetic language composed of cities and names, where each
city corresponds to a unique distribution of its citizens’ names.
For instance, one city might have a highly deterministic distri-
bution, with most residents named "Ken“, while another city
may have a more diverse distribution of names. This synthetic
language follows the structure in Allen-Zhu & Li (2024). The
goal is to learn the distribution of names conditioned on each city.
We show that cities with more deterministic name distributions
align with flatter regions in the loss landscape (the "river"). In
contrast, cities with more diverse name distributions correspond
to sharper regions (the "hillsides").

Formally, let the set of cities be represented by {1, . . . , n} and the set of names by {1, . . . ,m}. Data
is generated by first selecting a city i uniformly at random, then sampling a name j according to the
city’s name distribution. The name distribution for city i is parameterized by a categorical distribution
Categorical([Pi,j ]

m
j=1), where Pi,j represents the probability of selecting name j in city i, and each

Pi,j > 0. To quantify the uncertainty in each city’s name distribution, we compute the Gini impurity
of the distribution as: Ui = IG(name | city = i) = 1−

∑m
j=1 P

2
i,j ∈

[
0, 1− 1

m

)
.

The value of Ui reflects the uncertainty of city i’s name distribution. When the distribution is close
to deterministic—i.e., there exists a j such that Pi,j is near 1—Ui approaches its lower bound of 0.
Conversely, for a nearly uniform distribution, Ui approaches its upper bound of 1− 1

m . Given this
setup, we parameterize our model with Θ ∈ Rn×m, where each row corresponds to a city and each
column to a name. The model estimates the probability of name j for city i using the softmax function

exp(Θi,j)∑m
k=1 exp(Θi,k)

. We use sampled data to train this model with cross entropy loss. The population

loss is given by: L(Θ) = 1
n

∑n
i=1 ℓi(Θi,:), ℓi(Θi,:) = −

∑m
j=1 Pi,j log

exp(Θi,j)∑m
k=1 exp(Θi,k)

. This loss is
separable across different cities, meaning that the contribution from each city is independent. The
loss component ℓi(Θi,:) captures the contribution from city i, and different name distributions across
cities lead to different forms of ℓi. Considering a parameter Θ∗ that minimizes the loss L, we will
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Figure 8: Comparison with the Cosine Oracles. We show that the WSD-S schedule can perform similarly to
the Cosine schedules in a single run. The ⋆ in the graphs visualize the terminating validation loss of different
Cosine runs. The largest validation loss gap between the WSD-S and the Cosine schedules is 6e-3. The lower
right figure plots the learning rate curves used in this experiment.
show that cities with more stochastic name distributions correspond to sharper components in the
loss landscape, as reflected by the average-direction sharpness of ℓi.

Lemma 4.1. The average-direction sharpness of loss component ℓi at Θ∗ equals the uncertainty of
the name distribution (Ui). Tr(∇2ℓi(θ)) |θ=Θ∗

i,:
= Ui.

Lemma 4.1 demonstrates that at the global minimum, the sharpness associated with a city decreases
as the city’s name distribution becomes more deterministic. This aligns with the intuition that a
deterministic token corresponds to a flatter loss direction. We can further establish the existence of
a generalized river (Assumption 9) in this loss landscape under appropriate assumptions about P
(see Theorem C.35). Along the river, the gradient remains nonzero only for the cities with more
deterministic name distributions, reinforcing the connection between determinism and flatness in the
loss landscape.

Empirical Verification. We empirically verify that the loss curve of WSD can be reproduced in our
synthetic setting. The dataset used contains two types of cities: (1) a deterministic type with name
distribution’s entropy less than 0.2, and (2) a stochastic type with name distribution’s entropy greater
than 1. Each type contains 1.8k cities and there are 10 possible names. We train the toy model defined
previously on this synthetic data and replicate the non-traditional loss curve of WSD (Figure 7).

800 1000 1200
Steps

1.20

1.25

1.30

Lo
ss

Decay
Stable
Cosine

Figure 7: Reproducing the Non-
traditional Loss Curve. We repro-
duce the non-traditional loss curve of
WSD on this synthetic language.

We continue to show that the difference in uncertainty also
shapes the loss landscape for Transformers. We convert the
data into a synthetic language in the format "The resident of
[CITY]: [NAME]" and fine-tune a 0.1B GPT-2 model, pretrained
on OpenWebText, using this synthetic data. We experiment
with two different learning rate schedules: a constant schedule
(stable) and a decaying schedule (decay). We then calculate the
difference in loss between the two models’ predictions for the
first token of "[NAME]". A significant Spearman correlation of
0.388 is observed between the loss difference and the ground
truth entropy per city. This correlation indicates that the loss
decrease is greater during the decay phase for more stochastic
populations. Furthermore, although the decay phase achieves
a lower overall loss, the mean loss for the deterministic sub-
population is higher than in the stable run, suggesting that the stable run better learns the deterministic
sub-population.

5 WSD-S: A SIMPLIFICATION OF THE WSD SCHEDULE

The goal of continual pretraining is to generate checkpoints that exhibit good performance at multiple
compute budgets in one run. Formally, our goal is to achieve multiple intermediate checkpoints θTk

,
each corresponding to a computing budget (number of steps) Tk for k ∈ {1, . . . ,K}.

A strong baseline to measure the performance of θTk
would be running cosine learning rates (Figure 8,

lower right) for each budget Tk separately, decay the learning rate linearly to the cosine function
between [0, π]. We will dub this oracle method as Cosine-Oracle. However, Cosine-Oracle can’t be
done in a single run and will incur a high total compute budget

∑
k Tk. A simple modification to

Cosine-Oracle is to use multiple consecutive cosine learning rates between Tk−1 and Tk (Figure 2b,
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Figure 9: Cosine Learning Rate Implicitly Hurts the Models for Future Continual Learning. We show that
while WSD and the cosine learning rate schedule may produce similar validation loss in a single run, a model
trained with the cosine learning rate schedule is implicitly hurt compared to the model trained with WSD for
future Continual learning. On the 0.6B models, after training the models for 50B tokens using both WSD-S and
the cosine learning rate schedule, we continually train two models for another 50B tokens using both learning
rates. We observe that the model trained with WSD-S consistently outperforms the model trained with the cosine
learning rate when used as the starting point for further training.

last row), which we will dub as Cyclic-Cosine. Cyclic-Cosine only requires a total compute budgets
TK but it leads to non-negligible performance loss compared to Cosine-Oracle (Hu et al. (2024)).

Warmup-Stable-Decay (WSD) addresses this issue by maintaining a main branch that keeps using
a constant learning rate after warmup process and branch off using a decaying learning rate to
achieve intermediate checkpoints. One can then continue pretraining from a checkpoint in the main
branch by resuming with the same constant learning rate. Formally, WSD introduces decay starting
points D1, . . . , Dk such that Ti−1 < Di < Ti. WSD will then correspond to the following process
(Figure 2b, second row):(1) Get a main branch of checkpoints θmain by running a constant learning
rate schedule for DK steps, and (2) For each k, run a decaying learning rate schedule for Tk −Dk

steps starting from θmain
Dk

to get θTk
. The above process reutilizes the main branch of checkpoints

θmain for each Tk and hence reduces the total compute budget to TK +
∑

k(Tk −Dk).

Recall that in the river valley landscape model, the Warmup-Stable-Decay (WSD) algorithm can
be viewed as a combination of a large learning rate phase to speed up progress down the river
and a rapid learning rate drop at the end to reduce the oscillation. Because the decay phase also
makes progress along the river (see Theorem 3.5), we propose a simplified version of WSD, called
Warmup-Stable-Decay-Simplified (WSD-S), that continues with another stable phase leaving off
the end of the previous decay phase (see the first row of Figure 2b) without separating the training
process into two branches. Formally, the WSD-S learning rate schedule is defined as follows:

ηk =

{
decay(Ti −Di, ηmax, ηmin)[t−Di] if ∃i,Di < t ≤ Ti;

ηmax otherwise.
(5)

The key difference from our methods is the choice of initialization point when retraining starts. In
WSD, the second stable phase uses the model before the decay phase, whereas we use the model after
it. This process is more convenient to implement because it does not require rolling back to the main
branch after each decay phase. Here the learning rate decay function decay can take many forms
that decay the learning rate from ηmax to ηmin over Ti − Di steps. In this paper, we will use the

following decay function 1
decay(T,ηmin,ηmax)

=

[
t
T

1
ηmin

+
(
1− t

T

)
1

ηmax

∣∣∣∣∣ t ∈ {0, 1, . . . , T}

]
. for all

experiments (visualized in Figure 2b, first two rows). This function is motivated by the analysis on
quadratic functions in Theorem 3.5. The inverse of the learning rate linearly interpolates from the
inverse of the maximum to the inverse of the minimum.

5.1 EXPERIMENTS

Architecture and data. We adopt the LLaMA architecture from Touvron et al. (2023), adjusting the
hyperparameters to create four model sizes: 0.1B, 0.3B, 0.6B, and 1.2B. The exact hyperparameters
are deferred to Appendix D. These models are trained on the Pile dataset (Gao et al., 2020) with a
context length of 4096 and a batch size of 4M tokens.
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Figure 10: Comparison With WSD. We show that WSD-S performs favorably compared with WSD when the
total computes is fixed, achieving a consistent improvement over WSD on all the model sizes when trained for
approximately 200B tokens.

Implementation. We use a standard Adam optimizer. We set the batch size to 1024 and fixed the
peak learning rate for the same model size for all the methods. For the 0.1B and 0.3B models, we use
a peak learning rate of 6e-4, and for the 0.6B and 1.2B models, we use a peak learning rate of 4e-4.
These values are chosen following current empirical practice (e.g. see Groeneveld et al. (2024)). We
set the minimal learning rate to 0.1 of the peak learning rate. We use a TPU v3-256 model to train the
model with the Levanter framework in Jax (Bradbury et al., 2018; CRFM, 2024). The fraction of
time spent decaying is chosen to be 10%. The only exception is that when running WSD on the 0.3B
models, we encounter a loss spike after training for 22.5B tokens and decay at the checkpoint trained
for 22B tokens instead. This change is in favor of WSD in our comparison between WSD-S and WSD.
The detailed hyperparameters are deferred to Appendix D.
5.1.1 RESULTS

WSD-S performs competitively with Cosine-Oracle. The three endpoints of WSD-S are set at 50B,
100B, and 200B tokens for all models. As shown in Figure 8, WSD-S delivers competitive results
compared to Cosine-Oracle in a single run.

WSD-S significantly outperforms Cyclic-Cosine. We compare the Cyclic-Cosine and the WSD-S on
0.6B models with a total token budget of 100B tokens. Both schedules reduce to a minimal learning
rate at 50B tokens to obtain an intermediate checkpoint. Our results show that WSD-S outperforms
Cyclic-Cosine with a significant performance gap of 4e-2 (Figure 9). A common belief is that loss
spiking after increasing the learning rate is the main cause of the performance loss in Cyclic-Cosine.
However, this belief does not explain the advantage of WSD-S. We hypothesize that a model trained
with a small learning rate for too long, as with Cosine, is implicitly hurt compared to a model trained
with a large learning rate for the majority of the run, as with WSD or WSD-S.

To show that the model trained with WSD is more suitable for continual training, we conducted
ablation studies by interchanging the schedules in the latter half of the runs to create two new learning
rates (Cosine-WSD and WSD-Cosine). Among the four runs, the model trained using WSD for the
first half consistently achieved lower loss in continual learning, indicating that WSD produces models
more suitable for continual learning, even after learning rate decay.

WSD-S matches (and slightly outperforms) WSD given the same total compute. For WSD,
we adopt the following comparison methodology: assuming a 10% decay portion, to get three
checkpoints at 12.5k, 25k, and 50k steps, WSD then requires corresponding total steps of 12.5k,
26.25k, and 53.75k. Hence, we examine whether WSD-S can output three models of matching or
better performance in the same corresponding steps (see Figure 10). Our results suggest that WSD-S
consistently outperforms WSD when trained on 200B tokens and underperforms WSD only on the
smallest scale experiments when we trained 0.1B models for 25k steps. As this is the smallest scale
experiment, we conclude that WSD-S has a slight advantage over WSD when the total compute is fixed.
This matches our intuition that WSD-S can reuse the decay phases of previous checkpoints, leading to
a more efficient use of the total compute. As a simpler version of WSD, WSD-S is more user-friendly
for open-source pretrained models, allowing users to continue training the final checkpoint without
needing intermediate ones given that the pretrained models are trained with WSD or WSD-S.

WSD and WSD-S are not sensitive to the fraction of time spent decaying We conclude with an
ablation study on the fraction of time spent decaying, and the result is shown in Figure 15. The final
performance matches tightly within the range of 8% to 12%, showing a small sensitivity to the choice
of the decay portion. However, in our experiments, we observe that decaying near a loss spike can
lead to a significant performance loss (Figure 15,right). With the large learning rate, the training runs
tend to be very volatile and there are multiple loss spikes in the training (see Figure 8). If a decay
happens closely after a loss spike and the loss has not yet decreased to its original level, it is typical
that the final validation loss will be worse by 1e-2 or even more. We observe the same phenomenon
for WSD, and when such a scenario happens, we suggest either running longer till the loss stabilizes
or rolling back to a slightly earlier checkpoint before the loss spikes and decays from there.
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A RELATED WORK

Learning Rate Schedules. Learning rate schedules are crucial in deep learning, with previous
studies exploring various options. Smith (2017) was the first to propose a cyclic triangular learning
rate schedule that interleaves decreasing and increasing learning rates. Loshchilov & Hutter (2017)
extended the idea to a cyclic cosine learning rate schedule. He et al. (2015) introduced the notion
of warmup, which gradually increases the learning rate in the earlier training phase. Goyal et al.
(2018); Hoffer et al. (2018); You et al. (2020) concluded that the learning rate should scale linearly
with the batch size, which is further theoretically examined in Smith et al. (2020); Li et al. (2021);
Malladi et al. (2023). You et al. (2019) performed an analysis on why learning rate schedules are
helpful and suspected that the large learning rate at the beginning phase is mostly useful for avoiding
memorization of noisy data, which is consistent with our analysis in Section 4.

In the LLM era, works including Hoffmann et al. (2022); DeepSeek-AI et al. (2024); Hu et al. (2024)
examined how to choose learning rate schedules for pretraining. In particular, Hu et al. (2024)
introduced a learning rate schedule called Warmup-Stable-Decay (WSD) that remains constant for the
majority of the runs before decaying in language model pretraining, which were studied independently
in Zhai et al. (2022); Ibrahim et al. (2024); Hägele et al. (2024). Raffel et al. (2023); Ibrahim et al.
(2024) explored another possibility of using an inverse square root schedule to pretrain the language
models. Defazio et al. (2023) proposes to use linear decay for the entire training run. Defazio et al.
(2024) shows that with appropriate iterate averaging, a constant learning rate schedule can reach
better performance than the cosine learning rate schedule. Rae et al. (2022); Gupta et al. (2023); Hu
et al. (2024); Ibrahim et al. (2024) examined how to choose a learning rate schedule in a continual
learning setting and verified that rewarming-up cosine learning rate brings performance drops that
are costly to recover. A common belief is that the performance drop is due to the sudden increase in
learning rate during rewarming-up. However, our work shows that increasing the learning rate after a
short decay in WSD does not cause a similar performance drop as seen with the cosine learning rate,
challenging the previous hypothesis. Instead, we suggest that the performance loss associated with
rewarming-up cosine learning rate is due to the implicit damage it causes to the model, making it
unsuitable for continual training. On the contrast, WSD avoids such damage by maintaining a high
learning rate during the stable phase, hence the sudden increase in learning rate does not lead to
performance drops in continual training.

Continual Learning. Continual learning, the process of updating the model with newly collected
data, can improve the models’ knowledge and capability. Previous continual learning research
(Aljundi et al., 2019; Veniat et al., 2021; Cossu et al., 2022; Dyer et al., 2022; Harun et al., 2023;
Mehta et al., 2023) assumed significant domain shift and aimed to avoid forgetting old knowledge
while learning new knowledge. Recent works including Hernandez et al. (2021); Lesort et al. (2023)
suggested that optimizers including SGD and Adam have a knowledge accumulation effect and the
effect of catastrophic forgetting may be less significant than expected, especially when replay is
applied. Our work mainly focuses on continual pre-training without necessarily a strong domain shift
and hence does not touch upon the effect of covariance shift. Continual learning is also extensively
employed in large language models such as LLaMA to extend their capabilities, such as handling
longer contexts (e.g., see Tworkowski et al. (2023); Peng et al. (2023); Chen et al. (2023); Dubey
et al. (2024) and references therein) or dealing with new languages and domains (e.g., see Azerbayev
et al. (2024); Rozière et al. (2024); Cui et al. (2024) and references therein).

Theoretical Understanding on Loss Landscape. A long line of research aims to better understand
the loss landscape in deep learning (e.g., see Freeman & Bruna (2017); Garipov et al. (2018); Li et al.
(2020) and references therein). We will highlight several phenomena that are related to our findings.

(1) Ill-conditioned directional sharpness and heavy-tailed noise: Zhang et al. (2020a;b) examined
the gradient noise in language modeling and observed that the noise is heavy-tailed in multiple
dimensions. Pan & Li (2023); Liu et al. (2024) showed that the loss has vastly different curvatures
in different dimensions. Pan et al. (2022) analyzes optimizing a quadratic function with skewed
curvature theoretically. Our river valley landscape is consistent with these findings.

(2) Benefit of large learning rates: Large learning rates have a provable regularizing effect in finding
flatter minima (Kong & Tao, 2020; Wang et al., 2022), and flatter minima typically have a better
generalization effect, even in the pretraining setting (Jiang et al., 2019; Blanc et al., 2020; Liu et al.,
2022; Li et al., 2022; Ma et al., 2022; Lyu et al., 2023; Andriushchenko et al., 2023).
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(3) Connecting loss landscape with feature learning: Some recent works (Nakkiran et al., 2019;
Rosenfeld & Risteski, 2023) tried to understand how the loss landscape is formed through the
lens of feature learning. Rosenfeld & Risteski (2023) showed that a large learning rate will cause
oscillation in learning subtle classification rules while continuing to learn other more deterministic
features. Wang et al. (2024) studied how to improve generalization and convergence by amplifying the
update provided by the optimizer in the flat direction of the loss landscape. Wu et al. (2024); Cai et al.
(2024) studied gradient descent dynamics on logistic regression, showing that a large learning rate
will cause oscillation in the earlier phase but will lead to higher progress later in training. Pagliardini
et al. (2024) developed a modification of the Adam optimizer based on optimization analysis on the
Rosenbrock function, which is a special case of the river valley landscape. Song et al. (2024) shows
that when SGD update is projected to the dominant subspace of the Hessian, the model’s optimization
progress slows down and they conjecture the existence of ill-conditioned valley in the landscape,
which can be viewed as a similar and simpler version of the river valley landscape discussed in this
paper.

(4) Ravines in the Loss Landscape. Concurrently with our work, Davis et al. (2024) identified
the existence of a ravine in the loss landscape—a manifold where every point has a vanishing
gradient within the sharp eigenspace of the Hessian. This feature appears in any smooth loss function
exhibiting fourth-order growth near minimizers. They also demonstrate the advantages of using
adaptive step sizes in this context. The concept of a ravine aligns closely with the river structure
described in our paper and can be considered a specific instance of it.

The landscape analysis described in these previous works matches our river valley picture at a high
level.

B ADDITIONAL EXPERIMENT RESULTS

B.1 PRETRAINING EXPERIMENTS ON DCLM

WSD-S outperforms WSD. We reran our experiments on another dataset called DCLM (Li et al.
(2024)) with the 0.1B and 0.6B models for both WSD and WSD-S. We use learning rates 6e-4 and
5e-4 respectively for both models and a linear learning rate decay in the decay phase. The rest of the
hyperparameters is the same as before. We observed that on this dataset, we no longer suffer from
loss spikes and our results continue to hold. We also tested our final models on a sampled validation
set of Penn Treebank, RedPajama, RefinedWeb, and the English subset of C4. The models trained
with WSD-S continue to outperform the models trained with WSD.
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Figure 11: Comparison With WSD on DCLM. We show that WSD-S performs favorably compared with WSD
when the total compute is fixed on the DCLM dataset, achieving a consistent improvement over WSD on all the
model sizes.

A learning rate sweep for WSD-S and Cyclic-cosine We perform a learning rate sweep for the
Cyclic-cosine method and WSD-S method on the DCLM dataset. Both methods are trained for
25000 steps and are decayed to a minimal learning rate at 12500 steps. The peak learning rate
and corresponding final loss are shown in Table 1. We observe that WSD-S outperforms Cosine-
Rewarmup for most choices of the learning rate and the best performance of WSD-S is also better.
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LR 5E-4 1E-3 2E-3 4E-3
Cyclic-Cosine 2.54674 2.51853 2.49672 2.50063
WSD-S 2.52739 2.50944 2.49565 2.51052

Table 1: Comparison of methods across learning rates.

B.2 ADDITIONAL MODE CONNECTIVITY RESULTS

Ablations on the experiments in Section 3.3 We ablate the experiment results presented in Sec-
tion 3.3, varying the starting point and the duration used for decay and stable phase in Figures 12
and 13. Our results continue to hold.

0.0 0.2 0.4 0.6 0.8 1.0
t

3.08
3.09
3.10
3.11
3.12
3.13
3.14

Lo
ss

W0 : 5.0B tokens

W1 : 5.25B tokens

tW0 + (1 t)W1

(a) Decay at 5B tokens for 0.25B
tokens

0.0 0.2 0.4 0.6 0.8 1.0
t

3.06

3.08

3.10

3.12

3.14

Lo
ss

W0 : 5.0B tokens

W1 : 5.5B tokens

tW0 + (1 t)W1
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Figure 12: Loss smoothly decreases in decay phases We vary the starting point of the decaying phase and the
duration of the decaying phase and find that loss generally follows the smooth decreasing trend when connecting
two models during the decay phase. The experiment setting is the same as Figure 5.
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Figure 13: Losses exhibit valley shape in stable phase We vary the starting point of the stable phase and the
duration of the stable phase and find that loss generally exhibits a valley-like shape when connecting two models
during the stable phase. The experiment setting is the same as Figure 5.

2-dimensional visualization of loss. Given a checkpoint A trained using a constant learning rate,
we decay the learning rate to obtain a decayed checkpoint A′. We then continue to train the checkpoint
A using a constant learning rate to obtain checkpoint B and corresponding decayed checkpoint B′.
Our assumption states that the loss is much sharper along the line AA′ (the sharp hillsides), then
along the line A′B′ (the flat river). We present a visualization of the loss in this section, validating
this assumption.

C OMITTED PROOFS

C.1 NOTATION.

To denote aT b for two vectors, we will ⟨a, b⟩. We will use the following function to denote the
directional derivative of a mapping F : Rd → Rm:

∇F (x)[v] = lim
α→0

F (x+ αv)− F (x)

α
.
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Figure 14: 2-dimensional Probing
of Loss Landscape. We choose A
to be a 0.1B GPT-2 model trained
on OpenWebText for 5B tokens us-
ing constant learning rate 6e-4 and
A′ being the model after decaying
learning rate on 0.25B tokens. B
is a model trained on another 0.5B
token using the constant learning
rate after A and B′ is the model
after decaying learning rate on an-
other 0.25B tokens. Our visualiza-
tion shows that the loss is much flat-
ter in the direction of A′B′ com-
pared with the loss in the direction
of AA′.

C.2 A WARMUP ON THE QUADRATIC FUNCTION

We will first motivate the decaying function we choose using a simple example on quadratic function.
Lemma C.1. Assuming that we are considering the following gradient descent

yk+1 = yk − ηk∇(γy2k/2)− ηgk, gk ∈ N (0, σ2I).

Suppose η0 = ηmax and y0 follows a normal distribution N (0, ηmax
σ2

2γ−ηmaxγ2 ). Then the following
two statements hold,

1. If ∀t, ηk = η0, yk will follow the same distribution as y0.
2. Consider all the learning rate schedule ηk, the following is the optimal

∀t ≥ 1, η∗k =
1

γ(k − 1) + 2
ηmax

in the sense that it yields the fastest expected loss decrease. Suppose η∗k corresponds to iterates
variables y∗k, for any ηk and its corresponding iterates variables yk,

E[γy2k/2] ≥ E[γ(y∗k)2/2] =
σ2

γ
η∗k.

Proof. We will denote σk = E[y2k] and assume WLOG we start decayping at step 0. Then we will
have

σk = (1− ηkγ)
2σk−1 + η2kσ

2.

If we choose all ηk = ηmax, we can directly verify that σk = σ.

If we choose ηk = σk−1γ
σk−1γ2+σ2 to minimize the right hand side, we will have that

σk =
σk−1σ

2

σk−1γ2 + σ2
.

⇐⇒ 1

σk
=

1

σk−1
+

γ2

σ2
=

1

σ0
+

γ2k

σ2
.

This implies σk = 1
1
σ0

+ γ2k

σ2

and plugging into ηk = σk−1γ
σk−1γ2+σ2 we have that

η∗k =
γ

γ2 + σ2

σk−1

=
γ

γ2k + σ2

σ0

=
γ

σ2
σk.

The optimality of η∗k can be easily inferred from the proof.
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C.3 LANDSCAPE ANALYSIS

We will parameterize PF (x) as vd(x)vd(x)
T and PS(x) to denote I − PF (x). Throughout this

section, we will assume vd(x) is continuous and pointing towards the direction of the gradient for all
the x on the river. The following technical lemmas will be used repetitively in the proof.
Lemma C.2. Under Assumptions 1 and 2, the directional derivative of PS(x) and PF (x) exist and
satisfied that

∇PF (x)[v] = −∇PS(x)[v] = ∇vd(x)[v]vd(x)
T + vd(x)∇vd(x)[v]

T .

Further

∇PS(x)[v]PSa = ⟨∇vd(x)[v], PSa⟩vd(x),
∇PS(x)[v]PFa = ⟨vd, PFa⟩∇vd(x)[v].

∥∇PS(x)[v]∥2 ≤ γϵ

∆
∥v∥2.

Proof. As γflat is an unique eigenvalue of ∇2L(x+ vt) and ∇2L(x+ vt) is analytical with respect
to t, by Theorem 6.1 of Kato (1995), we know that vd(x+ vt) is analytical with respect to t. Hence,
the directional derivative exists.

The proof is by applying the chain rule and noticing that ⟨vd(x),∇vd(x)[v]⟩ = 0 because vd(x) is
always a unit vector.

We will now define the projection of iterate to the river as the progress measure of the optimization
dynamics.
Definition C.3. For U in Assumption 2 and any w ∈ U , we define the following ODE as the
projection flow:

ϕ(w, 0) = w, dϕ(w, t) = −PS(w)∇L (ϕ(w, t)) dt. (6)
When limt→∞ ϕ(w, t) is well defined, we will define Φ(w) = limt→∞ ϕ(w, t) as the projection of w
to the river.

The following lemma ensures that the projection function is well-defined and is close to w:
Lemma C.4. Under Assumptions 1 and 2, for any w satisfying that B(w, 2∆

γ ) ⊂ U , Φ(w) ∈ M
exists and ∥w − Φ(w)∥2 ≤ 2∥PS(w)∇L(w)∥2

γ+2γflat
. Moreover, movement along the projection flow decays

exponentially, ∥PS(ϕ(w, t))∇L(ϕ(w, t))∥2 ≤ exp(−γt/2)∥PS(w)∇L(w)∥2.

Proof. We will track ∥PS(ϕ(w, t))∇L(ϕ(w, t))∥22 along the projection flow before ϕ(w, t) leaves U ,

d∥PS(ϕ(w, t))∇L(ϕ(w, t))∥22
dt

=2⟨PS(ϕ(w, t))∇L(ϕ(w, t)),
dPS(ϕ(w, t))

dt
∇L(ϕ(w, t)) + PS(ϕ(w, t))

d∇L(ϕ(w, t))

dt
⟩.

By Lemma C.2 and assumption 2, the first term can be bounded as

⟨PS(ϕ(w, t))∇L(ϕ(w, t)),
dPS(ϕ(w, t))

dt
∇L(ϕ(w, t))⟩

=− ⟨PS(ϕ(w, t))∇L(ϕ(w, t)),∇PS(ϕ(w, t))[PS(ϕ(w, t))∇L(ϕ(w, t))]∇L(ϕ(w, t))⟩
=− ⟨PS(ϕ(w, t))∇L(ϕ(w, t)),∇vd(x)[PS(ϕ(w, t))∇L(ϕ(w, t))]⟩⟨vd, PF (ϕ(x, t))∇L(ϕ(x, t))⟩

≤∥∇L(ϕ(w, t))∥∥PS(ϕ(w, t))∇L(ϕ(w, t))∥2κγ
∆

≤ κγ∥PS(ϕ(w, t))∇L(ϕ(w, t))∥2.

The second term is always negative

⟨PS(ϕ(w, t))∇L(ϕ(w, t)), PS(ϕ(w, t))
d∇L(ϕ(w, t))

dt
⟩

=− ⟨PS(ϕ(w, t))∇L(ϕ(w, t)), PS(ϕ(w, t))∇2L(ϕ(x, t))PS(ϕ(w, t))∇L(ϕ(w, t))⟩
≤ − (γ + 4γflat)∥PS(ϕ(w, t))∇L(ϕ(w, t))∥2.
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Summing up the two terms,

d∥PS(ϕ(w, t))∇L(ϕ(w, t))∥22
dt

≤ −(γ + 2γflat)∥PS(ϕ(w, t))∇L(ϕ(w, t))∥2.

By Lemma C.36, we have ∥PS(ϕ(w, t))∇L(ϕ(w, t))∥22 ≤ exp(−(γ + 2γflat)t)∥PS(w)∇L(w)∥22.
Hence ∀t > 0,

∥ϕ(w, t)− w∥2 ≤
∫ ∞

0

∥PS(ϕ(w, τ))∇L(ϕ(w, τ))∥2dτ

≤ ∥PS(w)∇L(w)∥2
∫ ∞

0

exp(−(γ + 2γflat)t/2)

≤ 2∥PS(w)∇L(w)∥2
(γ + 2γflat)

.

As B(w, ∆
2γ ) ⊂ U , the analysis hold along the trajectory and this shows that Φ(w) = lim

t→∞
ϕ(w, t)

exists and that ∥Φ(w)− w∥2 ≤ 2∥PS(w)∇L(w)∥2

(γ+2γflat)
.

Further Φ(w) satisfies that PS(Φ(w))∇L(Φ(w)) = 0, and by Assumption 2, Φ(w) ∈ M.

The following lemmas focus on the properties of ∂Φ.
Lemma C.5. Under Assumptions 1 and 2, for any w satisfying that B(w, 2∆

γ ) ⊂ U , ∂Φ(w) is
well-defined.

Proof. Recall that Φ(w) = lim
n→∞

(ϕ ◦ ϕ ◦ . . . ϕ)︸ ︷︷ ︸
n times

(w), as ϕ is differentiable (Lemma C.2) and M is

the fixed point of Φ, by Theorem 5.1 of Falconer (1983), we have that ∂Φ(w) is well-defined.

Lemma C.6. Under Assumptions 1 and 2, for any w satisfying that B(w, 2∆
γ ) ⊂ U , it holds

that ∂Φ(w)PS(w)∇L(w) = 0. Further for any w = x(t) ∈ M, it holds that ∂Φ(w)PS(w) =

0, ∂Φ(w)dx(t)dt = dx(t)
dt and that for any v, ∂Φ(w)v aligns with dx(t)

dt .

Proof. According to Lemmas C.4 and C.6, Φ, ∂Φ is well-defined when B(w, 2∆
γ ) ⊂ U . Based

on Definition C.3, we have that

∀t,Φ(ϕ(w, t)) = Φ(w).

Hence,

dΦ(ϕ(w, t))

dt
|t=0= 0,

Therefore,

0 = ∂Φ(w)
dϕ(w, t)

dt
|t=0= −∂Φ(w)PS(w)∇L(w).

For any w ∈ M and any v ∈ Rd, it holds that

0 =
d∂Φ(w + αv)PS(w + αv)∇L(w + αv)

dα
|α=0

= ∂2Φ(w)[v]PS(w)∇L(w) + ∂Φ(w)
[
∂PS(w)[v]∇L(w) + PS(w)∇2L(w)v

]
= ∂Φ(w)

[
∂PS(w)[v]∇L(w) + PS(w)∇2L(w)v

]
. (7)

Define Jw(v) as the projection from v to ∂PS(w)[v]∇L(w) + PS(w)∇2L(w)v.

Lemma C.7. Jw(v) is a linear projection and the range of Jw is the range of PS .
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Proof. Based on Lemma C.2, PS∂PS(w)[v]∇L(w) = ∂PS(w)[v]∇L(w). Hence the range of Jw is
a subspace of the range of PS . When v = PS(w)u ̸= 0, based on Assumption 2,

∥Jw(v)∥2 ≥ ∥PS∇2L(w)PS(w)u∥2 − ∥∂PS(w)[PS(w)u]∇L(w)∥2 ≥ γ∥u∥2 − γκ∥u∥2 > 0.

Hence the range of Jw has a dimension no smaller than the dimension of the range of PS(w). This
concludes that the range of Jw is the range of PS(w).

Hence by Equation (7) and lemma C.7, it holds that for w ∈ M, ∂Φ(w)PS(w) = 0. This shows that
the range of ∂Φ(w) has dimension 1.

Finally for any w ∈ M, Φ(w) = w. Hence,

dΦ(x(t))− dx(t)

dt
= 0.

∂Φ(x(t))
dx(t)

dt
=

dx(t)

dt
.

Hence the range of ∂Φ(w) contains dx(t)
dt , this concludes the proof.

Lemma C.8. Under Assumptions 1 and 2, for any w satisfying that B(w, 2∆
γ ) ⊂ U , it holds that

∥PF [Φ(w)]∂Φ(w)∇L(w)− PF (w)∇L(w)∥2
∥PF (w)∇L(w)∥2

≤ 5κ,

∥PS [Φ(w)]∂Φ(w)∇L(w)∥2
∥PF (w)∇L(w)∥2

≤ 5κ.

Proof. First, by Lemma C.6, it holds that ∂Φ(w)∇L(w) = ∂Φ(w)PF (w)∇L(w). Define

v = PF (w)∇L(w)/∥PF (w)∇L(w)∥2,
s(t) = PS(ϕ(w, t))∂ϕ(w, t)[v],

f(t) = PF (ϕ(w, t))∂ϕ(w, t)[v],

it holds that s(0) = 0 and f(0) = v as ϕ(w, 0) = w.

We will bound the changes of s(t) and f(t). We will begin with calculating the time derivative of
∂ϕ(w, t)[v].

d∂ϕ(w, t)[v]

dt
=∂

(
dϕ(w, t)

dt

)
[v]

=− ∂ (PS(ϕ(w, t))∇L(ϕ(w, t))) [v]

=− ∂PS(ϕ(w, t))[∂ϕ(w, t)[v]]∇L(ϕ(w, t))

− PS(ϕ(w, t))∇2L(ϕ(w, t))∂ϕ(w, t)[v]

=− ∂PS(ϕ(w, t))[∂ϕ(w, t)[v]]∇L(ϕ(w, t))

− PS(ϕ(w, t))∇2L(ϕ(w, t))s(t). (8)

We will now bound d∥s(t)∥2

dt ,

d∥s(t)∥22
dt

=2⟨s(t), ds(t)
dt

⟩

=2⟨s(t),∇PS(ϕ(w, t))[
dϕ(w, t)

dt
]∂ϕ(w, t)[v] + PS(ϕ(w, t))

d∂ϕ(w, t)[v]

dt
⟩

=− 2⟨s(t),∇PS(ϕ(w, t))[PS(ϕ(w, t))∇L(ϕ(w, t))]∂ϕ(w, t)[v]⟩

− 2⟨s(t), PS(ϕ(w, t))
d∂ϕ(w, t)[v]

dt
⟩.

By Lemmas C.2 and C.4 and assumption 2, the first term satisfies that,

⟨s(t),∇PS(ϕ(w, t))[PS(ϕ(w, t))∇L(ϕ(w, t))]∂ϕ(w, t)[v]⟩ ≤ γκ∥s(t)∥2∥s(t) + f(t)∥2.
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By Equation (8) and assumption 2, the second term satisfies that,

⟨s(t), PS(ϕ(w, t))
d∂ϕ(w, t)[v]

dt
⟩

=− ⟨s(t), ∂PS(ϕ(w, t))[∂ϕ(w, t)[v]]∇L(ϕ(w, t))⟩
− ⟨s(t), PS(ϕ(w, t))∇2L(ϕ(w, t))s(t)⟩

≤γκ∥s(t)∥2∥s(t) + f(t)∥2 − γ∥s(t)∥22.

Hence 2∥s(t)∥2 d∥s(t)∥2

dt =
d∥s(t)∥2

2

dt ≤ −2γ∥s(t)∥22+4γκ∥s(t)∥2∥s(t)+f(t)∥2 and we can conclude
that

d∥s(t)∥2
dt

≤ −γ∥s(t)∥2/2 + 2γκ∥f(t)∥2. (9)

Similarly, we can provide a bound for ∥df(t)
dt ∥2,

∥df(t)
dt

∥ =2∥∇PF (ϕ(w, t))[
dϕ(w, t)

dt
]∂ϕ(w, t)[v] + PF (ϕ(w, t))

d∂ϕ(w, t)[v]

dt
∥2

=− 2∥∇PF (ϕ(w, t))[PS(ϕ(w, t))∇L(ϕ(w, t))]∂ϕ(w, t)[v]

+ PF (ϕ(w, t))
d∂ϕ(w, t)[v]

dt
∥2.

By Lemmas C.2 and C.4 and assumption 2, the first term satisfies that,

∥∇PF (ϕ(w, t))[PS(ϕ(w, t))∇L(ϕ(w, t))]∂ϕ(w, t)[v]∥
=∥∇PS(ϕ(w, t))[PS(ϕ(w, t))∇L(ϕ(w, t))]∂ϕ(w, t)[v]∥
≤γκ exp(−γt/2)∥f(t)∥2∥s(t) + f(t)∥2.

By Lemmas C.2 and C.4 and assumption 2, the second term satisfies that,

∥PF (ϕ(w, t))
d∂ϕ(w, t)[v]

dt
∥

=∥PF (ϕ(w, t))∂PF (ϕ(w, t))[∂ϕ(w, t)[v]]∇L(ϕ(w, t))⟩∥
=∥PF (ϕ(w, t))∂PF (ϕ(w, t))[∂ϕ(w, t)[v]]PS(ϕ(w, t))∇L(ϕ(w, t))⟩∥
≤γκ exp(−γt/2)∥f(t)∥2∥s(t) + f(t)∥2.

Hence we can conclude that

∥df(t)
dt

∥2 ≤ 2γκ exp(−γt/2)(∥f(t)∥2 + ∥s(t)∥2). (10)

By Equation (9), it holds that

d(exp(γt/2)∥s(t)∥2)
dt

= γ exp(γt/2)∥s(t)∥2/2 + exp(γt/2)
d∥s(t)∥2

dt
≤ 2γκ exp(γt/2)∥f(t)∥2.

Integrating the above equation from 0 to t, and we have

∥s(t)∥2 ≤ 2γκ

∫ t

0

exp(γ(τ − t)/2)∥f(τ)∥2dτ. (11)

By Equations (10) and (11), we have that∣∣∣d∥f(t)∥2
dt

∣∣∣ ≤ 2γκ exp(−γt/2)∥f(t)∥2 + 4γ2κ2

∫ t

0

exp(γ(τ − 2t)/2)f(τ)dτ.

This suggests that

∥f(T )∥2 ≤ 1 + 2γκ

∫ T

0

exp(−γt/2)∥f(t)∥2dt+ 4γ2κ2

∫ T

0

∫ t

0

exp(γ(τ − 2t)/2)f(τ)dτdt.
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Define M(t) = sup0≤τ≤t f(t), then it holds that

∥M(T )∥2 ≤ 1 + ∥M(T )∥2

(
2γκ

∫ T

0

exp(−γt/2)dt+ 4γ2κ2

∫ T

0

exp(−γt/2)

∫ t

0

exp(γ(τ − t)/2)dτdt

)
.

≤ 1 + ∥M(T )∥2
(
4κ+ 16κ2

)
.

This implies that ∀t, ∥f(t)∥2 ≤ ∥M(t)∥2 ≤ 1
1−4κ−16κ2 ≤ 1 + 5κ. By Equation (11), this suggests

that ∥s(t)∥2 ≤ 4κ(1 + 5κ) ≤ 5κ. Finally, returning to Equation (10), we have that

∥f(t)
dt

∥2 ≤ 2γκ exp(−γt/2)(∥f(t)∥2 + ∥s(t)∥2)

≤ 2γκ exp(−γt/2)(1 + 10κ).

Hence ∥f(t)− f(0)∥2 ≤ 2
∫∞
0

2γκ exp(−γt/2)(1 + 10κ) ≤ 2κ(1 + 10κ) ≤ 5κ.

We have that

∥PF [Φ(w)]∂Φ(w)∇L(w)− PF (w)∇L(w)∥2
∥PF (w)∇L(w)∥2

= lim
t→∞

∥f(t)− f(0)∥2 ∈ [0, 5κ],

and

∥PS [Φ(w)]∂Φ(w)∇L(w)∥2
∥PF (w)∇L(w)∥2

= lim
t→∞

∥s(t)∥2 ∈ [0, 5κ],

The proof is then complete.

The following lemma generalizes Lemma C.8 to general direction instead of ∇L(w).

Lemma C.9. Under Assumptions 1 and 2, for any w satisfying that B(w, 2∆
γ ) ⊂ U , it holds that

∥PF [Φ(w)]∂Φ(w)u− PF (w)u∥2
∥PF (w)∇L(w)∥2

≤ 5κ,

∥PS [Φ(w)]∂Φ(w)u∥2
∥PF (w)u∥2

≤ 5κ.

Proof. We only need to notice that PF (w)u aligns with vd(∇2L(w)). Hence, it always holds that

PF (w)u = PF (w)∇L(w)
⟨PF (w)∇L(w), PF (w)u⟩

∥PF (w)∇L(w)∥22
,

∂Φ(w)u = ∂Φ(w)PF (w)u = ∂Φ(w)∇L(w)
⟨PF (w)∇L(w), PF (w)u⟩

∥PF (w)∇L(w)∥22
.

The proof is then complete.

The following lemma states that the angle between the gradient and the tangent direction is small for
any point on the river.
Lemma C.10. For any w ∈ M, it holds that

∥PM(w)∇L(w)−∇L(w)∥2 ≤ 4κ∥PM(w)∇L(w)∥2.

Proof. Assume w = x(T ), we will denote PM(w)∇L(w) by v.

It holds that

∇
(
PS(w)∇L(w)

)
[v] = 0,

which can be simplified to

PS(w)∇2L(w)v +∇PS(w)[v]∇L(w) = 0.
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The first term satisfies that ∥PS(w)∇2L(w)v∥2 ≥ γ∥PS(w)v∥ and the second term satisfies that
∥∇PS(w)[v]∇L(w)∥2 ≤ γκ∥v∥. This then suggests ∥PS(w)v∥2 ≤ κ∥v∥2.

Therefore ∥PF (w)v∥2 ≥ (1− κ)∥v∥2. As

v =
dx(t)

dt
|t=T= −PM (w)∇L(w)

We know that
∣∣∣v⊤d PM(w)vd

∣∣∣ ≥ (1 − κ)∥PM (w) vd∥2, which suggests that
∣∣∣v⊤d PM(w)vd

∥PM(w)vd∥2

∣∣∣ ≥
(1− κ). Hence we can conclude that ∥PM(w)vd∥2 ≥ (1− κ). Hence, we know that

∥v +∇L(w)∥2 ≤
√
1− (1− κ)2∥∇L(w)∥2 ≤ 2κ∥∇L(w)∥2 ≤ 2κ

1− κ
∥v∥2 ≤ 4κ∥v∥2.

This concludes the proof.

The next lemma states that PF (w)∇L(w) and ∇L(Φ(w)) is always close.

Lemma C.11. Under Assumptions 1 and 2, for any w satisfying that B(w, 2∆
γ ) ⊂ U , it holds that

∥PF (w)∇L(w)−∇L(Φ(w))∥2 ≤ (γκ+ γflat)∥w − Φ(w)∥2.

Proof. By Lemma C.4, the line segment from Φ(w) to w lies in U . By Assumption 2 and lemma C.4,

∥PF (w)∇L(w)− PF (Φ(w))∇L(Φ(w))∥2

=∥
∫ 1

0

∇PF (Φ (w) + t (w − Φ (w))) [w − Φ(w)]∇L(Φ (w) + t (w − Φ (w)))dt

+

∫ 1

0

PF (Φ (w) + t (w − Φ (w)))∇2L(Φ (w) + t (w − Φ (w)))(w − Φ(w))dt∥2

≤(γκ+ γflat)∥w − Φ(w)∥2.

This concludes the proof.

The final theorem states that when w is near the river, the movement of its projection has a similar
value as the inherent speed at the river.

Lemma C.12. Under Assumptions 1 and 2, when ∥w − Φ(w)∥2 ≤ 10κ∥PF (w(t))∇L(w(t))∥2

γ+γflat
,

∥PF (w)∇L(w) +
dx(τ)

dτ
|τ=T ∥2 ≤ 16κ∥dx(τ)

dτ
|τ=T ∥2.

∥∂Φ(w)∇L(w) +
dx(τ)

dτ
|τ=T ∥2 ≤ 30κ∥dx(τ)

dτ
|τ=T ∥2.

Proof. By Lemma C.8

∥∂Φ(w)∇L(w)− PF (w)∇L(w)∥2 ≤ 10κ∥PF (w)∇L(w)∥2.

Combining Lemma C.11 and ∥w − Φ(w)∥2 ≤ 10κ∥PF (w(t))∇L(w(t))∥2

γ+γflat
, we have that

∥PF (w)∇L(w)−∇L(Φ(w))∥2 ≤ (γκ+ γflat)∥w − Φ(w)∥ ≤ 10κ∥PF (w)∇L(w)∥2.

By Lemma C.10, let v = dx(τ)
dτ |τ=T ,

∥v +∇L(Φ(w))∥2 ≤ 4κ∥v∥2.

Combining the three inequalities, we have that

∥PF (w)∇L(w)−∇L(Φ(w))∥2 ≤ 10κ

1− 10κ
∥∇L(Φ(w))∥2 ≤ 1 + 4κ

1− 10κ
10κ∥v∥2 ≤ 12κ∥v∥2.
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This suggests that

∥PF (w)∇L(w)− v∥2 ≤ |PF (w)∇L(w)−∇L(Φ(w))∥2 + ∥v +∇L(Φ(w))∥2 ≤ 16κ∥v∥2.

Hence

∥v + ∂Φ(w)∇L(w)∥2
≤∥PF (w)∇L(w)− v∥2 + ∥PF (w)∇L(w)−∇L(Φ(w))∥2
≤16κ∥v∥2 + 10κ∥PF (w)∇L(w)∥2
≤30κ∥v∥2.

This concludes the proof.

C.4 RIVER EXISTS UNDER MILD ASSUMPTIONS.

In this subsection, we will provide two results stating the local existence of rivers under the existence
of eigengap (Assumption 4). Recall we define the river as a smooth manifold of points with vanishing
gradients in sharp directions.

1. River exists and every point in V is close to some part of the river (Lemma C.13).
2. River is a 1-dimensional manifold. (Lemma C.14).

Combining the two statements, we can conclude that there is always a river near every point under
the existence of eigengap.

Assumption 4. There exists an open set U satisfying the following assumptions:

1. Analyticity. L(w) is analytic with respect to w.
2. Existence of Eigengap. There exist constants γflat, γ > 0, such that ∀w ∈ U, λd−1

(
∇2L(w)

)
>

γ + 4γflat, |λd

(
∇2L(w)

)
| < γflat.

3. Slow Spinning of vd. There exist constants ∆ > ∆min > 0, κ ∈ [0, 0.01), such that ∀w ∈
U,∆min < ∥∇L(w)∥2 ≤ ∆, and ∥∇vd

(
∇2L(w)

)
∥op ≤ κγ/(2∆). This means that the flat

direction vd changes slowly during optimization.
4. Conservation of Gradient Flows. There exists an open subset V ⊂ U and a constant r > 10∆

γ for
γ defined in Assumption 2.3 such that ∀w ∈ V , the r-neighborhood of the gradient flow starting
from w stays in U for continuous time Tmax ≥ 10 log(2∆/(κ∆min))/γ.

We note that Assumption 4 is a strict subset of Assumption 2.

Lemma C.13. Under Assumption 4, for every w ∈ V , there exists w′ ∈ U , such that ∥w−w′∥2 ≤ 2∆
γ

and ∥PS [w
′]∇L(w′)∥2 = 0.

Proof. We will define w′ = Φ(w) for Φ defined in the same way as in Definition C.3. The rest of the
proof goes in the same line as Lemma C.4. We note that in the proof of Lemma C.4, our deduction
does not depend on the existence of the river until the last line.

Lemma C.14. Under Assumption 4, for every x ∈ U satisfying ∥PS [x]∇L(x)∥2 = 0, there exists a
smooth 1-dimensional manifold M passing through x, such that for every point u ∈ M, the projected
gradient onto the sharp directions vanishes, i.e.,

PS(u)∇L(u) = 0.

Proof. To establish the existence of the river M as a smooth 1-dimensional manifold passing through
x, we apply the Implicit Function Theorem to the system of equations defined by the vanishing of the
projected gradient onto the sharp directions.

Fixing the coordinate vector as e1, ..., ed, we will assume the rotation rotating from e1 to v, and
keeping all the vectors orthogonal to e1 and v constant as R(v). We then have R(v) is a smooth
function of v as long as v is not close to e1. We can then assume D(v) =

∑d
i=2 e

′
i(R(v)ei)

T ∈
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R(d−1)×d with e′i being the (i−1)-th coordinate vector in Rd−1. D(v) is then also a smooth function
in v.

We will now assume without loss of generality v does not align with e1 and define K(u) = D(vd(u)),
then K(u) is a smooth function in u that maps the sharp component of each vector to Rd−1.

Define the constraint function F : Rd → Rd−1 by

F (u) = K(u)PS(u)∇L(u).

We aim to show that the solution set F−1(0) near x is a smooth 1-dimensional manifold. To apply
the implicit function Theorem, we need to verify that:

1. Smoothness. The function F is continuously differentiable in a neighborhood of x. Given that
L(u) is analytic (and hence smooth) by Assumption 4, and PS(u) is defined in terms of the
continuously differentiable projection PF (u), it follows that F is smooth.

2. Rank of the Jacobian is d − 1 at x. The Jacobian matrix DF (x) ∈ Rd×(d−1) must have rank
d− 1.
The Jacobian of F at point x is given by:

DF (x) =K(x)[∂PS(x)∇L(x) + PS(x)∇2L(x)] + ∂K(x)PS(x)∇L(x).

=K(x)[∂PS(x)∇L(x) + PS(x)∇2L(x)].

Consider Ju defined in Lemma C.7, DF (x) = K(x)Jx. Applying the same argument shows that
Jx has rank d− 1 and the range of Jx is the range of PS(x), i.e., the sharp space. Therefore Df

has rank d− 1.

Since F is smooth and the Jacobian DF (Φ(w)) has rank d − 1, the implicit function Theorem
guarantees that the solution set F−1(0) near Φ(w) is a smooth manifold of dimension d−(d−1) = 1.
Thus, there exists a smooth 1-dimensional manifold M passing through Φ(w) where the projected
gradient vanishes:

PS(u)∇L(u) = 0 ∀u ∈ M.

Furthermore, the smoothness of F ensures that the manifold M is not only locally 1-dimensional but
also smoothly parameterized.

C.5 PROOF OF THEOREM 3.2

We will consider the following gradient flow:

dw(t) = −∇L(w(t))dt, w(0) ∈ V. (12)

We will first prove that along the gradient flow trajectory, it holds that ∥PS(w)∇L(w)∥2 is bounded.
Lemma C.15. Under Assumptions 1 and 2, along the gradient flow Equation (12), it holds that for
t ≥ 2 log(2∆/(κ∆min))/γ, ∥PS(w(t))∇L(w(t))∥2 ≤ 2κ∥PF (w(t))∇L(w(t))∥2.

Proof. We will first compute how fast ∥PS(w(t))∇L(w(t))∥2 can change

d∥PS(w(t))∇L(w(t))∥22
dt

=− 2⟨PS(w(t))∇L(w(t)), ∂PS(w(t))[∇L(w(t))]∇L(w(t))⟩

− 2⟨PS(w(t))∇L(w(t)), PS(w(t))∇2L(w(t))∇L(w(t))⟩

By Lemma C.2 and assumption 2, the first term satisfies,

− 2⟨PS(w(t))∇L(w(t)), ∂PS(w(t))[∇L(w(t))]∇L(w(t))⟩
=− 2⟨PS(w(t))∇L(w(t)), ∂PS(w(t))[∇L(w(t))]PFL(w(t))∇L(w(t))⟩
≤2κγ∥PS(w(t))∇L(w(t))∥2∥PF (w(t))∇L(w(t))∥2

By Assumption 2, the second term satisfies,

− 2⟨PS(w(t))∇L(w(t)), PS(w(t))∇2L(w(t))∇L(w(t))⟩
≤ −2(γ + γflat)∥PS(w(t))∇L(w(t))∥22.
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Hence,

d∥PS(w(t))∇L(w(t))∥2
dt

≤ κγ∥PF (w(t))∇L(w(t))∥2 − (γ + γflat)∥PS(w(t))∇L(w(t))∥2.
(13)

We then consider the corresponding PF (w(t))∇L(w(t)).

d∥PF (w(t))∇L(w(t))∥22
dt

=− 2⟨PF (w(t))∇L(w(t)), ∂PF (w(t))[∇L(w(t))]∇L(w(t))⟩

− 2⟨PF (w(t))∇L(w(t)), PF (w(t))∇2L(w(t))∇L(w(t))⟩

By Lemma C.2 and assumption 2, the first term satisfies,

− 2⟨PF (w(t))∇L(w(t)), ∂PF (w(t))[∇L(w(t))]∇L(w(t))⟩
=− 2⟨PF (w(t))∇L(w(t)), ∂PF (w(t))[∇L(w(t))]PSL(w(t))∇L(w(t))⟩
≤2κγ∥PS(w(t))∇L(w(t))∥2∥PS(w(t))∇L(w(t))∥2

By Assumption 2, the second term satisfies,

− 2⟨PF (w(t))∇L(w(t)), PF (w(t))∇2L(w(t))∇L(w(t))⟩
≤ 2γflat∥PF (w(t))∇L(w(t))∥22.

Hence, we have that∣∣∣d∥PF (w(t))∇L(w(t))∥2
dt

∣∣∣ ≤ κγ∥PS(w(t))∇L(w(t))∥2 + γflat∥PF (w(t))∇L(w(t))∥2. (14)

Choose ακ = 1−
√
1−4κ2

2κ < 1.5κ as the solution to the quadratic equation κα2 − α+ κ = 0.

Then combining Equations (13) and (14), it holds that

d (∥PS(w(t))∇L(w(t))∥2 − ακ∥PF (w(t))∇L(w(t))∥2)
dt

≤γ(−1 + κακ)∥PS(w(t))∇L(w(t))∥2 + κγ∥PF ∥2
− γflat (|PS(w(t))∇L(w(t))∥2 − ακ∥PF (w(t))∇L(w(t))∥2) .

Notice that
(−1 + κακ)

κ
=

−1

ακ

Hence,

d (∥PS(w(t))∇L(w(t))∥2 − ακ∥PF (w(t))∇L(w(t))∥2)
dt

≤− (γ(1− κακ) + γflat) (∥PS(w(t))∇L(w(t))∥2 − ακ∥PF (w(t))∇L(w(t))∥2) .

By Lemma C.36, this suggests that

∥PS(w(t))∇L(w(t))∥2 − ακ∥PF (w(t))∇L(w(t))∥2
≤ exp(−(γ(1− κακ) + γflat)t) (∥PS(w(0))∇L(w(0))∥2)
≤ exp(−γt/2)∥PS(w(0))∇L(w(0))∥2.

Hence,

∥PS(w(t))∇L(w(t))∥2 ≤ 1.5κ∥PF (w(t))∇L(w(t))∥2 + exp(−γt/2) (∥PS(w(0))∇L(w(0))∥2) .
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Lemma C.16. Under Assumptions 1 and 2, along the gradient flow Equation (12), it holds that
w(t) ∈ U and ∥w(t)− Φ(w(t))∥2 ≤ 4κ∥PF (w(t))∇L(w(t))∥2+2 exp(−γt/2)∆

γ+γflat
.

Proof. This is a direct combination of Lemmas C.4 and C.15.

Lemma C.17. Under Assumptions 1 and 2, along the gradient flow Equation (12), if T (t) satisfies
x(T (t)) = Φ(w(t)), then

dT (t)

dt
∈ [1− 30κ, 1 + 30κ].

Proof. As T (t) satisfies x(T (t)) = Φ(w(t)), taking derivative on both sides yield,

dT (t)

dt

dx(τ)

dτ
|τ=T (t)= −∂Φ(w(t))∇L(w(t)).

By Lemmas C.11 and C.16, it holds that

∥∂Φ(w(t))∇L(w(t))− dx(τ)

dτ
|τ=T (t) ∥2 ≤ 30κ

dx(τ)

dτ
|τ=T (t) .

We then have that

|dT (t)
dt

− 1| ≤ 30κ,

which concludes the proof.

Proof of Theorem 3.2. The proof is a direct combination of Lemmas C.16 and C.17.

C.6 PROOF OF THEOREM 3.3

We will consider the following gradient descent:

wk+1 − wt = −η∇L(wt), w0 ∈ M. (15)

We will track the changes of PF (w(t))∇L(w(t)) and PS(w(t))∇L(w(t)), for simplicity, we will
denote them us fg(k) and sg(k). Further, we will use the following denotation

wk,τ = (1− τ)wt + τwk+1

We will first prove some lemmas bounding the difference between gradient and projections at different
points.
Lemma C.18. Under Assumptions 1 and 2, when wt ∈ V , ∀τ ∈ (0, 1), wk,τ ∈ U .

Proof. It holds that,

∥wt − wk,τ∥2 ≤ η∆ ≤ ∆

2γ
.

Lemma C.19. Under Assumptions 1 and 2, when wt ∈ V , ∀τ, τ ′ ∈ [0, 1], it holds that

∥PS(wk,τ )− PS(wk,τ ′)∥2 ≤ ηγκ.

Proof. According to Lemma C.18, it holds that wk,τ , wk,τ ′ ∈ U . Assume without loss of generality
τ > τ ′,

∥PS(wk,τ )− PS(wk,τ ′)∥ =∥
∫ τ ′

τ

∇PS(wk,τ ′′)[η∇L(w)]dτ ′′∥2

≤
∫ τ

τ ′
∥∇PS(wk,τ ′′)[η∇L(w)]∥2dτ ′′

≤ηγκ.
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Lemma C.20. Under Assumptions 1 and 2, when wt ∈ V , ∀τ ∈ (0, 1), it holds that

∥PS(wk,τ )∇L(wk,τ )− PS(wk,τ )∇L(wt)∥2 ≤ ηγmax∥sg(k)∥2 + 2η2γmaxγκ∥∇L(wt)∥2.

Proof. According to Lemma C.18, it holds that wk,τ , wk,τ ′ ∈ U . Define g(τ ′) =
∥PS(wk,τ )∇L(wk,τ ′)−PS(wk,τ )∇L(wt)∥2, then by Lagrange’s Mean Value Theorem, there exists
τ ′, such that

∥PS(wk,τ )∇L(wk,τ )− PS(wk,τ )∇L(wt)∥2 = g(τ)− g(0)

=τg′(τ ′) = τ
d∥PS(wk,τ )∇L(wk,τ ′)− PS(wk,τ )∇L(wt)∥2

dτ ′

≤∥dPS(wk,τ )∇L(wk,τ ′)− PS(wk,τ )∇L(wt)

dτ ′
∥2

=η∥PS(wk,τ )∇2L(wk,τ ′)∇L(wt)∥2

≤η∥PS(wk,τ )∇2L(wk,τ ′)PS(wk,τ ′)∇L(wt)∥2 + η∥PS(wk,τ )∇2L(wk,τ ′)PF (wk,τ ′)∇L(wt)∥2
≤ηγmax∥PS(wk,τ ′)∇L(wt)∥2 + η∥(PS(wk,τ )− PS(wk,τ ′))∇2L(wk,τ ′)PF (wk,τ ′)∇L(wt)∥2.

By Lemma C.19, it holds that

γmax∥PS(wk,τ ′)∇L(wt)∥2 ≤ γmax∥sg(k)∥2 + ηγmaxγκ∥∇L(wt)∥2.
∥(PS(wk,τ )− PS(wk,τ ′)∇2L(wk,τ ′)PF (wk,τ ′)∇L(wt)∥2 ≤ ηγγflatκ∥∇L(wt)∥2.

Summing up and the proof is complete.

Lemma C.21. ∀τ ∈ (0, 1), it holds that

∥PS(wk,τ )∇L(wk,τ )− sg(k)∥2 ≤ ∥sg(k)∥2 + 3ηγκ∥∇L(wt)∥2.

Proof. This is a direct combination of Lemmas C.19 and C.20, with

∥PS(wk,τ )∇L(wk,τ )− PS(wt)∇L(wt)∥2
≤∥PS(wk,τ )∇L(wk,τ )− PS(wk,τ )∇L(wt)∥2 + ∥(PS(wk,τ )− PS(wt))∇L(wt)∥2.

The proof is then complete.

Lemma C.22. ∀τ ∈ (0, 1), it holds that

∥PF (wk,τ )∇L(wk,τ )− PF (wk,τ )∇L(wt)∥2 ≤ ηγflat∥fg(k)∥2 + 2η2γmaxγκ∥∇L(wt)∥2.

Proof. Define g(τ ′) = ∥PF (wk,τ )∇L(wk,τ ′) − PF (wk,τ )∇L(wt)∥2, then by Lagrange’s Mean
Value Theorem, there exists τ ′, such that

∥PF (wk,τ )∇L(wk,τ )− PF (wk,τ )∇L(wt)∥2 = g(τ)− g(0)

=τg′(τ ′) = τ
d∥PF (wk,τ )∇L(wk,τ ′)− PF (wk,τ )∇L(wt)∥2

dτ ′

≤∥dPF (wk,τ )∇L(wk,τ ′)− PF (wk,τ )∇L(wt)

dτ ′
∥2

=η∥PF (wk,τ )∇2L(wk,τ ′)∇L(wt)∥2

≤η∥PF (wk,τ )∇2L(wk,τ ′)PF (wk,τ ′)∇L(wt)∥2 + η∥PF (wk,τ )∇2L(wk,τ ′)PS(wk,τ ′)∇L(wt)∥2
≤ηγflat∥PF (wk,τ ′)∇L(wt)∥2 + η∥(PF (wk,τ )− PF (wk,τ ′))∇2L(wk,τ ′)PS(wk,τ ′)∇L(wt)∥2.

By Lemma C.19, it holds that

γflat∥PF (wk,τ ′)∇L(wt)∥2 ≤ γflat∥fg(k)∥2 + ηγflatγκ∥∇L(wt)∥2.
∥(PF (wk,τ )− PF (wk,τ ′)∇2L(wk,τ ′)PF (wk,τ ′)∇L(wt)∥2 ≤ ηγγmaxκ∥∇L(wt)∥2.

Summing up and the proof is complete.
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Lemma C.23. ∀τ ∈ (0, 1), it holds that

∥PF (wk,τ )∇L(wk,τ )− fg(k)∥2 ≤ ∥fg(k)∥2 + 3ηγκ∥∇L(wt)∥2.

Proof. This is a direct combination of Lemmas C.19 and C.22, with

∥PF (wk,τ )∇L(wk,τ )− PF (wt)∇L(wt)∥2
≤∥PF (wk,τ )∇L(wk,τ )− PF (wk,τ )∇L(wt)∥2 + ∥(PF (wk,τ )− PF (wt))∇L(wt)∥2.

The proof is then complete.

We will prove a discrete version of Lemma C.15.
Lemma C.24. Under Assumptions 1 and 2, when η < 1/γmax, along the gradient flow Equation (15),
it holds that ∥PS(w(t))∇L(w(t))∥2 ≤ 10κ∥PF (w(t))∇L(w(t))∥2 as long as w(τ) ∈ U,∀τ ≤ t.

Proof. We will first consider sg(k), By Lagrange’s Mean Value Theorem, there exists τ , such that,

∥sg(k + 1)∥22 − ∥sg(k)∥22

=∥PS(wk,1)∇L(wk,1)∥22 − ∥PS(wk,0)∇L(wk,0)∥22 =
d∥PS(wk,τ )∇L(wk,τ )∥22

dτ

=− η⟨PS(wk,τ )∇L(wk,τ ), ∂PS(wk,τ )[∇L(wt)]∇L(wk,τ ) + PS(wk,τ )∇2L(wk,τ )∇L(w)⟩

The first term satisfies that

− η⟨PS(wk,τ )∇L(wk,τ ), ∂PS(wk,τ )[∇L(wt)]∇L(wk,τ )⟩
≤ηγκ∥∇L(wt)∥2∥PS(wk,τ )∇L(wk,τ )∥2
≤ηγκ∥∇L(wt)∥2(2∥sg(k)∥2 + 3ηγκ∥∇L(wt)∥2).

The second term satisfies that

− η⟨PS(wk,τ )∇L(wk,τ ), PS(wk,τ )∇2L(wk,τ )∇L(wt)⟩
= −η⟨PS(wk,τ )∇L(wt), PS(wk,τ )∇2L(wk,τ )∇L(wt)⟩+ ⟨PS(wk,τ )(∇L(wt)−∇L(wk,τ )),∇2L(wk,τ )∇L(wt)⟩
≤ −η(γ + 4γflat)∥PS(wk,τ )∇L(wt)∥22 + ηγmax∥PS(wk,τ )∇L(wt)∥2∥PS(wk,τ )(∇L(wt)−∇L(wk,τ ))∥2

As we have that ∥a− b∥2 ≥ ∥a∥2

2 − 4∥b∥2, by Lemma C.19, it holds that

− ∥PS(wk,τ )∇L(wt)∥22
=− ∥PS(wt)∇L(wt) + (PS(wk,τ )− PS(wt))∇L(wt)∥22

≤− ηγ
∥PS(wt)∇L(wt)∥22

2
+ 4ηγ∥ (PS(wk,τ )− PS(wt))∇L(wt)∥22

≤− ∥PS(wt)∇L(wt)∥22
2

+ 4ηγ(ηγκ∥∇L(wt)∥)2.

=− ∥PS(wt)∇L(wt)∥22
2

+ 4(ηγ)2(κ∥∇L(wt)∥)2.

≤− ∥sg(k)∥22 + 2ηγκ2∥∇L(wt)∥2

Hence

− η(γ + 4γflat)∥PS(wk,τ )∇L(wt)∥22
≤− η(γ + 4γflat)∥sg(k)∥22 + 2η2(γ + 4γflat)γκ

2∥∇L(wt)∥2

≤− η(γ + 4γflat)∥sg(k)∥22 + 2ηγκ2∥∇L(wt)∥2

By Lemmas C.19 and C.20 and ηγ2
max ≤ γ/2, it holds that

ηγmax∥PS(wk,τ )∇L(wt)∥2∥PS(wk,τ )(∇L(wt)−∇L(wk,τ ))∥2
≤η2γ2

max(∥sg(k)∥2 + ηγκ∥∇L(wt)∥2)(∥sg(k)∥2 + 2ηγκ∥∇L(wt)∥2)
≤ηγ(∥sg(k)∥2 + κ∥∇L(wt)∥2/2)(∥sg(k)∥2 + κ∥∇L(wt)∥2)/2.
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Hence, we can conclude that

∥sg(k + 1)∥22 − ∥sg(k)∥22
− η((γ + 4γflat)∥sg(k)∥22 + 4ηγκ2∥∇L(wt)∥2

+ ηγ(∥sg(k)∥2 + κ∥∇L(wt)∥2/2)(∥sg(k)∥2 + κ∥∇L(wt)∥2)/2

Let b = κ∥∇L(wt)∥2 and a = sg(k), as b(2a+3b/2)−a2+4b2+ 1
2 (a+

b
2 )(a+ b) ≤ −a2

4 +10b2,
it holds that

∥sg(k + 1)∥22 − ∥sg(k)∥22 ≤− ηγ
∥sg(k)∥22

4
+ 10ηγκ2∥∇L(wt)∥2.− 4ηγflat∥sg(k)∥22 (16)

Similarly, we can control the fg(k) changes. By Lagrange’s Mean Value Theorem, there exists τ ′,
such that,

∥fg(k + 1)∥22 − ∥fg(k)∥22

=∥PF (wk,1)∇L(wk,1)∥22 − ∥PF (wk,0)∇L(wk,0)∥22 =
d∥PF (wk,τ )∇L(wk,τ )∥22

dτ

=− η⟨PF (wk,τ )∇L(wk,τ ), ∂PF (wk,τ )[∇L(wt)]∇L(wk,τ ) + PF (wk,τ )∇2L(wk,τ )∇L(w)⟩

The first term satisfies that

η⟨PF (wk,τ )∇L(wk,τ ), ∂PF (wk,τ )[∇L(wt)]∇L(wk,τ )⟩
≤γηκ∥∇L(wt)∥2∥PF (wk,τ )∇L(wk,τ )∥2.
≤γηκ∥∇L(wt)∥2(∥fg(k)∥2 + ηγflat∥fg(k)∥2 + 2η2γmaxγκ∥∇L(wt)∥2).
≤4γηκ∥∇L(wt)∥22.

Similarly, the second term satisfies that

η⟨PF (wk,τ )∇L(wk,τ ), PF (wk,τ )∇2L(wk,τ )∇L(w)⟩
≤ηγflat∥PF (wk,τ )∇L(wt)∥2∥PF (wk,τ )∇L(wk,τ )∥2
≤ηγflat(∥fg(k)∥2 + ηγκ∥∇L(wt)∥2)(∥fg(k)∥2 + ηγflat∥fg(k)∥2 + 2η2γmaxγκ∥∇L(wt)∥2)
≤2ηγflat(∥fg(k)∥2 + ηγκ∥∇L(wt)∥2)2

≤4ηγflat∥fg(k)∥22 + 4η2γ2κ2∥∇L(wt)∥22

Summarizing and we have

∥fg(k + 1)∥22 − ∥fg(k)∥22 ≥− 5γηκ∥∇L(wt)∥22 − 4ηγflat∥fg(k)∥22 (17)

Let aκ be the smaller positive solution of

5κa2 + (10κ2 + 5κ− 1

4
)a+ 10κ2 = 0.

Then aκ =
(−10κ2−5κ+ 1

4 )−
√

(−10κ2−5κ+ 1
4 )

2−200κ3

10κ < 100κ2.

Then combining Equations (16) and (17)

∥sg(k + 1)∥22 − aκ∥fg(k + 1)∥22

≤(1− 4ηγflat)(∥sg(k)∥22 − aκ∥fg(k + 1)∥22)− ηγ(
1

4
+ 10κ2 − 5κaκ)∥sg(k)2∥2 + ηγ(10κ2 + 5κaκ)∥fg(k)2∥2

=(1− 4ηγflat − ηγ(
1

4
+ 10κ2 − 5κaκ))(∥sg(k)∥22 − aκ∥fg(k)∥22).

As ∥sg(0)∥22 − aκ∥fg(0)∥22 < 0, we have that ∥sg(k)∥22 < aκ∥fg(k + 1)∥22 < 100κ2∥fg(k)∥22 for
all the t.

Then we can show that gradient descent will also track the river closely.
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Lemma C.25. Under Assumptions 1 and 2, along the gradient flow Equation (12), it holds that
w(t) ∈ U and ∥w(t)− Φ(w(t))∥2 ≤ 10κ∥PF (w(t))∇L(w(t))∥2

γ+γflat
.

Proof. This is a direct combination of Lemmas C.4 and C.24.

Finally, we will show that the movement of the projection of the gradient flow moves approximately
at the same rate as the river, a discrete version of Lemma C.16.
Lemma C.26. Under Assumptions 1 and 2, along the gradient flow Equation (12), along the gradient
descent Equation (15), if T (t) satisfies x(T (t)) = Φ(w[t],t−[t]) where [t] is the integer part of t, then
for any t that is not integer

dT (t)

dt
∈ [η − (30κ+ 4ηγflat)η, η + (30κ+ 4ηγflat)η].

Proof. Let [t] = k, t − [t] = τ , as T (t) satisfies x(T (t)) = Φ(w(k, t − [t])), let v =
fracdx(τ)dτ |τ=T (t), taking derivative on both sides yield,

dT (t)

dt
v = −η∂Φ(wk,τ )∇L(wk).

As the proof of Lemma C.22, there exists τ ′

∥PF (wk,τ )∇L(wk)− PF (wk,τ )∇L(wk,τ )∥2
≤η∥PF (wk,τ )∇2L(wk,τ ′)PF (wk,τ ′)∇L(wk)∥2 + η∥PF (wk,τ )∇2L(wk,τ ′)PS(wk,τ ′)∇L(wk)∥2
≤ηγflat∥PF (wk,τ ′)∇L(wk)∥2 + η2γκγmax∥∇L(wk)∥2

By Lemma C.19, it holds that

∥PF (wk,τ )∇L(wk)− PF (wk,τ )∇L(wk,τ )∥2
≤ηγflat∥PF (wk,τ )∇L(wk)∥2 + 2η2γγmaxκ∥∇L(wk)∥2
≤ηγflat∥PF (wk,τ )∇L(wk)∥2 + κ∥∇L(wk)∥2 (18)

By Lemma C.24,

∥∇L(wk)∥2 ≤ 1

1− 10κ
∥PF (wk)∇L(wk)∥2

≤ 1

1− 10κ
(∥PF (wk,τ )∇L(wk)∥2 + ηγκ∥∇L(wk)∥2)

This shows that

∥∇L(wk)∥2 ≤ 1

1− 10κ− ηγκ
∥PF (wk,τ )∇L(wk)∥2 ≤ (1 + 12κ)∥PF (wk,τ )∇L(wk)∥2

Combining with Equation (18), we have that

∥PF (wk,τ )∇L(wk)− PF (wk,τ )∇L(wk,τ )∥2
≤ηγflat∥PF (wk,τ )∇L(wk)∥2 + κ(1 + 12κ)∥PF (wk,τ )∇L(wk)∥2
≤(ηγflat + 2κ)∥PF (wk,τ )∇L(wk)∥2

This shows that

∥PF (wk,τ )∇L(wk)− PF (wk,τ )∇L(wk,τ )∥2 ≤ (ηγflat + 2κ)

1− (ηγflat + 2κ)
∥PF (wk,τ )∇L(wk,τ )∥2

≤(2ηγflat + 3κ)∥PF (wk,τ )∇L(wk)∥2 (19)

By Lemma C.12

∥PF (wk,τ )∇L(wk,τ ) + v∥2 ≤ 16κ∥v∥2 (20)
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Combining Equations (19) and (20),
∥PF (wk,τ )∇L(wk) + v∥2

≤∥PF (wk,τ )∇L(wk)−−PF (wk,τ )∇L(wk,τ )∥2 + ∥PF (wk,τ )∇L(wk,τ ) + v∥2
≤(2ηγflat + 3κ)∥PF (wk,τ )∇L(wk)∥2 + 16κ∥v∥2
≤((2ηγflat + 3κ)(1 + 16κ) + 16κ)∥v∥2
≤(19κ+ 3ηγflat)∥v∥2. (21)

By Lemma C.9
∥∂Φ(wk,τ )∇L(wk)− PF (wk,τ )∇L(wk)∥2 ≤ 10κ∥PF (wk,τ )∇L(wk)∥2. (22)

Combining Equations (21) and (22), it holds that
∥∂Φ(wk,τ )∇L(wk) + v∥2

≤∥∂Φ(wk,τ )∇L(wk)− PF (wk,τ )∇L(wk)∥2 + ∥PF (wk,τ )∇L(wk) + v∥2
≤10κ∥PF (wk,τ )∇L(wk)∥2 + (19κ+ 3ηγflat)∥v∥2
≤(30κ+ 4ηγflat)∥v∥2.

Hence
dT (t)

dt
∈ [η − (30κ+ 4ηγflat)η, η + (30κ+ 4ηγflat)η].

This concludes the proof.

Proof of Theorem 3.3. The proof is a direct combination of Lemmas C.25 and C.26.

C.7 PROOF OF THEOREM 3.4

Assumption 5 (Regularity Assumption for SGD). In the setting of Assumptions 2, we assume in
addition the following:

1. Bounded Hessian. There exists a constant τ > 0, such that for any weight w ∈ U , the nuclear

norm of the Hessian is bounded. ∥∇2L(w)∥∗ =
d∑

i=1

|λi

(
∇2L(w)

)
| ≤ τ.

2. Bounded Third Order Information. There exist constants ρ > 0, κ′ ∈ [0, 0.01], such that
∥∇3L(w)∥op ≤ ρ,∆ρ ≤ κ′γ2.

3. Bounded Loss. There exists a constant M > 0 such that ∀w,L(w) < M .

In this assumption, we treat κ′ as a small constant, indicating that the influence of the third-order
gradient is minimal. This suggests that the overall shape of the loss landscape is predominantly
governed by the first and second-order information.

The error term in loss term ϵL satisfies that |ϵL| ≤ τη2σ2 + ρ(Cdησ2/γ)3/2 + Cκ′dησ2 + δ(2M +
ησ2d) ≪ (d− 1)ησ2 with C = 200 log(64γT/δ) and the error can be decomposed into three parts:
(1) τη2σ2 + ρ(Cησ2/γ)3/2 are higher order discretization effects of learning rate η; (2) Cκ′dησ2 is
caused by the change of the Hessian in the valley dimensions and will diminish when κ′ is small; (3)
δ(2M + ησ2d) accounts for the small chances that the iterate will escape the neighborhood of the
river due to the stochastic updates. While the theorem only considers the case where vd is a constant
vector,

We will first show that under Assumption 3, the loss is separable within U .
Lemma C.27. Under Assumptions 1 to 3, the river is a straight line parallel to vd.

Proof. In this case, the κ in Assumption 2 is 0 and this is a direct corollary of of Lemma C.12.

Lemma C.28. Under Assumptions 1 to 3, there exists functions g and h, such that for any w ∈ U
satisfying that B(w, 2∆

γ ) ⊂ U , it holds that

L(w) = g(Φ(w)) + h(w − Φ(w)).

Furthermore, h is a γ-strongly convex function when constrained on the range of PS .
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Proof. We will choose g as the constraint of L on M. Now w − Φ(w) will always fall in the range
of PS . Consider any y in the range of PS and as ∇vd(w)[v] = 0, we have that

yT∇2L(w)vd = 0.

This then suggest that

∇[⟨∇L(w), y⟩][vd] = 0.

We then have for any a ∈ M, by Lemma C.27,

L(w)− L(Φ(w)) =

∫ 1

0

⟨(w − Φ(w)),∇L(Φ(w) + τ(w − Φ(w)))⟩dτ

=

∫ 1

0

⟨(w − Φ(w)),∇L(a+ τ(w − Φ(w)))⟩dτ.

We will then define h(w−Φ(w)) =
∫ 1

0
⟨(w−Φ(w)),∇L(a+ τ(w−Φ(w)))⟩dτ . and this concludes

the proof.

Now, as h(w − Φ(w)) = L(w) − L(Φ(w)), ∇2h(y) when constrained on the range of PS has an
eigenvalue greater than γ.

We will first consider the mixing dynamics of the current SGD iterates on a strongly convex loss h
with a minimizer at 0.

y(k + 1) = yk − η∇h(yk)− ηgk, y(0) = 0,gk ∼ N (0, σ2I) (23)

We will define a coupling process ỹk as

ỹ(k + 1) = ỹk − ηHỹk − ηgk, w(0) = 0, gk ∼ N (0, σ2I), ỹ(0) = 0. (24)

Here H = ∇2h(0) is positive definite.
Assumption 6 (Regularity of h). We will assume the following for the function h, constant δ ∈ (0, 1],
learning rate η.

1. The smallest eigenvalue of ∇2h(y) within B(0, r) is at least γ > 0 and the largest eigenvalue for
H is at most γmax.

2. ∀y, h(y) ∈ [0,M ].
3. ∀y ∈ B(0, r), ∥∇h(y)∥2 ≤ ∆, ∥∇3h(y)∥2 ≤ ρ.
4. T > 1/γ.
5. η < 1/(2γmax).
6. ηρ2σ2 ≤ γ3/(1600d log(8γT/δ)).
7. 10

√
ησ√
γ

√
d log(8γT/δ) + 400ηρσ2d log(8γT/δ)/γ2 ≤ r.

We will first show that ỹk will be bounded with a high probability for T/η steps.
Lemma C.29. For any δ ∈ (0, 1], with probability 1− δ, for ỹk defined in Equation (24), under As-
sumption 6, it holds that for any k ≤ T/η,

∥ỹk∥2 ≤
10
√
ησ

√
γ

√
d log(8γT/δ).

Proof. For integer K = ⌈γT ⌉. We first have that for k ≤ K

ỹk⌈ 1
ηγ ⌉ = (1− ηγ)⌈

1
ηγ ⌉ỹ(k−1)⌈ 1

ηγ ⌉ + η

⌈ 1
ηγ ⌉∑
τ=0

(1− ηγ)⌈
1
ηγ ⌉−tg(k−1)⌈ 1

ηγ ⌉+τ .

Denote ḡk = η
∑⌈ 1

ηγ ⌉
τ=0 (1− ηγ)⌈

1
ηγ ⌉−tg(k−1)⌈ 1

ηγ ⌉+τ , then gk is a normal vector with variance

η2
⌈ 1
ηγ ⌉∑
τ=0

(1− ηγ)2(⌈
1
ηγ ⌉−t)σ2I ≤ ησ2

2γ − ηγ2
≤ ησ2

γ
.
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Further, denote Yk = yk⌈ 1
ηγ ⌉ and eγ = (1− ηγ)⌈

1
ηγ ⌉ < 1

e , then

Yk = eγYk−1 + ḡk−1 =
∑

i≤k−1

ei−1
γ gk−i

Then each variable Yk is also a Gaussian variable with variance smaller than∑
i≤k−1

e2(i−1)
γ E[ḡk−iḡ

T
k−i] ≤

1

1− 1/e2
ησ2

γ
I ≤ 2ησ2

γ
I.

Hence, by Lemma C.37, for each k, it holds that

P(
∣∣∣Yk

∣∣∣ > 2
√
ησ

√
γ

√
d log(4K/δ))) < δ/2K.

Using union bound,

P(∃k ≤ K,
∣∣∣Yk

∣∣∣ > 2
√
ησ

√
γ

√
d log(4K/δ)) < δ/2.

We now proceed to bound the distance of yk compared with close Yk, without loss of generality,
considering k = 0, we will define a new process called mk satisfying that

mk =
∑
k≤t

(1− ηγ)⌈
1
ηγ ⌉−kgk.

Then mk is a martingale and each mk is a Gaussian vector. In particular, m⌈ 1
ηγ ⌉ = ḡ1. This further

suggests that ∥mk∥2 is a super martingale

E[∥mk∥22 | mk−1] ≥ ∥mk−1∥22.

By Doob’s lemma (Lemma C.38)

P( sup
k≤⌈ 1

ηγ ⌉
∥mk∥22 > C2) ≤ P( sup

k≤⌈ 1
ηγ ⌉

exp(λ∥mk∥22) > exp(λC2))

≤ E[exp(λ∥m⌈ 1
ηγ ⌉∥22 − λC2)]

= E[exp(λ∥ḡ1∥22 − λC2)].

Following the same line of proof as Lemma C.37, we have that

P( sup
k≤⌈ 1

ηγ ⌉
∥mk∥2 >

2
√
ησ

√
γ

√
d log(4K/δ)) ≤ δ/2K

We further note that
∣∣∣yk − Y0

∣∣∣ ≤ (1− ηγ)−⌈ 1
ηγ ⌉mk ≤ 4mk. We have that for any k < K

P( sup
k≤⌈ 1

ηγ ⌉
∥yk − Y0∥2 >

8
√
ησ

√
γ

√
d log(4K/δ)) ≤ δ/2K

Combining with the bound on Yk, we have that

P( sup
0≤t≤T

|yk| >
10

√
ησ

√
γ

√
d log(8γT/δ))) ≤ δ.

The proof is then complete.

The following lemma states that yk and ỹk are close with high probability.
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Lemma C.30. Assume function h(y) is γ-strong convex in B(0, r) and has a minimizer at 0,then for
δ ∈ (0, 1), under Assumption 6, it holds that with probability 1− δ,

∀k < T/η, ∥ỹk − yk∥2 ≤ 400ηρσ2d log(8γT/δ)/γ2,yk ∈ B(0, r), ỹk ∈ B(0, r)

Proof. By Lemma C.29, with probability 1− δ,

∀k < T/η, ∥ỹk∥22 ≤ 100ησ2

γ
d log(8γT/δ)

We will use C as a shorthand for 100d log(8γT/δ). Under such scenario, define νk = ỹk − yk, we
will prove by induction for k ≤ T/η that

∥νk∥2 ≤ 4ηρσ2C/γ2, yk ∈ B(0, r). (25)

Clearly ν0 = 0, satisfies the induction hypothesis. Assuming Equation (25) hold for t, then

y(k + 1) = yk − η∇L(yk)− ηgk

= yk − η∇2L(0)yk + ek − ηgk

= ỹk(1− η∇2L(0))− ηgk + νk(1− η∇2L(0)) + ek.

Here ∥ek∥ = ∥ − η(∇L(yk)− η∇2L(0)yk)∥2 ≤ ηρ∥yk∥22 ≤ 2ηρ(∥ỹk∥22 + ∥νk∥22). Hence we have
that

∥νk+1∥2 ≤ (1− ηγ)∥νk∥2 + 2ηρ(∥ỹk∥22 + ∥νk∥22).

As ∥νk∥ ≤ 4ηρσ2C
γ2 ≤ γ

4ρ , we have that 2ρ∥νk∥22 ≤ ηγ∥νk∥22/2.

Hence

∥νk+1∥2 ≤ (1− ηγ/2)∥νk∥2 + 2ηρ
ησ2C

γ

= (1− ηγ/2)∥νk∥2 + 2
η2ρσ2C

γ

By induction ∥νk∥2 ≤ 4ηρσ2C/γ2. It is then easy to check ∥νk+1∥2 ≤ 4ηρσ2C/γ2.

The following lemma tracks the changes of E[h(yk)].
Lemma C.31. Assume function h(y) is γ-strong convex in B(0, r) and has a minimizer at 0,then for
δ ∈ (0, 1), denote 100 log(8γT/δ) as C, under Assumption 6, it holds that ∀t ∈ [1/ηγ, T/η],∣∣∣E[h(ỹk)]− ησ2d/2

∣∣∣ ≤ η2σ2Tr(H) +
∆ρC

γ2
dησ2 + ρ

(
dησ2C

γ

)3/2

+ 2δM + δησ2d/2

Proof. By Lemma C.30, with probability 1− δ,

∥ỹk − yk∥2 ≤ 4ηρdσ2C/γ2, yk ∈ B(0, r), ỹk ∈ B(0, r).

Define this event as E1.

Hence ∣∣∣E[h(yk)]− E[h(ỹk)]
∣∣∣

≤
∣∣∣E[h(ỹk)− h(yk) | E1]P(E1) + E[h(ỹk)− h(yk) | Ec

1 ]P(Ec
1)
∣∣∣

≤4
∆ρC

γ2
ηdσ2 + δM.
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For ∥y∥2 < r, it holds that

∥h(y)− yT∇2h(0)y∥2 ≤ ρ∥y∥32.

By Lemma C.29, with probability 1− δ, for η < 1/γmax, it holds that for any k ≤ T/η,

∥ỹk∥22 ≤ dησ2C

γ
< r2.

Define this event as E2.

Denote H = ∇2h(0), we have that,∣∣∣E[h(ỹk)]− E[(ỹk)THỹk]
∣∣∣

=
∣∣∣E[h(ỹk) | E2]P(E2)− E[(ỹk)THỹk] + E[h(ỹk) | Ec

2 ]P(Ec
2)
∣∣∣

≤δM +
∣∣∣E[h(ỹk) | E2]P(E2)− E[(ỹk)THỹk]

∣∣∣
≤δM + ρ

(
ηdσ2C

γ

)3/2

+ E[(ỹk)THỹk | Ec
2 ]

Combining the both and we have that∣∣∣E[h(yk)]− E[(ỹk)THỹk]
∣∣∣ ≤ 4

∆ρC

γ2
ηdσ2 + ρ

(
ηdσ2C

γ

)3/2

+ 2δM + E[(ỹk)THỹk | Ec
2 ].

Here the covariance of ỹk, denoted as Σk satisfies that

Σk+1 = (I − ηH)2Σk + σ2η2I.

Therefore

Σk − ησ2(2ηH − η2H2)−1 = (I − ηH)2(Σk−1 − ησ2(2ηH − η2H2)−1).

Σk = σ2(2H − ηH2)−1(I − (I − ηH)2k).

Hence assuming the eigenvalues of H is γ1, . . . , γd

E[(ỹk)THỹk] = Tr(ΣkH) = ησ2
d∑

i=1

1

2− ηγi
(1− (1− ηγi)

2k).

When t ≥ 1
ηγi

, ηγi < 1/2, it holds that∣∣∣ησ2 1

2− ηγi
(1− (1− ηγi)

2k)− ησ2/2
∣∣∣

=ησ2 (1− (1− ηγi)
2k)

2− ηγi
− ησ2/2

≤ησ2

(
1

2− ηγi
− 1

2

)
≤η2σ2γi/2.

Hence ∣∣∣E[(ỹk)THỹk]− dησ2/2
∣∣∣ ≤ Tr(H)η2σ2/2.

Further, let uk = Σ
−1/2
k ỹk, under Ec

2 , we have that

∥uk∥22 ≥ λmin(Σ
−1
k )∥ỹk∥22 = λmin

(
(2H − ηH2)(I − (I − ηH)2k)−1

)
∥ỹk∥22/σ2 ≥ dσ2C.
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As uk is isometric Gaussian,
E[(ỹk)THỹk | Ec

2 ] ≤ E[uT
k (Σ

1/2
k )THΣ

1/2
k uk | ∥uk∥22 ≥ dσ2C]

= E[uT
k (Σ

1/2
k )THΣ

1/2
k uk]

E[∥uk∥22 | ∥uk∥22 ≥ dσ2C]

E[∥uk∥2]

≤ dησ2E[∥uk∥22 | ∥uk∥22 ≥ dσ2C]

E[∥uk∥2]

Plugging in the density function of ∥uk∥2, we have that

E[∥uk∥22 | ∥uk∥22 ≥ dσ2C]

E[∥uk∥22]
=

∫∞√
dCσ

rd+1e−r2/(2σ2)dr∫∞
0

rd+1e−r2/(2σ2)dr

Let r′ =
√

d
d+1r, then∫ ∞

√
dCσ

rd+1e−r2/σ2

dr = (
d+ 1

d
)

d+2
2

∫ ∞

dσ2C

r′d+1e−(r′)2(d+1)/(2dσ2)dr′

≤ 4

∫ ∞

√
dCσ

r′d+1e−(r′)2/(2σ2)e−(r′)2/(2dσ2)dr′

≤ 4e−C/2

∫ ∞

0

rd+1e−r2/(2σ2)dr.

Hence, we have that
E[(ỹk)THỹk | Ec

2 ] ≤ 4e−C/2dησ2 ≤ δdησ2/2.

Putting together, we have that,∣∣∣E[h(ỹk)]− ησ2d/2
∣∣∣ ≤ η2σ2Tr(H) +

∆ρC

γ2
dησ2 + ρ

(
dησ2C

γ

)3/2

+ 2δM + δησ2d/2.

The proof is then complete.

We will now state the complete version of Theorem 3.4.
Assumption 7 (Sufficient Small Learning Rate). We will assume the following for constant δ ∈ (0, 1]
and learning rate η:

1. η < 1/(2γmax).
2. η ≤ γ3/(1600ρ2σ2d log(8γT/δ)).
3. 10

√
ησ√
γ

√
d log(8γT/δ) + 400ηρσ2d log(8γT/δ)/γ2 ≤ r.

Theorem C.32 (Complete version of Theorem 3.4). If a loss L is a river valley (Definition 3.1)
and satisfies Assumptions 3 and 5, for any constants δ ∈ (0, 1) and T > 1/γ, for sufficiently small
learning rate η satisfying Assumption 7, the iterate defined in Equation (4) with ηk = η, satisfies that
for any integer t ∈ [1/ηγ, T/η], there exists a T̃ satisfying that,

E[L (w̃(t))]− L(x(T̃ )) = (d− 1)ησ2/2 + ϵL

where ϵt = 4ηγflat and |ϵL| ≤ τη2σ2+ρ(Cdησ2/γ)3/2+Cκ′dησ2+δ(2M+ησ2d) ≪ (d−1)ησ2

with C = 200 log(64γT/δ).

Proof. By Lemma C.28, we can write
L(w) = h(w − Φ(w)) + L(Φ(w)).

Hence we can separate the dynamics of Equation (4) into two parts, namely w = Φ(w)+(w−Φ(w)).
It is easy to check that when constrained on range of PS , h(y) satisfies Assumption 6. Hence, we
can use Lemma C.31 to control h(wt −Φ(wt)). For Φ(wt), the iterates is running a gradient descent
with learning rate η on M and we can use proof analogous to the proof of Theorem 3.3 to show that
if Φ(wt) = x(T̃ (t, η)), then there exists T0, such that

T̃ (t, η) ∈ [T0 + (1− 4ηγflat)ηt, T0 + (1 + 4ηγflat)ηt].

This completes the proof.
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C.8 PROOF OF THEOREM 3.5

We will first state the complete version of Theorem 3.5.
Theorem C.33. Under the setting of Theorem C.32, the SGD iterates (defined in Equation (4))
with the decaying learning rate schedule satisfies that for any integer t ∈ [ts, 1.1ts], there exists a
T̃ ∈ [(1− ϵt)T (t), (1 + ϵt)T (t)] satisfying that,

E[L (w̃(t))]− L(x(T̃ )) ≤ (d− 1)ηkσ
2/2 + ϵL

with T (t) = T +
t∑

k=ts

ηk.

Proof. The proof is analogous to Theorem C.32 and Lemma C.31. We will omit the detail derivation
and only focus on deriving the variance of corresponding ỹk.

ỹ(k + 1) = ỹk − ηkHỹk − ηkgk, w(0) = 0,gk ∼ N (0, σ2I), ỹ(0) = 0.

Here the covariance of ỹk, denoted as Σk satisfies that

Σk+1 = (I − ηkH)2Σk + σ2η2kI.

If we consider i-th eigenvector of H as vi, and denote σk,i = v⊤i Σvi.

Analogous to the proof of Theorem C.32,
∣∣∣σks,i −

ησ2

γi

∣∣∣ ≤ 4η2σ2

γi
.

We further have that

σks+r+1,i = (1− η

2 + rηγ
γi)

2σks+r,i + σ2 η2

(2 + rηγ)2
.

Then by induction, we can prove that for r ≥ 0

σks+r+1,i ≤
σ2

γi

η

2 + rηγ
+

4η2σ2

γi
=

σ2

γi
ηts+r+1 +

4η2σ2

γi
.

The rest follows the proof of Theorem C.32.

C.9 PROOF OF LEMMA 4.1 AND THEOREM C.35

In this section, we will denote exp(Θi,j)∑m
j=1 exp(Θi,j)

as Qi,j

We will study this loss

L(Θ) =
1

n

n∑
i=1

ℓi(Θi,:), ℓi(Θi,:) = −
m∑
j=1

Pi,j log
exp(Θi,j)∑m
k=1 exp(Θi,k)

. (26)

Lemma C.34. The loss defined L in Equation (26) satisfies that

(∇L(Θ))(i,j) = Pi,j −Qi,j .

(∇2L(Θ))(i,j),(i′,j′) = 1(i = i′)(Qi,j1(j = j′)−Qi,jQi,j′).

Proof. The loss satisfies that

L(Θ) =

n∑
i=1

(

m∑
j=1

Pi,jΘi,j)− log(

m∑
j′=1

Pi,j′).

Hence,

(∇L(Θ))(i,j) = Pi,j −Qi,j .

Taking differentiation for another time yields the desired result.
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Proof of Lemma 4.1. This can be done by directly summing diagonal entries in Lemma C.34.

Assumption 8. We will assume there exists constant γ and positive integer n′ < n such that P
satisfies the following assumption,

1. For any i ≤ n′, ∀j,Pi,j > 8γ.
2. For any i > n′, there exists ji, Pi,j′ > 1− γ.

Assumption 9. We assume the existence of a “generalized river”, which is a p-dimensional manifold
M such that any point w ∈ M has a gradient ∇L(w) lies in the eigenspace spanned by the last k
eigenvectors’ direction of the Hessian, {vi

(
∇2L(w)

)
| i ∈ [d− p+ 1, d]}.

Theorem C.35. Under Assumption 8, a generalized river with dimension n′m+ (n− n′) exists in
the loss landscape defined by L in Equation (26).

Proof. According to Lemma C.34, the Hessian for L is block-diagonal. Now fixing a city i, we
will analyze the eigenvalue distribution in this block. Let q = [Qi,j′ ]j′∈[m]), then this block is
diag(q)− qqT .

For all non-zero eigenvalue λ for this block, there exists v such that

diag(q)v − qT vq = λv.

Hence, we have that

vj =
qjq

T v

qj − λ

This implies
∑m

j=1

q2j
qj−c = 1. We then have λ ≥ 0 and there exists only one eigenvector correspond-

ing to λ = 0. For the rest nonzero eigenvalue, we have that λ > min qi.

Now if we consider the manifold M defined as

M = {Θ | ∀i ≤ n′,Qi,j = Pi,j ;∀i ≥ n′,Qi,ji > 1− γ}.

Then for all Θ ∈ M, we have that the gradient is zero for all dimensions (i, j) with i ≤ n′.
Further, we know all the nonzero eigenvalues for these dimensions are at least 8γ by Assumption 8.
For the rest of dimensions (i, j) with i > n′, by Lemma 4.1, the largest eigenvalue is bounded
by 1 − (1 − γ)2 < 2γ. This shows that the gradient falls in the eigenspace spanned by the last
n′m+ (n− n′) eigenvectors, which concludes the proof.

C.10 TECHNICAL LEMMA

Lemma C.36. If a function F (t) satisfies that

dF (t)

dt
≤ −AF (t),

then F (t) ≤ e−AtF (0).

Proof of Lemma C.36. Consider G(t) = F (t)eAt, then

dG(t) = eAtdF (t) +AeAtF (t) ≤ 0.

Hence G(t) ≤ G(0).

Lemma C.37. If a random vector g ∼ N (0,Σ) and δ ∈ (0, 1), then it holds that

P(∥g∥2 ≥ 2
√

Tr(Σ)
√
log(2/δ)) ≤ δ
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Proof of Lemma C.37. Assume Σ = QΛ2QT with Q being an orthonormal matrix and Λ being
diagonal with diagonal λi for i ∈ [d], further let g′ being a standard gaussian random vector, then g
follows the same distribution as that of ΛQT g′, which is further identical to Λg′.

P(∥g∥2 ≥ C) = P(∥Λg′∥2 ≥ C) = P(
d∑

i=1

Λ2
i (g

′
i)

2 ≥ C2) ≤ E[exp(t
d∑

i=1

Λ2
i (g

′
i)

2 − tC2)].

It is well known that the moment-generating function of (g′i)
2 is

E[exp(tΛ2
i (g

′
i)

2)] =
1√

1− 2tΛ2
i

.

Hence P(∥g∥2 ≥ C) ≤ e−tC2 ∏d
i=1

1√
1−2tΛ2

i

≤ e−tC2

√
1−2tTr(Σ)

.

With t = 1
4Tr(Σ) , it holds that P(∥g∥2 ≥ C) ≤ 2e−

C2

4Tr(Σ) . This concludes the proof.

Lemma C.38 (Doob’s Inequality). Let X1, . . . , Xn as a positive submartingale adapted to filtration
F1, . . . ,Fn, which means Xi ≤ E[Xi+1 | Fi], then

P(sup
i≤n

Xi > C) ≤ E[Xn]

C
.
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Figure 15: Ablation Study on the Sensitivity of Fraction of Time Decaying. This study examines two
settings: a smaller scale with 0.1B parameters trained on 100B tokens (middle figure) and a larger scale with
0.6B parameters trained on 200B tokens (left figure). The results indicate that the final performance is similar
when the decay phase is 8%-12% of the total training steps. However, the right figure demonstrates a significant
performance loss when decaying near a loss spike. It compares two training loss curves with decay phases of 8%
and 6% of the total compute on the 0.lB models, where the latter starts immediately after a loss spike, leading to
a validation loss increase of 2e-2.
We train LLaMA models with 4 parameter sizes using the Levanter framework for our study on
WSD-S. For our theoretical study, we pretrain a 124M GPT-2 using the nanoGPT framework with a
learning rate 6e-4 and train it with a batch size of 0.5M for 100k steps with warmup steps of 2k.

We hereby provide all the hyperparameters we used for the LLaMA and GPT-2 models training.

Model Hidden Dim Intermediate Dim Num Layers Num Heads Peak LR
0.1B LLaMa 768 3072 12 12 6e-4
0.3B LLaMa 1024 2048 24 16 6e-4
0.6B LLaMa 1536 6144 24 32 4e-4
1.2B LLaMa 2048 8096 16 32 4e-4
0.1B GPT-2 768 3072 12 12 6e-4

Table 2: Specifications for Different Sizes of LLaMa Models
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We decay the model for the last 10% of the training runs with one exception for 0.3B model using
WSD method near 25k steps to avoid loss spikes. We outline the decayping and resuming point (the
unit is 1k steps) we choose here:

Model 1st Decay Starts/Resume 2nd Decay Starts/Resume 3rd Decay Starts
0.1B LLaMa 11.25 / 12.5 22.5 / 25 48.75/ 53.75
0.3B LLaMa 11.25 / 12.5 22.5 / 25 48.75/ 53.75
0.6B LLaMa 11.25 / 12.5 22.5 / 25 48.75/ 53.75
1.2B LLaMa 11.25 /12.5 22.5 / 25 48.75/ 53.75

Table 3: Specifications for Decayping Steps for WSD-S Method

Model 1st Decay Starts/Ends 2nd Decay Starts/Ends 3rd Decay Starts Total Steps
0.1B LLaMa 11.25 / 12.5 22.5 / 25 45/ 50 53.75
0.3B LLaMa 11.25 / 12.5 22 / 25 45/ 50 54
0.6B LLaMa 11.25 / 12.5 22.5 / 25 45/ 50 53.75
1.2B LLaMa 11.25 /12.5 22.5 / 25 45/ 50 53.75

Table 4: Specifications for Decayping Steps for WSD Method
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