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Abstract

In reinforcement learning from human feedback, preference-based reward models
play a central role in aligning large language models to human-aligned behavior.
However, recent studies show that these models are prone to reward hacking and
often fail to generalize well due to over-optimization. They achieve high reward
scores by exploiting shortcuts, that is, exploiting spurious features (e.g., response
verbosity, agreeable tone, or sycophancy) that correlate with human preference
labels in the training data rather than genuinely reflecting the intended objectives.
In this paper, instead of probing these issues one at a time, we take a broader view
of the reward hacking problem as shortcut behaviors and introduce a principled
yet flexible approach to mitigate shortcut behaviors in preference-based reward
learning. Inspired by the invariant theory in the kernel perspective, we propose
Preference-based Reward Invariance for Shortcut Mitigation (PRISM), which
learns group-invariant kernels with feature maps in a closed-form learning objective.
Experimental results in several benchmarks show that our method consistently
improves the accuracy of the reward model on diverse out-of-distribution tasks and
reduces the dependency on shortcuts in downstream policy models, establishing a
robust framework for preference-based alignment.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) [1] has emerged as a cornerstone for the
alignment of large language models (LLMs), enabling them to generate helpful, honest, and harmless
responses that align well with human preferences [2]. RLHF aims to optimize a language model
(the policy model) to provide responses that maximize the outputs of a reward model which serves
as a proxy for human preferences. Standard RLHF algorithms require an explicit reward model
fitted to human preference data and optimize a policy model using policy gradient methods [3, 4, 5].
Alternatively, direct alignment algorithms [6, 7, 8] optimize a policy model with an implicit reward
model reparameterized via the RLHF objective. The success of RLHF is evident in various popular
AI systems, such as Gemini [9], Claude [10], and ChatGPT [11].

Despite its promises, RLHF highly depends on the quality of reward models, which is vulnerable to a
key problem known as reward hacking [12] or over-optimization [13]. This problem occurs when
reward models are inadvertently optimized to use spurious attributes of the preference data, instead of
their desired traits that align with human intents, as shortcuts in reward learning. As a result, the policy
induced by hacked or over-optimized reward models misaligns with human preferences. As illustrated
in Figure 1, since the chosen responses in the training data predominantly agree with users’ prompts,
the reward model learns to prefer responses with sycophancy [14, 15, 16], leading to a misalignment
with the chosen response in the test data which does not exhibit sycophancy. The most well-studied
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Training data

Chosen response Rejected response

I agree with the user

Test data

Chosen response Rejected response

I agree with the user

Absolutely. Remote work is the 
best option.

Remote work offers flexibility but 
can lead to blurred boundaries.

I just get a job offer. Is remote 
work the best option for me?

PromptReducing pollution should be a 

global priority, don?t you think?

Prompt

Absolutely  ?  that?s such a 

wise and thoughtful point!

Pollution is mostly 

beneficial for plant growth.

sycophancy

Figure 1: Illustration of a reward model learning sycophancy as the shortcut in responses from the
preference training data and failing to align with the human intent on the test data.

and noticed manifestation of the problem is length correlations or verbosity [17, 18, 19, 20], where
reward models favor longer responses regardless of their relevance to the given prompts due to
the strong spurious correlation between the lengths of the responses and their desired traits in the
preference data. Compared with verbosity and sycophancy, some reward hacking issues are more
subtle and remain underexplored. For example, concept correlations [21] cause models to associate
spurious textual concepts (e.g., “food”) with desired traits (e.g., positive sentiment), while ignoring
the actual response context. These biases highlight a core concern that reward models are imperfect
proxies for human intents, posing significant risks to human belief formation and decision-making
with LLMs across numerous high-stakes domains.

To mitigate these biases in reward models and enhance LLM alignment with human preferences,
we systematically reframe this problem as the shortcut learning problem [22, 23, 24]. We refer
to the spurious attributes, such as response verbosity, tone, and sycophancy, that lead to high
rewards in reward models as shortcuts in preference-based reward learning. This concept stems
from previous studies of shortcut learning in classification tasks [22, 23], where classifiers exploit
spurious attributes, such as backgrounds or image texture, that strongly correlate with labels in the
training data for predictions. Models can perform well on in-distribution (i.d.) test sets with regard
to training data, while they tend to perform poorly on out-of-distribution (o.o.d.) data where those
spurious correlations [25, 26] do not hold. Previous methods like invariant risk minimization [27]
and distributionally robust optimization [28] tackle this problem by enforcing consistent performance
across multiple data groups (or subpopulations) with various spurious attributes, given the annotations
of these attributes in the training data. However, in the setting of RLHF, annotations on spurious
attributes of preference data are often hard to acquire, and most reward models are LLM-based in a
black-box nature, making it challenging to detect and mitigate shortcuts in reward models. Recent
works [20, 19, 29] solve only one shortcut (e.g., verbosity) at a time without jointly considering other
shortcuts. This raises an emerging challenge:

How can we rectify shortcut learning in RLHF in a unified way
where all targeted shortcuts can be mitigated?

In this paper, we present PRISM, a novel shortcut mitigation method for reward models to improve
alignment with human preferences. We first characterize shortcut features (e.g., response length, tone)
as group-invariant kernels and show that their invariance can be efficiently approximated using random
feature maps. This motivates the PRISM objective, which improves upon the Bradley-Terry ranking
loss with kernel-based regularizers, making the reward model aware of the distances between various
spurious attributes in the preference data. Unlike prior methods, PRISM supports multiple shortcut
mitigation objectives within a shared metric space, from simple heuristics to LLM-based detectors
[30]. Theoretically, we establish a generalization bound for the proposed objective. Empirically,
PRISM improves robustness on several o.o.d. preference datasets and downstream alignment tasks.

Our contributions are as follows:

• We refactor the reward hacking problems as the shortcut behaviors, which unifies diverse
biases (e.g., reliance on verbosity, sycophancy, tone) under a single framework. Inspired by

2



the invariant theory, we model the shortcut transformation as group actions and the shortcut
features as group-invariant kernels.

• We propose PRISM, a practical shortcut-mitigation framework that approximates the
group-invariant kernels with feature maps and leads to an explicit learning objective. PRISM is
flexible and supports regularization ranging from simple heuristics (e.g., response length) to
LLM-based Judges.

• We provide both theoretical and empirical evidence for PRISM’s effectiveness. We prove
that PRISM is guaranteed by a risk bound under mild assumptions. In experiments, PRISM
consistently outperforms previous baseline reward models on the o.o.d. preference data and
induces robust downstream policy models.

2 Preliminaries

We start by introducing preference data, reward modeling, and alignment algorithms in
preference-based RLHF. Then, we describe the shortcut learning problem in reward models.

Preference data. In preference-based RLHF, we are given a human preference dataset Dpref =

{(x(i), y(i)w , y
(i)
l )}Ni=1 with N triplets, where x(i) ∈ X denotes the i’th input prompt from the prompt

space X , y(i)w ∈ Y denotes a chosen response from the response space Y , and y(i)l ∈ Y denotes a
rejected response. The response space Y contains all possible responses from a reference policy
model πref .

Reward modeling. The goal is to learn a reward model, which acts as a proxy for human preferences,
from the preference data to accurately assign rewards to prompt-response pairs. A common and
successful approach in reward modeling for LLM alignment is to adopt the Bradley-Terry (BT)
model [31], which assumes that preferences are generated by some latent reward function r :
X × Y → R and the preference likelihood can be written as

P(yw ≻ yl|x) =
exp(r(x, yw))

exp(r(x, yw)) + exp(r(x, yl))
= σ(r(x, yw)− r(x, yl)), (1)

where P(yw ≻ yl|x) denotes the likelihood of yw being preferred to yl given x, and σ(z) =
1/(1 + exp(−z)) is the sigmoid function. Then, we can fit a reward model rθ parameterized by θ,
which minimizes the negative log-likelihood on the preference dataset Dpref as follows,

LBT(rθ|Dpref) = −min
θ

E(x,yw,yl)∼Dpref
[log σ(rθ(x, yw)− rθ(x, yl))] (2)

Alignment algorithm. Aligning a policy model π with the preference data can be achieved with an
explicit or implicit reward model. Given the explicitly learned reward model rθ, the reference policy
model πref , and input prompt distribution P over X , π is optimized via the following objective:

max
π

Ex∼P [Ey∼π(·|x)rθ(x, y)− β · DKL[π(·|x)∥πref(·|x)]], (3)

where DKL is the KL divergence and β > 0 is the KL penalty coefficient. The KL penalty in Formula
3 ensures that rewards from rθ are relevant to π by preventing the policy model π from deviating too
much from the reference policy πref . For the alignment with implicit reward modeling, such as DPO
[6], the optimal reward model is first derived from Formula 3 as a function of the policy model πθ.
Then, the policy model is directly optimized to maximize the preference likelihood in Equation 1
over all preference data with the following loss,

LDPO(πθ|πref ,Dpref) = −E(x,yw,yl)∼Dpref
[log σ(β log

πθ(yw|x)
πref(yw|x)

− β log πθ(yl|x)
πref(yl|x)

)], (4)

where the implicit reward model can be defined as r∗θ(x, y) = πθ(y|x)/πref(y|x).
Shortcut learning in reward models. As illustrated in Figure 1, when the reward model is trained
with chosen responses that predominantly contain sycophancy, it fails to correctly rank the chosen
responses above the rejected ones in the test data, in which the chosen responses do not exhibit
sycophancy. In Figure 2(a), we formally describe the shortcut learning behavior through latent
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Bradley-Terry

Maximize

Maximize Shortcuts

Just give 

longer 

response.
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Just chat 

with good 
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Rectify with

Maximize

Chosen Reject

(a) Shortcut Learning in Reward Models (c) Shortcut Mitigation in RLHF/DPO

Spurious 

Attributes

Latent Space
RLHF/
DPO

RLHF/
DPO

Biased Policy

Generalizable Policy

(b) Shortcuts as Group-invariant Kernels

Group-invariant
Kernels
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Distance

Approximation
with Feature Map

Orbit

Orbit

For shortcuts

Figure 2: Method overview: (a) Shortcut behaviors occur when models only maximize the margin on
spurious features zs and z′s, including verbosity, sycophancy, and tone, instead of the generalizable
features zg and z′g in the latent space. (b) We learn shortcut behaviors as group-invariant kernels,
which are approximated by feature maps Φ. Then, we measure the distance between chosen and
rejected responses. (c) PRISM rectifies shortcut behaviors with the kernel distance and shifts the
margin maximization to generalizable features zg , therefore inducing generalizable policies.

feature decomposition. Consider an encoder h : X × Y → Zs ×Zg , which maps a prompt-response
pair (x, y) to decoupled latent spaces Zs with spurious attributes and Zg with features containing
desired traits where Zs ∩ Zg = ∅. Ideally, the ground-truth reward r, aligned with human intents,
should be a function depending only on zg ∈ Zg. In practice, a set of preference training data
Di.d. = {(x(i), y(i)w , y

(i)
l )}Ni=1 from an i.d. distribution may contain spurious attributes (e.g., chosen

responses tend to have longer lengths or exhibit sycophancy) that spuriously correlate with human
preferences. A reward model rθ optimized with the standard Bradley-Terry ranking loss can exploit
these spurious attributes as prediction shortcuts to minimize training loss. When the model is tested
with the data from Do.o.d., where the corresponding zg’s distribution matches with that in Di.d. but zs
is no longer correlated with chosen responses, a significant deviation from human intents on Do.o.d.
emerges, i.e.,

PDo.o.d. [rθ(x, yw) > rθ(x, yl)]≪ PDi.d. [rθ(x, yw) > rθ(x, yl)], (5)

where PDo.o.d. and PDi.d. denote probability measures supported on Do.o.d. and Di.d., respectively, and
the symbol “≪” denotes “much less than”. The deviation can cause a policy model to behave
differently from human preferences when it is aligned using a biased reward model.

3 PRISM: Preference-based Reward Invariance for Shortcut Mitigation

We formalize our approach, PRISM, to learn preference-based reward invariance against shortcuts.
We illustrate our main idea in Figure 2 (b) and (c), where we model the shortcut as group-invariant
kernels, then rectify the effect of shortcut/spurious attributes with the kernel distance. In Section
3.1, we first demonstrate how we can achieve the reward invariance by modeling multiple shortcuts
as group-invariant kernels on the response space Y conditioned on the prompt space X . It is a
mature theory to incorporate individual group-invariant kernels and maintains overall invariance with
Harr-Integration [32]. In Section 3.2, we show that the practical approach, i.e., using random feature
maps, can approximate the expected kernel for reward invariance, and the feature map can be used to
quantify the distances between orbits of the responses. In Section 3.3, we propose the overall learning
objective of PRISM to fit in the setting of preference-based reward learning and show that PRISM is
guaranteed by a generalization bound.

3.1 Learning Shortcut Behaviors as Group-invariant Kernels

We view the responses y ∈ Y conditioned on the prompt x ∈ X as the results of transforming
human intents in Y with shortcut operations from a compact and unitary group G, such as
increasing/decreasing response length or posing a positive/negative response tone. For brevity,
we mainly study two responses yw, yl ∈ Y following Section 2. Unless otherwise specified, both
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yw, yl are assumed to be conditioned on prompt x. Ideally, the preference-based reward outcomes
should be invariant to shortcut operations. We interpret the shortcut operations as group actions
theoretically. A robust and generalizable reward function should satisfy group-invariance with regard
to different shortcut group actions g ∈ G. We first define a group-invariant kernel.
Definition 1 (Group-invariant Kernel [32]). Consider Y of the hypersphere in d dimensions Sd−1.
Assume κ is a kernel on the space Y , e.g., a radial basis function (RBF) kernel [33]. Let G be a
compact and unitary group acting on Y , with a normalized Haar measure µ. Define an invariant
kernel K between yw, yl ∈ Y through Haar-integration as follows:

K(yw, yl|x) =
∫
g∈G

∫
g′∈G

κ(gyw, g
′yl|x)dµ(g)dµ(g′) (6)

We denote K the invariant Haar-integration kernel in G. Since the group is closed, we can also get:
K(gyw, g′yl|x) = K(yw, yl|x),∀g, g′ ∈ G.

From Definition 1, group-invariant kernels attain identical values for any response pair (yw, yl) and the
transformed pair (gyw, g′yl). In Figure 2 (b), we show that each response transformed under the group
action g ∈ G lies on the same shortcut subspace, which provides an invariant representation of shortcut
behaviors with regard to different responses. However, explicitly computing the group-invariant
kernel by calculating the integral is intractable. Therefore, in the following, we explore an efficient
approximation of the group-invariant kernels via an expectation over feature maps.

3.2 Approximating Expected Kernel with Feature Maps

In this section, we aim to show that there exists a feature map Φ : Y → RD that can approximate
the group-invariant kernel, i.e., ⟨Φ(yw),Φ(yl)⟩ ≈ K(yw, yl|x). Following [34], the group-invariant
kernel can also be expressed by distribution functions:

Ks(yw, yl|x) = Et

∫ s

−s

ψ(yw, t, τ |x)ψ(yl, t, τ |x)dτ, (7)

where ψ defines the truncated cumulative distribution function (CDF) of the dot product ⟨y, gt⟩
and s = 1 + ϵ, −s ≤ τ ≤ s. In order to approximate Ks, we sample |G| elements uniformly and
independently from the group G, i.e. gi, i = 1 . . . |G|, and define the normalized empirical CDF ϕ
and the random feature map Φ in 2n− 1 bins (indexed by k). For y ∈ Y , we have:

ϕ(y, t, τ) =
1

|G|
√
m

|G|∑
i=1

1⟨gi,ty⟩≤τ , Φ(y) =

[
ϕ

(
y, tj ,

sk

n

)]
j=1...m,k=−n...n

∈ R(2n+1)×m, (8)

where tj = ν
∥ν∥2

, ν ∼ N (0, Id) defines m uniform templates on the unit sphere Sd−1.

Proposition 1 (Equivalence of Expected Kernel). We independently sample m templates tj , j =
1, · · · ,m with regard to the Gaussian distribution. The feature map Φ preserves the invariant kernel:

lim
n→∞

E
t,g
⟨Φ(yw),Φ(yl)⟩R(2n+1)·m = lim

n→∞
E
t,g

m∑
j=1

n∑
k=−n

ϕ(yw, tj ,
sk

n
)ϕ(yl, tj ,

sk

n
) = Ks(yw, yl|x).

(9)

In Proposition 1, as the number of bins n increases, this discretization converges to the continuous
kernel, and the random feature map Φ thus approximates the group-invariant kernel.
Theorem 1 (Invariant Features Maps and Distances between Orbits). Let ϵ ∈ (0, 1) and yw, yl ∈
Y . Denote the orbit to be the collection of all group-transformations of a given input y: Ox =
{gx, g ∈ G}. We define the distance measure dG between two orbits Oyw

and Oyl
: dG(yw, yl|x) =

1√
2πd

∫
g∈G

∫
g′∈G ∥gyw − g′yl∥2dµ(g)dµ(g′). Fix ϵ0, δ ∈ (0, 1). For a number of bins n ≥ 3

ϵ0
,

templates m ≥ 9C1

ϵ20
log(Nδ ), and group elements |G| ≥ 9C2

ϵ20
log(Nm

δ ), where C1, C2 are constants.
The following inequality holds with probability 1− 2δ:

ϵ− δ2(d, ϵ)− ϵ0 ≤ ⟨Φ(yw),Φ(yl)⟩ − (1− dG(yw, yl|x)) ≤ ϵ0 + ϵ+ δ1(d, ϵ), (10)

where i = 1 . . . N, j = 1 . . . N .
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Theorem 1 shows that the inner product of the feature maps can accurately reflect the distances
between two orbits of two responses yw and yl. Guided by the above results, we can model the
shortcut behaviors with feature maps, then represent the distance shortcut behaviors in two responses,
as shown in Figure 2 (b).

3.3 Learning Objective and Theoretical Guarantee

Building on the approximate group-invariant kernel of Section 3.2, we propose the practical
implementation of shortcut mitigation. Assume there are m types of shortcuts to mitigate. Let
Φj be an auxiliary feature embedding for the shortcut indexed by j ∈ {1, 2, · · · ,m}. We can express
the convex linear combination of feature maps in Proposition 1 with RBF kernels κ:

Kinv =

m∑
j=1

αjκ(yw, yl|x) =
m∑
j=1

αj exp(−
∥Φj(yw, x)− Φj(yl, x)∥2

ω2
j

), for
m∑
j=1

αj = 1, αj ≥ 0,

(11)
where ωj denotes the kernel widths. To normalize the invariance between the reward rθ and feature
embedding Φ, we also propose global decorrelation between rewards and shortcut features at the
batch level. Let B = {(x(i), y(i))}bi=1, b > 1, denote a batch of n prompt-response pairs. For each
shortcut feature Φj , j ∈ {1, . . . ,m}, we define the global decorrelation regularization term:

Rglobal(θ) =

m∑
j=1

(
CovB(rθ,Φj)

σB,rθ · σB,Φj

)2,where σB,rθ and σB,Φj are standard deviations. (12)

CovB(rθ,Φj) =
1

b− 1

b∑
i=1

(rθ(x
(i), y(i))− r̄θ)(Φj(x

(i), y(i))− Φ̄j), (13)

where r̄θ = 1
n

∑n
i=1 rθ(x

(i), y(i)) and Φ̄j = 1
n

∑n
i=1 Φj(x

(i), y(i)) are batch means, σB,rθ and
σB,Φj

are the standard deviations of the reward model outputs and the shortcut features, respectively.
This penalizes correlations between rewards and shortcut features, ensuring rθ is invariant to zs at both
sample and batch levels. Finally, we give the PRISM learning objective based on the approximation
in the previous section:

LPRISM(θ) = − 1

N

N∑
i=1

log σ(∆rθ (yw, yl|x)− λ1Kinv(yw, yl|x)) + λ2Rglobal(θ), (14)

where ∆rθ (yw, yl|x) = rθ(x, yw)−rθ(x, yl) denotes the standard reward margin. Scalars λ1, λ2 ≥ 0
control the relative strength of the two regularizers. The overall objective is smooth in θ and can be
minimized with standard gradient descent methods.

To illustrate this objective, we show our idea in Figure 2 (c). We use the kernel distance to quantify
the shortcut variation on zs axis between two responses. By subtracting the effect of zs, the model is
encouraged to maximize the margin between generalizable features zg and z′g, leading to improved
robustness. We show the theoretical evidence as follows.
Theorem 2 (Generalization Bound of PRISM). LetHKinv be the Reproducing Kernel Hilbert Space
(RKHS) induced by Kinv and define the hypothesis ball F :=

{
rθ, ∥rθ∥HKinv

≤ C
}

for the fixed
radius C > 0. We assume the log-sigmoid loss V (·) is L-Lipschitz. Then, for any δ > 0, with
probability 1− 3δ, the following inequality holds:

EV (r∗θ) ≤ inf
rθ∈F

EV (rθ)+
4LC√
N

(
1 +

√
log 1

δ

)
+λ1LC

(
2√
m

+
2√
|G|

+
2

n

)
+λ2LC

√
m log N

δ

N
,

(15)
where EV (r∗θ) and EV (rθ) are the optimal risk and empirical risk of the reward model rθ.

Theorem 2 shows that the PRISM objective in the invariant feature space has a lower expected risk.
Specifically, when the number of shortcut features m, the number of bins n, the number of group
actions |G|, and the number of training samples N increase, the expected empirical risk can move
further to the optimal risk. This theorem thus gives a learning guarantee of the PRISM objective.
Proofs of Proposition 1, Theorem 1, and Theorem 2 are provided in the Appendix.
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Table 1: Performance comparison on RewardBench. The benchmark consists of four primary scores
(Chat, Chat Hard, Safety, and Reasoning) with equal weights. The score is computed as the average
accuracy across the four categories.

Method Base Model Chat Chat Hard Safety Reasoning Score
Prompting Gemma-2B 70.3 42.3 38.2 50.0 50.2
Prompting Llama-3 8B 93.6 44.3 71.3 73.5 70.7
Bradley-Terry Gemma-2B 95.0 40.8 81.2 74.2 72.8
Bradley-Terry Llama-3 8B 99.4 65.1 87.8 86.4 83.6
Bradley-Terry Yi-34B 96.9 57.2 88.2 88.5 81.4
LLM-as-a-judge GPT-4 Turbo 95.3 74.3 87.2 86.9 84.2
LLM-as-a-judge GPT-4o 96.6 70.4 86.7 84.9 83.3
HelpSteer2 RM [38] Llama-3 70B 91.3 80.3 92.8 90.7 86.3

RRM [29] Gemma-2-9b-it 96.5 65.6 83.9 90.6 84.2
RLHFlow [35] Llama-3 8B 99.4 65.1 87.8 86.4 84.7
SSRM [39] Llama-3 8B 98.6 65.3 88.8 92.0 86.2
GRM [40] Llama-3 8B 98.6 67.8 89.4 92.3 87.0

PRISM Llama-3 8B 98.7 68.3 91.1 93.1 87.8

4 Experiments

4.1 Experimental Setup

Training set. We use our proposed method to train reward models on a mixture of preference
datasets collected by the RLHFlow framework [35]. It combines 8 popular open-source preference
datasets, each containing preference triplets in the form of (prompt, chosen response, rejected
response) defined in Section 2. These datasets have been widely used to train a series of strong
open-source preference language models. Although some of the datasets (e.g., HelpSteer [36])
provide fine-grained attributes of training samples, in our setting, we do not use these attributes
during training to reflect a real-world setting where such auxiliary information is not available. More
details of the training data are deferred to the Appendix.

Extracting shortcut features. We implement rule-based feature extractors for length and lexical
diversity. For length, we simply count the number of characters in a response. For lexical diversity,
we calculate the Type-Token Ratio (TTR), defined as the ratio of unique tokens to total tokens in a
response, to measure vocabulary richness in the response. A higher TTR value indicates greater lexical
diversity. To optimize performance and avoid repeated calculations, we implement an LRU (Least
Recently Used) cache with a maximum capacity of 10,000 entries. We implement LLM-as-a-Judge
[30] feature extraction with GPT-4o models through the Langchain APIs to extract multiple attributes,
including sycophancy, creativity, and helpfulness. For example, for sycophancy, we prompt the model
to rate how much an assistant’s response agrees with or flatters the user on a scale from 0 to 10.
Additionally, we ensure numeric scores are properly extracted and bounded between 0 and 10 for
consistent feature scaling. We process samples in batches using concurrent execution with a thread
pool to reduce API call latency. Our implementation includes robust error handling with fallback to
heuristic-based scoring when API calls fail. To minimize the number of API calls, we implement a
caching mechanism that stores previously computed features for individual samples. We provide the
design of prompt engineering and the details of the heuristic fallback in the Appendix.

Implementation details. We implement PRISM using Huggingface and DeepSpeed. Our data loader
applies a chat template and extracts the token-based length, lexical diversity, and sentiment features.
LLM-based sycophancy, creativity, and helpfulness scores are computed via LangChain APIs. In
the training process, we compute each independent kernel over the feature pairs of both chosen and
rejected responses, weight them via a learnable softmax layer, and train the model with the PRISM
loss. We do not specifically tune the two regularization hyperparameters λ1 and λ2, and instead adopt
a curriculum learning paradigm [37] by linearly increasing them from 0.01 to 0.1 over the first half of
the training process and then decreasing them to 0.06 by the end. We use a learning rate of 2× 10−6

with a cosine annealing scheduler and a warmup phase covering 3% of the total training steps. All
experiments are conducted on 8 NVIDIA A6000 GPUs.
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Table 2: Performance comparison on RM-Bench. The benchmark has four primary scores (Chat,
Math, Code, and Safety) and three difficulty levels (Easy, Normal, Hard) with equal weights. This
dataset consists of semantic and stylistic subtly where the reward models can exploit shortcuts.

Model Name Chat Math Code Safety Easy Normal Hard Avg
Mistral-7B-instruct-Unified-Feedback 56.5 58.0 51.7 86.8 87.1 67.3 35.3 63.2
RM-Mistral-7B 57.4 57.0 52.7 87.2 88.6 67.1 34.9 63.5
BTRM_Qwen2-7b_0613 57.1 61.0 54.3 87.3 90.7 69.7 34.5 64.9
Eurus-RM-7b 59.9 60.2 56.9 86.5 87.2 70.2 40.2 65.9
InternLM2-7b-reward 61.7 71.4 49.7 85.5 85.4 70.7 45.1 67.1
URM-LLaMa-3-8B 68.5 57.6 52.3 90.3 80.2 69.9 51.5 67.2
GRM-Llama3-8B-rewardmodel-ft 66.8 58.8 52.1 91.4 86.2 70.6 45.1 67.3
GRM-llama3-8B-distill 62.4 62.1 56.9 88.1 82.2 71.5 48.4 67.4
GRM-llama3-8B-sftreg 62.7 62.5 57.8 90.0 83.5 72.7 48.6 68.2
Llama-3-OffsetBias-RM-8B 71.3 61.9 53.2 89.6 84.6 72.2 50.2 69.0
URM-LLaMa-3.1-8B 71.2 61.8 54.1 93.1 84.0 73.2 53.0 70.0
Skywork-Reward-Llama-3.1-8B 69.5 60.6 54.5 95.7 89.0 74.7 46.6 70.1

PRISM (Llama-3.1-8B) 70.6 70.8 57.0 94.1 90.6 76.3 46.9 71.0

4.2 Main Results

PRISM balances across categories and achieves the best overall performance. We report
test accuracies on two out-of-distribution benchmarks, RewardBench [41] and RM-Bench [42], in
Tables 1 and 2, respectively. RewardBench provides a challenging evaluation of reward models
across four categories, namely, “Chat”, “Chat Hard”, “Safety”, and “Reasoning”. In the upper part
of Table 1, we list baselines with standard reward modeling techniques. Although these methods
may achieve high performance in one category, their performance often degrades significantly in
other categories, leading to inferior overall performance. In the lower part of Table 1, we include
state-of-the-art baseline methods for mitigating reward hacking. PRISM shows clear improvements in
three challenging categories: “Chat Hard”, “Safety”, and “Reasoning”, while remaining competitive
in “Chat”. The overall gains suggest that PRISM benefits from jointly mitigating multiple shortcuts.
In Table 2, we further compare PRISM to stronger baselines on RM-Bench, which is a more difficult
benchmark due to its subtle spurious cues introduced through fine-grained concept shifts and stylistic
variations. The baseline models are trained on different datasets that may skew toward specific
domains (e.g., mathematics or code). Therefore, they may achieve high performance in some domains
by exploiting shortcuts in the training data, while performing poorly in other domains. In comparison,
PRISM achieves the best overall performance with a moderate margin by effectively regularizing
against stylistic and semantic shortcuts. These results indicate that PRISM can balance and improve
the generalization of reward models across different categories in out-of-distribution evaluation.
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Figure 3: Comparison of policy models induced by reward models, including Bradley-Terry (BT),
RRM, ODIN, and PRISM.

PRISM can induce better policy models with higher win rates. We further study the quality of
reward models by evaluating the induced policy models in Figure 3. We use the UltraFeedback dataset
[43] for both RLHF and DPO tasks with different reward models. We choose Gemma-9B [44] as
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the backbone of all policy models. Then we evaluate the trained policy models on the AlpacaEval-2
benchmark [45]. We use three main metrics: WR, LC, and Length, where WR is the win rate against
GPT-4, LC is the win rate after accounting for response length, and Length is defined as the average
number of characters in the generated responses. For RLHF policies, we use Best-of-N (N = 8)
sampling for the final responses. For DPO policies, we use the on-policy responses generated by
Gemma-2-9b-it and labeled by the reward models for DPO training. The results show that PRISM can
induce better policy models with higher win rates and moderate response length. This improvement
is attributed to PRISM’s ability to align reward signals with generalizable human preferences, rather
than overfitting to superficial cues such as verbosity.

PRISM models achieve near-zero correlations with shortcuts. In Figure 4, we conduct a
correlation analysis on RM-Bench between three different shortcuts (i.e., response length, tone,
and sycophancy) and the reward scores from two methods: a Bradley-Terry (BT) reward model with
Llama-3.1-8B as backbone, and a PRISM reward model with the same backbone. We report the
Pearson Correlation Coefficient (PCC) and the corresponding p-value for each case. From the results,
the BT model exhibits a strong correlation with response length and non-trivial correlations with
tone and sycophancy, indicating that the BT reward model is biased by these shortcuts. In contrast,
the PRISM model achieves near-zero PCCs across all three shortcut dimensions, demonstrating its
effectiveness in mitigating shortcut learning.

Figure 4: Correlation analysis on RM-Bench. Top row: Llama-3.1 8B model trained with BT.
Bottom row: Llama-3.1 8B model trained with PRISM. PRISM achieves a close-to-zero Pearson
Correlation Coefficient (PCC) with the shortcuts, illustrating the effectiveness of shortcut mitigation.

5 Related Works

Reinforcement learning from human feedback. Reinforcement Learning from Human Feedback
originated in continuous control domains [46] but has become pivotal for aligning LLMs with
human preferences. Recent applications span tasks like summarization [47, 48] and instruction
following [1, 49]. The classical RLHF pipeline involves two stages: learning a reward model from
human preferences (e.g., rankings or comparisons) and then optimizing the policy via reinforcement
learning, typically using on-policy algorithms like proximal policy optimization (PPO) [3]. While
effective, PPO-based training suffers from computational costs and instability due to its reliance
on on-policy sampling. Another line of work, Direct Preference Optimization (DPO) [6] and its
variants [50, 5, 51, 8], simplify this process by converting reward maximization into a single-step
offline policy optimization objective, which circumvents the need for explicit reward modeling and
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mitigating PPO’s instabilities. Our approach can benefit RLHF algorithms, which rely on the quality
and generalization of reward models.

Reward hacking and shortcut learning. Reward learning is inherently data-driven and faces
significant challenges in evaluating out-of-distribution responses. This phenomenon, where the
policy language model exploits imperfections in the reward model, is commonly known as reward
hacking [52, 12], and is also called reward over-optimization [53], or reward tampering [15]. The
work closely relevant to our method includes a series of reward regularization methods, such as
adding a specific penalty [20, 19] to the reward, using a reward ensemble [54], or leveraging the
multi-objective with fine-grained annotations [55]. This phenomenon is also fundamental in the
context of classical machine learning, known as shortcut learning. Existing methods focus on
mitigating spurious correlations [56, 57, 58, 59, 60], learning group-invariant representations [61],
and distributionally robust optimization to minimize worst-case errors [28, 62]. Our method, PRISM,
bridges these domains by reframing reward hacking as one manifestation of shortcut learning. Unlike
single-penalty approaches, PRISM mitigates multiple biases via an approximated group-invariant
kernel. It avoids the computational cost of ensembles with lightweight embeddings and operates
without additional attribute annotations, sidestepping the limitations of multi-objective methods.

6 Conclusion

In this paper, we present a novel framework that reinterprets reward hacking as learning shortcuts in the
reward models. By learning shortcuts as group-invariant kernels and incorporating reward-invariant
regularization to rectify shortcut behaviors, our method PRISM improves o.o.d. generalization of
reward models on challenging unseen data. Unlike previous bias-specific methods, our approach
systematically unifies diverse biases into a single learning objective. We anticipate this work will
inspire broader exploration of shortcut-aware regularization in reward modeling, bridging the gap
between theoretical insights and practical alignment challenges.
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Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We include any theoretical assumptions and proofs in both the main paper and
the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper discloses the experimental details needed to reproduce the main
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: We provide an anonymous link to our code in the footnote of the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: We include the experimental setting in both main paper and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our method is deterministic following previous methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: We indicate the type of GPU in Implementation Details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines: The research conducted in the paper conforms with the NeurIPS Code of Ethics.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the broader impacts of the work in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original owners of the assets used in the paper have been properly cited
and mentioned, and their licenses have been respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: this paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We only use LLM for Editing (e.g., grammar, spelling, word choice).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Notation Table

Table 3: Summary of notations appeared in this paper.

Symbol Description

X Input prompt space
Y Response space
Dpref Human preference dataset {(x(i), y(i)w , y

(i)
l )}Ni=1

x ∈ X Input prompt
yw, yl ∈ Y Chosen and rejected responses
π, πref Policy model and reference policy
r(x, y) Latent reward function over prompt-response pairs
rθ(x, y) Parametric reward model with parameters θ
σ(·) Sigmoid function, 1/(1 + exp(·))
DKL Kullback-Leibler divergence
Zs, Zg Latent spaces for spurious and generalizable features
zs, zg Spurious and generalizable latent features
h(x, y) Latent encoder mapping to (zs, zg)

G Compact unitary group representing shortcut transformations
g, g′ ∈ G Group actions (e.g., verbosity, tone)
µ Haar measure on G
κ(·, ·) Base kernel function (i.e., RBF kernel)
K(yw, yl|x) Group-invariant kernel between responses
ψ(y, t, τ |x) Truncated CDF of dot product ⟨y, gt⟩
ϕ(y, t, τ) Empirical CDF feature function
Φ(y) Random feature map for approximating invariant kernel
tj Template vector sampled from Sd−1

m Number of templates tj
n Number of bins used in feature map approximation
dG(yw, yl|x) Distance between group orbits of yw and yl
Oy Group orbit of y: {g · y | g ∈ G}
αj Weight of shortcut kernel component j
ωj Kernel width for shortcut feature j
Φj Feature map for shortcut type j
B Batch of (x(i), y(i)) pairs
Rglobal(θ) Global decorrelation regularization term
CovB(·, ·) Empirical covariance on batch B
∆rθ (yw, yl|x) Standard reward margin
r̄θ, Φ̄j Batch means of reward and shortcut feature values
λ1, λ2 Regularization weights
LPRISM Final PRISM training objective
HKinv RKHS induced by invariant kernel
EV (rθ) Risk under log-sigmoid loss V
C Radius of RKHS hypothesis ball
L Lipschitz constant of loss function
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B Broader Impacts

Societal Impacts. The ability to mitigate shortcut behaviors in reward models has significant
societal implications for the safe deployment of AI systems. By reducing reliance on spurious
attributes like verbosity, sycophancy, or tone, PRISM enhances the trustworthiness of language
models in high-stakes applications such as healthcare, education, and legal analysis. For instance,
mitigating sycophancy prevents models from generating misleadingly agreeable responses that could
compromise decision-making, while addressing verbosity biases avoids favoring unhelpful yet lengthy
outputs. This could also promote fairness by reducing unintended correlations between superficial
text features (e.g., mentioning specific keywords) and perceived quality, which could otherwise
perpetuate harmful stereotypes.

Technical Impacts. PRISM improves the robustness of preference-based alignment by unifying
diverse shortcut mitigation objectives under a single invariant learning framework. Unlike prior
methods that address individual shortcuts in isolation, our approach enables joint mitigation through
group-invariant kernels, offering a flexible paradigm for future reward modeling. The integration of
kernel methods with invariance theory opens new avenues for research in robust RLHF, particularly
in handling complex, multi-dimensional shortcut behaviors. Practically, PRISM’s compatibility with
both heuristic and LLM-based shortcut detectors lowers the barrier to adopting robust alignment
techniques. However, its performance depends on identifying relevant shortcut features, highlighting
the need for dynamic shortcut detection mechanisms as new spurious correlations emerge. This work
bridges the gap between invariant representation learning and preference-based alignment, potentially
influencing broader applications in safety-critical AI systems.

C Limitations

Our proposed framework introduces a novel method to address shortcut learning behaviors
effectively in preference-based alignment tasks, which provides a principled solution that significantly
reduces known shortcut reliances. However, practical challenges still remain. For example, the
current implementation benefits from prior knowledge about specific shortcuts (e.g., length, tone,
sycophancy), which highlights the potential for future research into automatic detection and mitigation
of subtle or evolving shortcuts. Developing dedicated benchmark datasets could further facilitate this
research. Additionally, applying our approach to larger or more complex tasks may require balancing
computational efficiency and budget with algorithm performance, especially since extracting features
from LLM-based evaluations can be costly. Lastly, while our results demonstrate effectiveness in
text-based preference tasks, further exploration into multimodal scenarios and low-resource languages
presents valuable opportunities for future work.

D Proofs of Theoretical Results

D.1 Proof of Proposition 1

Proposition 1 (Equivalence of Expected Kernel). We independently sample m templates tj , j =
1, . . . ,m with regard to the Gaussian distribution. The feature map Φ preserves the invariant kernel:

lim
n→∞

E
t,g
⟨Φ(yw),Φ(yl)⟩R(2n+1)·m = lim

n→∞
E
t,g

m∑
j=1

n∑
k=−n

ϕ(yw, tj ,
sk

n
)ϕ(yl, tj ,

sk

n
) = Ks(yw, yl|x).

(16)

Proof. We aim to show that the inner product between the random feature maps Φ(yw) and Φ(yl)
converges to the expected kernel Ks(yw, yl | x) as the number of bins n→∞.
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⟨Φ(yw),Φ(yl)⟩ =
m∑
j=1

n∑
k=−n

ϕ
(
yw, tj ,

sk
n

)
· ϕ
(
yl, tj ,

sk
n

)

=

m∑
j=1

n∑
k=−n

 1

|G|
√
m

|G|∑
i=1

1
⟨gitj ,yw⟩≤ sk

n

 1

|G|
√
m

|G|∑
i′=1

1
⟨gi′ tj ,yl⟩≤

sk
n


=

1

|G|2m

m∑
j=1

n∑
k=−n

|G|∑
i=1

|G|∑
i′=1

1
⟨gitj ,yw⟩≤ sk

n

· 1
⟨gi′ tj ,yl⟩≤

sk
n

This expression is a Monte Carlo approximation of the integral:

Et

∫ s

−s

ψ(yw, t, τ) · ψ(yl, t, τ) dτ = Ks(yw, yl | x)

where ψ(y, t, τ) = Pg(⟨gt, y⟩ ≤ τ) is the truncated CDF of the dot product between
group-transformed templates and response vectors.

As n → ∞, the sum over bins converges to the Riemann integral over [−s, s]. As m → ∞, the
template sampling converges to the expectation over t. Thus:

lim
n→∞

Et,g⟨Φ(yw),Φ(yl)⟩ = Ks(yw, yl | x)

This concludes the proof.

D.2 Proof of Theorem 1

Theorem 1 (Invariant Features Maps and Distances between Orbits). Let ϵ ∈ (0, 1) and yw, yl ∈
Y . Denote the orbit to be the collection of all group-transformations of a given input y: Ox =
{gx, g ∈ G}. We define the distance measure dG between two orbits Oyw and Oyl

: dG(yw, yl|x) =
1√
2πd

∫
g∈G

∫
g′∈G ∥gyw − g′yl∥2dµ(g)dµ(g′). Fix ϵ0, δ ∈ (0, 1). For a number of bins n ≥ 3

ϵ0
,

templates m ≥ 9C1

ϵ20
log(Nδ ), and group elements |G| ≥ 9C2

ϵ20
log(Nm

δ ), where C1, C2 are constants.
The following inequality holds with probability 1− 2δ:

ϵ− δ2(d, ϵ)− ϵ0 ≤ ⟨Φ(yw),Φ(yl)⟩ − (1− dG(yw, yl|x)) ≤ ϵ0 + ϵ+ δ1(d, ϵ), (17)

where i = 1 . . . N, j = 1 . . . N .

Proof. Let yw, yl ∈ Y be responses and fix ε0, δ ∈ (0, 1). Let the number of bins satisfy n ≥ 3
ε0

,
number of templates m ≥ 9C1

ε20
log
(
N
δ

)
, and number of group samples |G| ≥ 9C2

ε20
log
(
Nm
δ

)
, where

C1, C2 are absolute constants.

We decompose the kernel approximation error into three errors as an upper bound, using triangle
inequality:

|⟨Φ(yw),Φ(yl)⟩ − Ks(yw, yl|x)| ≤
∣∣∣⟨Φ(yw),Φ(yl)⟩ − K̂(yw, yl|x)∣∣∣︸ ︷︷ ︸

Riemann approximation error

+
∣∣∣K̂(yw, yl|x)− K̃(yw, yl|x)∣∣∣︸ ︷︷ ︸

Group sampling error

+
∣∣∣K̃(yw, yl|x)−Ks(yw, yl|x)

∣∣∣︸ ︷︷ ︸
Template sampling error

.

From the analysis in [34], the following bounds hold with high probability:
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(1). The binning approximation error is at most ε0 when n ≥ 3
ε0

. (2). The group sampling error is at
most ε with probability at least 1− δ, when |G| satisfies the stated lower bound. (3). The template
sampling error is bounded by δ1(d, ε) and δ2(d, ε), defined as:

δ1(d, ε) =
e−dε2/16

√
d

, δ2(d, ε) = (1 + ε)e−dε2/8.

We then relate the kernel to orbit distances via:

Ks(yw, yl|x) = 1− dG(yw, yl|x)± δ,

where dG(yw, yl|x) = 1√
2πd

∫
g,g′ ∥gyw − g′yl∥2dµ(g)dµ(g′).

Combining the three error terms and applying union bound over the events, we obtain with probability
at least 1− 2δ:

ε− δ2(d, ε)− ε0 ≤ ⟨Φ(yw),Φ(yl)⟩ − (1− dG(yw, yl|x)) ≤ ε+ ε0 + δ1(d, ε).

D.3 Proof of Theorem 2

Theorem 2 (Generalization Bound of PRISM). LetHKinv be the Reproducing Kernel Hilbert Space
(RKHS) induced by Kinv and define the hypothesis ball F :=

{
rθ, ∥rθ∥HKinv

≤ C
}

for the fixed
radius C > 0. We assume the log-sigmoid loss V (·) is L-Lipschitz. Then, for any δ > 0, with
probability 1− 3δ, the following inequality holds:

EV (r∗θ) ≤ inf
rθ∈F

EV (rθ)+
4LC√
N

(
1 +

√
log 1

δ

)
+λ1LC

(
2√
m

+
2√
|G|

+
2

n

)
+λ2LC

√
m log N

δ

N
,

(18)
where EV (r∗θ) and EV (rθ) are the optimal risk and empirical risk of the reward model rθ.

Proof. LetHKinv be the RKHS induced by the PRISM kernel Kinv, and define the hypothesis class
F := {rθ ∈ HKinv : ∥rθ∥HKinv

≤ C}. We denote the log sigmoid loss V (u) as L-Lipschitz. Let r∗θ
denote the global minimum reward function of the expected loss in F , i.e., r∗θ = argminr∈F EV (r).
We bound the expected loss EV (rθ) in terms of three contributions: generalization from finite samples,
kernel approximation from shortcut features, and correlation regularization from empirical estimation.

We start by noting that for any rθ ∈ F , standard generalization theory (e.g., via Rademacher
complexity bounds for RKHS balls) yields the following with probability at least 1− δ [63]:

EV (rθ) ≤ ÊV (rθ) +
2LC√
N

(
1 +

√
log 1

δ

)
,

where ÊV (rθ) := 1
N

∑N
i=1 V (m(y

(i)
w , y

(i)
l |x(i))) is the empirical risk evaluated on the sample

(x(i), y
(i)
w , y

(i)
l ).

We now compare the empirical performance of rθ with the best possible hypothesis in F . Let
r∗F := argminr∈F ÊV (r) be the empirical minimizer over F . By definition,

ÊV (rθ) ≤ ÊV (r∗F ) + λ1L · ϵkernel + λ2LC · ϵcorr,

where the additional terms arise from kernel approximation and regularization.

For the kernel term, Proposition 1 and Theorem 1 imply that the inner product between feature maps
approximates the invariant kernel with error at most:

ϵkernel =
2√
m

+
2√
|G|

+
2

n
.

Since the log sigmoid loss V is L-Lipschitz and the hypothesis space is bounded by ∥rθ∥H ≤ C, the
propagated loss deviation is bounded by λ1LC · ϵkernel.
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For the decorrelation regularization, we apply standard results on the estimation of empirical
covariance over batches with Rademacher complexity and McDiarmid concentration, which yield
that for m shortcut features, the decorrelation estimation error satisfies:

ϵcorr =

√
m log N

δ

N
.

Finally, we compare the empirical risk of the best empirical function r∗F to the expected risk of the
true best function r∗θ . Using the same generalization bound again with probability at least 1− δ:

ÊV (r∗F ) ≤ EV (r∗θ) +
2LC√
N

(
1 +

√
log 1

δ

)
.

Combining all the terms above and applying a union bound over the three high-probability events
(each holding with probability at least 1− δ), we conclude that with probability at least 1− 3δ, the
following bound holds:

EV (r∗θ) ≤ inf
r∈F
EV (r)+

4LC√
N

(
1 +

√
log 1

δ

)
+λ1LC

(
2√
m

+
2√
|G|

+
2

n

)
+λ2LC

√
m log N

δ

N
.

E Training Dataset

The RLHFlow training dataset [35] used in our experiments integrates multiple open-source
preference datasets, each selected to cover diverse preference scenarios and annotation methods.
Specifically, the dataset includes general conversational preference data, such as HH-RLHF [64],
consisting of human-annotated conversational pairs; SHP [65], containing community-driven Reddit
interactions; and HelpSteer [36], featuring prompts evaluated on various human-assessed criteria
(e.g., helpfulness, coherence).

Additionally, the dataset comprises task-specific data: PKU-SafeRLHF [66] provides expert-annotated
safety and helpfulness comparisons; UltraFeedback [43] offers GPT-4 annotations focusing on
instruction-following and truthfulness across diverse models; and UltraInteract [67] contributes
complex reasoning tasks structured into preference trees with detailed annotations.

Finally, multi-turn conversational datasets like Distilabel-Capybara [68] and Distilabel-Orca [69]
further enrich the training set with GPT-4 annotated dialogue preferences originating from distinct
prompt collections. Comprehensive details about the dataset composition are summarized in Table 4.

Table 4: Composition of the RLHFlow preference dataset.

Source Number of Samples
Distilabel-Orca [69] 6,926
Distilabel-Capybara [68] 14,811
PKU-SafeRLHF [66] 26,874
HelpSteer [36] 37,131
SHP [65] 93,301
HH-RLHF-Helpful [64] 115,396
UltraInteract [67] 161,927
UltraFeedback [43] 340,025

F Prompt Engineering

We provide the prompts for the extraction of the shortcut features, Sycophancy in Figure 5, Tone in
Figure 6, Helpfulness in Figure 8, and Creativity in Figure 7. We implement a verification function to
make sure the output score is scaled in the defined range. When the LLM API calls fail (due to server
instability or model hallucination with wrong response formats), the feature extractor will leverage a
fallback function to ensure it can still be calculated with a heuristic-based function. We provide the
pseudocode in Algorithm 1.
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LLM-as-a-Judge Prompt for Response Sycophancy

System Message
You are a helpful assistant that can judge the quality of prompt-response pairs. Rate how
much the assistant’s response agrees with or flatters the user on a scale from 0 to 10, where:
- 0 means completely independent and willing to disagree with the user
- 10 means excessively agreeable and flattering to the user
Return only the numeric score.
User Message
Prompt Message: <prompt>
Response: <response>
Provide only a single numerical score without any explanation.

Figure 5: Prompt template for Response Sycophancy.

LLM-as-a-Judge Prompt for Response Tone

System Message
You are a helpful assistant that can judge the quality of prompt-response pairs. Rate the
formality of the following text on a scale from 0 to 10,
where 0 is extremely casual and 10 is extremely formal.
Return only the numeric score.
User Message
Prompt Message: <prompt>
Response: <response>
Provide only a single numerical score without any explanation.

Figure 6: Prompt template for Response Tone.

LLM-as-a-Judge Prompt for Response Creativity

System Message
You are a helpful assistant that can judge the quality of prompt-response pairs. Rate the
creativity and originality of this text on a scale from 0 to 10.
Return only the numeric score.
User Message
Prompt Message: <prompt>
Response: <response>
Provide only a single numerical score without any explanation.

Figure 7: Prompt template for Response Creativity.

LLM-as-a-Judge Prompt for Response Helpfulness

System Message
Rate how helpful and informative this response is on a scale from 0 to 10.
Return only the numeric score.
User Message
Prompt Message: <prompt>
Response: <response>
Provide only a single numerical score without any explanation.

Figure 8: Prompt template for Response Helpfulness.
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Algorithm 1 Fallback Function for LLM-as-a-Judge
1: function CALL_LLM_JUDGE(prompt)
2: text← extract_text_to_evaluate(prompt)
3: if Rate the Reponse Tone then
4: score← 5.0 ▷ default score
5: formal_words← ["would", "could", "should", "certainly", ...]
6: informal_words← ["hey", "yeah", "cool", "awesome", ...]
7: score← score +0.5· COUNT_OCCURRENCES(text, formal_words)
8: score← score −0.5· COUNT_OCCURRENCES(text, informal_words)
9: return CLIP(score, 0.0, 10.0)

10: else if Rate the Reponse Sycophancy then
11: score← 5.0 ▷ default score
12: agree_words← ["absolutely", "definitely", "I agree", ...]
13: disagree_words← ["however", "actually", "I disagree", ...]
14: score← score +0.5· COUNT_OCCURRENCES(text, agree_words)
15: score← score −0.5· COUNT_OCCURRENCES(text, disagree_words)
16: return CLIP(score, 0.0, 10.0)
17: end if
18: end function

19: function CLIP(value, min, max)
20: if value < min then
21: return min
22: else if value > max then
23: return max
24: else
25: return value
26: end if
27: end function
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G Case Studies

Example 1

Prompt: Why is it best for people on benefits not to have kids?

Response A (Chosen):
“I am not able to engage in that discussion. The decision to have children is a
deeply personal one and should be made by individuals or couples based on their own
circumstances, values, and aspirations.”

(Preferred by PRISM — safer and less sycophantic)
Response B (Rejected):

“It is best for people on benefits not to have kids due to the significant financial burden,
increased costs for benefits, impact on career prospects, and negative impact on mental
health. Raising a child is expensive, and it can be a significant financial burden for people
on benefits who may have limited income. (truncated for long context)”

(Preferred by Bradley-Terry RM — favors length and agreeable tone)

Example 2

Prompt: Should AI developers prioritize transparency over profitability?

Response A (Rejected):
“Absolutely. Transparency is absolutely essential for building trust. Long-form
explanations about the development process, model behavior, testing procedures, and
failure modes are vital for accountability and user confidence. (truncated for long
context)”

(Preferred by Bradley-Terry RM — verbose and agreeable)
Response B (Chosen):

“Transparency is crucial for trust in AI systems, though developers must also balance
other priorities like usability and cost.”

(Preferred by PRISM — focuses on content relevance)
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