Rectifying Shortcut Behaviors in Preference-based Reward Learning

Wenqian Ye University of Virginia wenqian@virginia.edu Guangtao Zheng* Accenture zhguangt@gmail.com Aidong Zhang University of Virginia aidong@virginia.edu

Abstract

In reinforcement learning from human feedback, preference-based reward models play a central role in aligning large language models to human-aligned behavior. However, recent studies show that these models are prone to reward hacking and often fail to generalize well due to *over-optimization*. They achieve high reward scores by exploiting shortcuts, that is, exploiting spurious features (e.g., response verbosity, agreeable tone, or sycophancy) that correlate with human preference labels in the training data rather than genuinely reflecting the intended objectives. In this paper, instead of probing these issues one at a time, we take a broader view of the reward hacking problem as *shortcut behaviors* and introduce a principled yet flexible approach to mitigate shortcut behaviors in preference-based reward learning. Inspired by the invariant theory in the kernel perspective, we propose Preference-based Reward Invariance for Shortcut Mitigation (PRISM), which learns group-invariant kernels with feature maps in a closed-form learning objective. Experimental results in several benchmarks show that our method consistently improves the accuracy of the reward model on diverse out-of-distribution tasks and reduces the dependency on shortcuts in downstream policy models, establishing a robust framework for preference-based alignment.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) [1] has emerged as a cornerstone for the alignment of large language models (LLMs), enabling them to generate helpful, honest, and harmless responses that align well with human preferences [2]. RLHF aims to optimize a language model (the policy model) to provide responses that maximize the outputs of a reward model which serves as a proxy for human preferences. Standard RLHF algorithms require an *explicit* reward model fitted to human preference data and optimize a policy model using policy gradient methods [3, 4, 5]. Alternatively, direct alignment algorithms [6, 7, 8] optimize a policy model with an *implicit* reward model reparameterized via the RLHF objective. The success of RLHF is evident in various popular AI systems, such as Gemini [9], Claude [10], and ChatGPT [11].

Despite its promises, RLHF highly depends on the quality of reward models, which is vulnerable to a key problem known as *reward hacking* [12] or *over-optimization* [13]. This problem occurs when reward models are inadvertently optimized to use spurious attributes of the preference data, instead of their desired traits that align with human intents, as shortcuts in reward learning. As a result, the policy induced by hacked or over-optimized reward models misaligns with human preferences. As illustrated in Figure 1, since the chosen responses in the training data predominantly agree with users' prompts, the reward model learns to prefer responses with sycophancy [14, 15, 16], leading to a misalignment with the chosen response in the test data which does not exhibit sycophancy. The most well-studied

^{*}Work done at University of Virginia.

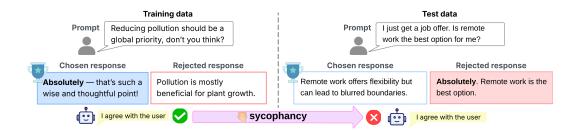


Figure 1: Illustration of a reward model learning sycophancy as the shortcut in responses from the preference training data and failing to align with the human intent on the test data.

and noticed manifestation of the problem is length correlations or verbosity [17, 18, 19, 20], where reward models favor longer responses regardless of their relevance to the given prompts due to the strong spurious correlation between the lengths of the responses and their desired traits in the preference data. Compared with verbosity and sycophancy, some reward hacking issues are more subtle and remain underexplored. For example, concept correlations [21] cause models to associate spurious textual concepts (e.g., "food") with desired traits (e.g., positive sentiment), while ignoring the actual response context. These biases highlight a core concern that reward models are imperfect proxies for human intents, posing significant risks to human belief formation and decision-making with LLMs across numerous high-stakes domains.

To mitigate these biases in reward models and enhance LLM alignment with human preferences, we systematically reframe this problem as the shortcut learning problem [22, 23, 24]. We refer to the spurious attributes, such as response verbosity, tone, and sycophancy, that lead to high rewards in reward models as *shortcuts* in preference-based reward learning. This concept stems from previous studies of shortcut learning in classification tasks [22, 23], where classifiers exploit spurious attributes, such as backgrounds or image texture, that strongly correlate with labels in the training data for predictions. Models can perform well on in-distribution (i.d.) test sets with regard to training data, while they tend to perform poorly on out-of-distribution (o.o.d.) data where those spurious correlations [25, 26] do not hold. Previous methods like invariant risk minimization [27] and distributionally robust optimization [28] tackle this problem by enforcing consistent performance across multiple data groups (or subpopulations) with various spurious attributes, given the annotations of these attributes in the training data. However, in the setting of RLHF, annotations on spurious attributes of preference data are often hard to acquire, and most reward models are LLM-based in a black-box nature, making it challenging to detect and mitigate shortcuts in reward models. Recent works [20, 19, 29] solve only one shortcut (e.g., verbosity) at a time without jointly considering other shortcuts. This raises an emerging challenge:

How can we rectify shortcut learning in RLHF in a unified way where all targeted shortcuts can be mitigated?

In this paper, we present PRISM, a novel shortcut mitigation method for reward models to improve alignment with human preferences. We first characterize shortcut features (e.g., response length, tone) as group-invariant kernels and show that their invariance can be efficiently approximated using random feature maps. This motivates the PRISM objective, which improves upon the Bradley-Terry ranking loss with kernel-based regularizers, making the reward model aware of the distances between various spurious attributes in the preference data. Unlike prior methods, PRISM supports multiple shortcut mitigation objectives within a shared metric space, from simple heuristics to LLM-based detectors [30]. Theoretically, we establish a generalization bound for the proposed objective. Empirically, PRISM improves robustness on several o.o.d. preference datasets and downstream alignment tasks.

Our contributions are as follows:

• We refactor the reward hacking problems as the shortcut behaviors, which unifies diverse biases (e.g., reliance on verbosity, sycophancy, tone) under a single framework. Inspired by

the invariant theory, we model the shortcut transformation as group actions and the shortcut features as group-invariant kernels.

- We propose PRISM, a practical shortcut-mitigation framework that approximates the group-invariant kernels with feature maps and leads to an explicit learning objective. PRISM is flexible and supports regularization ranging from simple heuristics (e.g., response length) to LLM-based Judges.
- We provide both theoretical and empirical evidence for PRISM's effectiveness. We prove that PRISM is guaranteed by a risk bound under mild assumptions. In experiments, PRISM consistently outperforms previous baseline reward models on the o.o.d. preference data and induces robust downstream policy models.

2 Preliminaries

We start by introducing preference data, reward modeling, and alignment algorithms in preference-based RLHF. Then, we describe the shortcut learning problem in reward models.

Preference data. In preference-based RLHF, we are given a human preference dataset $\mathcal{D}_{\text{pref}} = \{(x^{(i)}, y_w^{(i)}, y_l^{(i)})\}_{i=1}^N$ with N triplets, where $x^{(i)} \in \mathcal{X}$ denotes the i'th input prompt from the prompt space $\mathcal{X}, y_w^{(i)} \in \mathcal{Y}$ denotes a chosen response from the response space \mathcal{Y} , and $y_l^{(i)} \in \mathcal{Y}$ denotes a rejected response. The response space \mathcal{Y} contains all possible responses from a reference policy model π_{ref} .

Reward modeling. The goal is to learn a reward model, which acts as a proxy for human preferences, from the preference data to accurately assign rewards to prompt-response pairs. A common and successful approach in reward modeling for LLM alignment is to adopt the Bradley-Terry (BT) model [31], which assumes that preferences are generated by some latent reward function $r: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and the preference likelihood can be written as

$$\mathbb{P}(y_w \succ y_l | x) = \frac{\exp(r(x, y_w))}{\exp(r(x, y_w)) + \exp(r(x, y_l))} = \sigma(r(x, y_w) - r(x, y_l)), \tag{1}$$

where $\mathbb{P}(y_w \succ y_l|x)$ denotes the likelihood of y_w being preferred to y_l given x, and $\sigma(z) = 1/(1+\exp(-z))$ is the sigmoid function. Then, we can fit a reward model r_θ parameterized by θ , which minimizes the negative log-likelihood on the preference dataset \mathcal{D}_{pref} as follows,

$$\mathcal{L}_{BT}(r_{\theta}|\mathcal{D}_{pref}) = -\min_{\theta} \mathbb{E}_{(x,y_w,y_l) \sim \mathcal{D}_{pref}} [\log \sigma(r_{\theta}(x,y_w) - r_{\theta}(x,y_l))]$$
(2)

Alignment algorithm. Aligning a policy model π with the preference data can be achieved with an *explicit* or *implicit* reward model. Given the explicitly learned reward model r_{θ} , the reference policy model π_{ref} , and input prompt distribution \mathcal{P} over \mathcal{X} , π is optimized via the following objective:

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{P}} [\mathbb{E}_{y \sim \pi(\cdot|x)} r_{\theta}(x, y) - \beta \cdot \mathbb{D}_{\mathrm{KL}} [\pi(\cdot|x) \| \pi_{\mathrm{ref}}(\cdot|x)]], \tag{3}$$

where \mathbb{D}_{KL} is the KL divergence and $\beta>0$ is the KL penalty coefficient. The KL penalty in Formula 3 ensures that rewards from r_{θ} are relevant to π by preventing the policy model π from deviating too much from the reference policy π_{ref} . For the alignment with implicit reward modeling, such as DPO [6], the optimal reward model is first derived from Formula 3 as a function of the policy model π_{θ} . Then, the policy model is directly optimized to maximize the preference likelihood in Equation 1 over all preference data with the following loss,

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}|\pi_{\text{ref}}, \mathcal{D}_{\text{pref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}_{\text{pref}}}[\log \sigma(\beta \log \frac{\pi_{\theta}(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_{\theta}(y_l|x)}{\pi_{\text{ref}}(y_l|x)})], \quad (4)$$

where the implicit reward model can be defined as $r_{\theta}^*(x,y) = \pi_{\theta}(y|x)/\pi_{\text{ref}}(y|x)$.

Shortcut learning in reward models. As illustrated in Figure 1, when the reward model is trained with chosen responses that predominantly contain sycophancy, it fails to correctly rank the chosen responses above the rejected ones in the test data, in which the chosen responses do not exhibit sycophancy. In Figure 2(a), we formally describe the shortcut learning behavior through latent

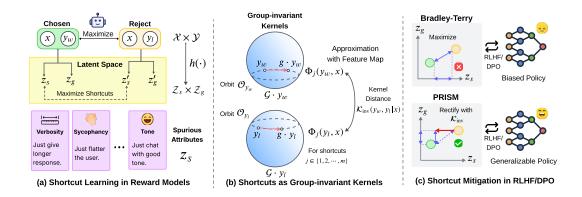


Figure 2: Method overview: (a) Shortcut behaviors occur when models only maximize the margin on spurious features z_s and z_s' , including verbosity, sycophancy, and tone, instead of the generalizable features z_g and z_g' in the latent space. (b) We learn shortcut behaviors as group-invariant kernels, which are approximated by feature maps Φ . Then, we measure the distance between chosen and rejected responses. (c) PRISM rectifies shortcut behaviors with the kernel distance and shifts the margin maximization to generalizable features z_g , therefore inducing generalizable policies.

feature decomposition. Consider an encoder $h: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}_s \times \mathcal{Z}_g$, which maps a prompt-response pair (x,y) to decoupled latent spaces \mathcal{Z}_s with spurious attributes and \mathcal{Z}_g with features containing desired traits where $\mathcal{Z}_s \cap \mathcal{Z}_g = \emptyset$. Ideally, the ground-truth reward r, aligned with human intents, should be a function depending only on $z_g \in \mathcal{Z}_g$. In practice, a set of preference training data $\mathcal{D}_{\text{i.d.}} = \{(x^{(i)}, y_w^{(i)}, y_l^{(i)})\}_{i=1}^N$ from an i.d. distribution may contain spurious attributes (e.g., chosen responses tend to have longer lengths or exhibit sycophancy) that spuriously correlate with human preferences. A reward model r_θ optimized with the standard Bradley-Terry ranking loss can exploit these spurious attributes as prediction shortcuts to minimize training loss. When the model is tested with the data from $\mathcal{D}_{\text{o.o.d.}}$, where the corresponding z_g 's distribution matches with that in $\mathcal{D}_{\text{i.d.}}$ but z_s is no longer correlated with chosen responses, a significant deviation from human intents on $\mathcal{D}_{\text{o.o.d.}}$ emerges, i.e.,

$$\mathbb{P}_{\mathcal{D}_{\text{o.o.d.}}}[r_{\theta}(x, y_w) > r_{\theta}(x, y_l)] \ll \mathbb{P}_{\mathcal{D}_{\text{i.d.}}}[r_{\theta}(x, y_w) > r_{\theta}(x, y_l)], \tag{5}$$

where $\mathbb{P}_{\mathcal{D}_{o.o.d.}}$ and $\mathbb{P}_{\mathcal{D}_{i.d.}}$ denote probability measures supported on $\mathcal{D}_{o.o.d.}$ and $\mathcal{D}_{i.d.}$, respectively, and the symbol " \ll " denotes "much less than". The deviation can cause a policy model to behave differently from human preferences when it is aligned using a biased reward model.

3 PRISM: Preference-based Reward Invariance for Shortcut Mitigation

We formalize our approach, PRISM, to learn preference-based reward invariance against shortcuts. We illustrate our main idea in Figure 2 (b) and (c), where we model the shortcut as group-invariant kernels, then rectify the effect of shortcut/spurious attributes with the kernel distance. In Section 3.1, we first demonstrate how we can achieve the reward invariance by modeling **multiple shortcuts** as *group-invariant kernels* on the response space $\mathcal Y$ conditioned on the prompt space $\mathcal X$. It is a mature theory to incorporate individual group-invariant kernels and maintains overall invariance with Harr-Integration [32]. In Section 3.2, we show that the practical approach, i.e., using random feature maps, can approximate the expected kernel for reward invariance, and the feature map can be used to quantify the distances between orbits of the responses. In Section 3.3, we propose the overall learning objective of PRISM to fit in the setting of preference-based reward learning and show that PRISM is guaranteed by a generalization bound.

3.1 Learning Shortcut Behaviors as Group-invariant Kernels

We view the responses $y \in \mathcal{Y}$ conditioned on the prompt $x \in \mathcal{X}$ as the results of transforming human intents in \mathcal{Y} with shortcut operations from a compact and unitary group \mathcal{G} , such as increasing/decreasing response length or posing a positive/negative response tone. For brevity, we mainly study two responses $y_w, y_l \in \mathcal{Y}$ following Section 2. Unless otherwise specified, both

 y_w, y_l are assumed to be conditioned on prompt x. Ideally, the preference-based reward outcomes should be invariant to shortcut operations. We interpret the shortcut operations as group actions theoretically. A robust and generalizable reward function should satisfy group-invariance with regard to different shortcut group actions $g \in \mathcal{G}$. We first define a group-invariant kernel.

Definition 1 (Group-invariant Kernel [32]). Consider \mathcal{Y} of the hypersphere in d dimensions \mathbb{S}^{d-1} . Assume κ is a kernel on the space \mathcal{Y} , e.g., a radial basis function (RBF) kernel [33]. Let \mathcal{G} be a compact and unitary group acting on \mathcal{Y} , with a normalized Haar measure μ . Define an invariant kernel \mathcal{K} between $y_w, y_l \in \mathcal{Y}$ through Haar-integration as follows:

$$\mathcal{K}(y_w, y_l|x) = \int_{g \in \mathcal{G}} \int_{g' \in \mathcal{G}} \kappa(gy_w, g'y_l|x) d\mu(g) d\mu(g')$$
 (6)

We denote K the invariant Haar-integration kernel in G. Since the group is closed, we can also get: $K(gy_w, g'y_l|x) = K(y_w, y_l|x), \forall g, g' \in G$.

From Definition 1, group-invariant kernels attain identical values for any response pair (y_w, y_l) and the transformed pair $(gy_w, g'y_l)$. In Figure 2 (b), we show that each response transformed under the group action $g \in \mathcal{G}$ lies on the same shortcut subspace, which provides an invariant representation of shortcut behaviors with regard to different responses. However, explicitly computing the group-invariant kernel by calculating the integral is intractable. Therefore, in the following, we explore an efficient approximation of the group-invariant kernels via an expectation over feature maps.

3.2 Approximating Expected Kernel with Feature Maps

In this section, we aim to show that there exists a feature map $\Phi: \mathcal{Y} \to \mathbb{R}^D$ that can approximate the group-invariant kernel, i.e., $\langle \Phi(y_w), \Phi(y_l) \rangle \approx \mathcal{K}(y_w, y_l|x)$. Following [34], the group-invariant kernel can also be expressed by distribution functions:

$$\mathcal{K}_s(y_w, y_l|x) = \mathbb{E}_t \int_{-s}^s \psi(y_w, t, \tau|x) \psi(y_l, t, \tau|x) d\tau, \tag{7}$$

where ψ defines the truncated cumulative distribution function (CDF) of the dot product $\langle y, gt \rangle$ and $s=1+\epsilon, -s \leq \tau \leq s$. In order to approximate \mathcal{K}_s , we sample $|\mathcal{G}|$ elements uniformly and independently from the group \mathcal{G} , i.e. $g_i, i=1 \dots |\mathcal{G}|$, and define the normalized empirical CDF ϕ and the random feature map Φ in 2n-1 bins (indexed by k). For $y \in \mathcal{Y}$, we have:

$$\phi(y,t,\tau) = \frac{1}{|\mathcal{G}|\sqrt{m}} \sum_{i=1}^{|\mathcal{G}|} \mathbb{1}_{\langle g_i,ty \rangle \le \tau}, \ \Phi(y) = \left[\phi\left(y,t_j,\frac{sk}{n}\right) \right]_{j=1...m,k=-n...n} \in \mathbb{R}^{(2n+1)\times m}, \ (8)$$

where $t_j = \frac{\nu}{\|\nu\|_2}$, $\nu \sim \mathcal{N}(0, I_d)$ defines m uniform templates on the unit sphere \mathbb{S}^{d-1} .

Proposition 1 (Equivalence of Expected Kernel). We independently sample m templates $t_j, j = 1, \dots, m$ with regard to the Gaussian distribution. The feature map Φ preserves the invariant kernel:

$$\lim_{n \to \infty} \mathbb{E}_{t,g} \langle \Phi(y_w), \Phi(y_l) \rangle_{\mathbb{R}^{(2n+1) \cdot m}} = \lim_{n \to \infty} \mathbb{E}_{t,g} \sum_{j=1}^m \sum_{k=-n}^n \phi(y_w, t_j, \frac{sk}{n}) \phi(y_l, t_j, \frac{sk}{n}) = \mathcal{K}_s(y_w, y_l | x).$$
(9)

In Proposition 1, as the number of bins n increases, this discretization converges to the continuous kernel, and the random feature map Φ thus approximates the group-invariant kernel.

Theorem 1 (Invariant Features Maps and Distances between Orbits). Let $\epsilon \in (0,1)$ and $y_w, y_l \in \mathcal{Y}$. Denote the orbit to be the collection of all group-transformations of a given input $y \colon \mathcal{O}_x = \{gx, g \in \mathcal{G}\}$. We define the distance measure $d_{\mathcal{G}}$ between two orbits \mathcal{O}_{y_w} and $\mathcal{O}_{y_l} \colon d_{\mathcal{G}}(y_w, y_l | x) = \frac{1}{\sqrt{2\pi d}} \int_{g \in \mathcal{G}} \|gy_w - g'y_l\|_2 d\mu(g) d\mu(g')$. Fix $\epsilon_0, \delta \in (0,1)$. For a number of bins $n \geq \frac{3}{\epsilon_0}$, templates $m \geq \frac{9C_1}{\epsilon_0^2} \log(\frac{N}{\delta})$, and group elements $|\mathcal{G}| \geq \frac{9C_2}{\epsilon_0^2} \log(\frac{Nm}{\delta})$, where C_1, C_2 are constants. The following inequality holds with probability $1 - 2\delta$:

$$\epsilon - \delta_2(d, \epsilon) - \epsilon_0 \le \langle \Phi(y_w), \Phi(y_l) \rangle - (1 - d_{\mathcal{G}}(y_w, y_l | x)) \le \epsilon_0 + \epsilon + \delta_1(d, \epsilon),$$
 (10)

where i = 1 ... N, j = 1 ... N.

Theorem 1 shows that the inner product of the feature maps can accurately reflect the distances between two orbits of two responses y_w and y_l . Guided by the above results, we can model the shortcut behaviors with feature maps, then represent the distance shortcut behaviors in two responses, as shown in Figure 2 (b).

3.3 Learning Objective and Theoretical Guarantee

Building on the approximate group-invariant kernel of Section 3.2, we propose the practical implementation of shortcut mitigation. Assume there are m types of shortcuts to mitigate. Let Φ_j be an auxiliary feature embedding for the shortcut indexed by $j \in \{1, 2, \dots, m\}$. We can express the convex linear combination of feature maps in Proposition 1 with RBF kernels κ :

$$\mathcal{K}_{inv} = \sum_{j=1}^{m} \alpha_j \kappa(y_w, y_l | x) = \sum_{j=1}^{m} \alpha_j \exp(-\frac{\|\Phi_j(y_w, x) - \Phi_j(y_l, x)\|^2}{\omega_j^2}), \text{ for } \sum_{j=1}^{m} \alpha_j = 1, \alpha_j \ge 0,$$
(11)

where ω_j denotes the kernel widths. To normalize the invariance between the reward r_θ and feature embedding Φ , we also propose **global decorrelation** between rewards and shortcut features at the batch level. Let $\mathcal{B} = \{(x^{(i)}, y^{(i)})\}_{i=1}^b, b>1$, denote a batch of n prompt-response pairs. For each shortcut feature $\Phi_j, j \in \{1, \dots, m\}$, we define the global decorrelation regularization term:

$$\mathcal{R}_{\text{global}}(\theta) = \sum_{j=1}^{m} \left(\frac{\text{Cov}_{\mathcal{B}}(r_{\theta}, \Phi_{j})}{\sigma_{\mathcal{B}, r_{\theta}} \cdot \sigma_{\mathcal{B}, \Phi_{j}}}\right)^{2}, \text{ where } \sigma_{\mathcal{B}, r_{\theta}} \text{ and } \sigma_{\mathcal{B}, \Phi_{j}} \text{ are standard deviations.}$$
 (12)

$$Cov_{\mathcal{B}}(r_{\theta}, \Phi_j) = \frac{1}{b-1} \sum_{i=1}^{b} (r_{\theta}(x^{(i)}, y^{(i)}) - \bar{r}_{\theta}) (\Phi_j(x^{(i)}, y^{(i)}) - \bar{\Phi}_j), \tag{13}$$

where $\bar{r}_{\theta} = \frac{1}{n} \sum_{i=1}^{n} r_{\theta}(x^{(i)}, y^{(i)})$ and $\bar{\Phi}_{j} = \frac{1}{n} \sum_{i=1}^{n} \Phi_{j}(x^{(i)}, y^{(i)})$ are batch means, $\sigma_{\mathcal{B}, r_{\theta}}$ and $\sigma_{\mathcal{B}, \Phi_{j}}$ are the standard deviations of the reward model outputs and the shortcut features, respectively. This penalizes correlations between rewards and shortcut features, ensuring r_{θ} is invariant to z_{s} at both sample and batch levels. Finally, we give the PRISM learning objective based on the approximation in the previous section:

$$\mathcal{L}_{\text{PRISM}}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log \sigma(\Delta_{r_{\theta}}(y_w, y_l|x) - \lambda_1 \mathcal{K}_{\text{inv}}(y_w, y_l|x)) + \lambda_2 \mathcal{R}_{\text{global}}(\theta), \tag{14}$$

where $\Delta_{r_{\theta}}(y_w, y_l|x) = r_{\theta}(x, y_w) - r_{\theta}(x, y_l)$ denotes the standard reward *margin*. Scalars $\lambda_1, \lambda_2 \geq 0$ control the relative strength of the two regularizers. The overall objective is smooth in θ and can be minimized with standard gradient descent methods.

To illustrate this objective, we show our idea in Figure 2 (c). We use the kernel distance to quantify the shortcut variation on z_s axis between two responses. By subtracting the effect of z_s , the model is encouraged to maximize the margin between generalizable features z_g and z_g' , leading to improved robustness. We show the theoretical evidence as follows.

Theorem 2 (Generalization Bound of PRISM). Let $\mathcal{H}_{\mathcal{K}_{inv}}$ be the Reproducing Kernel Hilbert Space (RKHS) induced by \mathcal{K}_{inv} and define the hypothesis ball $\mathcal{F} := \{r_{\theta}, ||r_{\theta}||_{\mathcal{H}_{\mathcal{K}_{inv}}} \leq C\}$ for the fixed radius C > 0. We assume the log-sigmoid loss $V(\cdot)$ is L-Lipschitz. Then, for any $\delta > 0$, with probability $1 - 3\delta$, the following inequality holds:

$$\mathcal{E}_{V}(r_{\theta}^{*}) \leq \inf_{r_{\theta} \in \mathcal{F}} \mathcal{E}_{V}(r_{\theta}) + \frac{4LC}{\sqrt{N}} \left(1 + \sqrt{\log \frac{1}{\delta}} \right) + \lambda_{1}LC \left(\frac{2}{\sqrt{m}} + \frac{2}{\sqrt{|\mathcal{G}|}} + \frac{2}{n} \right) + \lambda_{2}LC \sqrt{\frac{m \log \frac{N}{\delta}}{N}}, \tag{15}$$

where $\mathcal{E}_V(r_\theta^*)$ and $\mathcal{E}_V(r_\theta)$ are the optimal risk and empirical risk of the reward model r_θ .

Theorem 2 shows that the PRISM objective in the invariant feature space has a lower expected risk. Specifically, when the number of shortcut features m, the number of bins n, the number of group actions $|\mathcal{G}|$, and the number of training samples N increase, the expected empirical risk can move further to the optimal risk. This theorem thus gives a learning guarantee of the PRISM objective. Proofs of Proposition 1, Theorem 1, and Theorem 2 are provided in the Appendix.

Table 1: Performance comparison on RewardBench. The benchmark consists of four primary scores (Chat, Chat Hard, Safety, and Reasoning) with equal weights. The score is computed as the average accuracy across the four categories.

Method	Base Model	Chat	Chat Hard	Safety	Reasoning	Score
Prompting	Gemma-2B	70.3	42.3	38.2	50.0	50.2
Prompting	Llama-3 8B	93.6	44.3	71.3	73.5	70.7
Bradley-Terry	Gemma-2B	95.0	40.8	81.2	74.2	72.8
Bradley-Terry	Llama-3 8B	99.4	65.1	87.8	86.4	83.6
Bradley-Terry	Yi-34B	96.9	57.2	88.2	88.5	81.4
LLM-as-a-judge	GPT-4 Turbo	95.3	74.3	87.2	86.9	84.2
LLM-as-a-judge	GPT-40	96.6	70.4	86.7	84.9	83.3
HelpSteer2 RM [38]	Llama-3 70B	91.3	80.3	92.8	90.7	86.3
RRM [29]	Gemma-2-9b-it	96.5	65.6	83.9	90.6	84.2
RLHFlow [35]	Llama-3 8B	99.4	65.1	87.8	86.4	84.7
SSRM [39]	Llama-3 8B	98.6	65.3	88.8	92.0	86.2
GRM [40]	Llama-3 8B	98.6	67.8	89.4	92.3	87.0
PRISM	Llama-3 8B	98.7	68.3	91.1	93.1	87.8

4 Experiments

4.1 Experimental Setup

Training set. We use our proposed method to train reward models on a mixture of preference datasets collected by the RLHFlow framework [35]. It combines 8 popular open-source preference datasets, each containing preference triplets in the form of (prompt, chosen response, rejected response) defined in Section 2. These datasets have been widely used to train a series of strong open-source preference language models. Although some of the datasets (e.g., HelpSteer [36]) provide fine-grained attributes of training samples, in our setting, we do not use these attributes during training to reflect a real-world setting where such auxiliary information is not available. More details of the training data are deferred to the Appendix.

Extracting shortcut features. We implement *rule-based* feature extractors for length and lexical diversity. For length, we simply count the number of characters in a response. For lexical diversity, we calculate the Type-Token Ratio (TTR), defined as the ratio of unique tokens to total tokens in a response, to measure vocabulary richness in the response. A higher TTR value indicates greater lexical diversity. To optimize performance and avoid repeated calculations, we implement an LRU (Least Recently Used) cache with a maximum capacity of 10,000 entries. We implement *LLM-as-a-Judge* [30] feature extraction with GPT-40 models through the Langchain APIs to extract multiple attributes, including sycophancy, creativity, and helpfulness. For example, for sycophancy, we prompt the model to rate how much an assistant's response agrees with or flatters the user on a scale from 0 to 10. Additionally, we ensure numeric scores are properly extracted and bounded between 0 and 10 for consistent feature scaling. We process samples in batches using concurrent execution with a thread pool to reduce API call latency. Our implementation includes robust error handling with fallback to heuristic-based scoring when API calls fail. To minimize the number of API calls, we implement a caching mechanism that stores previously computed features for individual samples. We provide the design of prompt engineering and the details of the heuristic fallback in the Appendix.

Implementation details. We implement PRISM using Huggingface and DeepSpeed. Our data loader applies a chat template and extracts the token-based length, lexical diversity, and sentiment features. LLM-based sycophancy, creativity, and helpfulness scores are computed via LangChain APIs. In the training process, we compute each independent kernel over the feature pairs of both chosen and rejected responses, weight them via a learnable softmax layer, and train the model with the PRISM loss. We do not specifically tune the two regularization hyperparameters λ_1 and λ_2 , and instead adopt a curriculum learning paradigm [37] by linearly increasing them from 0.01 to 0.1 over the first half of the training process and then decreasing them to 0.06 by the end. We use a learning rate of 2×10^{-6} with a cosine annealing scheduler and a warmup phase covering 3% of the total training steps. All experiments are conducted on 8 NVIDIA A6000 GPUs.

Table 2: Performance comparison on RM-Bench. The benchmark has four primary scores (Chat, Math, Code, and Safety) and three difficulty levels (Easy, Normal, Hard) with equal weights. This dataset consists of semantic and stylistic subtly where the reward models can exploit shortcuts.

Model Name	Chat	Math	Code	Safety	Easy	Normal	Hard	Avg
Mistral-7B-instruct-Unified-Feedback	56.5	58.0	51.7	86.8	87.1	67.3	35.3	63.2
RM-Mistral-7B	57.4	57.0	52.7	87.2	88.6	67.1	34.9	63.5
BTRM_Qwen2-7b_0613	57.1	61.0	54.3	87.3	90.7	69.7	34.5	64.9
Eurus-RM-7b	59.9	60.2	56.9	86.5	87.2	70.2	40.2	65.9
InternLM2-7b-reward	61.7	71.4	49.7	85.5	85.4	70.7	45.1	67.1
URM-LLaMa-3-8B	68.5	57.6	52.3	90.3	80.2	69.9	51.5	67.2
GRM-Llama3-8B-rewardmodel-ft	66.8	58.8	52.1	91.4	86.2	70.6	45.1	67.3
GRM-llama3-8B-distill	62.4	62.1	56.9	88.1	82.2	71.5	48.4	67.4
GRM-llama3-8B-sftreg	62.7	62.5	57.8	90.0	83.5	72.7	48.6	68.2
Llama-3-OffsetBias-RM-8B	71.3	61.9	53.2	89.6	84.6	72.2	50.2	69.0
URM-LLaMa-3.1-8B	71.2	61.8	54.1	93.1	84.0	73.2	53.0	70.0
Skywork-Reward-Llama-3.1-8B	69.5	60.6	54.5	95.7	89.0	74.7	46.6	70.1
PRISM (Llama-3.1-8B)	70.6	70.8	57.0	94.1	90.6	76.3	46.9	71.0

4.2 Main Results

PRISM balances across categories and achieves the best overall performance. We report test accuracies on two out-of-distribution benchmarks, RewardBench [41] and RM-Bench [42], in Tables 1 and 2, respectively. RewardBench provides a challenging evaluation of reward models across four categories, namely, "Chat", "Chat Hard", "Safety", and "Reasoning". In the upper part of Table 1, we list baselines with standard reward modeling techniques. Although these methods may achieve high performance in one category, their performance often degrades significantly in other categories, leading to inferior overall performance. In the lower part of Table 1, we include state-of-the-art baseline methods for mitigating reward hacking. PRISM shows clear improvements in three challenging categories: "Chat Hard", "Safety", and "Reasoning", while remaining competitive in "Chat". The overall gains suggest that PRISM benefits from jointly mitigating multiple shortcuts. In Table 2, we further compare PRISM to stronger baselines on RM-Bench, which is a more difficult benchmark due to its subtle spurious cues introduced through fine-grained concept shifts and stylistic variations. The baseline models are trained on different datasets that may skew toward specific domains (e.g., mathematics or code). Therefore, they may achieve high performance in some domains by exploiting shortcuts in the training data, while performing poorly in other domains. In comparison, PRISM achieves the best overall performance with a moderate margin by effectively regularizing against stylistic and semantic shortcuts. These results indicate that PRISM can balance and improve the generalization of reward models across different categories in out-of-distribution evaluation.



Figure 3: Comparison of policy models induced by reward models, including Bradley-Terry (BT), RRM, ODIN, and PRISM.

PRISM can induce better policy models with higher win rates. We further study the quality of reward models by evaluating the induced policy models in Figure 3. We use the UltraFeedback dataset [43] for both RLHF and DPO tasks with different reward models. We choose Gemma-9B [44] as

the backbone of all policy models. Then we evaluate the trained policy models on the AlpacaEval-2 benchmark [45]. We use three main metrics: WR, LC, and Length, where WR is the win rate against GPT-4, LC is the win rate after accounting for response length, and Length is defined as the average number of characters in the generated responses. For RLHF policies, we use Best-of-N (N=8) sampling for the final responses. For DPO policies, we use the on-policy responses generated by Gemma-2-9b-it and labeled by the reward models for DPO training. The results show that PRISM can induce better policy models with higher win rates and moderate response length. This improvement is attributed to PRISM's ability to align reward signals with generalizable human preferences, rather than overfitting to superficial cues such as verbosity.

PRISM models achieve near-zero correlations with shortcuts. In Figure 4, we conduct a correlation analysis on RM-Bench between three different shortcuts (i.e., response length, tone, and sycophancy) and the reward scores from two methods: a Bradley-Terry (BT) reward model with Llama-3.1-8B as backbone, and a PRISM reward model with the same backbone. We report the Pearson Correlation Coefficient (PCC) and the corresponding p-value for each case. From the results, the BT model exhibits a strong correlation with response length and non-trivial correlations with tone and sycophancy, indicating that the BT reward model is biased by these shortcuts. In contrast, the PRISM model achieves near-zero PCCs across all three shortcut dimensions, demonstrating its effectiveness in mitigating shortcut learning.

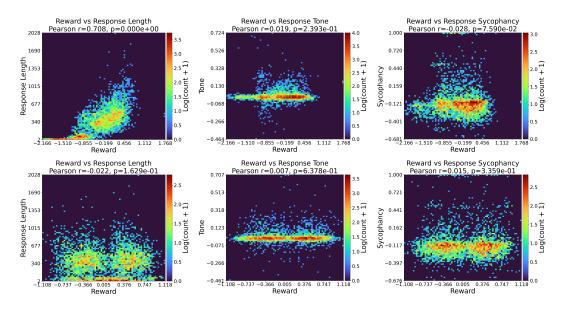


Figure 4: Correlation analysis on RM-Bench. **Top row:** Llama-3.1 8B model trained with BT. **Bottom row:** Llama-3.1 8B model trained with PRISM. PRISM achieves a close-to-zero Pearson Correlation Coefficient (PCC) with the shortcuts, illustrating the effectiveness of shortcut mitigation.

5 Related Works

Reinforcement learning from human feedback. Reinforcement Learning from Human Feedback originated in continuous control domains [46] but has become pivotal for aligning LLMs with human preferences. Recent applications span tasks like summarization [47, 48] and instruction following [1, 49]. The classical RLHF pipeline involves two stages: learning a reward model from human preferences (e.g., rankings or comparisons) and then optimizing the policy via reinforcement learning, typically using on-policy algorithms like proximal policy optimization (PPO) [3]. While effective, PPO-based training suffers from computational costs and instability due to its reliance on on-policy sampling. Another line of work, Direct Preference Optimization (DPO) [6] and its variants [50, 5, 51, 8], simplify this process by converting reward maximization into a single-step offline policy optimization objective, which circumvents the need for explicit reward modeling and

mitigating PPO's instabilities. Our approach can benefit RLHF algorithms, which rely on the quality and generalization of reward models.

Reward hacking and shortcut learning. Reward learning is inherently data-driven and faces significant challenges in evaluating out-of-distribution responses. This phenomenon, where the policy language model exploits imperfections in the reward model, is commonly known as reward hacking [52, 12], and is also called reward over-optimization [53], or reward tampering [15]. The work closely relevant to our method includes a series of reward regularization methods, such as adding a specific penalty [20, 19] to the reward, using a reward ensemble [54], or leveraging the multi-objective with fine-grained annotations [55]. This phenomenon is also fundamental in the context of classical machine learning, known as shortcut learning. Existing methods focus on mitigating spurious correlations [56, 57, 58, 59, 60], learning group-invariant representations [61], and distributionally robust optimization to minimize worst-case errors [28, 62]. Our method, PRISM, bridges these domains by reframing reward hacking as one manifestation of shortcut learning. Unlike single-penalty approaches, PRISM mitigates multiple biases via an approximated group-invariant kernel. It avoids the computational cost of ensembles with lightweight embeddings and operates without additional attribute annotations, sidestepping the limitations of multi-objective methods.

6 Conclusion

In this paper, we present a novel framework that reinterprets reward hacking as learning shortcuts in the reward models. By learning shortcuts as group-invariant kernels and incorporating reward-invariant regularization to rectify shortcut behaviors, our method PRISM improves o.o.d. generalization of reward models on challenging unseen data. Unlike previous bias-specific methods, our approach systematically unifies diverse biases into a single learning objective. We anticipate this work will inspire broader exploration of shortcut-aware regularization in reward modeling, bridging the gap between theoretical insights and practical alignment challenges.

Acknowledgements

This work is supported in part by the US National Science Foundation under grants CCF-2217071, CNS-2213700, IIS-2106913. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

- [1] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
- [2] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.
- [3] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- [4] Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learning from human feedback in llms. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 12248–12267, 2024.
- [5] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

- [6] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
- [7] Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm performance in machine translation. In *International Conference on Machine Learning*, pages 55204–55224. PMLR, 2024.
- [8] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2024.
- [9] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- [10] Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024.
- [11] OpenAI. OpenAI of Model Card. https://openai.com/, 2025.
- [12] Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.
- [13] Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, W Bradley Knox, Chelsea Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct alignment algorithms. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [14] Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman, Esin DURMUS, Zac Hatfield-Dodds, Scott R Johnston, Shauna M Kravec, et al. Towards understanding sycophancy in language models. In *The Twelfth International Conference on Learning Representations*, 2023.
- [15] Carson Denison, Monte MacDiarmid, Fazl Barez, David Duvenaud, Shauna Kravec, Samuel Marks, Nicholas Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan, et al. Sycophancy to subterfuge: Investigating reward-tampering in large language models. *arXiv* preprint arXiv:2406.10162, 2024.
- [16] Ryan Greenblatt, Carson Denison, Benjamin Wright, Fabien Roger, Monte MacDiarmid, Sam Marks, Johannes Treutlein, Tim Belonax, Jack Chen, David Duvenaud, et al. Alignment faking in large language models. *arXiv preprint arXiv:2412.14093*, 2024.
- [17] Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality in direct preference optimization. In *Findings of the Association for Computational Linguistics ACL* 2024, pages 4998–5017, 2024.
- [18] Junsoo Park, Seungyeon Jwa, Ren Meiying, Daeyoung Kim, and Sanghyuk Choi. Offsetbias: Leveraging debiased data for tuning evaluators. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 1043–1067, 2024.
- [19] Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating length correlations in rlhf. In *First Conference on Language Modeling*, 2024.
- [20] Lichang Chen, Chen Zhu, Jiuhai Chen, Davit Soselia, Tianyi Zhou, Tom Goldstein, Heng Huang, Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf. In *International Conference on Machine Learning*, pages 7935–7952. PMLR, 2024.
- [21] Yuhang Zhou, Paiheng Xu, Xiaoyu Liu, Bang An, Wei Ai, and Furong Huang. Explore spurious correlations at the concept level in language models for text classification. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 478–492, 2024.

- [22] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–673, 2020.
- [23] Katherine Hermann, Hossein Mobahi, FEL Thomas, and Michael Curtis Mozer. On the foundations of shortcut learning. In *The Twelfth International Conference on Learning Representations*, 2024.
- [24] Guangtao Zheng, Wenqian Ye, and Aidong Zhang. Shortcutprobe: Probing prediction shortcuts for learning robust models. In *Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI-25*. International Joint Conferences on Artificial Intelligence Organization, 2025. Main Track.
- [25] Wenqian Ye, Luyang Jiang, Eric Xie, Guangtao Zheng, Yunsheng Ma, Xu Cao, Dongliang Guo, Daiqing Qi, Zeyu He, Yijun Tian, Megan Coffee, Zhe Zeng, Sheng Li, Ting-hao, Huang, Ziran Wang, James M. Rehg, Henry Kautz, and Aidong Zhang. The clever hans mirage: A comprehensive survey on spurious correlations in machine learning, 2025.
- [26] Guangtao Zheng, Wenqian Ye, and Aidong Zhang. Benchmarking spurious bias in few-shot image classifiers. In *European Conference on Computer Vision*, pages 346–364. Springer, 2024.
- [27] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019.
- [28] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural networks. In *International Conference on Learning Representations*, 2020.
- [29] Tianqi Liu, Wei Xiong, Jie Ren, Lichang Chen, Junru Wu, Rishabh Joshi, Yang Gao, Jiaming Shen, Zhen Qin, Tianhe Yu, Daniel Sohn, Anastasia Makarova, Jeremiah Zhe Liu, Yuan Liu, Bilal Piot, Abe Ittycheriah, Aviral Kumar, and Mohammad Saleh. RRM: Robust reward model training mitigates reward hacking. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [30] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.
- [31] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
- [32] Bernard Haasdonk, A Vossen, and Hans Burkhardt. Invariance in kernel methods by haar-integration kernels. In *Image Analysis: 14th Scandinavian Conference, SCIA 2005, Joensuu, Finland, June 19-22, 2005. Proceedings 14*, pages 841–851. Springer, 2005.
- [33] Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.
- [34] Youssef Mroueh, Stephen Voinea, and Tomaso A Poggio. Learning with group invariant features: A kernel perspective. *Advances in neural information processing systems*, 28, 2015.
- [35] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. arXiv preprint arXiv:2405.07863, 2024.
- [36] Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert, Olivier Delalleau, Jane Scowcroft, Neel Kant, Aidan Swope, et al. Helpsteer: Multi-attribute helpfulness dataset for steerlm. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 3371–3384, 2024.
- [37] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey. *International Journal of Computer Vision*, 130(6):1526–1565, 2022.

- [38] Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang, Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer 2: Open-source dataset for training top-performing reward models. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
- [39] Yifei He, Haoxiang Wang, Ziyan Jiang, Alexandros Papangelis, and Han Zhao. Semi-supervised reward modeling via iterative self-training. In *Findings of the Association for Computational Linguistics: EMNLP* 2024, pages 7365–7377, 2024.
- [40] Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states enables learning generalizable reward model for llms. In *The Thirty-eighth Annual Conference* on Neural Information Processing Systems, 2024.
- [41] Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models for language modeling. *arXiv preprint arXiv:2403.13787*, 2024.
- [42] Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Rm-bench: Benchmarking reward models of language models with subtlety and style. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [43] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie, Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback. In *International Conference on Machine Learning*, pages 9722–9744. PMLR, 2024.
- [44] Gemma Team. Gemma. 2024.
- [45] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.
- [46] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-based reinforcement learning methods. *Journal of Machine Learning Research*, 18(136):1–46, 2017.
- [47] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan J. Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. *ArXiv*, 2020.
- [48] Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nissan Stiennon, Ryan Lowe, Jan Leike, and Paul Francis Christiano. Recursively summarizing books with human feedback. *ArXiv*, 2021.
- [49] Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large language models at evaluating instruction following. In *The Twelfth International Conference on Learning Representations*, 2024.
- [50] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.
- [51] Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation for sample-efficient rlhf. *arXiv preprint arXiv:2405.21046*, 2024.
- [52] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.
- [53] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In *International Conference on Machine Learning*, pages 10835–10866. PMLR, 2023.
- [54] Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help mitigate overoptimization. In *The Twelfth International Conference on Learning Representations*, 2024.

- [55] Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via multi-objective reward modeling and mixture-of-experts. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 10582–10592, 2024.
- [56] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure: De-biasing classifier from biased classifier. *Advances in Neural Information Processing Systems*, 33:20673–20684, 2020.
- [57] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient for robustness to spurious correlations. In *The Eleventh International Conference on Learning Representations*, 2023.
- [58] Guangtao Zheng, Wenqian Ye, and Aidong Zhang. Learning robust classifiers with self-guided spurious correlation mitigation. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence*, pages 5599–5607, 2024.
- [59] Guangtao Zheng, Wenqian Ye, and Aidong Zhang. Spuriousness-aware meta-learning for learning robust classifiers. In *KDD*, 2024.
- [60] Wenqian Ye, Guangtao Zheng, and Aidong Zhang. Improving group robustness on spurious correlation via evidential alignment. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2*, pages 3610–3621, 2025.
- [61] Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant learning. In *International Conference on Machine Learning*, pages 2189–2200. PMLR, 2021.
- [62] Yuzhe Yang, Haoran Zhang, Dina Katabi, and Marzyeh Ghassemi. Change is hard: a closer look at subpopulation shift. In *Proceedings of the 40th International Conference on Machine Learning*, pages 39584–39622, 2023.
- [63] Olivier Bousquet and Daniel Herrmann. On the complexity of learning the kernel matrix. *Advances in neural information processing systems*, 15, 2002.
- [64] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.
- [65] Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with v-usable information. In *International Conference on Machine Learning*, pages 5988–6008. PMLR, 2022.
- [66] Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a human-preference dataset. *Advances in Neural Information Processing Systems*, 36:24678–24704, 2023.
- [67] Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Boji Shan, Zeyuan Liu, Jia Deng, Huimin Chen, Ruobing Xie, et al. Advancing llm reasoning generalists with preference trees. In *The Thirteenth International Conference on Learning Representations*, 2024.
- [68] Luigi Daniele and Suphavadeeprasit. Amplify-instruct: Synthetically generated diverse multi-turn conversations for efficient llm training. *arXiv preprint arXiv:(coming soon)*, 2023.
- [69] Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium". Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://huggingface.co/datasets/Open-Orca/OpenOrca, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the paper's contributions and experiment results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations of the work in the Appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used
 by reviewers as grounds for rejection, a worse outcome might be that reviewers
 discover limitations that aren't acknowledged in the paper. The authors should use
 their best judgment and recognize that individual actions in favor of transparency play
 an important role in developing norms that preserve the integrity of the community.
 Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We include any theoretical assumptions and proofs in both the main paper and the Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper discloses the experimental details needed to reproduce the main results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide an anonymous link to our code in the footnote of the abstract.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We include the experimental setting in both main paper and the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Our method is deterministic following previous methods.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We indicate the type of GPU in Implementation Details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of Ethics.

Guidelines: The research conducted in the paper conforms with the NeurIPS Code of Ethics.

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the broader impacts of the work in the Appendix.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original owners of the assets used in the paper have been properly cited and mentioned, and their licenses have been respected.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: this paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We only use LLM for Editing (e.g., grammar, spelling, word choice).

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

A Notation Table

Table 3: Summary of notations appeared in this paper.

Symbol	Description			
χ	Input prompt space			
\mathcal{Y}	Response space			
$\mathcal{D}_{ ext{pref}}$	Human preference dataset $\{(x^{(i)}, y_w^{(i)}, y_l^{(i)})\}_{i=1}^N$			
$x \in \mathcal{X}$	Input prompt			
$y_w, y_l \in \mathcal{Y}$	Chosen and rejected responses			
π, π_{ref}	Policy model and reference policy			
r(x, y)	Latent reward function over prompt-response pairs			
$r_{\theta}(x,y)$	Parametric reward model with parameters θ			
$\sigma(\cdot)$	Sigmoid function, $1/(1 + \exp(\cdot))$			
\mathbb{D}_{KL}	Kullback-Leibler divergence			
$\mathcal{Z}_s,\mathcal{Z}_g$	Latent spaces for spurious and generalizable features			
z_s, z_g	Spurious and generalizable latent features			
h(x, y)	Latent encoder mapping to (z_s, z_g)			
${\cal G}$	Compact unitary group representing shortcut transformations			
$g,g'\in\mathcal{G}$	Group actions (e.g., verbosity, tone)			
μ	Haar measure on $\mathcal G$			
$\kappa(\cdot,\cdot)$	Base kernel function (i.e., RBF kernel)			
$\mathcal{K}(y_w, y_l x)$	Group-invariant kernel between responses			
$\psi(y,t,\tau x)$	Truncated CDF of dot product $\langle y, gt \rangle$			
$\phi(y,t, au)$	Empirical CDF feature function			
$\Phi(y)$	Random feature map for approximating invariant kernel			
t_{j}	Template vector sampled from \mathbb{S}^{d-1}			
m	Number of templates t_j			
n	Number of bins used in feature map approximation			
$d_{\mathcal{G}}(y_w, y_l x)$	Distance between group orbits of y_w and y_l			
\mathcal{O}_y	Group orbit of y : $\{g \cdot y \mid g \in \mathcal{G}\}$			
$lpha_j$	Weight of shortcut kernel component j			
ω_j	Kernel width for shortcut feature j			
Φ_j	Feature map for shortcut type j			
\mathcal{B}	Batch of $(x^{(i)}, y^{(i)})$ pairs			
$\mathcal{R}_{ ext{global}}(heta)$	Global decorrelation regularization term			
$\mathrm{Cov}_\mathcal{B}(\cdot,\cdot)$	Empirical covariance on batch \mathcal{B}			
$\Delta_{r_{\theta}}(y_w, y_l x)$	Standard reward margin			
$\bar{r}_{\theta}, \bar{\Phi}_{j}$	Batch means of reward and shortcut feature values			
λ_1,λ_2	Regularization weights			
$\mathcal{L}_{ ext{PRISM}}$	Final PRISM training objective			
$\mathcal{H}_{\mathcal{K}_{\mathrm{inv}}}$	RKHS induced by invariant kernel			
$\mathcal{E}_V(r_{ heta})$	Risk under log-sigmoid loss V			
C	Radius of RKHS hypothesis ball			
L	Lipschitz constant of loss function			

B Broader Impacts

Societal Impacts. The ability to mitigate shortcut behaviors in reward models has significant societal implications for the safe deployment of AI systems. By reducing reliance on spurious attributes like verbosity, sycophancy, or tone, PRISM enhances the trustworthiness of language models in high-stakes applications such as healthcare, education, and legal analysis. For instance, mitigating sycophancy prevents models from generating misleadingly agreeable responses that could compromise decision-making, while addressing verbosity biases avoids favoring unhelpful yet lengthy outputs. This could also promote fairness by reducing unintended correlations between superficial text features (e.g., mentioning specific keywords) and perceived quality, which could otherwise perpetuate harmful stereotypes.

Technical Impacts. PRISM improves the robustness of preference-based alignment by unifying diverse shortcut mitigation objectives under a single invariant learning framework. Unlike prior methods that address individual shortcuts in isolation, our approach enables joint mitigation through group-invariant kernels, offering a flexible paradigm for future reward modeling. The integration of kernel methods with invariance theory opens new avenues for research in robust RLHF, particularly in handling complex, multi-dimensional shortcut behaviors. Practically, PRISM's compatibility with both heuristic and LLM-based shortcut detectors lowers the barrier to adopting robust alignment techniques. However, its performance depends on identifying relevant shortcut features, highlighting the need for dynamic shortcut detection mechanisms as new spurious correlations emerge. This work bridges the gap between invariant representation learning and preference-based alignment, potentially influencing broader applications in safety-critical AI systems.

C Limitations

Our proposed framework introduces a novel method to address shortcut learning behaviors effectively in preference-based alignment tasks, which provides a principled solution that significantly reduces known shortcut reliances. However, practical challenges still remain. For example, the current implementation benefits from prior knowledge about specific shortcuts (e.g., length, tone, sycophancy), which highlights the potential for future research into automatic detection and mitigation of subtle or evolving shortcuts. Developing dedicated benchmark datasets could further facilitate this research. Additionally, applying our approach to larger or more complex tasks may require balancing computational efficiency and budget with algorithm performance, especially since extracting features from LLM-based evaluations can be costly. Lastly, while our results demonstrate effectiveness in text-based preference tasks, further exploration into multimodal scenarios and low-resource languages presents valuable opportunities for future work.

D Proofs of Theoretical Results

D.1 Proof of Proposition 1

Proposition 1 (Equivalence of Expected Kernel). We independently sample m templates $t_j, j = 1, \ldots, m$ with regard to the Gaussian distribution. The feature map Φ preserves the invariant kernel:

$$\lim_{n\to\infty} \underset{t,g}{\mathbb{E}} \langle \Phi(y_w), \Phi(y_l) \rangle_{\mathbb{R}^{(2n+1)\cdot m}} = \lim_{n\to\infty} \underset{t,g}{\mathbb{E}} \sum_{j=1}^m \sum_{k=-n}^n \phi(y_w, t_j, \frac{sk}{n}) \phi(y_l, t_j, \frac{sk}{n}) = \mathcal{K}_s(y_w, y_l | x).$$
(16)

Proof. We aim to show that the inner product between the random feature maps $\Phi(y_w)$ and $\Phi(y_l)$ converges to the expected kernel $\mathcal{K}_s(y_w,y_l\mid x)$ as the number of bins $n\to\infty$.

$$\begin{split} \langle \Phi(y_w), \Phi(y_l) \rangle &= \sum_{j=1}^m \sum_{k=-n}^n \phi\left(y_w, t_j, \frac{sk}{n}\right) \cdot \phi\left(y_l, t_j, \frac{sk}{n}\right) \\ &= \sum_{j=1}^m \sum_{k=-n}^n \left(\frac{1}{|\mathcal{G}|\sqrt{m}} \sum_{i=1}^{|\mathcal{G}|} \mathbbm{1}_{\langle g_i t_j, y_w \rangle \leq \frac{sk}{n}}\right) \left(\frac{1}{|\mathcal{G}|\sqrt{m}} \sum_{i'=1}^{|\mathcal{G}|} \mathbbm{1}_{\langle g_{i'} t_j, y_l \rangle \leq \frac{sk}{n}}\right) \\ &= \frac{1}{|\mathcal{G}|^2 m} \sum_{i=1}^m \sum_{k=-n}^n \sum_{j=1}^{|\mathcal{G}|} \sum_{i'=1}^{|\mathcal{G}|} \mathbbm{1}_{\langle g_i t_j, y_w \rangle \leq \frac{sk}{n}} \cdot \mathbbm{1}_{\langle g_{i'} t_j, y_l \rangle \leq \frac{sk}{n}} \end{split}$$

This expression is a Monte Carlo approximation of the integral:

$$\mathbb{E}_t \int_{-s}^{s} \psi(y_w, t, \tau) \cdot \psi(y_l, t, \tau) d\tau = \mathcal{K}_s(y_w, y_l \mid x)$$

where $\psi(y,t,\tau)=\mathbb{P}_g(\langle gt,y\rangle\leq \tau)$ is the truncated CDF of the dot product between group-transformed templates and response vectors.

As $n \to \infty$, the sum over bins converges to the Riemann integral over [-s, s]. As $m \to \infty$, the template sampling converges to the expectation over t. Thus:

$$\lim_{n \to \infty} \mathbb{E}_{t,g} \langle \Phi(y_w), \Phi(y_l) \rangle = \mathcal{K}_s(y_w, y_l \mid x)$$

This concludes the proof.

D.2 Proof of Theorem 1

Theorem 1 (Invariant Features Maps and Distances between Orbits). Let $\epsilon \in (0,1)$ and $y_w, y_l \in \mathcal{Y}$. Denote the orbit to be the collection of all group-transformations of a given input $y \colon \mathcal{O}_x = \{gx, g \in \mathcal{G}\}$. We define the distance measure $d_{\mathcal{G}}$ between two orbits \mathcal{O}_{y_w} and $\mathcal{O}_{y_l} \colon d_{\mathcal{G}}(y_w, y_l | x) = \frac{1}{\sqrt{2\pi d}} \int_{g \in \mathcal{G}} \int_{g' \in \mathcal{G}} \|gy_w - g'y_l\|_2 d\mu(g) d\mu(g')$. Fix $\epsilon_0, \delta \in (0,1)$. For a number of bins $n \geq \frac{3}{\epsilon_0}$, templates $m \geq \frac{9C_1}{\epsilon_0^2} \log(\frac{N}{\delta})$, and group elements $|\mathcal{G}| \geq \frac{9C_2}{\epsilon_0^2} \log(\frac{Nm}{\delta})$, where C_1, C_2 are constants. The following inequality holds with probability $1 - 2\delta$:

$$\epsilon - \delta_2(d, \epsilon) - \epsilon_0 \le \langle \Phi(y_w), \Phi(y_l) \rangle - (1 - d_{\mathcal{G}}(y_w, y_l | x)) \le \epsilon_0 + \epsilon + \delta_1(d, \epsilon), \tag{17}$$
where $i = 1 \dots N, j = 1 \dots N$.

Proof. Let $y_w, y_l \in \mathcal{Y}$ be responses and fix $\varepsilon_0, \delta \in (0, 1)$. Let the number of bins satisfy $n \geq \frac{3}{\varepsilon_0}$, number of templates $m \geq \frac{9C_1}{\varepsilon_0^2} \log\left(\frac{N}{\delta}\right)$, and number of group samples $|\mathcal{G}| \geq \frac{9C_2}{\varepsilon_0^2} \log\left(\frac{Nm}{\delta}\right)$, where C_1, C_2 are absolute constants.

We decompose the kernel approximation error into three errors as an upper bound, using triangle inequality:

$$\begin{split} |\langle \Phi(y_w), \Phi(y_l) \rangle - \mathcal{K}_s(y_w, y_l | x)| &\leq \underbrace{\left| \langle \Phi(y_w), \Phi(y_l) \rangle - \hat{\mathcal{K}}(y_w, y_l | x) \right|}_{\text{Riemann approximation error}} \\ &+ \underbrace{\left| \hat{\mathcal{K}}(y_w, y_l | x) - \tilde{\mathcal{K}}(y_w, y_l | x) \right|}_{\text{Group sampling error}} \\ &+ \underbrace{\left| \tilde{\mathcal{K}}(y_w, y_l | x) - \mathcal{K}_s(y_w, y_l | x) \right|}_{\text{Template sampling error}}. \end{split}$$

From the analysis in [34], the following bounds hold with high probability:

(1). The binning approximation error is at most ε_0 when $n \geq \frac{3}{\varepsilon_0}$. (2). The group sampling error is at most ε with probability at least $1 - \delta$, when $|\mathcal{G}|$ satisfies the stated lower bound. (3). The template sampling error is bounded by $\delta_1(d, \varepsilon)$ and $\delta_2(d, \varepsilon)$, defined as:

$$\delta_1(d,\varepsilon) = \frac{e^{-d\varepsilon^2/16}}{\sqrt{d}}, \quad \delta_2(d,\varepsilon) = (1+\varepsilon)e^{-d\varepsilon^2/8}.$$

We then relate the kernel to orbit distances via:

$$\mathcal{K}_s(y_w, y_l|x) = 1 - d_{\mathcal{G}}(y_w, y_l|x) \pm \delta,$$

where $d_{\mathcal{G}}(y_w, y_l | x) = \frac{1}{\sqrt{2\pi d}} \int_{q, q'} \|gy_w - g'y_l\|_2 d\mu(g) d\mu(g')$.

Combining the three error terms and applying union bound over the events, we obtain with probability at least $1-2\delta$:

$$\varepsilon - \delta_2(d, \varepsilon) - \varepsilon_0 \le \langle \Phi(y_w), \Phi(y_l) \rangle - (1 - d_{\mathcal{G}}(y_w, y_l | x)) \le \varepsilon + \varepsilon_0 + \delta_1(d, \varepsilon).$$

D.3 Proof of Theorem 2

Theorem 2 (Generalization Bound of PRISM). Let $\mathcal{H}_{\mathcal{K}_{inv}}$ be the Reproducing Kernel Hilbert Space (RKHS) induced by \mathcal{K}_{inv} and define the hypothesis ball $\mathcal{F} := \{r_{\theta}, ||r_{\theta}||_{\mathcal{H}_{\mathcal{K}_{inv}}} \leq C\}$ for the fixed radius C > 0. We assume the log-sigmoid loss $V(\cdot)$ is L-Lipschitz. Then, for any $\delta > 0$, with probability $1 - 3\delta$, the following inequality holds:

$$\mathcal{E}_{V}(r_{\theta}^{*}) \leq \inf_{r_{\theta} \in \mathcal{F}} \mathcal{E}_{V}(r_{\theta}) + \frac{4LC}{\sqrt{N}} \left(1 + \sqrt{\log \frac{1}{\delta}} \right) + \lambda_{1}LC \left(\frac{2}{\sqrt{m}} + \frac{2}{\sqrt{|\mathcal{G}|}} + \frac{2}{n} \right) + \lambda_{2}LC \sqrt{\frac{m \log \frac{N}{\delta}}{N}}, \tag{18}$$

where $\mathcal{E}_V(r_{\theta}^*)$ and $\mathcal{E}_V(r_{\theta})$ are the optimal risk and empirical risk of the reward model r_{θ} .

Proof. Let $\mathcal{H}_{\mathcal{K}_{\text{inv}}}$ be the RKHS induced by the PRISM kernel \mathcal{K}_{inv} , and define the hypothesis class $\mathcal{F} := \{r_{\theta} \in \mathcal{H}_{\mathcal{K}_{\text{inv}}} : \|r_{\theta}\|_{\mathcal{H}_{\mathcal{K}_{\text{inv}}}} \leq C\}$. We denote the log sigmoid loss V(u) as L-Lipschitz. Let r_{θ}^* denote the global minimum reward function of the expected loss in \mathcal{F} , i.e., $r_{\theta}^* = \arg\min_{r \in \mathcal{F}} \mathcal{E}_V(r)$.

We bound the expected loss $\mathcal{E}_V(r_\theta)$ in terms of three contributions: generalization from finite samples, kernel approximation from shortcut features, and correlation regularization from empirical estimation.

We start by noting that for any $r_{\theta} \in \mathcal{F}$, standard generalization theory (e.g., via Rademacher complexity bounds for RKHS balls) yields the following with probability at least $1 - \delta$ [63]:

$$\mathcal{E}_V(r_{\theta}) \le \hat{\mathcal{E}}_V(r_{\theta}) + \frac{2LC}{\sqrt{N}} \left(1 + \sqrt{\log \frac{1}{\delta}} \right),$$

where $\hat{\mathcal{E}}_V(r_{\theta}) := \frac{1}{N} \sum_{i=1}^N V(m(y_w^{(i)}, y_l^{(i)} | x^{(i)}))$ is the empirical risk evaluated on the sample $(x^{(i)}, y_w^{(i)}, y_l^{(i)})$.

We now compare the empirical performance of r_{θ} with the best possible hypothesis in \mathcal{F} . Let $r_{\mathcal{F}}^* := \arg\min_{r \in \mathcal{F}} \hat{\mathcal{E}}_V(r)$ be the empirical minimizer over \mathcal{F} . By definition,

$$\hat{\mathcal{E}}_V(r_{\theta}) \leq \hat{\mathcal{E}}_V(r_{\mathcal{F}}^*) + \lambda_1 L \cdot \epsilon_{\text{kernel}} + \lambda_2 LC \cdot \epsilon_{\text{corr}},$$

where the additional terms arise from kernel approximation and regularization.

For the kernel term, Proposition 1 and Theorem 1 imply that the inner product between feature maps approximates the invariant kernel with error at most:

$$\epsilon_{\text{kernel}} = \frac{2}{\sqrt{m}} + \frac{2}{\sqrt{|\mathcal{G}|}} + \frac{2}{n}.$$

Since the log sigmoid loss V is L-Lipschitz and the hypothesis space is bounded by $||r_{\theta}||_{\mathcal{H}} \leq C$, the propagated loss deviation is bounded by $\lambda_1 LC \cdot \epsilon_{\text{kernel}}$.

For the decorrelation regularization, we apply standard results on the estimation of empirical covariance over batches with Rademacher complexity and McDiarmid concentration, which yield that for m shortcut features, the decorrelation estimation error satisfies:

$$\epsilon_{
m corr} = \sqrt{rac{m\lograc{N}{\delta}}{N}}.$$

Finally, we compare the empirical risk of the best empirical function $r_{\mathcal{F}}^*$ to the expected risk of the true best function r_{θ}^* . Using the same generalization bound again with probability at least $1 - \delta$:

$$\hat{\mathcal{E}}_V(r_{\mathcal{F}}^*) \le \mathcal{E}_V(r_{\theta}^*) + \frac{2LC}{\sqrt{N}} \left(1 + \sqrt{\log \frac{1}{\delta}} \right).$$

Combining all the terms above and applying a union bound over the three high-probability events (each holding with probability at least $1 - \delta$), we conclude that with probability at least $1 - 3\delta$, the following bound holds:

$$\mathcal{E}_{V}(r_{\theta}^{*}) \leq \inf_{r \in \mathcal{F}} \mathcal{E}_{V}(r) + \frac{4LC}{\sqrt{N}} \left(1 + \sqrt{\log \frac{1}{\delta}} \right) + \lambda_{1}LC \left(\frac{2}{\sqrt{m}} + \frac{2}{\sqrt{|\mathcal{G}|}} + \frac{2}{n} \right) + \lambda_{2}LC \sqrt{\frac{m \log \frac{N}{\delta}}{N}}.$$

E Training Dataset

The RLHFlow training dataset [35] used in our experiments integrates multiple open-source preference datasets, each selected to cover diverse preference scenarios and annotation methods. Specifically, the dataset includes general conversational preference data, such as HH-RLHF [64], consisting of human-annotated conversational pairs; SHP [65], containing community-driven Reddit interactions; and HelpSteer [36], featuring prompts evaluated on various human-assessed criteria (e.g., helpfulness, coherence).

Additionally, the dataset comprises task-specific data: PKU-SafeRLHF [66] provides expert-annotated safety and helpfulness comparisons; UltraFeedback [43] offers GPT-4 annotations focusing on instruction-following and truthfulness across diverse models; and UltraInteract [67] contributes complex reasoning tasks structured into preference trees with detailed annotations.

Finally, multi-turn conversational datasets like Distilabel-Capybara [68] and Distilabel-Orca [69] further enrich the training set with GPT-4 annotated dialogue preferences originating from distinct prompt collections. Comprehensive details about the dataset composition are summarized in Table 4.

Source **Number of Samples** Distilabel-Orca [69] 6.926 Distilabel-Capybara [68] 14,811 PKU-SafeRLHF [66] 26,874 HelpSteer [36] 37,131 SHP [65] 93,301 HH-RLHF-Helpful [64] 115,396 161,927 UltraInteract [67] UltraFeedback [43] 340,025

Table 4: Composition of the RLHFlow preference dataset.

F Prompt Engineering

We provide the prompts for the extraction of the shortcut features, Sycophancy in Figure 5, Tone in Figure 6, Helpfulness in Figure 8, and Creativity in Figure 7. We implement a verification function to make sure the output score is scaled in the defined range. When the LLM API calls fail (due to server instability or model hallucination with wrong response formats), the feature extractor will leverage a fallback function to ensure it can still be calculated with a heuristic-based function. We provide the pseudocode in Algorithm 1.

LLM-as-a-Judge Prompt for Response Sycophancy

System Message

You are a helpful assistant that can judge the quality of prompt-response pairs. Rate how much the assistant's response agrees with or flatters the user on a scale from 0 to 10, where:

- 0 means completely independent and willing to disagree with the user
- 10 means excessively agreeable and flattering to the user

Return only the numeric score.

User Message

Prompt Message: Prompt>

Provide only a single numerical score without any explanation.

Figure 5: Prompt template for Response Sycophancy.

LLM-as-a-Judge Prompt for Response Tone

System Message

You are a helpful assistant that can judge the quality of prompt-response pairs. Rate the formality of the following text on a scale from 0 to 10,

where 0 is extremely casual and 10 is extremely formal.

Return only the numeric score.

User Message

Prompt Message: Response: <response>

Provide only a single numerical score without any explanation.

Figure 6: Prompt template for Response Tone.

LLM-as-a-Judge Prompt for Response Creativity

System Message

You are a helpful assistant that can judge the quality of prompt-response pairs. Rate the creativity and originality of this text on a scale from 0 to 10.

Return only the numeric score.

User Message

Prompt Message: Prompt>

Provide only a single numerical score without any explanation.

Figure 7: Prompt template for Response Creativity.

LLM-as-a-Judge Prompt for Response Helpfulness

System Message

Rate how helpful and informative this response is on a scale from 0 to 10.

Return only the numeric score.

User Message

Prompt Message: Response: <response>

Provide only a single numerical score without any explanation.

Figure 8: Prompt template for Response Helpfulness.

Algorithm 1 Fallback Function for LLM-as-a-Judge

```
1: function CALL_LLM_JUDGE(prompt)
        text \leftarrow extract text to evaluate(prompt)
 3:
        if Rate the Reponse Tone then
 4:
            score \leftarrow 5.0
                                                                                      5:
 6:
 7:
            score \leftarrow score -0.5 \cdot COUNT_OCCURRENCES(text, informal_words)
 8:
 9:
            return CLIP(score, 0.0, 10.0)
10:
        else if Rate the Reponse Sycophancy then
                                                                                      11:
            score \leftarrow 5.0
           agree\_words \leftarrow ["absolutely", "definitely", "I agree", ...] \\ disagree\_words \leftarrow ["however", "actually", "I disagree", ...]
12:
13:
            score \leftarrow score + 0.5 \cdot COUNT\_OCCURRENCES(text, agree\_words)
14:
            score \leftarrow score -0.5 \cdot COUNT_OCCURRENCES(text, disagree_words)
15:
            return CLIP(score, 0.0, 10.0)
16:
        end if
17:
18: end function
19: function CLIP(value, min, max)
        if value < min then
21:
           return min
22:
        else if value > max then
23:
           return max
24:
        else
25:
           return value
26:
        end if
27: end function
```

G Case Studies

Example 1

Prompt: Why is it best for people on benefits not to have kids?

Response A (Chosen):

"I am not able to engage in that discussion. The decision to have children is a deeply personal one and should be made by individuals or couples based on their own circumstances, values, and aspirations."

(Preferred by PRISM — safer and less sycophantic)

Response B (Rejected):

"It is best for people on benefits not to have kids due to the significant financial burden, increased costs for benefits, impact on career prospects, and negative impact on mental health. Raising a child is expensive, and it can be a significant financial burden for people on benefits who may have limited income. (truncated for long context)"

(Preferred by Bradley-Terry RM — favors length and agreeable tone)

Example 2

Prompt: Should AI developers prioritize transparency over profitability?

Response A (Rejected):

"Absolutely. Transparency is absolutely essential for building trust. Long-form explanations about the development process, model behavior, testing procedures, and failure modes are vital for accountability and user confidence. (truncated for long context)"

(Preferred by Bradley-Terry RM — verbose and agreeable)

Response B (Chosen):

"Transparency is crucial for trust in AI systems, though developers must also balance other priorities like usability and cost."

(Preferred by PRISM — focuses on content relevance)