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ABSTRACT

Vertical federated learning (VFL), where each participating client holds a subset
of data features, has found numerous applications in finance, healthcare, and
IoT systems. However, adversarial attacks, particularly through the injection
of adversarial examples (AEs), pose serious challenges to the security of VFL
models. In this paper, we investigate such vulnerabilities through developing a
novel attack to disrupt the VFL inference process, under a practical scenario where
the adversary is able to adaptively corrupt a subset of clients. We formulate the
problem of finding optimal attack strategies as an online optimization problem,
which is decomposed into an inner problem of adversarial example generation
(AEG) and an outer problem of corruption pattern selection (CPS). Specifically,
we establish the equivalence between the formulated CPS problem and a multi-
armed bandit (MAB) problem, and propose the Thompson sampling with Empirical
maximum reward (E-TS) algorithm for the adversary to efficiently identify the
optimal subset of clients for corruption. The key idea of E-TS is to introduce an
estimation of the expected maximum reward for each arm, which helps to specify
a small set of competitive arms, on which the exploration for the optimal arm
is performed. This significantly reduces the exploration space, which otherwise
can quickly become prohibitively large as the number of clients increases. We
analytically characterize the regret bound of E-TS, and empirically demonstrate its
capability of efficiently revealing the optimal corruption pattern with the highest
attack success rate, under various datasets of popular VFL tasks.

1 INTRODUCTION

Federated learning (FL) Li et al. (2020) is a distributed learning paradigm that enables multiple
clients to collaboratively train and utilize a machine learning model without sharing their data.
Conventionally, most FL research considers the Horizontal FL (HFL) setting, where clients hold
different data samples with the same feature space. In contrast, vertical FL (VFL) tackles the secnarios
where clients have identical samples but disjoint feature spaces. A typical VFL model comprises a top
model maintained by a server and multiple bottom models, one at each participating client. During
the inference process, each client computes the local embedding of data features using its bottom
model and uploads it to the server through a communication channel for further prediction. Due to its
advantage of incorporating attributes from diverse information sources, VFL has found promising
applications in healthcare systems Poirot et al. (2019), e-commerce platforms Mammen (2021), and
financial systems Liu et al. (2022). VFL inference has also been applied to the Internet of Things
(IoT) scenarios (also known as collaborative inference Liu et al.; Ko et al. (2018)), where sensor data
with distinct features are aggregated by a fusion center for further processing. A recent example is to
utilize multi-modal image data from sensors for remote sensing image classification Shi et al. (2022).
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Despite its widespread applications, ML models have been shown vulnerable to adversarial examples
(AEs) Goodfellow et al. (2014), which are modified inputs designed to cause model misclassification
during the inference. Constructing AEs in the VFL setting presents unique challenges compared
to the conventional ML setting. Specifically, we consider a third-party adversary who can access,
replay, and manipulate messages on the communication channel between a client and the server. (For
simplicity, we use client x to denote the communication channel between client x and the server
throughout the paper). However, it can only corrupt a subset of clients due to resource constraints,
like computational and network bandwidth Lesi et al. (2020); Li and Tang (2018); Wu et al. (2018).
Also, the server’s top model and the other uncorrupted clients’ embeddings and models are unknown
to the adversary. Under this setting, the adversary aims to generate AEs by adding manipulated
perturbations to embeddings in the corrupted clients, such that the attack success rate (ASR) over a
sequence of test samples is maximized. Prior works have proposed methods to generate AEs for VFL
inference, for a fixed corruption pattern (i.e., the set of corrupted clients remains fixed throughout
the attack). In Pang et al. (2022), a finite difference method was proposed to generate adversarial
dominating inputs, by perturbing the features of a fixed corrupted client, to control the inference
result, regardless of the feature values of other clients; another work Qiu et al. (2022) employed
zeroth-order optimization (ZOO) to find the optimal perturbation on the uploaded embedding of a
malicious client. Meanwhile, these attacks also make assumptions on certain prior knowledge at the
adversary, e.g., the adversary can obtain a subset of complete test samples in advance.

In this paper, we consider an adversary who lacks prior knowledge on test data or VFL models,
but can adaptively adjust its corruption pattern based on the effectiveness of the previous attacks,
subject to a maximum number of clients that can be corrupted. For a VFL inference process of T
rounds, we formulate the attack as an online optimization problem, over T corruption patterns, one
for each inference round, and the embedding perturbations for the test samples in each round. To
solve the problem, we first decompose it into two sub-problems: the inner adversarial examples
generation (AEG) problem and the outer corruption pattern selection (CPS) problem. For the AEG
problem with a fixed corruption pattern, we apply the natural evolution strategy (NES) to estimate
the gradient for perturbation optimization. For the outer CPS problem, we establish its equivalence
with arm selection in a multi-armed bandit (MAB) problem, with the reward being the optimal ASR
obtained from the AEG problem. Given the unique challenge that the total number of arms scale
combinatorially with the number of clients, we propose a novel method named Thompson sampling
with empirical maximum reward (E-TS), enabling the adversary to efficiently identify the optimal
corruption pattern. The key idea is to limit the exploration within the competitive set, which is defined
using the expected maximum reward of each arm. Compared with plain Thompson sampling (TS) for
the MAB problem Agrawal and Goyal (2012), E-TS additionally maintains the empirical maximum
reward for each arm, which are utilized to estimate the underlying competitive arms, within which
TS is executed to select the corruption pattern.

We theoretically characterize a regret bound of (N − D)O(1) + DO(log(T )) for the proposed
E-TS algorithm, where N is the number of arms and D is the number of competitive arms. This
demonstrates the advantage of E-TS over the plain TS, especially for a small number of competitive
arms. We also empirically evaluate the performance of the proposed attack on datasets with four major
types of VFL tasks. In all experiments, the proposed attack uniformly dominates all baselines with
fastest convergence to the optimal corruption pattern with the highest ASR. For the proposed attack,
we further conduct extensive experiments to evaluate its effectiveness under various combinations of
system parameters and the design parameter, and common defense strategies against AEs.

2 PRELIMINARIES

VFL inference. A VFL system consists of a central server and M clients. Each client m ∈ [M ]
possesses a subset of disjoint features xm and a corresponding bottom model fm, where [M ]
denotes the set {1, . . . ,M}. The central server maintains a top model f0. Given a test sample
X = [x1, . . . ,xM ], VFL inference is carried out in two stages. First, each client m computes
a local embedding hm = fm(xm) using its bottom model, and uploads it to the server through
a communication channel for querying a label. In the second stage, the server aggregates the
embeddings from all clients and computes the predicted result p = f0([h1, . . . ,hM ]) ∈ Rc, which
is a probability vector over c classes. The server broadcasts p to all the clients, who then obtain the
predicted label ŷ(p), where ŷ(·) returns the class with the highest probability. To enhance robustness
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against system impairments, such as dropouts in embedding transmission, the system permits repeated
queries for the same test sample, with a maximum limit of Q times. The inference process operates
in an online mode, such that test samples are received continuously in a streaming fashion.

Multi-armed bandit. A multi-armed bandit (MAB) problem consists of N arms. Each arm k ∈ [N ]
corresponds to a random reward following an unknown distribution with mean µk. The bandit is
played for T rounds. In each round t ∈ [T ], one of the N arms, denoted by k(t), is pulled. The pulled
arm yields a random reward rk(t)(t) supported in the range [0, 1], which is i.i.d. from repeated plays
of the same arm and observed by the player. The player must decide which arm to pull at each round
t, i.e., k(t), based on the rewards in previous rounds, to maximize the expected cumulative reward at
round T , expressed as E[

∑T
t=1 µk(t)], where µk(t) = Et[rk(t)(t)]. Assuming there exists an optimal

arm with the highest mean reward µ∗, the problem is equivalent to minimizing the expected regret
E[R(T )], which is defined as follows:

E[R(T )] = E

[
T∑

t=1

(µ∗ − µk(t))

]
= E

[
N∑

k=1

nk(T )∆k

]
, (1)

where nk(T ) denotes the number of times pulling arm k in T rounds, and ∆k = µ∗ − µk denotes the
mean reward gap between the optimal arm and arm k.

3 THREAT MODEL

Goal of the adversary. We consider two types of attacks: targeted attack and untargeted attack. For
the targeted attack with some target label yv , the adversary aims to corrupt the samples whose original
prediction is not yv, making the top model output ŷ = yv . For instance in a lending application, the
adversary might set yv to “lending” to secure a loan to an unqualified customer. For the untargeted
attack with some label yu, the adversary would like to corrupt the samples whose original prediction
is yu, making the top model output ŷ ̸= yu. Note that the conventional untargeted attack Mahmood
et al. (2021) is a special case of the one considered here, when setting yu as the true label of the
attacked samples.

Metric. The attack’s effectiveness is measured by attack success rate (ASR), which is defined
as ASRs

v =
∑s

i=1 1(ŷ(pi)=yv)

s and ASRs
u =

∑s
i=1 1(ŷ(pi) ̸=yu)

s for targeted and untargeted attack,
respectively, where s is the number of samples to be attacked, pi is the probability vector of test
sample i, and 1(·) is the indicator function.

Capability of the adversary. We consider an adversary as a third party in VFL inference, who can
access, replay, and manipulate messages on the communication channel between two endpoints. This
scenario stems from a man-in-the-middle (MITM) attack Conti et al. (2016); Wang et al. (2020),
e.g., Mallory can open letters sent from Bob to Alice and change or resend their contents before
handing over the letter to Alice. In VFL inference, a communication channel is established between
each client and the server, through which embeddings and predictions are exchanged. The adversary
can choose to corrupt any specific channel, e.g., client 1 (for simplicity, we use client x to denote
the communication channel between client x and the server). However, due to resource constraints
like computational power and network bandwidth (see, e.g., Lesi et al. (2020); Wang et al. (2016);
Wu et al. (2018)), the adversary can corrupt at most C ≤ M clients. Formally, for a test sample i,
the adversary can perturb the embeddings of up to C clients, denoted as hi,a with |hi,a| ≤ C, to
obtain h̃i,a such that ∥h̃i,a − hi,a∥∞ ≤ β(ubi − lbi), where ubi and lbi represent the maximum and
minimum values of the elements in hi,a respectively, and β ∈ [0, 1] is the perturbation budget of
some simple magnitude-based anomaly detector.

Adaptive corruption. In the context of online inference, we focus on a class of powerful adversaries
capable of adaptively adjusting their corruption patterns. In each attack round, the adversary perturbs
the embeddings in the corrupted clients for a batch of test samples. In subsequent attack rounds, the
sets of corrupted clients can be adjusted subject to the constraint C, exploiting feedbacks on attack
performance from previous rounds.

4 PROBLEM DEFINITION

The attack proceeds in T rounds. In each attack round t ∈ [T ], the adversary seeks to perturb a batch
of Bt test samples following a corruption pattern Ct = {a1, . . . , aC}, where aj , j ∈ [C], denotes the
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index of the corrupted client. More precisely, given the embeddings of a test sample i ∈ [Bt], denoted
as ht

i = [ht
i,1, . . . ,h

t
i,M ], where ht

i,m,m ∈ [M ], represents the embedding vector of client m, we
partition ht

i into the adversarial part ht
i,a = [ht

i,a1
, . . . ,ht

i,aC
], and the benign part ht

i,b, according
to Ct. The adversary crafts a perturbation ηt

i = [ηt
i,a1

, . . . ,ηt
i,aC

] with ∥ηt
i∥∞ ≤ β(ubi − lbi), and

adds it to ht
i,a to obtain an adversarial embedding h̃t

i,a = ht
i,a + ηt

i , before submitting it to the
server. Upon receiving h̃t

i,a and ht
i,b, the server returns the prediction f0(h̃

t
i,a;h

t
i,b) to all clients.

After collecting all predictions of Bt adversarial embeddings, the adversary computes the ASR,

i.e., A({ηt
i}B

t

i=1, Ct;Bt) =
∑Bt

i=1 1(ŷ(f0(h̃
t
i,a;h

t
i,b))=yv)

Bt for the targeted attack with target label yv , or

A({ηt
i}B

t

i=1, Ct;Bt) =
∑Bt

i=1 1(ŷ(f0(h̃t
i,a;h

t
i,b))̸=yu)

Bt for the untargeted attack with label yu.

The adversary aims to find the optimal set of corruption patterns {Ct}Tt=1, and the optimal set of
perturbations {{ηt

i}B
t

i=1}Tt=1 for each sample i ∈ [Bt] in attack round t ∈ [T ], thus maximizing the
expected cumulative ASR over T attack rounds. We formulate this attack as an online optimization
problem in (2). Note that the expectation Et is taken over the randomness with the t-th attack round
and the expectation E is taking over the randomness of all T rounds.

max
{Ct}T

t=1

E
[∑T

t=1 Et

[
max{ηt

i}Bt
i=1

A({ηt
i}B

t

i=1, Ct;Bt)
]]

∑T
t=1 B

t

s.t. |Ct| = C, ∥ηt
i∥∞ ≤ β(ubi − lbi), ∀t ∈ [T ].

(2)

5 METHODOLOGY

To solve Problem (2), we decompose the above problem into an inner problem of adversarial example
generation (AEG) and an outer problem of corruption pattern selection (CPS). We first specify the
inner problem of AEG. At each round t, t ∈ [T ], with a fixed corruption pattern Ct, for each test
sample i ∈ [Bt], the adversary intends to find the optimal perturbation ηt

i that minimizes some loss
function, as shown in (3). We consider the loss function L(ηt

i ; Ct) = l(f0(h̃
t
i,a;h

t
i,b), yv) for the

targeted attack with target label yv , and L(ηt
i ; Ct) = −l(f0(h̃

t
i,a;h

t
i,b), yu) for the untargeted attack

with label yu, where l(·) denotes the loss metric, such as cross-entropy or margin loss.

Inner problem (AEG): min
ηt
i

L(ηt
i ; Ct), s.t. ∥ηt

i∥∞ ≤ β(ubi − lbi),∀i ∈ [Bt]. (3)

Then, we obtain the ASR of Bt test samples, i.e., A∗(Ct;Bt) = A({ηt∗
i }Bt

i=1, Ct;Bt), obtained using
optimal perturbations ηt∗

i , i ∈ [Bt], from solving the problem AEG. As such, the outer problem of
CPS can be cast into

Outer problem (CPS): min
{Ct}T

t=1

E
[∑T

t=1(α
∗ − Et [A

∗(Ct;Bt)]
]

∑T
t=1 B

t

s.t. |Ct| = C, ∀t ∈ [T ],

(4)

where α∗ is any positive constant. The inherent randomness of A∗(Ct;Bt) for a fixed Ct arises from
the random test samples and the random noises in the AE generation process.

5.1 AE GENERATION BY SOLVING THE AEG PROBLEM

To address the box-constraint inner AEG problem (3), one might initially consider employing the
projected gradient descent (PGD) method Madry et al. (2017). However, in our setting, the adversary
can only access the value of the loss function and cannot directly obtain the gradient, thus necessitating
the use of ZOO methods. The ZOO method iteratively seeks for the optimal variable. Each iteration
typically commences with an estimation of the current variable’s gradient, followed by a gradient
descent-based variable update. NES Ilyas et al. (2018), a type of ZOO method, not only estimates the
gradient but also requires fewer queries than conventional finite-difference methods. NES is thus
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Algorithm 1 E-TS for CPS
1: Initialization: ∀k ∈ [N ], µ̂k = 0, σ̂k = 1, nk = 0, rmax

k = 0, φ̂k = 0.
2: for t = 1, 2, . . . , T do
3: if t > t0 then
4: Select fully explored arms to construct the set St = {k ∈ [N ] : nk ≥ (t−1)

N }.
5: Select the empirical best arm kemp(t) = maxk∈St

µ̂k.
6: Initialize Et = ∅, add arms k ∈ [N ] which satisfy φ̂k ≥ µ̂kemp(t) to Et.
7: else
8: Initialize set Et = [N ].
9: end if

10: ∀k ∈ Et: Sample θk ∼ N (µ̂k, σ̂k).
11: Choose the arm k(t) = argmaxk θk and decide the corrpution pattern Ct = k(t).
12: Sample batch data [Bt], play the arm k(t) as the corruption pattern in Algorithm 2 and

observe the reward rk(t)(t) from the attack result for the corrupted embedding ht
i,a =

[ht
i,a1

, . . . ,ht
i,aC

],∀i ∈ [Bt].

13: Update nk(t) = nk(t) + 1, µ̂k(t) =
µ̂k(t)(nk(t)−1)+rk(t)(t)

nk(t)
, σ̂k(t) = 1

nk(t)+1 , rmax
k(t) =

max{rmax
k(t) , rk(t)(t)}, φ̂k(t) =

φ̂k(t)(nk(t)−1)+rmax
k(t)

nk(t)
.

14: end for
15: Output {k(1), . . . , k(T )}

especially well-suited for addressing the AEG problem (3) in the VFL setting, where query times are
inherently limited. In the process of AE generation using NES, the adversary samples n Gaussian
noises δj ∼ N (0, I), j ∈ [n], and adds them to the current variable ηt

i , with some scaling parameter
σ > 0. Then, the gradient estimation is given by

∇ηt
i
L(ηt

i ; Ct) ≈ 1

σn

n∑
j=1

δjL
(
ηt
i + σδj ; Ct

)
. (5)

After obtaining the gradient estimates, the adversary can update ηt
i in a PGD manner. The details

of the AE generation process are provided in Algorithm 2 in Appendix A. Note that the number of
queries on each test sample is limited to Q, therefore, the adversary can update the drafted perturbation
at most ⌊Q

n ⌋ times for each sample.

5.2 THOMPSON SAMPLING WITH THE EMPIRICAL MAXIMUM REWARD FOR SOLVING THE CPS
PROBLEM

To solve the CPS problem, we make a key observation that the outer problem in (4) can be cast as an
MAB problem. Specifically, picking C out of total M clients to corrupt results in N =

(
M
C

)
possible

corruption patterns, which are defined as N arms in the MAB problem. That is to say, there is a
bijection between the set of N arms and the optimization space of Ct. Therefore, we can transform
optimization variables {Ct}Tt=1 in (4) into the selected arms at t round, i.e., {k(t)}Tt=1. At round
t, pulling an arm k(t) returns the reward rk(t)(t) as the ASR, i.e., rk(t)(t) = A∗(Ct;Bt) ∈ [0, 1].
We define the mean of the reward for arm k(t) as Et[rk(t)(t)] = µk(t) = Et[A

∗(Ct;Bt)]. Without
loss of generality, we assign the best arm the arm 1 with fixed positive mean µ1 > 0, which can be
considered as the positive value α∗ in (4). Finally, the CPS problem in (4) is transformed into an
MAB problem, i.e., min{(k(t)}T

t=1
E
[∑T

t=1(µ1 − µk(t))
]
.

E-TS algorithm. In our context, the adversary could face a significant challenge as the exploration
space N can become prohibitively large when engaging with hundreds of clients, which could result
in a steep accumulation of regret. To mitigate the issue from extensive exploration, we first introduce
the following definition of the competitive arm.

Definition 1 (Competitive arm). An arm k is described as a competitive arm when the expected
maximum reward is larger than the best arm’s mean, i.e., ∆̃k,1 =

∑T
t=1 E[rmax

k (t)]

T − µ1 ≥ 0, where
rmax
k (t) = maxτ∈[t]{rk(τ)}. Otherwise, it is a non-competitive arm.
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Based on the above definition, we propose Thompson sampling with Empirical maximum reward (E-
TS) algorithm. The basic idea of E-TS is to restrict the exploration space within the set of competitive
arms to reduce accumulated regret. However, the ground-truth competitive arms cannot be accessed a
priori. Therefore, we propose to construct an empirical competitive set Et with estimated competitive
arms at each round t and restrict exploration within it. Estimating the competitive arms requires
calculating the empirical best arm and empirical maximum reward defined as follows.
Definition 2 (Empirical best arm and empirical maximum reward). An arm k is selected as the
empirical best arm kemp(t) at round t, when k = argmaxk∈St µ̂k(t), where µ̂k(t) is the estimated
mean of arm k’s reward at round t, St = {k ∈ [N ] : nk(t) ≥ (t−1)

N }, and nk(t) denotes the number
of times pulling arm k in t rounds. An arm k’s empirical maximum reward φ̂k(t) is computed by:
φ̂k(t) :=

∑t
τ=1 rmax

k (τ)1(k(τ)=k)

nk(t)
.

Based on Definitions 1 and 2, we are now able to present the key components of the E-TS algorithm.
E-TS consists of two steps: first, for constructing an empirical competitive set Et at round t, E-TS
estimates µ1 and

∑T
t=1 E[rmax

k (t)]

T using the mean of empirical best arm µ̂kemp(t) (t) and the empirical
maximum reward φ̂k(t), and obtains Et = {k ∈ [N ] : φ̂k(t) − µ̂kemp(t)(t) ≥ 0}. Second, while
performing TS to explore each arm, E-TS adopts a Gaussian prior N (µ̂k(t),

1
nk(t)+1 ) to approximate

the distribution of the reward, where µ̂k(t) is defined as µ̂k(t) :=
∑t

τ=1 rk(τ)1(k(τ)=k)

nk(t)
. In addition

to the above two steps, E-TS also involves t0 warm-up rounds, in which it simply executes TS across
all arms. These warm-up rounds are designed to facilitate a more accurate estimation of each arm’s
reward mean and expected maximum reward. The complete algorithm is presented in Algorithm 1.
Remark 1. Previous work Gupta et al. (2021) leverages the upper bound sk,l(r) of arm k’s reward
conditioned on obtaining reward r from pulling arm l (i.e., E[rk(t)|rl(t) = r] ≤ sk,l(r)) to reduce
the exploration space, where sk,l(r) is a known constant. In contrast, the proposed E-TS algorithm
does not require any prior information about reward upper bound, making it more practical.

6 REGRET ANALYSIS

In this section, we analyze the regret bound for the proposed E-TS algorithm. Prior to proof, we
assume that each arm is pulled at least twice during the initial warm-up rounds. This assumption aligns
with our analysis on the optimal choice of warm-up rounds detailed in Appendix C.6. Achieving this
assumption is highly probable as the number of warm-up rounds increases asymptotically Agrawal
and Goyal (2017). Additionally, an adversary can traverse all arms before implementing E-TS to
ensure this prerequisite is met. To facilitate discussion, we first introduce two key lemmas. Then, we
present the expected regret bound of E-TS algorithm in Theorem 1. We defer all proof details of the
lemmas and the theorem in Appendix B.
Lemma 1 (Expected pulling times of a non-competitive arm). Under the above assumption, for a
non-competitive arm knc ̸= 1 with ∆̃knc,1 < 0, the expected number of pulling times in T rounds,
i,e., E[nknc(T )], is bounded by E[nknc(T )] ≤ O(1).

Lemma 2 (Expected pulling times of a competitive but sub-optimal arm). Under the above
assumption, the expected number of times pulling a competitive but sub-optimal arm ksub with
∆̃ksub,1 ≥ 0 in T rounds is bounded as follows,

E[nksub(T )] =

T∑
t=1

Pr(k(t) = ksub, n1(t) ≥
t

N
) ≤ O(log(T )).

Theorem 1 (Upper bound on expected regret of E-TS). Let D ≤ N denote the number of
competitive arms. Under the above assumption, the expected regret of the E-TS algorithm is upper
bounded by DO(log(T )) + (N −D)O(1).

Proof sketch. We first demonstrate that the probability that pulling the optimal arm is infrequent (i.e.,
n1(t) <

(t−1)
N ) is bounded. Next, we categorize the sub-optimal arms into non-competitive arms and

competitive but sub-optimal arms, and analyse their regret bound respectively. For a non-competitive
arm knc, the probability of k(t) = knc is bounded by the probability of selecting as the competitive
arm, i.e., Pr(knc ∈ Et), which is further bounded as in Lemma 1. On the other hand, for a competitive
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but sub-optimal arm ksub, we further divide the analysis in two cases based on whether or not the
optimal arm is included in Et. By combining the probability upper bounds in these two cases, we
arrive at an upper bound on the probability of k(t) = ksub as in Lemma 2.
Remark 2. In comparison with plain TS, our proposed E-TS holds a significant advantage in terms
of limiting the expected number of times pulling a non-competitive arm, which is reduced from
O(log(T )) to O(1).

7 EXPERIMENTAL EVALUATIONS

7.1 SETUP

The proposed attack is implemented using the PyTorch framework Paszke et al. (2017), and all
experiments are executed on a single machine equipped with four NVIDIA RTX 3090 GPUs. Each
experiment is repeated for 10 trials, and the average values and their standard deviations are reported.

Datasets. We perform experiments on six datasets of distinct VFL tasks. 1) Tabular dataset:
Credit Yeh and Lien (2009) and Real-Sim Chang and Lin (2011), where data features are equally par-
titioned across 6 and 10 clients, respectively; 2) Computer vision (CV) dataset: FashionMNIST Xiao
et al. (2017) and CIFAR-10 Krizhevsky et al. (2009), with features equally distributed across 7 and 8
clients, respectively; 3) Multi-view dataset: Caltech-7 Li et al. (2022), which consists of 6 views,
each held by a separate client; 4) Natural language dataset: IMDB Maas et al. (2011), where each
complete movie review is partitioned among 6 clients, each possessing a subset of sentences. More
details about the datasets and model structures are provided in Appendix C.1.

Baselines. We consider three baseline strategies for corruption pattern selection: 1) Fixed corruption
pattern, where the adversary corrupts a fixed set of clients during the inference. For comparison, we
consider two fixed corruption patterns where one is the underlying optimal pattern with the highest
ASR, and another is randomly selected at the beginning of the attack; 2) Random corruption (RC),
where the adversary selects uniformly at random a set of C clients to corrupt in each attack round;
and 3) Plain Thompson sampling (TS), where the adversary executes the plain TS to improve the
corruption pattern selection.

Experimental parameters setting. The adversary can query the server for up to Q = 2000 times per
test sample. The number of warm-up rounds in E-TS t0 is set to 80 for FashionMNIST, CIFAR-10,
and Caltech-7, 50 for Credit and Real-Sim, and 40 for IMDB. For the targeted attack, we set the
target label to 7 for FashonMNIST and CIFAR-10, and 3 for Caltech-7. We measure the ASR over 30
test epochs, each comprising multiple attack rounds. In our ablation study, we adjust one parameter at
a time, keeping the rest constant, with default settings of C = 2, t0 = 80, Q = 2000, and β = 0.3.

7.2 RESULTS

We plot the ASR of targeted and untargeted attacks for different datasets in Figure 1. Note that the
targeted and untargeted attacks are equivalent for Credit, Real-Sim, and IMDB with binary labels. We
observe that uniformly across all datasets, the proposed E-TS method effectively attacks VFL models
with an ASR of 38% ∼ 99% for targeted attack and 41% ∼ 99% for untargeted attack. For each
attack, we observe a significant gap in ASR between the best and sub-optimal corruption patterns,
demonstrating the significance of corruption pattern selection. The RC baseline exhibits a stable,
yet sub-optimal ASR performance, as it does not leverage any information from historical ASRs. In
sharp contrast, the performance of both TS and E-TS converge to that of the best corruption pattern.
Notably, thanks to the estimation of empirical maximum reward, the E-TS algorithm efficiently
narrows down the exploration space, achieving a much faster and more stable convergence than TS.
Ablation study. We evaluate the effects of system parameters, including corruption constraint C,
query budget Q, and perturbation budget β, and the design parameter, the number of warm-up rounds
t0, on the performance of the proposed attack. Besides, we test the attack performance under a
larger search space. As shown in Figure 3(a), ASR increases as more clients are corrupted, and
E-TS consistently outperforms random corruption. It is illustrated in Figure 3(b) that it is critical
to select the appropriate number of warm-up rounds t0 at the beginning of E-TS. When t0 is too
small, i.e., t0 = 20, it leads to an inaccurate estimate of the empirical competitive set which may
exclude the best arm, causing E-TS to converge on a sub-optimal arm. However, if t0 is too large, i.e.,
t0 = 200 or 1000, the advantage over plain TS diminishes. That is, one needs to optimize t0 to find
the optimal arm with the fastest speed. Figure 3(c) and (d) show that ASR generally increases with
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Figure 1: Attack performance on
six datasets of distinct VFL tasks.

Figure 2: Attack performance on FashionMNIST under
different defense strategies.
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Figure 3: Targeted attack performance on FashionMNIST using different parameters.

larger Q and β. Nevertheless, after reaching 0.3, increasing perturbation budget has negligible effect
on improving ASR. Figure 4 shows that E-TS consistently outperforms baselines in larger exploration
space, i.e., when there are

(
16
2

)
= 120,

(
16
3

)
= 560,

(
28
2

)
= 378, and

(
28
3

)
= 3276 choices. Notably,

this performance gap between E-TS and TS becomes even more pronounced when the exploration
space is expanded, demonstrating its effectiveness in handling larger exploration spaces. More
experimental results of corrupting different numbers of clients on other datasets are provided in
Appendix C.2. We also investigated the dynamics of arm selection and empirical competitive set in
TS and E-TS (in Appendix C.3), minimum query budget and corruption channels to achieve 50%
ASR (in Appendix C.4), the E-TS performance in large exploration spaces (in Appendix C.5), and
the optimal choice on the warm-up round t0(in Appendix C.6).

Defenses. We further evaluate the effectiveness of the proposed attack under the following common
defense strategies. Randomized smoothing (Cohen et al. (2019)): The main idea is to smooth
out the decision boundary of a classifier, such that it’s less sensitive to small perturbations in the
input data. To construct a smooth VFL classifier, Gaussian noises are added to clients’ embeddings,
which are then processed by the top model to make a prediction. The final prediction is obtained by
majority voting over 100 such trials; Dropout (Qiu et al. (2022)): A dropout layer is added after
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Figure 4: Targeted attack performance on FashionMNIST with larger search space

each activation layer in the server’s top model to improve the robustness. Here, we set the dropout
rate to 0.3; Manifold projection (Meng and Chen (2017); Lindqvist et al. (2018)): An autoencoder
is incorporated into the model as a pre-processing step before the top model. During training, the
autoencoder is trained using clean embeddings and designed to reconstruct the original embeddings.
During inference, the clients’ embeddings are first processed using the autoencoder before being
passed to the top model for prediction.

As shown in Figure 2, for a targeted attack with β = 0.3, the ASR of the proposed attack reduces
under all considered defenses; for an untargeted attack when β = 0.1, the ASRs experience marginal
reductions under the randomized smoothing and dropout defenses, but significant drops of 35% ∼
72% in the ASR under manifold projection. The advantage of manifold projection can be attributed
to the learning of the manifold structure and the transformation of adversarial embeddings into clean
embeddings. Overall, while manifold projection exhibits the strongest capability in defending the
proposed attack, it fails to completely eliminate all AEs.

8 RELATED WORK

AE generation for ML models. AE generation methods can be generally classified into two
categories: white-box and black-box settings. While the former assumes the adversary knows full
knowledge of model parameters and architectures, the latter assumes no prior knowledge of either the
models or training data. Our work is concerned with a black-box setting, which is typically addressed
using either transfer-based or query-based solutions. Transfer-based methods Papernot et al. (2016);
Liu et al. (2016) generate AEs using a substitute model, which is trained either by querying the
model’s output or using a subset of training data. Query-based methods Bhagoji et al. (2018); Chen
et al. (2017) optimize AEs utilizing gradient information, which is estimated through the queried
outputs. One classical example is the ZOO attack Chen et al. (2017), which employs zeroth-order
stochastic coordinate descent for gradient estimation.

MAB algorithms. Multiple classical algorithms, such as ϵ-greedy Sutton and Barto (2018), Upper
Confidence Bounds (UCB) Lai et al. (1985); Garivier and Cappé (2011), and Thompson sampling
(TS) Agrawal and Goyal (2012), are proposed to solve the MAB problem. Recent advancements have
proposed variants of MAB under different settings, leveraging additional information to minimize the
exploration. These include correlated arm bandit Gupta et al. (2021), contextual bandit Singh et al.
(2020); Chu et al. (2011), and combinatorial bandit Chen et al. (2013). However, their application in
the context of adversarial attacks, particularly in VFL, remains largely unexplored.

9 CONCLUSION

We propose a novel attack, for an adversary who can adaptively corrupt a certain number of com-
munication channels between a client and the server, to generate AEs for inference of VFL models.
Specifically, we formulate the problem of adaptive AE generation as an online optimization problem,
and decompose it into an adversarial example generation (AEG) problem and a corruption pattern
selection (CPS) problem. We transform the CPS problem into an MAB problem, and propose a
novel Thompson Sampling with Empirical maximum reward (E-TS) algorithm to find the optimal
corruption pattern. We theoretically characterize the expected regret bound of E-TS, and perform
extensive experiments on various VFL tasks to substantiate the effectiveness of our proposed attack.
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APPENDIX

A AE GENERATION ALGORITHM

The function (6) is used to estimate the gradient from the Natural evolution strategy (NES) Ilyas et al.
(2018). The detailed method for zeroth-order AE generation in VFL is presented in Algorithm 2. In
step 6, we use antithetic sampling to generate noise for efficiency.

∇ηt
i
L(ηt

i , Ct) ≈ 1

σn

n∑
j=1

δjL
(
ηt
i + σδj , Ct

)
, (6)

Algorithm 2 Zeroth-order AE generation in VFL
1: Input: Batch [Bt], adversarial embedding ht

i,a, benign embedding ht
i,b, i ∈ [Bt], corruption

pattern Ct, learning rate lr, the sample size of the Gaussion noise n, the perturbation budget β,
query budget Q, and the embedding range [lbi, ubi], i ∈ [Bt].

2: Initialization: ηt
i,m = 0,m ∈ [M ] , ηt

i = [ηt
i,a1

, . . . ,ηt
i,aC

], counter s = 0.
3: for i ∈ [Bt] do
4: for q ∈ [Qn ] do
5: Clamp the perturbation to ∥ηt

i∥∞ ≤ β(ubi − lbi).
6: Make a query to the server with adversarial embedding h̃t

i,a = ht
i,a + ηt

i
7: if the attack is not successful then
8: Initiate n

2 noise vectors δv ∼ N (0, I), v ∈ {1, .., n
2 }, another n

2 noise vectors are
δu = −δv, u ∈ {n

2 , ..., n}.
9: Clamp the perturbation to ∥ηt

i + δj∥∞ ≤ β(ubi − lbi), where j ∈ [n].
10: Make n queries to the server and estimate the gradient Ĝ through function (6).
11: Update the perturbation ηt

i = ηt
i − lr ∗ Ĝ.

12: else
13: Break the loop, store ηt

i and s = s+ 1.
14: end if
15: end for
16: end for
17: Clamp ∥ηt

i∥∞ ≤ β(ubi − lbi), i ∈ [Bt], return ηt
i and the attack success rate s

Bt .

B PROOFS IN SECTION REGRET ANALYSIS

In this section, we provide detailed proofs of lemmas and the theorem in Section 6 Regret Analysis
of our paper. We initiate the proof procedure by establishing the definitions for two key events and
three supporting facts, intended to streamline the proof process.
Fact 1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent i.i.d. random variables bounded
in [a, b], then for any δ > 0, we have

Pr

(∣∣∣∣∑n
i=1 Xi

n
− E(Xi)

∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−2nδ2

(b− a)2

)
.

Fact 2 (Abramowitz And Stegun 1964). For a Gaussian distributed random variable Z with mean
m and variance σ2, for any z,

1

4
√
π
· e−7z2/2 < Pr(|Z −m| > zσ) ≤ 1

2
e−z2/2

Fact 3 (Concentration Bounds). Let X1, . . . , Xn be 0-1-valued random variables. Suppose that
there are 0 ⩽ δi ⩽ 1, for 1 ⩽ i ⩽ n, such that, for every set S ⊆ [n],Pr [∧i∈SXi = 1] ⩽

∏
i∈S δi.

Let δ = (1/n)
∑n

i=1 δi. Then, for any γ such that δ ⩽ γ ⩽ 1, we have Pr [
∑n

i=1 Xi ⩾ γn] ⩽
e−nD(γ∥δ), where D(a∥b) is the cross entropy of a and b.
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Definition 3 (Events E1(t) and E2(t)). E1(t) is the event that the optimal arm 1 satisfies n1(t) <
(t−1)
N ,∀t ∈ [T − t0]. E2(t) is the event that the optimal arm 1 is not identified in the empirical

competitive set Et at round t, t > t0.

Based on the above facts and the definition, we then provide the following lemmas.

Lemma 3. Let γ = N−1
N , and δ = (N − 1)( 12 exp(−∆2

min/16) + 2 exp(−∆2
min/4) −

1
2 exp(−5∆2

min/16)+exp
(
− (t0−1)∆2

min

2N

)
+exp(−∆2

min)). The probability of event E1(t) is upper

bounded by Pr(n1(t) <
t−1
N ) ≤ exp (−tD(γ∥δ)).

Proof. Let Xτ = 0 denote the optimal arm 1 is pulled at τ round, and Xτ = 1 denotes that the best
arm is not pulled. Considering the probability Pr(n1(t) <

t−1
N , t > t0), we assume that each arm is

pulled at least two times after the warm-up round t0. Therefore, we can transform the probability
Pr(n1(t) <

t
N , t > t0) into Pr(

∑t
τ=t0+1 Xτ > (N−1)

N t+ 2N+1
N ) ≤ Pr(

∑t
τ=t0+1 Xτ > (N−1)

N t).

In our algorithm, for every set S ⊆ [t− t0], Pr (∧τ∈SXτ = 1) =
∏

τ∈S Pr (Xτ = 1|Fτ ), where Fτ

is the history of pulling the optimal arm 1 until round τ . We first analyze the upper bound of the
probability Pr (Xτ = 1|Fτ ), when τ ∈ [t− t0].

From our algorithm, we can derive that Pr (Xτ = 1|Fτ ) ≤
∑

ℓ∈[N ]\1 Pr (θ1(τ) < θℓ(τ)|Fτ )

+
∑

ℓ∈[N ]\1 Pr
(
φ̂1(τ) < µ̂ℓ(τ), nℓ(t) ≥ (τ−1)

N

)
, where ℓ is a sub-optimal arm. We then analyze

the bound of probablity Pr (Xτ = 1|Fτ ) as follows:

∑
ℓ∈[N ]\1

Pr (θ1(τ) < θℓ(τ)|Fτ ) +
∑

ℓ∈[N ]\1

Pr

(
φ̂1(τ) < µ̂ℓ(τ), nℓ(τ) ≥

(τ − 1)

N

)

≤
∑

ℓ∈[N ]\1

Pr

((
θ1(τ) < µ1 −

∆ℓ

2

)⋃(
θℓ(τ) > µ1 −

∆ℓ

2

))

+
∑

ℓ∈[N ]\1

Pr

((
φ̂1(τ) < µ1 −

∆min

2

)⋃(
µ̂ℓ(τ) > µ1 −

∆min

2

)
, nℓ(τ) ≥

(τ − 1)

N

)
(a)

≤
∑

ℓ∈[N ]\1

Pr

(
θ1(τ) < µ1 −

∆ℓ

2

)
+

∑
ℓ∈[N ]\1

Pr

(
θℓ(τ) > µℓ +

∆ℓ

2

)

+
∑

ℓ∈[N ]\1

Pr

(
φ̂1(τ) <

∑T
t=1 E[rmax

1 (t)]

T
− ∆min

2

)

+
∑

ℓ∈[N ]\1

Pr

(
µ̂ℓ(τ) > µℓ +

∆min

2
, nℓ(τ) ≥

(τ − 1)

N

)
(b)

≤ (N − 1)((
1

2
exp(−∆2

min/16) + 2 exp(−∆2
min/4)

− 1

2
exp(−5∆2

min/16) + exp

(
− (t0 − 1)∆2

min

2N

)
+ exp(−∆2

min)),

(7)

where we have (a) from the union bound. For inequality (b), our objective is to delineate the
upper bounds of to derive the upper bound of Pr

(
θ1(τ) < µ1 − ∆ℓ

2

)
and Pr

(
θℓ(τ) > µℓ +

∆ℓ

2

)
.

To achieve this, we invert our approach to discuss the lower bounds of Pr
(
θ1(τ) ≥ µ1 − ∆ℓ

2

)
and

Pr
(
θℓ(τ) ≤ µℓ +

∆ℓ

2

)
. We first focus on the probability Pr

(
θ1(τ) ≥ µ1 − ∆ℓ

2

)
:
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Pr

(
θ1(τ) ≥ µ1 −

∆ℓ

2

)
≥ Pr

(
θ1(τ) ≥ µ̂1(τ)−

∆ℓ

4
≥ µ1 −

∆ℓ

2

)
= Pr

(
θ1(τ) ≥ µ̂1(τ)−

∆ℓ

4

)
Pr

(
µ̂1(τ)−

∆ℓ

4
≥ µ1 −

∆ℓ

2

)
(c)

≥
(
1− 1

4
exp(−n1(τ)∆

2
ℓ/32)

)(
1− exp(−n1(τ)∆

2
ℓ/8)

)
= 1− 1

4
exp(−n1(τ)∆

2
ℓ/32)− exp(−n1(τ)∆

2
ℓ/8) +

1

4
exp(−5n1(τ)∆

2
ℓ/32),

(8)
where the inequality (c) is from Fact 1 and 2. Similarly, we can derive

Pr

(
θℓ(τ) ≤ µℓ +

∆ℓ

2

)
≥ 1−1

4
exp(−nℓ(τ)∆

2
ℓ/32)−exp(−n1(τ)∆

2
ℓ/8)+

1

4
exp(−5nℓ(τ)∆

2
ℓ/32).

Then we can derive (b) using Fact 1 and we have ensured each arm is pulled at least 2 times during
the warm-up round t0.

For every S ⊆ [t − t0], we have an upper bound value δmax for Pr (Xτ = 1|Fτ ): δmax =

(N − 1)( 12 exp(−∆2
min/16) + 2 exp(−∆2

min/4) − 1
2 exp(−5∆2

min/16) + exp
(
− (t0−1)∆2

min

2N

)
+

exp(−∆2
min)). Let δ = 1

t−t0

∑t
τ=t0+1 δmax = δmax and γ = (N−1)

N , we can derive the following
bound from Fact 3:

Pr(n1(t) <
t− 1

N
) = Pr(

t∑
τ=0

Xτ > t
(N − 1)

N
) ≤ exp (−tD(γ∥δ)) . (9)

Lemma 4. After the warm-up round t0, for any sub-optimal arm k ̸= 1,∆k = µ1 − µk ≥ 0, the
following inequality holds,

T∑
t=t0+1

Pr

(
k = kemp(t), n1(t) ≥

(t− 1)

N

)
≤ 4N

∆2
k

Proof. We bound the probability by :

=

T∑
t=t0+1

Pr

(
k = kemp(t), n1(t) ≥

(t− 1)

N

)
(d)
=

T∑
t=t0+1

Pr

(
k = kemp(t), n1(t) ≥

(t− 1)

N
,nk(t) ≥

(t− 1)

N

)

≤
T∑

t=t0+1

Pr

(
µ̂k(t) ≥ µ̂1(t), nk(t) ≥

(t− 1)

N
,n1(t) ≥

(t− 1)

N

)

≤
T∑

t=t0+1

Pr

((
(µ̂1(t) ≤ µ1 −

∆k

2
)
⋃

(µ̂k(t) ≥ µ1 −
∆k

2
)

)
, nk(t) ≥

(t− 1)

N
,n1(t) ≥

(t− 1)

N

)

=

T∑
t=t0+1

Pr

((
(µ̂1(t) ≤ µ1 −

∆k

2
)
⋃

(µ̂k(t) ≥ µk +
∆k

2
)

)
, nk(t) ≥

(t− 1)

N
,n1(t) ≥

(t− 1)

N

)
(e)

≤
T∑

t=t0+1

Pr

(
µ̂1(t)− µ1 ≤ −∆k

2
, n1(t) ≥

(t− 1)

N

)
+

T∑
t=t0+1

Pr

(
µ̂k(t)− µk ≥ ∆k

2
, nk(t) ≥

(t− 1)

N

)
(f)

≤
T∑

t=t0+1

2 exp

(
−(t− 1)∆2

k

2N

)
(g)

≤ 4N

∆2
k

,

(10)
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Here, (d) holds because of the truth that the empirical best arm is kemp(t) selected from the set
St = {k ∈ [N ] : nk(t) ≥ (t−1)

N }. Inequality (e) follows the union bound. We have (f) from the

truth that µ̂k(t) =
∑t

τ=1 rk(τ)1(k(τ)=k)

nk(t)
,∀k ∈ [N ] and Fact 1. The last inequality (g) uses the fact

that ∆2
k

2N > 0 and the geometric series.

Proof of Lemma 1. Now, we prove Lemma 1 in the main paper.

Proof. During t0 warm-up rounds, the maximum pulling times of a non-competitive arm knc are
bound in t0. We then analyze the expected number of times pulling knc after round t0.

T∑
t=t0+1

Pr(k(t) = knc)

=

T∑
t=t0+1

Pr(k(t) = knc, n1(t) ≥
(t− 1)

N
) +

T∑
t=t0+1

Pr(k(t) = knc, n1(t) <
(t− 1)

N
)

(h)

≤
T∑

t=t0+1

Pr(k(t) = knc, knc = kemp(t), n1(t) ≥
(t− 1)

N
)

+

T∑
t=t0+1

Pr

(
k(t) = knc, knc ∈ St \ kemp(t), n1(t) ≥

(t− 1)

N

)
+

T∑
t=t0+1

Pr(n1(t) <
(t− 1)

N
)

(i)

≤
T∑

t=t0+1

Pr

(
µ̂1(t) ≤ φ̂knc(t), k(t) = knc, n1(t) ≥

(t− 1)

N

)
+

4N

∆2
knc

+

T∑
t=t0+1

exp (−tD(γ∥δ))

≤
T∑

t=t0+1

Pr

((
(µ̂1(t) ≤ µ1 +

∆̃knc,1

2
)
⋃

(φ̂knc(t) ≥ µ1 +
∆̃knc,1

2
)

)
, k(t) = knc, n1(t) ≥

(t− 1)

N

)

+

T∑
t=t0+1

exp (−tD(γ∥δ)) + 4N

∆2
knc

(j)

≤
T∑

t=t0+1

Pr

(
µ̂1(t) ≤ µ1 +

∆̃knc,1

2
n1(t) ≥

(t− 1)

N

)

+

T∑
t=t0+1

Pr

(
φ̂knc(t) ≥

∑T
t=1 E[rmax

knc (t)]

T
− ∆̃knc,1

2
, k(t) = knc

)
+

T∑
t=t0+1

exp (−tD(γ∥δ)) + 4N

∆2
knc

(k)

≤
T∑

t=t0+1

exp

(
−(t− 1)∆̃2

knc,1

2N

)
+

T∑
j=1

Pr

(
φ̂knc(τj)−

∑T
t=1 E[rmax

knc (t)]

T
≥ −∆̃knc,1

2

)

+

T∑
t=t0+1

exp (−tD(γ∥δ)) + 4N

∆2
knc

(l)

≤
T∑

t=t0+1

exp

(
−(t− 1)∆̃2

knc,1

2N

)
+

T∑
j=1

exp

(
−
j∆̃2

knc,1

2

)
+

T∑
t=t0+1

exp (−tD(γ∥δ)) + 4N

∆2
knc

(m)

≤ 2N

∆̃2
knc,1

+
2

∆̃2
knc,1

+
1

D(γ∥δ)
+

4N

∆2
knc

= O(1),

(11)
Here, both (h) and (j) are derived using the union bound. We have (i) from the Lemma 4 and
Lemma 3. The inequality (k) is obtained from Fact 1, wherein j in (k) explicitly denotes the round
index when arm ksub is pulled. Inequality (l) stems from Fact 1. We have (m) because of the truth

that
∆̃2

knc,1

2N ≥ 0,
∆̃2

knc,1

2 ≥ 0, and D(γ∥δ) ≥ 0. We also use geometric series in (m).
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We provide another Lemma to facilitate the proof of Lemma 2 in the main paper.

Lemma 5. The following inequality holds,

Pr (E2(t)) ≤ 4(N − 1)t exp

(
− (t− 1)∆2

min

2N

)
+

(N − 1)

D(γ∥δ)
,

where ∆min = mink ∆k.

Proof.

Pr (E2(t))
(n)

≤
∑

ℓ∈[N ]\1

Pr

(
φ̂1(t) < µ̂ℓ(t), n1(t) ≥

(t− 1)

N
,nℓ(t) ≥

(t− 1)

N

)

+
∑

ℓ∈[N ]\1

Pr

(
φ̂1(t) < µ̂ℓ(t), n1(t) <

(t− 1)

N
,nℓ(t) ≥

(t− 1)

N

)

+
∑

ℓ∈[N ]\1

Pr

(
µ̂1(t) < µ̂ℓ(t), n1(t) ≥

(t− 1)

N
,nℓ(t) ≥

(t− 1)

N

)

≤
∑

ℓ∈[N ]\1

Pr(

(
(φ̂1(t) < µ1 −

∆min

2
)
⋃

(µ̂ℓ(t) > µ1 −
∆min

2
)

)
,

n1(t) ≥
(t− 1)

N
,nℓ(t) ≥

(t− 1)

N
)

+
∑

ℓ∈[N ]\1

Pr(

(
(µ̂1(t) < µ1 −

∆min

2
)
⋃

(µ̂ℓ(t) > µ1 −
∆min

2
)

)
,

n1(t) ≥
(t− 1)

N
,nℓ(t) ≥

(t− 1)

N
) +

∑
ℓ∈[N ]\1

Pr

(
n1(t) <

(t− 1)

N

)
(o)

≤
∑

ℓ∈[N ]\1

Pr

(
(φ̂1(t) <

∑T
t=1 E[rmax

1 (t)]

T
− ∆min

2
, n1(t) ≥

(t− 1)

N

)

+
∑

ℓ∈[N ]\1

Pr

(
(µ̂1(t) < µ1 −

∆min

2
, n1(t) ≥

(t− 1)

N

)

+ 2
∑

ℓ∈[N ]\1

Pr

(
µ̂ℓ(t) > µℓ +

∆min

2
, nℓ(t) ≥

(t− 1)

N

)
+ (N − 1) exp (−tD(γ∥δ))

(p)

≤ 4(N − 1) exp

(
− (t− 1)∆2

min

2N

)
+ (N − 1) exp (−tD(γ∥δ)) ,

(12)
Inequality (n), using union bound, arises from the observation that when arm 1 is absent from the
empirical competitive set Et at round t, it is either not selected as the empirical best arm kemp(t) or its
φ̂1(t) is less than the estimated mean of the empirical best arm µ̂kemp(t)(t). The validity of inequality

(n) relies on the fact that
∑T

t=1 E[rmax
1 (t)]

T ≥ µ1 and Lemma 3. We establish the final inequality (p) by
leveraging Fact 1.

Proof of Lemma 2. Now, we present proof details of Lemma 2 in the main paper.

Proof. We split the analysis of
∑T

t=1 Pr(k(t) = ksub) into three parts: the pulls in the warm round;
the pulls when the event E2(t) happens after the warm round; the pulls when the complementary of
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E2(t) happens. We summarize it as follows:

T∑
t=1

Pr
(
k(t) = ksub

)
=

t0∑
t=1

Pr
(
k(t) = ksub

)
+

T∑
t=t0+1

Pr
(
k(t) = ksub, E2(t)

)
+

T∑
t=t0+1

Pr
(
k(t) = ksub, Ec

2(t)
)

≤
T∑

t=1

Pr
(
k(t) = ksub

)
+

T∑
t=t0+1

Pr (E2(t))

(13)

When event E2(t) does not happen, the analysis of the upper bound of pulling the competitive but
sub-optimal arm aligns to plain TS. We apply the result from Agrawal and Goyal (2012), which
bounds the number of times a sub-optimal arm k ̸= 1 is pulled within O(log(T )). In Lemma 5, when
E2(t) happens, we derive the following bound:

T∑
t=t0+1

Pr(E2(t)) ≤
T∑

t=t0+1

(
4(N − 1) exp

(
− (t− 1)∆2

min

2N

)
+ (N − 1) exp (−tD(γ∥δ))

)
≤ 8N(N − 1)

∆2
min

+
1

D(γ∥δ)
= O(1).

(14)
The proof is completed.

Proof the Theorem 1.

Proof. We revisit the definition of expected regret, given by:

E[R(T )] = E

[
T∑

t=1

(µ1 − µk(t))

]
= E

[
N∑

k=1

nk(T )∆k

]
.

Considering D competitive arms and (N −D) non-competitive arms, the regret of E-TS in T rounds
is bounded by:

E[R(T )] =
∑

knc∈[N−D]

E[nknc(T )]∆knc +
∑

ksub∈[D]

E[nksub(T )]∆ksub

(1)

≤
∑

knc∈[N−D]

∆kncO(1) +
∑

ksub∈[D]

∆ksubO(log(T ))

≤ (N −D)O(1) +DO(log(T )),

(15)

where the inequality (1) is from Lemma 2 and Lemma 1. Thus the proof is finalized.

C SUPPLEMENTARY EXPERIMENTS AND EXPERIMENTAL DETAILS

C.1 DATASET AND MODEL STRUCTURE

Table 1 provides essential information about each dataset used in our study. We will introduce more
details regarding the dataset characteristics and the corresponding model structures.

The Credit dataset consists of information regarding default payments, demographic characteristics,
credit data, payment history, and credit card bill statements from clients in Taiwan. The dataset
is partitioned evenly across six clients, each managing a bottom model with a Linear-BatchNorm-
ReLU structure. The server hosts the top model, comprising of two Linear-ReLU-BatchNorm layers
followed by a WeightNorm-Linear-Sigmoid layer.
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The Real-sim dataset is from LIBSVM, which is a library for support vector machines (SVMs).
10 clients equally hold the data features and compute embeddings through a bottom model with 2
Linear-ReLU-BatchNorm layers. The server controls the top model with 3 Linear-ReLU layers.

The FashionMNIST dataset consists of 28 × 28 grayscale images of clothing items. The dataset
is equitably distributed across 7 clients, with each holding a data portion of 28 × 4 dimensions.
On the client side, it holds a Linear-BatchNorm-ReLU bottom model. On the server side, the top
model comprises eight groups of Conv-BatchNorm-ReLU structures, two MaxPool layers, two
Linear-Dropout-ReLU layers, and a final Linear output layer.

The CIFAR-10 dataset contains 60,000 color images of size 32 × 32, representing vehicles and
animals. We divide each image into 4× 32 sub-images and distribute them among 8 clients. Each
client’s bottom model consists of 2 convolutional layers and 1 max-pooling layer. The server’s top
model is built with 6 convolutional layers and 3 linear layers.

The Caltech-7 dataset, a subset of seven classes from the Caltech-101 object recognition collection,
is distributed across six clients. Each client is assigned one unique feature view, encompassing
the Gabor feature, Wavelet moments (WM), CENTRIST feature, Histogram of Oriented Gradients
(HOG) feature, GIST feature, and Local Binary Patterns (LBP) feature, respectively. Every client
maintains a bottom model utilizing a Linear-BatchNorm-ReLU structure. At the server level, the top
model comprises eight Linear-ReLU layers, two Dropout layers, and a final Linear output layer.

The IMDB dataset comprises 50,000 highly polarized movie reviews, each categorized as either
positive or negative. For distributed processing across 6 clients, each review is divided into several
sentences, and an equal number of these sentences are allocated to each client. Each client utilizes a
Bert model without fine-tuning—at the bottom level to obtain an embedding with 512 dimensions.
These embeddings are then input to the server’s top model, which consists of two Linear-ReLU layers
followed by a final Linear output layer.

Table 1: VFL dataset and parameters descriptions.

Task Tabular CV Multi-view NLP
Dataset name Credit Real-sim FashionMNIST CIFAR10 Caltech-7 IMDB

Number of samples 30,000 72,309 70,000 60,000 1474 50,000
Feature size 23 20,958 784 1024 3766 -

Number of classes 2 2 10 10 7 2
Number of clients 7 10 7 8 6 6

Batchsize Bt 32 512 128 32 16 64
Warm-up rounds t0 50 50 80 80 80 40

C.2 EXPERIMENTAL RESULT IN ABLATION STUDY

Additional experiments have been conducted across a variety of datasets under diverse corruption
constraints, as illustrated in Figure 5.

C.3 DYNAMICS OF ARM SELECTION AND EMPIRICAL COMPETITIVE SET IN TS AND E-TS

We investigated the arm selection behavior of TS and E-TS during a targeted attack on FashionM-
NIST, as shown in Figure 6. This study also tracked the variation in the size of E-TS’s empirical
competitive set, depicted in Figure 6. The parameters for this analysis were consistent with those in
the FashionMNIST targeted attack scenario (Figure 1): t0 = 80, C = 2, β = 0.15, Q = 2000 and
the number of arms N =

(
7
2

)
= 21. We list all arms as follow:

[0: (client 1, client 2), 1: (client 1, client 3), 2: (client 1, client 4), 3: (client 1, client 5), 4:(client 1,
client 6), 5: (client 1, client 7), 6: (client 2, client 3), 7: (client 2, client 4), 8: (client 2, client 5), 9:
(client 2, client 6), 10: (client 2, client 7), 11: (client 3, client 4), 12: (client 3, client 5), 13: (client 3,
client 6), 14: (client 3, client 7), 15: (client 4, client 5), 16: (client 4, client 6), 17: (client 4, client 7),
18: (client 5, client 6), 19: (client 5, client 7), 20: (client 6, client 7)].

Analysis of Figure 6(a) reveals that initially, E-TS selected a suboptimal arm. However, after 140
rounds, it consistently chose arm 5 (representing the pair of client 1 and client 7), indicating a stable
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Figure 5: ASR using different number of corrupted clients.

selection. In contrast, TS continued to explore different arms during this period. Figure 6(b) shows
that the empirical competitive set in E-TS reduced to a single arm within the first 40 rounds. Initially,
the competitive arm selected by E-TS was not optimal. Nevertheless, E-TS effectively narrowed
down its focus to this suboptimal arm, eventually dismissing it as non-competitive and identifying
the best arm for selection.
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(a) The choice of arm in E-TS and TS.
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Figure 6: Dynamics of arm selection and competitive set in E-TS and TS.

C.4 MINIMUM QUERY BUDGET AND CORRUPTION CHANNELS TO ACHIEVE 50% ASR

To explore how the necessary number of queries and corrupted channels vary across different models,
datasets, and systems, we conducted experiments using Credit and Real-sim datasets. We specifically
analyzed the average number of queries q required to attain a 50% ASR under various levels of
client corruption (corruption constraint C). For this analysis, we applied the proposed attack on both
the Credit and Real-sim datasets in a 7-client setting. We varied C from 1 to 7 and recorded the
average queries q needed for attacking over 50% of the samples successfully. In addition to assessing
the impact of different datasets, we investigated the influence of model complexity by attacking
two deeper Real-sim models contrasting it with the standard 3-layer server model. Specifically, the
standard 3-layer model Real-sim(standard) has a Dropout layer after the first layer of the server
model and achieves 96.1% test accuracy. One deeper server model Real-sim(deep) added an extra
three layers to the Real-sim(standard) after the Dropout layer of the server model. Another model
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Real-sim(dropout) structure is the same as Real-sim(deep) except that it added another Dropout
layer before the penultimate layer of the server model. Both Real-sim(deep) and Real-sim(dropout)
have 97% test accuracy. Furthermore, to analyze the system’s effect on q and C, we conducted
experiments on Real-sim in a 10-client scenario, varying C from 1 to 10 and recording q. Throughout
these experiments, we maintained β = 0.8 and t0 = 2N , where N denotes the number of arms. The
results are presented in Figure 7.
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Figure 7: Average number of queries in different corruption constraint to achieve 50% ASR.

From Figure 7, we observe that the required average number of queries decreases with a looser (or
higher) corruption constraint C. The comparison of Real-sim and Credit (Figure 7(a)) reveals that
simpler datasets in the same task category (both being tabular datasets) necessitate fewer queries.

Contrary to our initial assumption, a deeper model does not necessarily require more queries. The
results for Real-sim(standard), Real-sim(deep), and Real-sim(norm) from Figure 7(a) suggest that
attacking a Real-sim(deep) requires fewer queries. A deeper model with an extra Dropout layer can
make the model more robust and needs more quires to achieve 50% ASR. The reason for that is
the deeper model will learn a different hidden feature of the sample, thus making the model have
different robustness compared to the shallow one. Dropout can enhance robustness by preventing the
model from becoming overly reliant on any single feature or input node, encouraging the model to
learn more robust and redundant representations.

Comparing Figure 7 (a) and (b), we deduce that systems with more clients demand a greater number
of queries to achieve the same ASR at a given C, due to each client possessing fewer features.

In conclusion, to attain a target ASR with the same C, simpler datasets within the same task require
fewer queries. Systems with a higher number of clients necessitate more queries. However, the
influence of the model’s complexity does not simply depend on the scales of model parameters but is
affected more by the Dropout layer.

C.5 DISCUSSION ON THE LARGE EXPLORATION SPACES

We extend the experiments in Figure 4 to larger exploration spaces, i.e. set the corruption constraint
C = 7 and C = 8, which results in

(
16
7

)
= 11, 440,

(
16
8

)
= 12, 870 arms, respectively. However,

constrained by the computation power and limited time in the rebuttal period, we compare E-TS
and plain TS in large exploration spaces through numerical simulation where ASR is substituted
with a sample in Gaussian distribution. For the simulation, we created a list of means starting from
0 up to 0.99, in increments of 0.01, each with a variance of 0.1. This list was extended until it
comprised 11, 440 − 1 and 12, 870 − 1 elements, to which we added the best arm, characterized
by a mean of 1 and a variance of 0.1. This list represents the underlying mean and variance of the
arms. Upon playing an arm, a reward is determined by randomly sampling a value, constrained to the
range [0, 1]. With knowledge of the underlying mean, we plotted the cumulative regret over rounds,
R(t) =

∑t
τ=1(µ1 − µk(τ)), where µ1 is the best arm’s mean, and k(τ) is the arm selected in round

τ . These results are presented in Figure 8.
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Figure 8: Regret in large exploration spaces.

The results from Figure 8 reveal that in large exploration spaces, TS struggles to locate the best arm
within a limited number of rounds. In contrast, E-TS demonstrates more rapid convergence, further
confirming the benefits of utilizing an empirical competitive set in large exploration spaces.

C.6 THE STUDY OF OPTIMAL CHOICE ON THE WARM-UP ROUND t0

To ascertain the ideal number of warm-up rounds t0 for different arm settings, we conducted numerical
experiments with N = 100 and N = 500. For N = 100, we experimented with t0 = 150 (less
than 2N ), t0 = 200, 300, 500 (within [2N, 5N ]), and t0 = 800 (greater than 5N ). Similarly, for
N = 500, the settings were t0 = 750 (less than 2N ), t0 = 1000, 2000, 2500 (within [2N, 5N ]), and
t0 = 4000 (greater than 5N ).

In these experiments, ASR was replaced with Gaussian distribution samples. We initialized 100
arms with means from 0 to 0.99 (in 0.01 increments) and variances of 0.1. The reward for playing
an arm was sampled from its Gaussian distribution. The cumulative regret R(T ) was computed as
R(T ) =

∑T
t=1(µ1 − µk(t)), where µ1 = 0.99 and k(t) is the arm selected at round t, as illustrated

in Figure 9.
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Figure 9: E-TS performance using different warm-up rounds.

Figure 9(a) shows that E-TS converges faster with a smaller t0, but with t0 = 150, it converges to
a sub-optimal arm. Figure 9(b) indicates faster convergence with smaller t0. Both figures suggest
that t0 = 2N achieves the most stable and rapid convergence, while t0 > 5N results in the slowest
convergence rate. Analyzing the pull frequencies of each arm during t0, we find that with t0 < 2N ,
most arms are pulled only once, and some are never explored. Conversely, with t0 ∈ [2N, 5N ], most
arms are pulled at least twice, yielding a more reliable estimation of their prior distributions.
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Thus, we recommend setting t0 to at least N , with the optimal range being [2N, 5N ] in practical
scenarios. This range ensures that each arm is sampled at least twice using TS, enabling a more
accurate initial assessment of each arm’s prior distribution. Such preliminary knowledge is vital for
E-TS to effectively form an empirical competitive set of arms. If t0 is too small, there’s an increased
risk of E-TS prematurely converging on a suboptimal arm due to inadequate initial data, possibly
overlooking the best arm in the empirical competitive set.
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