
Label Delay in Online Continual Learning

Botos Csaba1,3∗, Wenxuan Zhang2∗, Matthias Müller3, Ser-Nam Lim4,
Mohamed Elhoseiny2, Philip H.S. Torr1, Adel Bibi1

1University of Oxford
2King Abdullah University of Science and Technology

3Intel Labs
4University of Central Florida

Abstract

A critical yet often overlooked aspect in online continual learning is the label delay,
where new data may not be labeled due to slow and costly annotation processes.
We introduce a new continual learning framework with explicit modeling of the
label delay between data and label streams over time steps. In each step, the
framework reveals both unlabeled data from the current time step t and labels
delayed with d steps, from the time step t − d. In our extensive experiments
amounting to 25000 GPU hours, we show that merely increasing the computational
resources is insufficient to tackle this challenge. Our findings highlight significant
performance declines when solely relying on labeled data when the label delay
becomes significant. More surprisingly, state-of-the-art Self-Supervised Learning
and Test-Time Adaptation techniques that utilize the newer, unlabeled data, fail
to surpass the performance of a naïve method that simply trains on the delayed
supervised stream. To this end, we propose a simple, robust method, called
Importance Weighted Memory Sampling that can effectively bridge the accuracy
gap caused by label delay by prioritising memory samples that resemble the most
to the newest unlabeled samples. We show experimentally that our method is the
least affected by the label delay factor, and successfully recovers the accuracy of
the non-delayed counterpart. The implementation for reproducing our experiments
can be found at https://github.com/botcs/label-delay-exp.

1 Introduction

Machine learning models have become the de facto standard for a wide range of applications,
including social media [1], finance [2], and healthcare [3]. However, these models usually struggle
when the distribution from which the data is sampled is constantly changing over time, which is
common in real-world scenarios. This challenge continues to be an active area of research known as
Continual Learning (CL). However, most prior art in CL examines this problem with a presumption
of the immediate availability of labels once the data is collected. This assumption rarely holds in
real-world scenarios.

Consider the task of monitoring recovery trends in patients after surgeries. Doctors gather health data
from numerous post-operative patients regularly. However, this data does not immediately indicate
broader recovery trends or potential common complications. To make informed determinations, sev-
eral weeks of extensive checks and tests across multiple patients are needed. Only after these checks
are completed, the gathered data can be labeled as indicating broader “recovery” or “complication”
trends. However, by the time the data is gathered, assessed, labeled, and a model is trained, new

∗Equal Contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/botcs/label-delay-exp

Data stream

Annotator

Input data

~

⇒

Labels

Evaluate

Send for
 labelingTime step

Figure 1: Illustration of label delay. This figure shows a typical Continual Learning (CL) setup with
label delay due to annotation. At every time step t, the data stream SX reveals a batch of unlabeled
data {xt}, on which the model fθ is evaluated (highlighted with green borders). The data is then sent
to the annotator SY who takes d time steps to provide the corresponding labels. Consequently, at time
step t the batch of labels {yt−d} corresponding to the input data from d time steps before becomes
available. The CL model can be trained using the delayed labeled data (shown in color) and the
newest unlabeled data (shown in grayscale). In this example, the stream reveals three samples at
each time step and the annotation delay is d = 2.

patient data might follow trends that do not exist in the training data yet. This leads to a repeating
cycle: collecting data from various patients, assessing the trends, labeling the data, training the model,
and then deploying it on new patients. The longer this cycle takes, the more likely it is going to affect
the model’s reliability, a challenge we refer to as label delay.

In this paper, we propose a CL setting that explicitly accounts for the delay between the arrival of
new data and the corresponding labels, illustrated by Figure 1. In our proposed setting, the model is
trained continually over discrete time steps with a label delay of d steps. At each step, two batches of
data are revealed to the model: unlabeled new samples from the current time step t, and the labels of
the samples revealed at the step t− d. First, we show the naïve approach where the model is only
trained with the labeled data while ignoring all unlabeled data. While this forms a strong baseline,
its performance suffers significantly from increasing the delay d. We find that simply increasing
the number of parameter updates per time step does not resolve the problem. Hence, we examine a
number of popular approaches which incorporate the unlabeled data to improve this naïve baseline.
We investigate semi-supervised learning, self-supervised learning and test-time adaptation approaches
which are motivated for slightly different but largely similar settings. Surprisingly, out of 12 different
methods considered, none could outperform the naïve baseline given the same computational budget.
Motivated by our extensive empirical analysis of prior art in this new setting, we propose a simple and
efficient method that outperforms every other approach across large-scale datasets; in some scenarios
it even closes the accuracy gap caused by the label delay. Our contributions are threefold:

• We propose a new formal Continual Learning setting that factors label delay between the arrival of
new data and the corresponding labels due to the latency of the annotation process.

• We conduct extensive experiments (∼ 25, 000 GPU hours) on various Online Continual Learning
datasets, such as CLOC [4], CGLM [5], FMoW [6] and Yearbook [7]. Following recent prior
art on Budgeted Continual Learning [8, 9], we compare the best performing Self-Supervised
Learning [10], Semi-Supervised Learning [11] and Test Time Adaptation [12] methods and find
that none of them outperforms the naïve baseline that simply ignores the label delay and trains a
model on the delayed labeled stream.

• We propose Importance Weighted Memory Sampling to rehearse past labeled data most similar to
the most recent unlabeled data, bridging the gap in performance. IWMS outperforms the naïve
method significantly and improves over Semi-Supervised, Self-Supervised Learning and Test-Time
Adaptation methods across diverse delay and computational budget scenarios with a negligible
increase in computational complexity. We further present an in-depth analysis of the proposed
method.

2

Algorithm 1 Single OCL time step with Label Delay
1. The Stream SX reveals a batch of images {xt

i}ni=1 ∼ Dt;
2. The model fθt makes predictions {ŷti}ni=1 for the new revealed batch {xt

i}ni=1;
3. The Annotator Sd

Y reveals labels {yt−d
i }ni=1;

4. The model fθt is evaluated by comparing the predictions {ŷti}ni=1 and true labels {yti}ni=1, where the true labels are
only for testing;

5. The model fθt is updated to fθt+1
using labeled data ∪t−d

τ=1{(xτ
i , y

τ
i)}ni=1 and unlabeled data ∪t

τ=t−d{x
τ
i }ni=1 under

a computational budget C.

2 Related Work

Label Delay in Online Learning. While the problem of delayed feedback has been studied in
the online learning literature [13, 14], the scope is limited to problems of spam detection and
other synthetically generated, low-complexity data [15, 11] and often views input images as “side
info”[16]. Additionally, methods and error bounds proposed in[17, 18, 19, 20] are more focused on
expert selection rather than representation learning, most of which cannot generalize to unstructured,
large-scale image classification datasets.

Continual Learning. Early work on continual learning primarily revolved around task-based
continual learning [21, 22], while recent work focuses on the task-free continual learning setting[23,
24, 4]. This scenario poses a challenge for models to adapt as explicit task boundaries are absent,
and data distributions evolve over time. GDumb[25] and BudgetCL[8] demonstrate that minimalistic
methods can outperform most offline and online continual learning approaches. RealtimeOCL [9]
shows that Experience Replay [26] is the most effective method, outperforming more popular
continual learning methods, such as ACE [21], LwF [27], RWalk [28], PoLRS [4], MIR [29] and
GSS [30], when methods are normalized by their computational complexities.

Semi-Supervised Learning. While the labels arrive delayed, our setting allows the models to use
new unlabeled data immediately. Possible directions to leverage the most recent unlabeled data
entail Pseudo-Labeling (or often referred to as their broader category, Semi-Supervised Learning)
methods [11] and Self-Supervised Semi-Supervised Learning (S4L) methods [31]. Pseudo-labeling
techniques predict the labels of the samples before their true labels become available to estimate the
current state of the joint distribution of input and output pairs. This in turn allows the model to fit
its parameters on the estimated data distribution. On the other hand, S4L integrates self-supervised
learning, such as predicting the rotation of an image or the relative location of image patches, with
the semi-supervised learning framework. We replace the early self-supervised tasks of S4L [31] with
more recent objectives from Balestriero et al. [10].

Test-Time Adaptation. Besides semi-supervised learning, TTA methods are also designed to
adapt models with unlabeled data, sampled from a similar distribution as the evaluation samples.
Entropy regularization methods like SHOT [32] and TENT [33] update the feature extractor or
learnable parameters of the batch-normalization layers [34] to minimize the entropy of the predictions.
SAR [35] incorporates an active sampling scheme to filter samples with noisy gradients. More recent
works consider Test Time Adaptation in an online setting [36] or Continual Learning setting [37].
In our experiments, we fine-tune the model with ER [26] across time steps and adapt a copy of the
model with TTA to the most recent input samples at each time step.

3 Problem Formulation

We follow the conventional online continual learning problem definition proposed by Cai et al. [4].
In such a setting, we seek to learn a model fθ : X → Y on a stream S where for each time step
t ∈ {1, 2, . . . } the stream S reveals data from a time-varying distribution Dt sequentially in batches
of size n. At every time step, fθ is required to predict the labels of the coming batch {xt

i}ni=1 first.
Followed by this, the corresponding labels {yti}ni=1 are immediately revealed by the stream. Finally,
the model is updated using the most recent training data {(xt

i, y
t
i)}ni=1.

This setting, however, assumes that the annotation process is instantaneous, i.e., the time it takes to
provide the ground truth for the input samples is negligible. In practice, this assumption rarely holds.
It is often the case that the rate at which data is revealed from the stream S is faster than the rate at

3

Algorithm 2 Importance Weighted Memory Sampling
1. At time step t, for each unsupervised batch of size n, {xt

i}ni=1, the model fθ computes predictions {ỹti}ni=1;
2. For every predicted label ỹti , select labeled samples from the memory buffer {(xM

j , yMj)} where yMj = ỹti ;
3. Compute pairwise cosine feature similarities Ki,j = cos

(
h(xt

i), h(x
M
i)

)
between each unlabeled sample xt

i and
selected memory samples xM

j ;
4. Select the most relevant supervised samples (xM

k , yMk) by sampling k ∈ {1 . . . |M |} from a multinomial distribution
with parameters Ki,:;

5. Update the model fθ using the selected supervised samples, aiming to match the distribution of the unlabeled data.

which labels for the unlabeled data can be collected, as opposed to it being instantaneously revealed.
To account for this delay in accumulating the labels, we propose a setting that accommodates this lag
in label availability while still allowing for the model to be updated with the most recent unlabeled
data. We modify the previous setting in which labels of the data revealed at time step t will only be
revealed after d time steps in the future.

At every time step t, the Annotator Sd
Y reveals the labels for the samples from d time steps before,

i.e.,, {(xt−d
i , yt−d

i)}ni=1, while the data stream SX reveals data from the the current time step, i.e.,,
{xt

i}ni=1. Recent prior art [25, 8, 9] introduces more reasonable and realistic comparisons between
continual learning methods by imposing a computational complexity constraint on the methods.
Similarly to [25, 8, 9], in our experiments the models are given a fixed computational budget C to
update the model parameters from θt to θt+1 for every time step t. To that end, our new proposed
setting can be formalized per time step t, alternatively to the classical OCL setting, as described in
Algorithm 1.

Note that this means at each time step t, the stream reveals a batch of non-corresponding images
{xt

i}ni=1 and labels {yt−d
i }ni=1, as illustrated in Figure 1. With the label delay of d time steps, the

images themselves revealed from time step t − d to time step t can be used for training, despite
that labels are not available.

A naïve way to solve this problem is to discard the unlabeled images and only train on labeled data
∪t−d
τ=1{(xτ

i , y
τ
i)}ni=1, However, it worth noting that the model is still evaluated on the most recent

samples from SX . Thus, training on the labeled training data leads to the model at least being d steps
delayed. Since in our setting the distribution from which the training and evaluation samples are
drawn from is not stationary, this discrepancy severely hinders the performance, as discussed in detail
in Section 5.

Furthermore, we shall show in Section 6 that the existing paradigms, such as Test-Time Adaptation
and Semi-Supervised Learning, struggle to effectively utilise newer, unlabeled data to bridge the
aforementioned discrepancy. Our observations indicate that the primary failure is from the excessive
computational demands of processing unlabeled data. To that end, we propose Importance Weighted
Memory Sampling that prioritises performing gradient steps on labeled samples that resemble the
most recent unlabeled samples.

4 IWMS: Importance Weighted Memory Sampling

To mitigate the challenges posed by label delay in online continual learning, we introduce a novel
method named Importance Weighted Memory Sampling (IWMS). Recognizing the limitation of
traditional approaches that either discard unlabeled data or utilize it in computationally expensive
ways, IWMS aims to bridge the gap between the current distribution of unlabeled data and the
historical distribution of labeled data. Instead of directly adapting the model to fit the newest
distribution with unlabeled data, which is inefficient due to the lack of corresponding labels, IWMS
cleverly adjusts the sampling process from a memory buffer. This method ensures that the distribution
of selected samples closely matches the distribution of the most recent unlabeled batch. This nuanced
selection strategy allows the continual learning model to effectively adapt to the most recent data
trends, despite the delay in label availability, by leveraging the rich information embedded in the
memory buffer.

As discussed in Section 5, using the most recent labeled samples for training leads to over-fitting the
model to an outdated distribution. Thus, we replace the newest supervised data by a batch which

4

0 100k 200k 300k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy

20.3

15.8
12.8
11.7

CLOC

0 2k 5k 7k
Time step

0

10

20

24.1

16.3
15.3
14.8

CGLM

0 1k 2k 3k
Time step

0

20

40

60
63.0
60.5
57.8
55.6

FMoW

0 100 200
Time step

40

60

80

100 97.0
92.0

76.5

63.0

Yearbook

d = 0 d = 10 d = 50 d = 100

Figure 2: Effects of Varying Label Delay. The performance of a Naïve Online Continual Learner
model gradually degrades with increasing values of delay d.

we sample from the memory buffer, such that the distribution of the selected samples matches the
newest unlabeled data distribution. The sampling process is detailed in Algorithm 2. It consists
of two stages: first, at each time step t, for every unsupervised sample xt

i in the batch of size n,
we compute the prediction ỹti , and select every labeled sample from the memory buffer (xM

j , yMj)

such that the true label of the selected samples matches the predicted label yMj = ỹti . In the second
stage, we compute the pairwise cosine feature similarities Ki,j between the unlabeled sample xt

i and
the selected memory samples xM

j by Ki,j = cos
(
h(xt

i), h(x
M
j)

)
, where h represents the learned

feature extractor part of fθ, directly before the final classification layer. Finally, we select the most
relevant supervised samples (xM

k , yMk) by sampling k ∈ {1 . . . |M |} from a multinomial distribution
with parameters K:,j . Thus, we rehearse samples from the memory which (1) share the same true
labels as the predicted labels of the unlabeled samples, (2) have high feature similarity with the
unlabeled samples.

To avoid re-computing the feature representation h(xM) for each sample in the memory buffer
after every parameter update, we store the corresponding features of the input data computed for
the predictions during the evaluation (Step 4 in Algorithm 1). This technique greatly reduces the
computational cost of our method, but comes at the price of using outdated features. Such trade-off is
studied in detail by contemporary Self-Supervised Literature [38, 39, 40] observing no significant
impact on performance. We ablate the alternative option of selecting samples based only on their
similarity in the Supplementary Material A.11.

5 The Cost of Ignoring Label Delay

To better understand how label delay influences the performance of a model, we begin with the
Naïve approach, i.e., ignoring the most recent data points until their label becomes available and
exclusively training on outdated labeled samples. More specifically, we are interested in measuring
the performance degradation under various label delay d and computational budget C scenarios. To
this end, we conduct experiments over 4 datasets, in 4 computational budget and 3 label delay settings.
We analyse the results under normalised computational budget (Section 5.2) and demonstrate that the
accuracy drop can be only partially recovered by increasing the computational budget (Section A.5).

5.1 Experimental Setup

Datasets. We conduct our experiments on four large-scale online continual learning datasets,
Continual Localization (CLOC) [4], Continual Google Landmarks (CGLM) [5], Functional Map of
the World (FMoW) [6], and Yearbook [7]. The last two are adapted from the Wild-Time challenge [41].
More statistics of the benchmarks are in Supplementary. We follow the same training and validation
set split of CLOC as in [4] and o CGLM as in [5] and the official released splits for FMoW [6] and
Yearbook [7].

Architecture and Optimization. Similarly to prior work [9, 8], we use ResNet18 [42] for backbone
architecture. Furthermore, in our experiments, the stream reveals a mini-batch, with the size of
n = 128 for CLOC, FMoW, Yearbook and n = 64 for CGLM. We use SGD with the learning rate of

5

0.005, momentum of 0.9, and weight decay of 10−5. We apply random cropping and resizing to the
images, such that the resulting input has a resolution of 224× 224.

Baseline Method In our experiments, we refer to the Naïve method as the one naively training
one labeled data. We apply the state of the art continual learning mechanism under computational
constrains [9], Experience Replay (ER) [26], to eliminate the need to compare with other continual
learning methods . The memory buffer size is consistently 219 samples throughout our experiments
unless stated otherwise. The First-In-First-Out mechanism [26, 4] to update the buffer. The discussion
of the effectiveness of the memory buffer can be found in Section A.18. We report the Online
Accuracy [4] at each time step in Step 4 of Algorithm 1 under label delay d. In our quantitative
comparative analysis, for simplicity, we use the final Online Accuracy scores, denoted by Accd. Refer
to Section A.17 for the discussion of more metrics.

Computational Budget and Label Delay. Normalising the computational budget is necessary for
fair comparison across CL methods, thus, we define C = 1 as the number of FLOPs required to make
one backward pass with a ResNet18 [42], similarly to BudgetCL[8] and RealtimeOCL[9]. We discuss
its relation to the wall-clock training time in Section A.16. When performing experiments with a
larger computational budget, we take integer multiplies of C to apply C parameter update steps per
stream time steps. The proposed label delay factor d represents the amount of time steps the labels
are delayed with. Note that, for C = 1, d = 0, our experimental setting is identical to prior art[4, 9].

5.2 Observations

In Figure 2, we analyze how varying the label delay d ∈ {0, 10, 50, 100} impacts the performance of
Naïve on four different datasets, CLOC [4], CGLM [8], FMoW [6] and Yearbook [7]. The label delay
impacts the online accuracy differently across all scenarios, thus, below we provide our observations
case-by-case.

On CLOC, the non-delayed (d = 0) Naïve achieves Acc0 = 20.2%, whereas the heavily delayed
counterpart (d = 100) suffers significantly from the label delay, achieving only Acc100 = 11.7%.
Interestingly, label delay influences the accuracy in a monotonous, but non-linear fashion, as half
of the accuracy drop is caused by a very small amount of delay: Acc10 − Acc0 = −4.4%. In
contrast, the accuracy degradation slows down for larger delays,i.e., the accuracy gap between two
larger delay scenarios (d = 50 → 100) is rather marginal Acc100 − Acc50 = −1.1%. We provide
further evidence on the monotonous and smooth properties of the impact of label delay with smaller
increments of d in the Supplementary Material A.3.

For CGLM the accuracy gap landscape looks different: the majority of the accuracy decrease occurs
by the smallest delay d = 0 → 10, resulting in a Acc10 − Acc0 = −7.9% drop. Subsequent
increases (d = 10 → 50 and d = 50 → 100) impact the performance to a significantly smaller extent:
Acc50 −Acc10 = −1% and Acc100 −Acc50 = −0.5%.

In the case of FMoW, where the distribution shift is less imminent (i.e., the data distribution varies
less over time), the difference between the delayed and the non-delayed counterparts should be small.
This is the case for the satellite image data in the FMoW dataset, where the accuracy drops are
−2.8%,−2%,−1.9% for d = 0 → 10 → 50 → 100, respectively.

The Yearbook’s binary classification experiments highlight an important characteristic: if there is a
significant event that massively changes the data distribution, such as the change of men’s appearance
in the 70’s [7] the non-delayed Naïve (d = 0) suffers a small drop in Online Accuracy (at the middle
of the time horizon t = 130), but quickly recovers as more data starts to appear. In contrast, under
small and moderate delay (d = 10, 50), the decline is more emphasised and the recovery is delayed (at
t = 120, 180, respectively). Alongside with more detailed investigation, we provide visual examples
of the dataset to support our claims in the Supplementary Material A.4.

5.3 Section Conclusion

Over- or Under-fitting. While in the experiments we report results under a single computational
budget C per dataset, it is reasonable to suspect that the results might look different under smaller or
larger budget. To this end, we ablate the effect of C over various delay scenarios, on multiple datasets
in the Supplementary Material A.5.

6

0 100k 200k 300k
0

10

20

O
n

lin
e

A
cc

u
ra

cy
(d

=
10

)

20.3

15.8
17.3

14.6
14.5
11.9

CLOC (C=2)

0 2k 5k 7k
0

10

20

24.1

16.3

24.1

14.0
13.4
10.3

CGLM (C=8)

0 1k 2k 3k
0

20

40

60

80
63.0
60.5

64.0

58.2
58.1
48.5

FMoW (C=16)

0 100 200
40

60

80

100

97.0

92.0

92.1
92.0

92.2
92.2

Yearbook (C=16)

0 100k 200k 300k
0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy
(d

=
50

)

20.3

12.8
14.2

12.6
12.5
9.5

0 2k 5k 7k
0

10

20

24.1

15.3

23.5

13.3
12.7
9.4

0 1k 2k 3k
0

20

40

60

80 63.0

57.8
61.3

55.8
55.8
46.0

0 100 200
40

60

80

100 97.0

76.5

77.1
77.2

77.0

78.9

0 100k 200k 300k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy
(d

=
10

0)

20.3

11.7
13.1

11.6

11.5

8.6

0 2k 5k 7k
Time step

0

10

20

24.1

14.8

22.9

12.7
12.1
9.0

0 1k 2k 3k
Time step

0

20

40

60

80
63.0

55.6
58.9

53.6
53.9

43.8

0 100 200
Time step

40

60

80

100 97.0

63.0
64.6

65.3
64.6

66.8

Näıve without delay Näıve IWMS S4L Pseudo-Label TTA

Figure 3: Comparison of various unsupervised methods. The accuracy gap caused by the label
delay between the Naïve without delay and its delayed counterpart Naïve. Our proposed method,
IWMS, consistently outperforms all categories under all delay settings on three out of four datasets.

Common patterns. We argue that the consistent, monotonic accuracy degradation, present in all of
our experiments, is due to the non-stationary property of the data distribution that creates a distribution
shift. Our hypothesis is supported by the findings of Yao et al. [41]. A complementary argument is
presented by Hammoud et al. [43], stating that the underlying datasets have high temporal correlations
across the labels, i.e., images of the same categories arrive in bursts, allowing an online learning
model to easily over-fit the label distribution even without using the input images.

Motivation for Delay Specific Solutions. As our experiments suggest so far, label delay is indeed an
extremely elusive problem, not only because it inevitably results in an accuracy drop, but because
the severity of the drop itself is hard to estimate a-priori. We showed that the accuracy gap always
increases monotonically with increasing delay, nevertheless the increase of the gap can be gradual or
sudden depending on the dataset and the computation budget. This motivates our efforts of designing
special techniques to address the challenges of label delay. In the next set of experiments, we augment
the Naïve training by utilizing the input images before their corresponding labels become available.

6 Utilising Data Prior to Label Arrival

In our proposed label delay experimental setting, we showed the larger the delay the more challenging
it is for Naïve, a method that relies only on older labeled data, to effectively classify new samples.
This is due to a larger gap in distribution between the samples used for training and for evaluation.
This begs the question of whether the new unlabeled data can be used for training to improve over
Naïve, as it is much more similar to the data that the model is evaluated on.

We propose four different paradigms for utilizing the unlabeled data, namely, Importance Weighted
Memory Sampling (IWMS), Semi-Supervised Learning via Pseudo-Labeling (PL), Self-Supervised
Semi-Supervised Learning (S4L) and Test-Time Adaptation (TTA). We integrate several methods
of each family into our setting and evaluate them under various delays and computational budgets.
In particular, we adapt each paradigm individually by augmenting the parameter update (Step 5 of

7

Algorithm 1) of Naïve, described in detail in the following subsections. Furthermore, to quantify
the how much of the accuracy gap (Gd = AccNaïve

d − AccNaïve
0) is recovered, we use the formula

R∗
d =

Acc∗d−AccNaïve
d

|Gd| , namely the improvement of the method divided by the extent of the accuracy gap
for a given delay factor d.

6.1 Experiment Setup

Importance Weighted Memory Sampling (IWMS). The only additional cost of IWMS compared
to Naïve is the cost of evaluating the similarity scores, which is still less than 1% of the inference
cost for 100K samples, and can be evaluated in parallel, therefore we consider it negligible. Since
our method simply replaces the newest supervised samples with the most similar samples from the
replay buffer, we do not require any additional backward passes to compute the auxiliary objective.
Therefore, the computational budget of our method is identical to the Naïve baseline, i.e.,, CIMWS = 1.

Self-Supervised Semi-Supervised Learning. For integrating S4L methods, we adopt the most effec-
tive approach through iterative optimization of both supervised and unsupervised losses. We report
the best results across the three main families of contrastive losses, i.e.,, Deep Metric Learning Family
(MoCo [38], SimCLR [44],and NNCLR [45]), Self-Distillation (BYOL [46] and SimSIAM [47], and
DINO [40]), and Canonical Correlation Analysis (VICReg [48], BarlowTwins [49], SWAV [50], and
W-MSE [51]).

For fair comparison, we normalise the computational complexity of the compared methods. According
to [8, 9], Naïve augmented with Self-Supervised Learning at each time step takes two backward
passes, since they augment each input images to two views, thus CS4L = 2. We provide further
explanation of our S4L adaptation in the Supplementary Material A.2.

Pseudo-Labeling. To make use of the newer unlabeled samples, we adopt the most common
Semi-Supervised Learning technique [11]: Pseudo-Labeling (PL). To predict the labels of the
samples before their true label becomes available we use a surrogate model gϕ. After assigning
the predicted labels {ỹti} to each input data {xt

i} at time step t for i = 1..n, the main model
fθ is updated over the union of old, labeled memory samples and new pseudo-labeled samples
{(xτ

i , y
τ
i)}t−d

τ=1 ∪ {(xt
i, ỹ

t
i)} using standard Cross Entropy loss. Once fθ is updated, we update

the parameters of the surrogate model gϕ following the momentum update policy [11] with hyper-
parameter λ, such that ϕnew = λϕold + (1− λ)θold.

For simplicity, we ignore the computational cost of the surrogate model gϕ inferring the pseudo-labels
ỹ. Nevertheless, the main model fθ is trained on double the amount of samples as Naïve, n labeled
and n pseudo-labeled, therefore we define CPL = 2.

Test-Time Adaptation As done for other paradigms, we have extensively evaluated all reasonable
candidates to adapt traditional TTA methods to our setting. We find performing the unsupervised
TTA step the most effective when only a single update is taken (in Step 5 of Algorithm 1), exactly
before the evaluation step (Step 2 of Algorithm 1) of the next step. Therefore, for all the parameter
updates apart from the last one we perform identical steps to Naïve Furthermore, we found TTA
updates severly impact the continual learning process of the Naïve when the parameters are iteratively
optimised across the two objectives. Thus, before each TTA step, we clone the model parameters θ to
a surrogate model gϕ, by performing the TTA step (with ϵ hyper-parameter) using the newest batch
of unlabeled data ϕ = θ − ϵ∇θLTTA{xt

i} and perform the evaluation (Step 2 of Algorithm 1) of the
next time step.

To represent the state of the art in TTA, we adapt and compare the following methods: TENT [33],
EATA [52], SAR [35], and CoTTA [37], in Figure 3. Furthermore, for the result of our hyper-
parameter tuning is provided in the Supplementary Material A.7.

For fair comparison, we train and evaluate all TTA methods under normalised computational budgets
(a detailed breakdown of the considerations can be found in the Supplementary Material A.15) More
specifically, under a fixed computational budget C, at every time step, we perform C − 1 supervised
steps on fθ identically to Naïve followed by a single step of TTA.

8

6.2 Observations

Figure 3 illustrates our most important results of our work. It shows to what extent we can recover
the accuracy gap caused by the label delay between the Naïve without delay and its delayed coun-
terpart Naïve. We evaluate our proposed method, IWMS, and compare it against the three adopted
paradigms, S4L, PL and TTA. We report the best performing method of each paradigm with hyper-
parameters tuned on the first 10% of each label delay scenario (further detailed in the Supplementary
Material A.6 and 12).

IWMS. On the largest dataset, containing 39M samples, CLOC [4], the accuracy drop of Naïve
is Gd = −4.5%,−7.5%,−8.6% for d = 10, 50, 100, respectively. Our proposed method,
IWMS, achieves Accd = 17.3%, 14.2%, 13.1% final Online Accuracy, which translates to Rd =
33%, 19%, 16% recovery for d = 10, 50, 100, respectively. While there is a slow decline over in-
creasing delays, the improvement over Naïve is consistent. On CGLM [8], the accuracy drop is
Gd = −7.8%,−8.8%,−9.3% for the three increasing delays, respectively. IWMS exhibits outstand-
ing results, Accd = 24.1%, 23.5%, 22.9% meaning that the accuracy gap is fully recovered by the
method for d = 10. More specifically, the recovery is Rd = 100%, 93%, 87% for d = 10, 50, 100.
The results on FMoW [6] are even more surprising, as IWMS not only recovers the accuracy gap
but outperforms the non-delayed Naïve counterpart in the d = 10 scenario. More specifically, the
accuracy drops for the increasing delays are Gd = 2.5%, 3.2%4.4% and Rd = 140%, 67%, 45%.
We hypothesise this is due to the fact that under a large C, repeated parameter updates with sub-
optimal sampling strategies lead to over-fitting to the outdated state of the data distribution, as
explained in detail in Section 7. On Yearbook [7], IWMS performs on-par with Naïve in every sce-
nario. The accuracy gaps are Gd = −5%,−20.5%,−34% whereas the recover scores are marginal:
Rd = 1%, 0%, 0%. We argue this is due to two factors: the brevity of the dataset in comparison to the
other datasets and the difficulty of the task without prior knowledge on appearance and fashion trends.

Semi-Supervised Methods. S4L and PL performs very similarly to each other under all studied
scenarios: the largest difference in their performance is 0.7% on Yearbook, under d = 50 label
delay. Therefore, we report their performance together, picking the better performing variant for
numerical comparisons. Notice that in every scenario the delayed Naïve baseline performance is
not be achieved, which is due to the computational budget constraint. More specifically, since
CSSL = 2× CNaîve, optimising the standard classification objective over the older, supervised samples
for twice the number of parameter updates is more beneficial across all scenarios than optimising the
Pseudo-Labeling classification objective or the Contrastive loss over the newer unlabeled images. In
the Supplementary Material 13, we provide further evidence and explanation of this claim. On CLOC,
S4L slightly outperforms PL by +0.1% for all label scenarios, however Rd = −27%,−2%,−7%
for d = 10, 50, 100, respectively. Similarly, on CGLM, S4L outperforms PL by +0.6%, for all
label scenarios and achieves a negative recovery score Rd = −29%,−27%,−23%. On FMoW and
Yearbook, the differences between the accuracy of Naïve, S4L and PL are negligible as the largest
improvement over Naïve is +2.3% on Yearbook under the large label delay scenario d = 100.

TTA. In Figure 3, we find that TTA consistently under-performs every method, including the delayed
Naïve, under every delay scenario on the CLOC, CGLM and FMoW datasets Nevertheless, on
Yearbook TTA successfully outperforms IWMS, S4L, PL and Naïve by up to +1.7% in the moderate
label delay scenario d = 50. Over the four dataset, the exact extent of the recovery of the accuracy
gap Rd for d = 10, 50, 100, respectively, is as follows: on CLOC Rd = −87%,−44%,−36%, on
CGLM Rd = −77%,−67%− 62%, on FMoW Rd = −480%,−227%,−159% and on Yearbook
Rd = 4%, 11%, 11%. The disproportionately severe negative result on FMoW is due to the otherwise
small accuracy gap Gd = −2.5%,−5.2%,−7.4%. More importantly, we hypothesize that TTA fails
to outperform Naïve because the common assumptions, upon which TTA methods were designed,
are broken.

7 Analysis of Importance Weighted Memory Sampling

We first perform an ablation study of our IWMS to show the effectiveness of the importance sampling.
Then, we show our performances under different computational budgets and buffer sizes. We provide
further in-depth analysis of the information retention abilities of the considered methods in the
Supplementary Material A.13 and the effect of memory size in A.14.

9

0 2k 4k 6k
Time step

0

10

20

O
n

lin
e

A
cc

u
ra

cy

23.3

18.4

14.8

Sampling Strategy (d=10)

WR

RR

NR

0 2k 4k 6k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy

22.2

17.3

13.1

Sampling Strategy (d=100)

WR

RR

NR

Figure 4: Effect of sampling strategies We report the Online Accuracy under the least (d = 10) and
the most challenging (d = 100) label delay scenarios on CGLM [5].

Analysis on Memory Sampling Strategies. Note that while our method, IWMS is a prioritised
sampling approach, it has some similarities to Naïve, except for the sampling strategy. While the
Naïve method uses the most recent labeled data and a randomly sampled mini-batch from the memory
buffer for each parameter update, our method provides a third option for constructing the training
mini-batch, which picks the labeled memory sample that is most similar to the unlabeled data. When
comparing sampling strategies, we refer to the newest batch of data as (N), the random batch of data
as (R) and the importance weighted memory samples as (W).

In Figure 4, we first show that in both delay scenarios (d = 10 and d = 100) replacing the newest
batch (N) with (W) results in almost doubling the performance: +8.5% and +9.1% improvement
over Naïve, respectively. Interestingly enough, when we replace the (N) with uniformly sampled
random buffer data (R) we report a significant increase in performance. We attribute this phenomenon
to the detrimental effects of label delay: even though Naïve uses the most recent supervised samples
for training, the increasing discrepancy caused by the delay d = 10 and d = 100 forces the model to
over-fit on the outdated distribution.

8 Conclusion and Future Work

We motivate modeling real-world scenarios by introducing the label delay problem. We show
how severely and unpredictably it hinders the performance of approaches which naïvely ignore the
delay. To address the newfound challenges, we adopt the three most promising paradigms (Pseuodo-
Labeling, S4L and TTA) and propose our own technique (IWMS). We provide extensive empirical
evidence over four large-scale datasets posing various levels of distribution shifts, under multiple
label delay scenarios and, most importantly, under normalised computational budget. IWMS simply
stores and and reuses the embeddings of every observed sample during memory rehearsal where the
most relevant labeled samples to the new unlabeled data are rehearsed. Due to its simplicity, the
robustness against changes in the data distribution can be implemented very efficiently.

9 Acknowledgement
Botos Csaba was partially funded by Intel and partially by Meta AI Research. This work is supported
by a UKRI grant Turing AI Fellowship (EP/W002981/1) and EPSRC/MURI grant: EP/N019474/1.
Adel Bibi acknowledges the funding from the KAUST Office of Sponsored Research (OSR-CRG2021-
4648) and the support from Google Cloud through the Google Gemma 2 Academic Program GCP
Credit Award. The authors thank Razvan Pascanu and João Henriques for their insightful feedback.
We also thank the Royal Academy of Engineering.

10

References
[1] Jamal Abdul Nasir, Osama Subhani Khan, and Iraklis Varlamis. Fake news detection: A hybrid

cnn-rnn based deep learning approach. International Journal of Information Management Data
Insights, 1(1):100007, 2021.

[2] Luyang Chen, Markus Pelger, and Jason Zhu. Deep learning in asset pricing. Management
Science, 70(2):714–750, 2024.

[3] George Gkotsis, Anika Oellrich, Sumithra Velupillai, Maria Liakata, Tim JP Hubbard,
Richard JB Dobson, and Rina Dutta. Characterisation of mental health conditions in social
media using informed deep learning. Scientific reports, 7(1):45141, 2017.

[4] Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distri-
bution shifts: An empirical study with visual data. In International Conference on Computer
Vision (ICCV), 2021.

[5] Ameya Prabhu, Zhipeng Cai, Puneet Dokania, Philip Torr, Vladlen Koltun, and Ozan Sener.
Online continual learning without the storage constraint. arXiv preprint arXiv:2305.09253,
2023.

[6] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the
world. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6172–6180, 2018.

[7] Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, and Alexei A Efros. A century of portraits:
A visual historical record of american high school yearbooks. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 1–7, 2015.

[8] Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K Dokania, Philip HS Torr, Ser-Nam
Lim, Bernard Ghanem, and Adel Bibi. Computationally budgeted continual learning: What
does matter? In Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[9] Yasir Ghunaim, Adel Bibi, Kumail Alhamoud, Motasem Alfarra, Hasan Abed Al Kader Ham-
moud, Ameya Prabhu, Philip HS Torr, and Bernard Ghanem. Real-time evaluation in online
continual learning: A new hope. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[10] Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of
self-supervised learning. arXiv preprint arXiv:2304.12210, 2023.

[11] Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen,
and Albert Bifet. A survey on semi-supervised learning for delayed partially labelled data
streams. ACM Computing Surveys, 2022.

[12] Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under
distribution shifts. arXiv preprint arXiv:2303.15361, 2023.

[13] Marcelo J Weinberger and Erik Ordentlich. On delayed prediction of individual sequences.
IEEE Transactions on Information Theory, 2002.

[14] Chris Mesterharm. On-line learning with delayed label feedback. In International Conference
on Algorithmic Learning Theory, 2005.

[15] Hanqing Hu and Mehmed Kantardzic. Sliding reservoir approach for delayed labeling in
streaming data classification. In 2017 Proceedings of the 50th Hawaii International Conference
on System Sciences, 2017.

[16] Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Online learning under delayed feedback.
In International Conference on Machine Learning, pages 1453–1461. PMLR, 2013.

[17] Ludmila I Kuncheva and J Salvador Sánchez. Nearest neighbour classifiers for streaming data
with delayed labelling. In 2008 Eighth IEEE International Conference on Data Mining. IEEE,
2008.

11

[18] Kent Quanrud and Daniel Khashabi. Online learning with adversarial delays. Advances in
neural information processing systems, 2015.

[19] Joshua Plasse and Niall Adams. Handling delayed labels in temporally evolving data streams.
In 2016 IEEE International Conference on Big Data (Big Data), 2016.

[20] Haoran Gao and Zhijun Ding. A novel machine learning method for delayed labels. In 2022
IEEE International Conference on Networking, Sensing and Control (ICNSC), 2022.

[21] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene
Belilovsky. New insights on reducing abrupt representation change in online continual learning.
In International Conference on Learning Representations (ICLR), 2021.

[22] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min
Lin, and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[23] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[24] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

[25] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that
questions our progress in continual learning. In European Conference on Computer Vision
(EECV), 2020.

[26] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
memories. arXiv preprint, 2019.

[27] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[28] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European conference on computer vision (ECCV), pages 532–547, 2018.

[29] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Cac-
cia, Min Lin, and Lucas Page-Caccia. Online continual learning with maximal inter-
fered retrieval. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
11849–11860. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9357-online-continual-learning-with-maximal-interfered-retrieval.pdf.

[30] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. Advances in neural information processing systems, 32, 2019.

[31] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised semi-
supervised learning. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 1476–1485, 2019.

[32] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation. In International Conference on
Machine Learning (ICML), 2020.

[33] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations (ICLR), 2021.

[34] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

12

http://papers.nips.cc/paper/9357-online-continual-learning-with-maximal-interfered-retrieval.pdf
http://papers.nips.cc/paper/9357-online-continual-learning-with-maximal-interfered-retrieval.pdf

[35] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In International
Conference on Learning Representations (ICLR), 2023.

[36] Motasem Alfarra, Hani Itani, Alejandro Pardo, Shyma Alhuwaider, Merey Ramazanova, Juan C
Pérez, Zhipeng Cai, Matthias Müller, and Bernard Ghanem. Revisiting test time adaptation
under online evaluation. arXiv preprint arXiv:2304.04795, 2023.

[37] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[38] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[39] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers.
In International Conference on Computer Vision (ICCV), 2021.

[40] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Eemerging properties in self-supervised vision transformers. In International
Conference on Computer Vision (ICCV), 2021.

[41] Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho Lee, Pang Wei W Koh, and Chelsea Finn.
Wild-time: A benchmark of in-the-wild distribution shift over time. Advances in Neural
Information Processing Systems, 35:10309–10324, 2022.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[43] Hasan Abed Al Kader Hammoud, Ameya Prabhu, Ser-Nam Lim, Philip H. S. Torr, Adel Bibi,
and Bernard Ghanem. Rapid adaptation in online continual learning: Are we evaluating it right?
In International Conference on Computer Vision (ICCV), 2023.

[44] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International Conference on Machine
Learning (ICML), 2020.

[45] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisser-
man. With a little help from my friends: Nearest-neighbor contrastive learning of visual
representations. In International Conference on Computer Vision (ICCV), 2021.

[46] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent a new approach to self-supervised learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[47] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

[48] Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regular-
ization for self-supervised learning. In International Conference on Learning Representations
(ICLR), 2022.

[49] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In International Conference on Machine Learning
(ICML), 2021.

[50] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignment. Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[51] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for
self-supervised representation learning. In International Conference on Machine Learning
(ICML), 2021.

13

[52] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without forgetting. In International Confer-
ence on Machine Learning (ICML), 2022.

[53] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556, 2014.

[54] Zhiyuan Chen and Bing Liu. Lifelong machine learning, volume 1. Springer, 2018.

[55] Enrico Fini, Stéphane Lathuiliere, Enver Sangineto, Moin Nabi, and Elisa Ricci. Online
continual learning under extreme memory constraints. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 16, pages
720–735. Springer, 2020.

[56] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

[57] Jihwan Bang, Hyunseo Koh, Seulki Park, Hwanjun Song, Jung-Woo Ha, and Jonghyun Choi.
Online continual learning on a contaminated data stream with blurry task boundaries. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9275–9284, 2022.

[58] Genevieve E Flaspohler, Francesco Orabona, Judah Cohen, Soukayna Mouatadid, Miruna
Oprescu, Paulo Orenstein, and Lester Mackey. Online learning with optimism and delay. In
International Conference on Machine Learning. PMLR, 2021.

[59] Vinicius MA Souza, Diego F Silva, Gustavo EAPA Batista, and João Gama. Classification
of evolving data streams with infinitely delayed labels. In 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), 2015.

[60] Enrico Fini, Victor G Turrisi da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari,
and Julien Mairal. Self-supervised models are continual learners. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[61] Xiaofan Yu, Yunhui Guo, Sicun Gao, and Tajana Rosing. Scale: Online self-supervised lifelong
learning without prior knowledge. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[62] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,
2022.

[63] Maorong Wang, Nicolas Michel, Ling Xiao, and Toshihiko Yamasaki. Improving plasticity
in online continual learning via collaborative learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 23460–23469, 2024.

[64] Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual learning through mutual information
maximization. In International conference on machine learning, pages 8109–8126. PMLR,
2022.

[65] Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, and Hongming Shan. Online prototype
learning for online continual learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 18764–18774, 2023.

[66] Yanan Gu, Xu Yang, Kun Wei, and Cheng Deng. Not just selection, but exploration: Online
class-incremental continual learning via dual view consistency. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7442–7451, 2022.

[67] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural
information processing systems, 33:15920–15930, 2020.

[68] Hyunseo Koh, Minhyuk Seo, Jihwan Bang, Hwanjun Song, Deokki Hong, Seulki Park, Jung-
Woo Ha, and Jonghyun Choi. Online boundary-free continual learning by scheduled data prior.
In The Eleventh International Conference on Learning Representations, 2023.

14

A Supplementary Material

A.1 Dataset Statistics

We conduct our experiments on four large-scale online continual learning datasets, Continual Lo-
calization (CLOC) [4], Continual Google Landmarks (CGLM) [5], Functional Map of the World
(FMoW) [6], and Yearbook [7]. The last two are adapted from the Wild-Time challenge [41]. More
statistics of the benchmarks are in Supplementary.

The first, Continual Localization (CLOC) [4] which contains 39M images from 712 geolocation
ranging from 2007 to 2014. The second is Continual Google Landmarks (CGLM) [5] which contains
430K images over 10788 classes. Followed by that, we report our experiments on Functional Map
of the World (FMoW) [6] adapted from the Wild-Time challenge [41]. The dataset contains 14,696
satellite images, from 2002 to 2017, with the task of predicting the land type. Last, we show our
results on the Yearbook dataset [7] containing 33,431 frontal-facing photos from American high-
school yearbooks. The photos were taken in the time-period between 1930-2013 and represent
changes in fashion, gender and ethnicity over the years. The task is a binary classification problem:
predicting the gender of the student based on the photo.

A.2 Implementation Details of S4L

For integrating S4L methods, we adopt the most effective approach through iterative optimization
of both supervised and unsupervised losses. This process involves optimising the standard Cross
Entropy loss on labeled data (similar to Naïve) and minimising contrastive loss on unlabeled data,
utilising a balanced approach until exhausting the computational budget. We conducted an exhaustive
search over the possible multi-objective optimisation variants (such as iterative and joint optimisation)
and determined the best result is achieved when the contrastive loss is minimised separately for the
first half of the parameter update steps, followed by minimising the supervised loss for the second
half of the update steps. We report the best results across the three main families of contrastive losses,
i.e.,, Deep Metric Learning Family (MoCo [38], SimCLR [44],and NNCLR [45]), Self-Distillation
(BYOL [46] and SimSIAM [47], and DINO [40]), and Canonical Correlation Analysis (VICReg [48],
BarlowTwins [49], SWAV [50], and W-MSE [51]).

For fair comparison, we normalise the computational complexity [8, 9] of the compared methods.
We find that while SSL methods may take multiple forward passes, potentially with varying input
sizes, the backward pass is consistently done only once among the variants, therefore, we choose
the number of backward passes to measure the computational complexity of the resulting methods.
According to this computational complexity constraint, Naïve augmented with SSL at each time step
takes two backward passes, one for computing the gradients of the Cross Entropy over the labeled
samples and one for the Contrastive Loss over the unlabeled samples, thus CS4L = 2.

A.3 Monotonous Online Accuracy Degradation

We argue the persistent drop in the Online Accuracy is due to the non-stationary property of the data
distribution that creates a distribution shift. Our hypothesis is supported by the experimental results,
illustrated in Figure 5: the Online Acc gradually decreases as the function of label delay d, at any
given time step t. Furthermore, in Figure 6, we summarize the final Online Accuracy scores, i.e., the
Online Accuracy value at the final time step of each run

Our claims are reinforced by the findings of Yao et al. [41]. A complementary argument is presented
by Hammoud et al. [43], stating that the underlying datasets have high temporal correlations across
the labels, i.e., images of the same categories arrive in bursts, allowing an online learning model to
easily over-fit the label distribution even without using the input images.

A.4 Qualitative Analysis of Label Delay

A case study of the distribution shift in the Yearbook experiments. While Online Accuracy is
a well established performance metric for Online Continual Learning [4, 8, 5, 43], it can conceal
some of the most important characteristics of the underlying dataset. To highlight a direct connection
between the distribution shift and its immediate impact on the model performance, we illustrate the

15

0 10k 20k 30k
0.0

2.5

5.0

7.5

C
L

O
C

-
O

n
lin

e
A

cc
u

ra
cy

C = 1

0 10k 20k 30k
0

5

10

C = 2

0 10k 20k 30k
0

5

10

15

C = 4

0 5k 10k 15k
0

10

20

C = 8

0 1k 2k 3k
Time step

0

1

2

3

4

C
G

L
M

-
O

n
lin

e
A

cc
u

ra
cy

0 1k 2k 3k
Time step

0

2

4

6

0 1k 2k 3k
Time step

0

5

10

0 1k 2k 3k
Time step

0

5

10

15

d=0

d=1

d=3

d=5

d=10

d=20

d=30

d=40

d=50

d=60

d=70

d=80

d=90

d=100

Figure 5: Monotonous degradation of Online Accuracy with regards to label delay d, over multiple
datasets, CLOC [4] and CGLM [8], under various computational budgets, C = 1, 2, 4, 8. The accuracy
gradually drops at every time step t as the function of the label delay d. However the extent of the
degradation is non-linear: The initial smallest increases in label delay have severe impact on the
performance. In contrast, the rate of degradation slows down even for an order of magnitude larger
increments when the labels are already delayed. See Figure 6 for the summary of the final values.

0 25 50 75 100
Delay

5

10

15

20

25

F
in

al
O

n
lin

e
A

cc
u

ra
cy

CLOC - delay profile

C=10

C=5

C=4

C=2

C=1

0 25 50 75 100
Delay

5

10

15

20

F
in

al
O

n
lin

e
A

cc
u

ra
cy

CGLM - delay profile

C=12

C=8

C=6

C=4

C=3

C=2

C=1

Figure 6: Delay Profile. Each trajectory shows the Final Online Accuracy, i.e., the Online Accuracy
evaluated at the last time step of each run, at a fixed computational budget C. On both datasets the
most severe accuracy degradation occurs in the first quarter (d = 0 → 25). In contrast, on CGLM [8],
the degradation is not significant in lower compute regimes C ≤ 4.

Top-1 Accuracy of the current batch at each time step in Figure 7. The experimental settings are
identical to the main experiments on Naïve, detailed Section 5.2.

In this experiment, we describe several observations: first, the models perform at per-chance level
accuracy until the first batch of labeled data arrives. Notice that the per-chance level is not 50%
because the dataset is biased (contains more male than female portraits). However as the ratio
improves over time, the random classifier’s accuracy gets closer to 50%.

Before the distribution shift. In the smallest delay scenario (yellow curve), the delay is identical to
a lag of three years between making the predictions and receiving the labels. Under such delay, the
model quickly reaches close-to-optimal accuracy under just a few time steps and performs identically

16

1938 1960 1970 1980 1990 2000 2010 2020
Year

40

60

80

100

T
op

-1
A

cc
u

ra
cy

of
C

u
rr

en
t

B
at

ch 97.7
96.9
92.2

98.4

Yearbook

No delay

d = 3 years

d = 17 years

d = 34 years

Figure 7: (Left) Top-1 Accuracy of Naïve on the current batch (of time step t) of Yearbook. (Right)
Report from Ginosar et al. [7] on "the fraction of male students with an afro or long hair." The drop in
Top-1 Accuracy over time strongly correlates with the change in appearance of one of the two classes
in the Yearbook [7] dataset. The larger the delay, the longer it takes to recover the close-to-perfect
accuracy.

Example of Class F

Example of Class M

Year
1969 1972 1975 1978 1981 1984

Figure 8: Examples from the Yearbook dataset [7] during the time where the visual appearance of
men (bottom row) changes drastically resulting in an accuracy drop of an online classifier, regardless
of the label delay.

to the non-delayed counterpart (blue curve). In the moderate delay scenario (green curve), the model
stays "idle" for a longer time (equivalent of 17 years) because of the delay of the first labeled batch.
Nevertheless, the delayed model reaches similarly good performance after a time steps. Interestingly,
the severely delayed model (red curve), exhibits a steep increase in performance, at t = 1972, exactly
34 years after observing the first sample (t = 1938).

During the distribution shift. The steep increase in the most severely delayed scenario (red curve)
coincidentally overlaps with a major distribution shift in the appearance of one of the two classes.
This shift simultaneously impacts the performance of all four models, however the rate at which their
performance recovers differs, due to the label delay. While in general it is an immensely difficult
problem to detect and trace the changes of the data distribution, due to hidden latent variables (such as
socio economic factors, genetic diversity of the population, cultural and political trends), Ginosar et
al. [7] identified and tracked many of such variables. One of these factors, namely the "fraction of
male students with an afro or long hair", is highly correlated (in the temporal dimension) with the
accuracy drop in our experiments, as illustrated in the right-hand side of Figure 7.

The reason behind the accuracy drop. In the qualitative experiments of the section titled "What
time specific patterns is the classifier using for dating?", Ginosar et al. [7] reports that convolutional
neural networks, such as VGG [53], learn to extract features from the hairstyles of the subjects.
Although the task is slightly different, classification of the year of the photograph, we hypothesise

17

0 100k 200k 300k
0

10

20

30

40

C
L

O
C

-
O

n
lin

e
A

cc
u

ra
cy

35.6
27.8

25.2
25.2

22.0
19.6
18.0
14.8

d = 0

0 100k 200k 300k
0

10

20

30
15.4
14.8
14.6
14.0
13.7
13.5
12.0

d = 10

0 100k 200k 300k
0

10

20

30

11.0
11.1

11.0

10.7
10.8

10.0

d = 50

0 100k 200k 300k
0

10

20

30

09.3

09.5

09.3

09.4
09.4

09.6

d = 100

0 1k 2k 3k 4k
Time step

0

10

20

C
G

L
M

-
O

n
lin

e
A

cc
u

ra
cy

22.2

17.5
14.7
11.5
09.7
07.4
04.5

0 1k 2k 3k 4k
Time step

0

10

20
14.7
12.4
11.0
09.1
07.8
06.4
04.1

0 1k 2k 3k 4k
Time step

0

10

20

13.4
11.3
10.0
08.1
07.0
05.6
03.6

0 1k 2k 3k 4k
Time step

0

10

20

12.8
10.8
09.4
07.9
06.8
05.4
03.4

C=12 C=8 C=6 C=4 C=3 C=2 C=1

Figure 9: Diminishing returns of increasing the computational budget C over four label delay
regimes d = 0, 10, 50, 100, on two datasets. While in many real-world scenarios simply increasing
the budget C to improve the overall performance, when the labels are delayed the improvements
may become marginal. Interestingly, this phenomena is emphasized on the CLOC [4] dataset, as the
trajectories collapse to a single curve as the delay increases d = 0 → 100. In contrast, on CGLM [8]
the relative improvements, i.e., the vertical distances between the lines, may shrink going from
d = 0 → 10, but stay consistent for d = 10 → 100. The final scores are summarized by Figure 10.

that one of the most discriminative features learned by the model are related to the hairstyles, as it is
the most influential variable in terms of the accuracy of four independently trained models.

After the distribution shift. The recovery of the accuracy can be characterised by two factors: 1)
the severity of the level degradation and 2) the duration of the recovery. Both factors show strong
dependency on the underlying label delay factor: the larger the delay the larger the degradation and
the longer the recovery length. Notice how closely the slightly delayed, yellow curve (d = 3 years)
follows the non-delayed, blue curve in terms of duration, while the extent of the accuracy drop is
larger for the delayed counterpart. On the other hand, the moderately and severely delayed models
(green and red curves, respectively) apparently reach a lower-bound in performance degradation,
where larger delay does not further reduce the accuracy. Nevertheless, the recovery of the severely
delayed model is slower and occurs later than the moderately delayed model.

A.5 The impact of label delay on the scaling property of the computational budget

The exploration of the impact of label delay on computational efficiency and accuracy across different
settings reveals important insights into the performance and scalability of Naïve, an Experinece
Replay model [26], which simply waits for every sample to receive its corresponding label before
using it as a training data. In this section, through extensive quantitative comparison under different
label delay d and computational budget C regimes, we offer a comprehensive overview of how these
key factors interact to influence model performance on two large-scale datasets: CLOC [4] and
CGLM [8].

Diminishing Returns. Figure 9 highlights the phenomenon of diminishing returns on investment in
the computational budget C across four different label delay regimes (d = 0, 10, 50, 100). Notably,
while augmenting C typically yields performance improvements, these gains become increasingly
marginal in the presence of delayed labels. The impact of label delay is markedly pronounced in
the CLOC dataset, where the performance trajectories converge into a singular trend as the delay
escalates from d = 0 to d = 100. Conversely, the CGLM dataset exhibits a contraction in the relative
improvements (vertical distances between performance trajectories) as delay transitions from d = 0
to d = 10, yet these differences remain relatively stable for delays extending from d = 10 to d = 100.

18

2 4 6 8 10
Computational Budget C

5

10

15

20

25

F
in

al
O

n
lin

e
A

cc
u

ra
cy

CLOC - C scaling profile

2 4 6 8 10 12
Computational Budget C

5

10

15

20

F
in

al
O

n
lin

e
A

cc
u

ra
cy

CGLM - C scaling profile

d = 0 d = 1 d = 5 d = 10 d = 50 d = 100

Figure 10: Compute Scaling Profile. Each trajectory shows the Final Online Accuracy, i.e., the
Online Accuracy evaluated at the last time step of each run, at a fixed computational budget C. We
show sub-linear improvement w.r.t. subsequent increases in C, even in the non-delayed (d = 0)
scenario. Moreover, the influence of label delay on the scaling property varies between the two
datasets: while on CLOC [4] large delays (d = 100) prevent the model from benefiting from more
parameter updates, on CGLM [8] label delay (for d > 1) only seems to offset the Final Online
Accuracy, but does not impact rate of improvement.

Compute Scaling Profile. In Figure 10, the concept of a Compute Scaling Profile is introduced,
displaying the Final Online Accuracy – the accuracy measured at the last time step of each run – for
various levels of computational budget C. This figure elucidates the sub-linear scaling of performance
improvements with respect to incremental increases in C, a trend observable even without label delays
(d = 0). The effects of label delay diverge between the datasets; CLOC sees a significant impediment
to performance gains from additional parameter updates at high delays (d = 100), while in CGLM,
the delay primarily shifts the Final Online Accuracy without diminishing the rate of improvement.

Gradual Monotonous Degradation. Figure 5 presents a nuanced view of how Online Accuracy
monotonically degrades with increasing label delay (d) across different computational budgets
(C = 1, 2, 4, 8). This degradation is not linear; initial increments in label delay incur a steep decline
in performance, whereas the rate of decline moderates for larger increments of delay, showcasing a
nonlinear impact on model accuracy over time.

Delay Profile. Finally, Figure 6 encapsulates the Delay Profile, depicting the Final Online Accuracy
at various computational budgets (C). Both datasets exhibit the most substantial accuracy reductions
in the initial quarter of delay increments (d = 0 → 25). Interestingly, the CGLM dataset demonstrates
a negligible degradation in lower computational regimes (C ≤ 4), indicating a potential resilience or
adaptive capability under specific conditions.

While increased computational budget generally improves the performance, the presence of label de-
lays introduces a complex dynamic that can significantly hinder these benefits. The distinct behaviors
observed across the CLOC and CGLM datasets further suggest that the dataset characteristics play a
pivotal role in the decision making whether investment in additional compute is warranted or not. We
suggest that such decision should be made on a case by case basis, rather than extrapolating from
publicly available benchmarks.

A.6 Breakdown of SSL methods

In Figure 11 we show the performance of the best performing SSL based methods after hyper-
parameter tuning. We observe that the performance of the SSL methods is highly dependent on the
dataset and the delay setting. However, we apart from MoCo v3 [39], the methods perform similarly
to Naïve on CLOC. On the other hand on CGLM they have insignificant differences in performance,
but consistently underperform Naïve.

19

0 100k 200k 300k
Time step

0

5

10

15

O
n

lin
e

A
cc

u
ra

cy

13.5
13.5
13.1
10.9

CLOC (d=10, C=2)

0 100k 200k 300k
Time step

0

5

10 10.8

11.4
10.9

8.7

CLOC (d=50, C=2)

0 100k 200k 300k
Time step

0.0

2.5

5.0

7.5

10.0
9.6

10.2
9.8

8.1

CLOC (d=100, C=2)

0 2k 4k 6k 8k
Time step

0

5

10

13.4

9.3
9.3
8.9

CGLM (d=10, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.5

8.7
8.7
8.4

CGLM (d=50, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.0

8.2
8.2
7.9

CGLM (d=100, C=8)

Naive mocov3 ressl nnbyol

Figure 11: Comparison of the best performing SSL based methods after hyper-parameter tuning

0 100k 200k 300k
Time step

0

5

10

15

O
n

lin
e

A
cc

u
ra

cy

13.5
11.0
11.0
11.0
11.0
11.0
11.0

CLOC (d=10, C=2)

0 100k 200k 300k
Time step

0

5

10
10.8
9.1
9.0
9.0
9.0

5.3

CLOC (d=50, C=2)

0 100k 200k 300k
Time step

0.0

2.5

5.0

7.5

10.0 9.6

7.7

4.6
4.3

0.4

CLOC (d=100, C=2)

0 2k 4k 6k 8k
Time step

0

5

10

13.4

7.6

7.6
7.6

7.6

CGLM (d=10, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.5

6.8
6.8
6.8
6.8

CGLM (d=50, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.0

6.4
6.4
6.4
6.4

CGLM (d=100, C=8)

Naive sar tent cotta eat

Figure 12: Comparison of the best performing TTA based methods after hyper-parameter tuning

0 10k 20k 30k
Time step

0

2

4

6

8

O
n

lin
e

A
cc

u
ra

cy

7.7
7.7
7.4

5.8
5.7
5.2

7.0

CLOC (d = 10, C=2)

BYOL

SimSiam

MoCo V3

SimCLR

VicReg

Barlow Twins

Naive C=1

0 10k 20k 30k
Time step

0.0

2.5

5.0

7.5

10.0

O
n

lin
e

A
cc

u
ra

cy

9.6
9.5
9.2

6.8
6.4
6.0

7.5

CLOC (d = 10, C=10)

BYOL

SimSiam

MoCo V3

VicReg

SimCLR

Barlow Twins

Naive C=5

0 10k 20k 30k
Time step

0.0

2.5

5.0

7.5

10.0

O
n

lin
e

A
cc

u
ra

cy

9.9
9.8
9.6

6.4
6.0

7.4

CLOC (d = 10, C=20)

BYOL

MoCo V3

SimSiam

SimCLR

Barlow Twins

Naive C=10

Figure 13: Detailed breakdown of various Self-Supervised Learning methods from each family.
Results are shown across varying number of parameter updates C = 2, 10, 20 under the d = 10
scenario.

A.7 Breakdown of TTA methods

In Figure 12 we show the performance of the best performing TTA based methods after hyper-
parameter tuning. We observe that the performance of the TTA methods are consistently worse than
Naïve on both CLOC and CGLM, under all delay settings. We observe that in the most severe delay
scenario (d = 100) the performance of EAT [52] and SAR [35] is comparable to Naïve on CLOC,
while CoTTA [37] avoids the catastrophic performance drop.

A.8 Comparison of S4L to Naïve when using the same amount of supervised data

While in our main experiments S4L fails to outperform Naïve (in Section 6), we show that it is mostly
due to the computational constraint of our experiments. In order to test our hypothesis, we run a
series of experiments on the S4L variants, illustrated in Figure 13. In this experiment, instead of
limiting the Computational Budget C, we directly restrict the number of parameter updates to test
if optimising the joint objective of Naïve and the given Self-Supervised Learning method improves
the performance of the model at all. Our results indicate positive improvement over Naïve for
MoCo-V3 [39], SimSiam [47] and BYOL [46] consistently across multiple settings with increasing
number of parameter updates.

First, on the left hand side of Figure 13, both the Naïve and the S4L variants take only a single
parameter update per time step (thus C = 2 for all, except Naïve, where C = 1). On the first 10%

20

of the CLOC dataset [4], this results in a modest, nevertheless clear improvement over Naïve, up
to +0.7%. Followed by that, in the middle, every model takes five parameter updates per time step.
Notice that Naïve has a stricter computational budget, C = 5, to match the rest of the experiments.
Consistently with our findings in Section A.5, Naïve only benefited marginally from the increase
in compute, due to diminishing returns, 7.0% → 7.5%. On the contrary, the previously highlighted
S4L variants show a larger improvement over the increase in number of updates, e.g., 7.7% → 9.6%.
Consequently, this increases the gap between the Naïve and the S4L methods. Finally, on the right
hand side of the figure, we show when the models are updated ten times in each time step, the
improvement plateaues for both the Naïve and the S4L variants.

Conclusion of this set of experiments is two-fold: when granted equal amount of parameter updates,
S4L methods outperform Naïve across different settings. However, computing the parameter gradients
w.r.t. the joint objective of S4L costs approximately twice the amount that of the Naïve: CS4L ≃
2×CNaïve. Due to the well-known property of Self-Supervised Learning methods, sample inefficiency,
our main experiments show that "spending" the compute on more frequent Naïve updates is more
beneficial than optimising the joint S4L objective, even when the training data is heavily delayed.

A.9 Examples of the Importance Weighted Memory Sampling on CLOC

Figure 14: Correctly labeled memory recalls. In the subfigure’s caption “Newest" refers to the
newest unsupervised image observed by the model and “iwm" refers to the sample drawn from the
memory by our proposed sampling method. The numbers refer to the corresponding true label IDs.

Figure 15: Incorrectly labeled memory recalls. In the subfigure’s caption “Newest" refers to the
newest unsupervised image observed by the model and “iwm" refers to the sample drawn from the
memory by our proposed sampling method. The numbers refer to the corresponding true label IDs.

On CLOC, we report similar scores to Naïve due to high noise in the data. To provide evidence for
our claims we visualize the supervised data sampled from the memory buffer by our Importance

21

Weighted Memory Sampling method. In Figure 14, we show that our method is capable of guessing
the correct location of the unsupervised sample (the left hand side of the image pairs) and recalling a
relevant sample from memory. In contrast, the incorrect memory recalls hurt the performance even
though the content of the samples might match. We illustrate such cases in Figure 15, where it is
obvious that in some cases the underlying image content has no information related to the location
where the picture was taken at. In such scenarios, the only way a classifier can correctly predict the
labels is by exploiting label correlations, e.g., classifying all close-up images of flowers to belong
to the same geo-location, even though the flowers are not unique to the location itself. Or consider
the pictures taken at social gatherings (second row, second column from the right), where a delayed
classifier without being exposed to that specific series of images has no reason to correctly predict the
location ID. Our claims are reinforced by the findings of [43].

A.10 Visual Explanation of our Experimental Framework

We provide visual guides for explaining our experimental framework. In Figure 16, we emphasize the
main difference between our setting and the general setting of partially labeled data-streams: while
prior art does not differentiate between old and new unsupervised data, our work focuses specifically
on the scenario when all unsupervised data is newer then the supervised data. In Figure 17, we show
the two types of data that our models work with: outdated supervised data, and newer, unsupervised
data. The task is to find a way to utilize the newer unsupervised data to augment the Naïve approach,
that simply just waits for the labels to become available to update its parameters. The most challenging
component in our experiments is the computational budget factor that allows only a certain amount
of forward and backward passes through the backbone.

Figure 16: Our experimental setup (top): After a fixed amount of time steps all labels become
available. This allows us to focus on utilizing future unsupervised samples effectively. Partial
labeling setup (bottom): in the generic setting, when the data collection rate is higher than the
annotation rate, some samples might never receive labels.

22

Figure 17: Experimental setup: in our experiments we show how increased label delay affects the
Naïve approach that simply just waits for the labels to arrive. To counter the performance degradation
we evaluate three paradigms (Self-Supervised Learning, Test-Time Adaptation, Importance Weighted
Memory Sampling) that can augment the Naïve method by utilizing the newer, unsupervised data.

23

A.11 Two-stage vs single-shot sample selection

In Section 4, we outlined our proposed two-stage sample selection method, IWMS. In this experiment
we show empirical evidence and analysis on why predicting the class-labels first then doing similarity
matching leads to better results than simply using a similarity score over all the memory samples.
In Figure 18, we illustrate the evolution of the similarity scores of the two matching policies. On
the left, the matching is done purely based on the similarity scores, whereas on the right only those
samples were compared against those memory samples whose labels match the predicted labels. In
the middle plot, we show that by implementing the two-stage selection, we increase the effectivity of
the similarity matching by a large margin, +7.8%.

0.3 0.4 0.5 0.6
Similarity Score

Similarity Matching without Classification

300

600

900

1200

1500

1800

2100

2400

2700

3000 0 2k 4k 6k 8k
Time step

0

10

20

O
n

lin
e

A
cc

u
ra

cy

23.5

15.7

Performance of Similarity Matching Policy

Two-stage

Single-shot

0.0 0.2 0.4 0.6
Similarity Score

Similarity Matching after Classification

300

600

900

1200

1500

1800

2100

2400

2700

3000

Figure 18: The evolution of Similarity Scores between the unsupervised and memory samples over
time. On each histogram, we plot the distribution of the cosine similarity scores between the feature
representations of the yet to be labeled samples and the samples in the memory that already received
their labels. On the top row we show the initial distributions and going from top down, the evolution
of the two distribution is illustrated over the time steps.

24

A.12 Extended Literature Review on Online Learning

Online Learning vs Online Continual Learning: Online Learning and Online Continual Learning,
while both involve learning from data arriving sequentially, differ fundamentally in scope. Online
Learning typically deals with single-task streams, often assumed to be from an i.i.d. distribution, as
outlined in section 2.3 of [54] and the introduction of [55]. In contrast, Online Continual Learning
(OCL) is more concerned with non-stationary streams that undergo frequent changes in distribution,
where mitigating forgetting is one of several challenges [55, 56, 57].

Non-i.i.d. distribution of unsupervised data: While our work focuses on evolving distributions,
work such as Weinberger et al. [13] and Flaspohler et al. [58] only considers label delay while the
distribution a time-invariant, consequently completely omitting the problem of distribution shift.
Majority of the prior online learning work [41, 14, 11, 20, 19, 15, 59, 13, 17, 18, 58] ignores the
difference between past and future unsupervised data. In our proposal, all unsupervised data is
newer than the last supervised data. We illustrate the difference between the two different types of
unsupervised data in Figure 16.

Considering catastrophic forgetting: Continual Learning, both online and offline, is concerned
about performing well on previously observed data, often referred to as backward transfer of the
learned representations [41, 14, 11, 20, 19, 15, 59, 13, 17, 18, 58]. This is different from Online
learning where the problem of forgetting is not considered. Even in more recent Online Continual
Learning work, backward transfer have been given slightly lower priority [43, 9, 4] where the authors
have reported them only in the appendix.

Furthermore, most of the prior art does not differentiate between the past and future unlabeled data.
In our proposal, all unlabeled data is newer than the last labeled data due to delayed annotation, as
illustrated in Figure 16. RealtimeOCL also considers delay, however, their delay arises from model
complexity; in their fast-stream scenario, the stream releases input-label pairs quicker than models can
update, causing models to be trained on an older batch of samples. In essence, labels are still instantly
available in RealtimeOCL, while our work examines delay attributed to the non-instantaneous arrival
of labels. RapidOCL [43] highlighted the exploitation of label-correlation in online continual learning,
with a focus on measuring online accuracy through future samples. In contrast, our framework allows
the models to leverage the more recent, unlabeled data for adaptation. While a growing line of work
adapts S4L to continual learning to make use of unlabeled data in continual learning settings, such as
CaSSLe [60] in task-agnostic settings and SCALE [61] in task-free settings, most previous work did
not perform a comprehensive examination of PL and S4L under a strict computational budget.

25

0 200k 400k
4

6

8

10

12

B
ac

kw
ar

d
T

ra
n

sf
er

(d
=

10
)

6.9

6.0
6.4

6.7
6.6

CLOC (C=2)

0 20k 40k 60k 80k
20

30

40

50

60

32.2

34.2

28.8

33.1

57.2

CGLM (C=8)

0 20k 40k 60k

50.0

52.5

55.0

57.5

53.6

56.4
56.8
57.4

55.4

FMoW (C=16)

0 5k 10k
85

90

95

100
97.2

96.8

97.1

97.3

97.0

Yearbook (C=16)

0 200k 400k
4

6

8

10

12

B
ac

kw
ar

d
T

ra
n

sf
er

(d
=

50
)

6.9

6.2

6.9

6.8

6.9

0 20k 40k 60k 80k
20

30

40

50

60

32.2

25.0

33.1

31.8

56.2

0 20k 40k 60k

50.0

52.5

55.0

57.5

53.6

56.7
56.6

57.2

55.6

0 5k 10k
85

90

95

100

97.2
97.3

94.0
96.4

97.4

0 200k 400k
Samples in the Past

4

6

8

10

12

B
ac

kw
ar

d
T

ra
n

sf
er

(d
=

10
0)

6.9

6.4

6.8
6.7
6.6

0 20k 40k 60k 80k
Samples in the Past

20

30

40

50

60

32.2

36.7
35.1

34.6

56.2

0 20k 40k 60k
Samples in the Past

50.0

52.5

55.0

57.5

53.6

54.4

57.4
56.6

54.3

0 5k 10k
Samples in the Past

85

90

95

100
97.2

94.9

91.0

94.8

95.5

Näıve w/o delay Näıve S4L Pseudo-Label IWMS

Figure 19: Backward transfer. Measuring forgetting on the withheld validation set.

A.13 Analysis on forgetting over past samples

In Figure 19, we report the backward transferability of the learned representation. This is done on a
held-out, ordered validation set where the timestamp is used for ordering. On CLOC, all methods
perform similarly due to poor data quality as reported in the Supplementary Material A.9. On CGLM,
our method not only surpasses the performance of others, but achieves ∼ 2× the accuracy of the S4L,
PL, Naïve and non-delayed Naïve baseline on CGLM. This means that the representation learned by
our sampling technique is far more robust and generalises better not only to future but past examples
as well. On FMoW, the best result is achieved by the Semi-Supervised methods, nevertheless our
method outperforms the non-delayed Naïve in all scenarios. Finally, on Yearbook we see that under
low label delay (d = 10) all results are clustered around 97%, however IWMS and Naïve performs
best under larger delays (d = 50, 10).

26

0 2k 4k 6k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy

20.5
19.6
18.7
17.8

Memory Size (d=10)

80k

40k

20k

10k

0 2k 4k 6k
Time step

0

5

10

15

20

O
n

lin
e

A
cc

u
ra

cy

19.7
18.7
17.3
16.2

Memory Size (d=100)

80k

40k

20k

10k

Figure 20: Effect of memory sizes (right). We report the Online Accuracy under the least (top:
d = 10) and the most challenging (bottom: d = 100) label delay scenarios on CGLM [5].

A.14 Analysis on the Memory Size.

We study the influence of buffer size on our proposed IWMS. In particular, we show the performance
of our algorithm under the buffer size from 10K to 80K in Figure 20. Even though IWMS relies
on the images sampled from the buffer to represent the new coming distribution, its performances
remain robust under different buffer sizes: the largest performance gap between memory sizes of 10K
and 80K is a marginal 2.5%.

A.15 TTA Normalized Computational Budget Considerations

We report several TTA methods, such as CoTTA [37] and SAR [35], which abuse the absence of
formal computational constraints in traditional Test-Time Adaptation settings by computing the
entropy of the predictions of the input data up to 32× different augmentations. Methods, such as
EATA [52] further complicate the complexity normalisation problem by using multiple smaller-sized
crops of the input image. To simplify our comparisons, we ignore the cost of model inference, thus
CTTA = 1.

A.16 Training Time

Our computation budget C is based on the number of forward-backward passes, which is generally a
good proxy for time and it has been widely used in CL literature [25, 8, 9, 43]. The actual wall-clock
training time can be influenced by various factors, e.g., code optimization, hardware, data I/O speed,
and implementation.

Here we add the training time for our method, ER, contrastive learning-based method, pseudo-labeling
based method, and TTA methods with the same number of forward-backward passes in Table 1. Most
of the experiments are using a single A100 GPU with 12 CPU. The training time is measured in
hours. This table shows that the training time could be entirely different due to various other factors.

Table 1: Training times (in hours) for various methods across different datasets. 1 The CPU allocation
was 6.

CLOC CGLM FMoW Yearbook

Naive 52 3.6 2.3 0.20
ReSSL 67 3.0 4.0 0.25
CoTTA 39 5.0 2.5 0.20
Pseudo Labeling 1111 4.6 2.5 0.15
IWMs 61 3.6 3.5 0.20

A.17 Alternative Conventional Metrics

In the Continual Learning literature a pletora of metrics have been proposed, of which the most
popular are Average Accuracy [62], Task based Forward and Backward Transfer [62, 25], Model

27

Plasticity [63] which entails Learning Accuracy and Learning Forgetting. While most of these metrics
aim to capture and aggregate semantically similar aspects of the observed learning dynamics, they
have a slight variation in the definition.

In Mai et al. [62], under the "Evaluation Metrics", Average Accuracy is defined as follows:

AverageAccuracy(Ai) =
1

i

i∑
j=1

ai,j (1)

which is closely related to Online Accuracy, but we appreciate the fact that in such a scenario,
performance on past iterations is re-evaluated in every step. In our setting, evaluating and reporting
this metric would be infeasible, as the number of steps on the CLOC, CGLM, and FMoW datasets is
3-to-4 orders of magnitude larger than the examples provided in the survey (the maximum number of
steps in [62] is 20; for comparison, in our experiments the maximum number of "tasks" is 296,119).

With a slight variation, Guo et al. [64] details the evaluation metric in section 6.1 as follows:

We first learn from the data stream of all tasks for each dataset, and then test the
final model using the test data of all tasks. We report the average accuracy of all
tasks from 15 random runs for each dataset.

We argue that this metric is taking an excessively strong measure to remove noise from the metric.
In our experiments, we experienced that rerunning the same training with different seed results in
negligible (less than 0.01%) differences in the results. Running the experiments 15 times to evaluate
the metric of [64] is infeasible for us.

This similarly holds for [65] as well, since they report the Average Accuracy and Average Forgetting
across 15 runs.

Furthermore, although the main manuscript of [66] does not provide the detail about re-
running the Average Accuracy, the corresponding code is set by default to 15 re-runs with
different seeds. (follow this URL for reference: https://github.com/YananGu/DVC/blob/
6f12984d10a4a1c4609f221b939f93d94fc8258e/general_main.py#L29)

In [67], the number of random initializations is dropped to 10, otherwise they report the Average
Accuracy as well.

Koh et al. [68] introduces their own metric: Knowledge Loss/Gain Ratio, claiming that the metrics
used by [64, 65, 66] are relying on the notion of task boundaries therefore they define a new objective
that is "appropriate for periodic data distribution". In our paper we cannot make such assumptions
about periodicity.

The accuracy metric proposed by Wang et al. [63], Learning Accuracy (LA) using Model Plasticity
is formally defined for the j-th task as:

lj = ajj (2)

where ajj is the accuracy evaluated on the test set of task j after training the network from task 1 to
task j. We would like to argue that this metric is similar to the Online Accuracy metric apart from the
notion that here the test samples are drawn from a different distribution, whereas the Online Accuracy
is evaluated on the j-th batch of data before it is used for training. If we assume that both the test and
the training batch is drawn from the same distribution at time-step j, the two metrics are arguably
the same. (Please note that the training is only done on the batch after the evaluation in the case of
Online Accuracy.)

To ensure that all relevant metrics can be computed for future reference, we run the Naïve and IWMS
experiments on the two datasets where IWMS was performing the best and the worst to provide a full
comparison against the baseline.

We simplified the table representation by splitting the validation data into 100 equal sized ranges
along the time axis, such that the ranges would correspond to the training data range:

28

https://github.com/YananGu/DVC/blob/6f12984d10a4a1c4609f221b939f93d94fc8258e/general_main.py#L29
https://github.com/YananGu/DVC/blob/6f12984d10a4a1c4609f221b939f93d94fc8258e/general_main.py#L29

Table 2: Accuracy matrix for Naïve method on Yearbook dataset.
Accuracy te0→12 te12→25 te25→37 te37→50 te50→62 te62→75 te75→87 te87→100

tr0→12 0.99 0.98 0.94 0.76 0.56 0.70 0.89 0.88
tr12→25 0.98 0.99 0.97 0.79 0.58 0.72 0.88 0.86
tr25→37 0.99 0.99 0.96 0.75 0.55 0.59 0.77 0.86
tr37→50 0.99 1.00 0.99 0.83 0.65 0.74 0.87 0.90
tr50→62 0.94 0.96 0.96 0.88 0.88 0.94 0.96 0.94
tr62→75 0.97 0.99 0.99 0.96 0.93 0.93 0.97 0.97
tr75→87 0.99 0.99 0.99 0.96 0.93 0.93 0.96 0.96
tr87→100 0.99 1.00 1.00 0.95 0.93 0.96 0.98 0.97

Table 3: Accuracy matrix for IWMS method on Yearbook dataset.
Accuracy te0→12 te12→25 te25→37 te37→50 te50→62 te62→75 te75→87 te87→100

tr0→12 0.98 0.99 0.92 0.74 0.53 0.71 0.86 0.86
tr12→25 0.99 0.99 0.97 0.78 0.57 0.69 0.86 0.86
tr25→37 0.99 0.99 0.96 0.73 0.54 0.61 0.78 0.86
tr37→50 0.99 1.00 0.99 0.82 0.64 0.74 0.87 0.90
tr50→62 0.97 0.98 0.98 0.91 0.89 0.94 0.96 0.94
tr62→75 0.99 0.99 0.99 0.96 0.94 0.95 0.98 0.97
tr75→87 0.99 1.00 0.99 0.96 0.94 0.95 0.97 0.96
tr87→100 0.99 1.00 1.00 0.95 0.92 0.95 0.98 0.97

A.18 Online Learning without Memory Rehearsal

The main issue of online learning framework is the lack of information retention mechanisms in
traditional methods, which are crucial for addressing the complexities of real world continual learning
tasks, such as training a feature extractor that both learns new concepts faster (forward transfer)
without losing the capability to perform well on already seen problems (backward transfer).

To highlight that without rehearsing on memory samples the methods suffer significant performance
degradation, we implemented the OL algorithm that is mentioned in Section A.12 in the special
case in which all the labels (or feedback) arrives in order with a fixed constant delay. We ran new
experiments (with identical experimental environment described in the main experimental section,
Section 6) on the two largest datasets, CLOC and CGLM, with computational budget respectively,
for d = 10, 50 and C = 2, 8 respectively. The results show extreme underperformance:

29

Table 4: Accuracy matrix for Naïve method on CGLM dataset.
Accuracy te0→16 te16→33 te33→50 te50→66 te66→83 te83→100

tr0→16 0.10 0.27 0.09 0.07 0.06 0.05
tr16→33 0.14 0.29 0.24 0.11 0.11 0.08
tr33→50 0.21 0.38 0.37 0.26 0.17 0.13
tr50→66 0.23 0.39 0.39 0.35 0.25 0.15
tr66→83 0.25 0.40 0.41 0.38 0.34 0.22
tr83→100 0.15 0.26 0.26 0.24 0.24 0.19

Table 5: Accuracy matrix for IWMS method on CGLM dataset.
Accuracy te0→16 te16→33 te33→50 te50→66 te66→83 te83→100

tr0→16 0.15 0.39 0.13 0.11 0.09 0.08
tr16→33 0.24 0.51 0.45 0.20 0.17 0.15
tr33→50 0.31 0.55 0.61 0.41 0.25 0.20
tr50→66 0.35 0.57 0.63 0.59 0.38 0.24
tr66→83 0.38 0.59 0.64 0.62 0.60 0.32
tr83→100 0.40 0.60 0.65 0.64 0.64 0.53

Table 6: Online Accuracy of Online-Learning (no
memory rehearsal) on CLOC

Time Steps delay=10 delay=50

5000 0.195 0.163
15000 2.142 1.354
25000 2.960 1.793
40000 3.467 2.157
50000 4.202 2.451
60000 4.838 2.699
75000 5.238 2.898
85000 5.632 3.076
95000 5.849 3.287
105000 6.265 3.727

Table 7: Online Accuracy of Online-Learning (no
memory rehearsal) on CGLM

Time Steps delay=10 delay=50 delay=100

100 0.000 0.000 0.000
800 0.463 0.389 0.263
1500 0.476 0.319 0.379
2200 0.531 0.242 0.257
2900 0.465 0.196 0.218
3600 0.459 0.172 0.179
4300 0.390 0.188 0.187
5100 0.419 0.178 0.158
5900 0.456 0.253 0.169
6600 0.504 0.313 0.175

30

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstact and introduction are the least speculative, they are
stating observations and reflecting on our experiences of the interactions with peers from
academia and industry.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our work is a wide-range study over many different paradigms and regardless
our best efforts to provide an extensive and exhaustive experimental comparison over
different constraints (4 datasets, 3 computational budget scenarios, 4 label delay settings),
such work will be always limited by available resources. Our work aims to showcase the
most relevant experiments with the most realistic experimental setups.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

31

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Every experimental setup is provided in full-detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

32

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our submission reports experiments conducted solely on publicly available
datasets. We publish the code if the manuscript is accepted at NeurIPS 2024.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See above.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars and other information about statistical significance
in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our main contribution is actually considering the computational resources
for fair evaluation of Online Continual Learning paradigms that utilize unsupervised data.
While we do not report exact inference and parameter update time in miliseconds (due
to relying on excessively heterogeneous computational resources), we normalize all our
experiments w.r.t. the computational complexity.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

34

https://neurips.cc/public/EthicsGuidelines

Justification: Our work addresses the importance of considering delayed feedback and
computational constraints in online continual learning research, which has significant impli-
cations for real-world machine learning applications. On the positive side, by incorporating
these factors into the research, we enable the development of more efficient and practical
learning algorithms that can operate effectively in resource-constrained environments. This
can lead to improved performance and reduced computational costs, making machine learn-
ing more accessible and applicable to a wider range of societal problems. However, we
also acknowledge the potential negative impacts, such as the risk of misuse or unintended
consequences if these algorithms are deployed without proper safeguards or considerations
for fairness and transparency. By highlighting these issues, we encourage the community
to develop responsible and ethical approaches to online continual learning that mitigate
potential risks while harnessing the benefits for society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: In our paper, no such risk is posed.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

35

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See above.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No such assets are provided with the submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not conduct crowdsourcing experiment or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

36

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: See above.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Related Work
	Problem Formulation
	IWMS: Importance Weighted Memory Sampling
	The Cost of Ignoring Label Delay
	Experimental Setup
	Observations
	Section Conclusion

	Utilising Data Prior to Label Arrival
	Experiment Setup
	Observations

	Analysis of Importance Weighted Memory Sampling
	Conclusion and Future Work
	Acknowledgement
	Supplementary Material
	Dataset Statistics
	Implementation Details of S4L
	Monotonous Online Accuracy Degradation
	Qualitative Analysis of Label Delay
	The impact of label delay on the scaling property of the computational budget
	Breakdown of SSL methods
	Breakdown of TTA methods
	Comparison of S4L to Naïve when using the same amount of supervised data
	Examples of the Importance Weighted Memory Sampling on CLOC
	Visual Explanation of our Experimental Framework
	Two-stage vs single-shot sample selection
	Extended Literature Review on Online Learning
	Analysis on forgetting over past samples
	Analysis on the Memory Size.
	TTA Normalized Computational Budget Considerations
	Training Time
	Alternative Conventional Metrics
	Online Learning without Memory Rehearsal

