
TokenSwift: Lossless Acceleration of Ultra Long Sequence Generation

Tong Wu * 1 Junzhe Shen * 1 2 Zixia Jia 1 Yuxuan Wang 1 Zilong Zheng 1

Abstract
Generating ultra-long sequences with large lan-
guage models (LLMs) has become increasingly
crucial but remains a highly time-intensive task,
particularly for sequences up to 100K tokens.
While traditional speculative decoding methods
exist, simply extending their generation limits
fails to accelerate the process and can be detri-
mental. Through an in-depth analysis, we iden-
tify three major challenges hindering efficient
generation: frequent model reloading, dynamic
key-value (KV) management and repetitive gen-
eration. To address these issues, we introduce
TOKENSWIFT, a novel framework designed to
substantially accelerate the generation process of
ultra-long sequences while maintaining the tar-
get model’s inherent quality. Experimental results
demonstrate that TOKENSWIFT achieves over 3ˆ

speedup across models of varying scales (1.5B,
7B, 8B, 14B) and architectures (MHA, GQA).
This acceleration translates to hours of time sav-
ings for ultra-long sequence generation, establish-
ing TOKENSWIFT as a scalable and effective so-
lution at unprecedented lengths.

1. Introduction
Recent advances in large language models (LLMs), am-
plified by their long context capacities (Wu et al., 2024;
Ding et al., 2024), have demonstrated remarkable profi-
ciency in intricate reasoning (Jaech et al., 2024; Guo et al.,
2025), agentic thinking (Shinn et al., 2023; Yao et al., 2023;
Li et al., 2024a), and creative writing (Wang et al., 2023;
Mikhaylovskiy, 2023), etc. These advancements necessitate
the ability to generate lengthy sequences, e.g., o1-like (Jaech
et al., 2024) reasoning tends to generate protracted chain-
of-thought trajectories before reaching final conclusions.

*Equal contribution 1State Key Laboratory of General Artifi-
cial Intelligence, BIGAI, Beijing, China 2LUMIA Lab, Shang-
hai Jiao Tong University. Correspondence to: Zilong Zheng
<zlzheng@bigai.ai>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0 50 100 150 200 250 300
Time (minutes)

0

20000

40000

60000

80000

100000

Ge
ne

ra
te

d
To

ke
ns

AR 100K tokens
Time: 4.9 hours

TokenSwift 100K tokens
Time: 90 min

Fast Generation
(TokenSwift) Slow Generation

(AR)

AR
TokenSwift

Figure 1. Comparison of the time taken to generate 100K tokens
using autoregressive (AR) and TOKENSWIFT with prefix length of
4096 on LLaMA3.1-8b. As seen, TOKENSWIFT accelerates the
AR process from nearly 5 hours to just 90 minutes.

However, a critical challenge impeding the practical deploy-
ment of such applications is the extensive time required
to produce ultra-long sequences. For instance, generating
100K tokens with LLaMA3.1-8B can take approximately
five hours (Figure 1), a duration that is impractically long
for the development of sophisticated applications, let alone
recent gigantic models such as LLaMA3.1-405B (AI@Meta,
2024) and DeepSeek-671B (Liu et al., 2024a). Addressing
this bottleneck is essential for harnessing the full potential
of LLMs in real-world scenarios.

A straightforward solution is to take advantage of recent suc-
cess in speculative decoding (SD) (Leviathan et al., 2023;
Chen et al., 2023), which employs a draft-then-verify strat-
egy to expedite generation while preserving lossless accu-
racy; see Appendix A and Section 5.1 for detailed back-
ground and relevant literature. However, these methods are
generally tailored for generating short sequences, e.g., Tri-
Force (Sun et al., 2024a) and MagicDec (Chen et al., 2024a)
are limited to generating 256 and 64 tokens, respectively.
Directly extending their generation length to 100K tokens
would inevitably encounter failures due to KV cache budget
constraints. Furthermore, even when applied to optimized
KV cache architectures such as Group Query Attention
(GQA), these methods yield only marginal acceleration
gains for short-sequence generation, as evidenced in Ta-
bles 1 and 3. This observation leads to a pivotal research
question:

Is it possible to achieve model-agnostic lossless accelera-
tions, akin to those seen in short-sequence SDs, for generat-
ing ultra-long sequences, with minimal training overhead?

1

Lossless Acceleration of Ultra Long Sequence Generation

[…] He

ultra long

sequence

LLM

with

Partial KV

Cache

FFN

FFN

FFN

Multi-token Parallel Self-Drafting

Tree-base Attention

is

the a an

uncle cousin good

of \n to

First |𝑆| KV Select |𝐵 − 𝑆| KV

by Importance

Dynamic KV Budget

row id 𝑛-gram frequency

97475 is the father of 5

97476 is the mother of 2

… … …

Token Reutilization

Top-𝑘

LLM

with

Full KV

Cache

is the uncle of

is the uncle \n

… …

is an good to

is the father of

is the mother of

... ...

Candidates

Parallel Verification

Longest

Valid
[…] He

is the

father of

Update n-gram

…

Frozen

Tuned

Sample

with

Contex

tual

Penalty

Figure 2. Illustration of TOKENSWIFT Framework. First, target model (LLM) with partial KV cache and three linear layers outputs 4
logits in a single forward pass. Tree-based attention is then applied to construct candidate tokens. Secondly, top-k candidate 4-grams are
retrieved accordingly. These candidates compose draft tokens, which are fed into the LLM with full KV cache to generate target tokens.
The verification is performed by checking if draft tokens match exactly with target tokens (Algorithm 1). Finally, we randomly select one
of the longest valid draft tokens, and update n-gram table and KV cache accordingly.

To answer this question, we conduct an in-depth analysis
(§2) and identify three key challenges: (1) frequent model
reloading: frequently reloading model for each token genera-
tion introduces a significant delay, primarily due to memory
access times rather than computation. (2) Prolonged Grow-
ing of KV Cache, the dynamic management of key-value
(KV) pairs, which grow with the sequence length, adds
complexity in maintaining model efficiency. (3) repetitive
content generation, the issue of repetitive generation be-
comes more pronounced as the sequence length increases,
leading to degraded output quality.

Building on these insights, we introduce our framework TO-
KENSWIFT, which utilizes n-gram retrieval and dynamic
KV cache updates to accelerate ultra-long sequence gener-
ation. Specifically, we employ multi-token generation and
token reutilization to enable the LLM (i.e. target model) to
draft multiple tokens in a single forward pass, alleviating the
first challenge of frequent model reloading (§3.2). As the
generation progresses, we dynamically update the partial
KV cache at each iteration, reducing the KV cache loading
time (§3.3). Finally, to mitigate the issue of repetitive out-
puts, we apply contextual penalty to constrain the generation
process, ensuring the diversity of output (§3.4).

In §4, we conduct extensive experiments to evaluate TO-
KENSWIFT across different model scales and architectures.
In summary, we highlight our advantages as:

1. To the best of our knowledge, TOKENSWIFT is the first
to accelerate ultra-long sequence generation up to 100K
with lossless accuracy of target LLMs, while demonstrat-

ing significant superiority over enhanced baselines.
2. TOKENSWIFT consistently achieves over 3ˆ speedup

compared to AR across varying prefix lengths, model
architectures, and model scales in generating 100K to-
kens, reducing the AR process from nearly 5 hours to 90
minutes on LLaMA3.1-8b.

3. TOKENSWIFT achieves progressively higher speedup
compared to AR as the generation length increases, while
enhancing diversity in ultra-long sequence generation (as
measured by Distinct-n (Li et al., 2016)).

2. Challenges
Accelerating long sequence generation is nevertheless a non-
trivial task, even built upon prior success in speculative de-
coding (SD). In this section, we identify critical challenges
encountered in accelerating ultra-long sequence generation.

Challenge I: Frequent Model Reloading One fundamen-
tal speed obstacle lies in the autoregressive (AR) generation
scheme of LLM. For each token, the entire model must be
loaded from GPU’s storage unit to the computing unit (Yuan
et al., 2024), which takes significantly more time than the rel-
atively small amount of computation performed (as shown in
Table 2). Consequently, the primary bottleneck in generation
stems from I/O memory access rather than computation.

▷ When generating ultra-long sequence, such as 100K to-
kens, the GPU must reload the model weights over 100,000
times. This repetitive process poses the challenge: How can
we reduce the frequency of model reloading?

2

Lossless Acceleration of Ultra Long Sequence Generation

Table 1. Experimental results of TriForce (Sun et al., 2024a)
and MagicDec (Chen et al., 2024a) with default parameters on
LLaMA3.1-8b. The Batch Size of MagicDec is set to 1. The
results on A100-80G and PG-19 using identical hyperparameters.
The only difference is that their original experiments were con-
ducted on YaRN-LLaMA2-7b-128k (MHA), while ours used
LLaMA3.1-8b (GQA).

Method Gen. Len. Draft Form Speed Up

TriForce 256 Standalone Draft 1.02

MagicDec 64 Self-Speculation 1.20
Standalone Draft 1.06

Table 2. Taking NVIDIA A100 80G and LLaMA3.1-8b as exam-
ple, MAX refers to the scenario with a maximum context window
128K. The calculation method is from Yuan et al. (2024).

MEMORY COMPUTATION

Bandwidth: 2.04e12 B/s BF16: 312e12 FLOPS
Model Weights: 15.0 GB MAX Operations: 83.9 GB

Loading Time: 7.4 ms MAX Computing Time: 0.3 ms

Challenge II: Prolonged Growing of KV Cache Previ-
ous studies, such as TriForce (Sun et al., 2024a) and Mag-
icDec (Chen et al., 2024a) have demonstrated that, a small
KV cache budget can be used during the drafting phase to
reduce the time increase caused by the loading enormous
KV cache. While their one-time compression strategy at
the prefill stage can handle scenarios with long prefixes and
short outputs, it fails to address cases involving ultra-long
outputs, as the growing size of KV cache would far exceed
the allocated length budget.

▷ To dynamically manage partial KV cache within limited
budget during ultra-long sequence generation, the challenge
lies in determining when and how to dynamically update
the KV cache.

Challenge III: Repetitive Content Generation The de-
generation of AR in text generation tasks — characterized
by output text that is bland, incoherent, or gets stuck in
repetitive loops — is a widely studied challenge (Holtzman
et al., 2020; Nguyen et al., 2024; Hewitt et al., 2022). When
generating sequences of considerable length, e.g., 100K, the
model tends to produce repetitive sentences (Figure 5).

▷ Since our objective is lossless acceleration and repetition
is an inherent problem in LLMs, eliminating this issue is not
our focus. However, it is still essential and challenging to
mitigate repetition patterns in ultra-long sequences.

3. TOKENSWIFT

To achieve lossless acceleration in generating ultra-long
sequences, we propose tailored solutions for each challenge
inherent to this process. These solutions are seamlessly inte-
grated into a unified framework, i.e. TOKENSWIFT.

3.1. Overview

The overall framework is depicted in Figure 2. TO-
KENSWIFT generate a sequence of draft tokens with self-
drafting, which are then passed to the target (full) model
for validation using a tree-based attention mechanism (See
Appendix E for more tree-based attention details). This pro-
cess ensures that the final generated output aligns with the
target model’s predictions, effectively achieving lossless
acceleration.

TOKENSWIFT is lightweight because the draft model is the
target model itself with a partial KV cache. This eliminates
the need to train a separate draft LLM; instead, only γ lin-
ear layers need to be trained, where γ ` 11 represents the
number of logits predicted in a single forward pass. In ad-
dition, during the verification process, once we obtain the
target tokens from the target model with full KV cache, we
directly compare draft tokens with target tokens sequentially
to ensure that the process is lossless (He et al., 2024).

3.2. Multi-token Generation and Token Reutilization

Multi-token Self-Drafting Inspired by Medusa (Cai et al.,
2024), we enable the LLM to generate multiple draft tokens
in a single forward pass by incorporating γ additional linear
layers. However, we empirically note that the additional
linear layers should not be independent of each other.
Specifically, we propose the following structure:

h1 “ f1ph0q ` h0, h2 “f2ph1q ` h1, h3 “ f3ph2q ` h2,

l0, l1, l2, l3 “ gph0q, gph1q, gph2q, gph3q,
(1)

where h0 denotes the last hidden state of LLM, fip¨q repre-
sents the i-th linear layer, hi refers to the i-th hidden repre-
sentation, gp¨q represents the LM Head of target model, and
li denotes output logits. This structure aligns more closely
with the AR nature of the model. Moreover, this adjustment
incurs no additional computational cost.

Token Reutilization Given the relatively low acceptance
rate of using linear layers to generate draft tokens, we pro-
pose a method named token reutilization to further reduce
the frequency of model reloads. The idea behind token re-
utilization is that some phrases could appear frequently, and
they are likely to reappear in subsequent generations.

Specifically, we maintain a set of tuples tpG,Fqu, where
G “ txi`1, ..., xi`nu represents an n-gram and F denotes
its corresponding frequency F within the generated token
sequence S “ tx0, x1, ..., xt´1u by time step t (t ě n).
After obtaining tp0, . . . , p3u as described in §3.4, we re-
trieve the top-k most frequent n-grams beginning with token
argmax p0 to serve as additional draft tokens.

Although this method can be applied to tasks with long

1The target model itself can also predict one logit, making the
total number of logits γ ` 1. We take γ “ 3.

3

Lossless Acceleration of Ultra Long Sequence Generation

prefixes, its efficacy is constrained by the limited decoding
steps, which reduces the opportunities for accepting n-gram
candidates. Additionally, since the long prefix text is not gen-
erated by the LLM itself, a distributional discrepancy exists
between the generated text and the authentic text (Mitchell
et al., 2023). As a result, this method is particularly suitable
for generating ultra-long sequences.

3.3. Dynamic KV Cache Management

Dynamic KV Cache Updates Building upon the findings
of Xiao et al. (2024), we preserve the initial |S| KV pairs
within the cache during the drafting process, while progres-
sively evicting less important KV pairs. Specifically, we
enforce a fixed budget size |B|, ensuring that the KV cache
at any given time can be represented as:

KV “ tpK0,V0q, ..., pK|S|,V|S|q, pK|S|`1,V|S|`1q, ..., pK|B|´1,V|B|´1qu,

where the first |S| pairs remain fixed, and the pairs from
position |S| to |B|´1 are ordered by decreasing importance.
As new tokens are generated, less important KV pairs are
gradually replaced, starting from the least important ones
at position |B| ´ 1 and moving towards position |S|. Once
replacements extend beyond the |S| position, we recalculate
the importance scores of all preceding tokens and select
the most relevant |B| ´ |S| pairs to reconstruct the cache.
This process consistently preserves the critical information
required for ultra-long sequence generation.

Importance Score of KV pairs We rank the KV pairs
based on the importance scores derived from the dot product
between the query (Q) and key (K), i.e. QKT .

In the case of Group Query Attention (GQA), since each
K corresponds to a group of Q “ tQ0, ...,Qg´1u, direct
dot-product computation is not feasible. Unlike methods
such as SnapKV (Li et al., 2024c), we do not replicate the
K. Instead, we partition the Q, as shown in Equation (2):

importance scorei “

ppi`1q¨gq´1
ÿ

j“i¨g

Qj ¨ Ki, (2)

where for position i, Qj in the group Qi are dot-product
with the same Ki, and their results are aggregated to obtain
the final importance score. This approach enhances memory
saving while preserving the quality of the attention mecha-
nism, ensuring that each query is effectively utilized without
introducing unnecessary redundancy.

3.4. Contextual Penalty and Random N-gram Selection

Contextual Penalty To mitigate repetition in generated
text, we have explored various sampling strategies. However,
with the significantly larger sequence length, the likelihood
of repetition increases significantly (§2). As a result, we de-
cided to apply an additional penalty to the generated tokens
to further mitigate repetition.

Algorithm 1 TOKENSWIFT

Require: Prompt p, target model M , decoding tree T , n-gram
candidate number k; max budget size |B| of partial cache,
cache initial size |S|.

1: Prefill target model with KV cache Cfull Ð PrefillM ppq,
s.t. |Cfull| “ lenppq;

2: Prefill partial KV cache Cp Ð tCfullr0 :

|S|s,Top-K|B|´|S|pCfullqu w.r.t Equation (2), where
|Cp| “ |B|;

3: st Ð 0, e Ð lenppq.
4: while st ď target length do
5: if p|Cfull| ´ eq ą |B| ´ |S| then
6: Dynamic KV Cache Update: Cp Ð tCfullr:

|S|s,Top-K|B|´|S|pCfullqu, e Ð |Cfull|.
7: end if
8: Multi-token Parallel Generation: Get penalized probabil-

ity pď3
2with partial cache Cp.

9: Tree-based Attention: Construct g groups of candidate
draft tokens txi

ď3u
g
i“1 using decoding tree T and pď3.

10: Token Reutilization: Select k n-gram candidates tai
ď3u

k
i“1

with highest frequency, where a0 “ argmax p0 (§3.2).
11: Parallel Verification: Let draft tokens tdiuk`g

i“1 :“

tai
ď3u

k
i“1 Y txi

ď3u
g
i“1, and send tdu to M to get penal-

ized verification probabilities tqiuk`g
i“1 .

12: Sample target tokens tyi
u
k`g
i“1 „ tqiuk`g

i“1 .
13: Random select the longest accepted length of draft tokens

djďm P tdďm|diďm “ yi
ďmu

k`g
i“1 by exactly match.

14: Let st Ð st ` lenpyi
q; yield: yi

15: Evict Cp to ensure the size of Cp is |B| and update Cfull.
16: end while

The penalized sampling approach proposed in (Keskar et al.,
2019) suggests applying a penalty to all generated tokens.
However, when generating ultra-long sequences, the set
of generated tokens may cover nearly all common words,
which limits the ability to sample appropriate tokens. There-
fore, we propose an improvement to this method.

Specifically, we introduce a fixed penalty window W and
apply penalty value θ to the most recent W tokens, denoted
as W, generated up to the current position, as illustrated in
Equation (3):

pi “
exp

`

li{pt ¨ Ipliqq
˘

ř

j exp
`

lj{pt ¨ Ipljqq
˘ ,

Iplq “ θ if l P W else 1.0, θ P p1,8q,

(3)

where t denotes temperature, li and pi represent the logit and
probability of i-th token. This adjustment aims to maintain
diversity while still mitigating repetitive generation.

Random n-gram Selection In our experiments, we ob-
serve that the draft tokens provided to the target model for

2The subscript ď 3 here denotes a tuple with indices 0, 1, 2, 3.
The notation will be used similarly hereafter.

4

Lossless Acceleration of Ultra Long Sequence Generation

parallel validation often yield multiple valid groups. Build-
ing on this observation, we randomly select one valid n-
gram to serve as the final output. By leveraging the fact
that multiple valid n-grams emerge during verification, we
ensure that the final output is both diverse and accurate.

In summary, the overall flow of our framework is presented
in Algorithm 1.

4. Experiments
In this section, we demonstrate the capability of TO-
KENSWIFT in accelerating ultra-long sequences generation.

4.1. Setup

We conduct experiments on a variety of models,
including YaRN-LLaMA2-7b-128k (Peng et al.,
2024), LLaMA3.1-8b (AI@Meta, 2024) and
Qwen2.5-(1.5b,7b,14b) (Qwen et al., 2025).
For all models, we use the Base version, as the output
length of Instruct version is limited (Bai et al., 2024). The
inference experiments are performed on the test set of
PG-19 (Rae et al., 2020).

Training and Inference Details We train linear layers
in Section 3.2 using the first 8K tokens of training data,
for datasets longer than 8K tokens, from PG-19 (Rae et al.,
2020). The number of extra decoding heads is set to 3 across
all models.

Inference is performed on a single NVIDIA A100-SXM4-
80GB. When generating 100K tokens, the models are pre-
filled with 2K, 4K or 8K tokens as prompt from a random
sample of the PG-19 test set (See Appendix F.1 for abla-
tion on prefill length). The maximum budget of the partial
cache is determined by the length of the prompt. For further
training and inference details, please refer to Appendix B.

Evaluation Metrics We evaluate the overall acceptance
rate and speedup for all methods. Unlike Leviathan et al.
(2023)3, our acceptance rate α is defined as:

α “

řT
i“1 ai

pγ ` 1q ˆ T
, (4)

where ai represents the number of tokens accepted at the i-th
time step, γ`1 denotes the number of draft tokens generated
at each time step, and T represents the total number of time
steps. The speedup is denotes as ˆ, which is the ratio of AR
latency to TOKENSWIFT latency, given by:

ˆ “
latencyAR

latencyTOKENSWIFT

, (5)

where latency refers to the average time required to generate
a single token.

3The two can be converted into each other through computation.

We use Distinct-n (Li et al., 2016) to measure the diversity of
generated content, i.e., repetition. A higher value indicates
greater diversity and lower repetition (Table 6).

Baselines We compare TOKENSWIFT with two baselines:
TriForce*: The original TriForce (Sun et al., 2024a) em-
ploys a static KV update strategy, which cannot accelerate
the generation of 100K tokens. The results in Table 3 corre-
spond to our improved version of TriForce, which incorpo-
rates dynamic KV update 4. Medusa*: To ensure lossless-
ness, we adopt the Medusa (Cai et al., 2024) training recipe
and incorporate the verification method of TOKENSWIFT.
Both Medusa heads and tree structure are consistent with
TOKENSWIFT.

The recent released MagicDec (Chen et al., 2024a) primar-
ily focuses on acceleration for large throughput, and when
the batch size is 1, LLaMA3.1-8b does not exhibit any ac-
celeration for short text generation, let alone for ultra-long
sequences. Therefore, it is excluded from our baseline.

4.2. Main Results

The experimental results are presented in Table 3 and Ta-
ble 4. We evaluate TOKENSWIFT at different generation
lengths of 20K, 40K, 60K, 80K and 100K, reporting speedup
ˆ and acceptance rate α by taking the average and standard
deviation of 5 experiments to avoid randomness. Notably,
the results for TOKENSWIFT and Medusa* show a balanced
trade-off between speed and quality, in contrast to TriForce*,
which suffers from low quality due to the absence of any
repetition penalty.

TOKENSWIFT significantly outperforms all baselines
across generation lengths. As shown in Table 3, across
all lengths, TOKENSWIFT demonstrates superior acceler-
ation performance compared to all baselines on models
with different architectures (MHA, GQA). Moreover, TO-
KENSWIFT demonstrates remarkable robustness, showing
virtually no impact when tested with varying prefix lengths.

Longer generations amplify the speedup benefits. As the
generation length increases, the speed improvement of TO-
KENSWIFT becomes increasingly evident. Two key factors
drive this trend: Firstly, AR experiences longer KV cache
loading times as the number of tokens grows, whereas TO-
KENSWIFT mitigates this issue by utilizing dynamic KV
pruning. Secondly, the acceptance rate improves as the num-
ber of tokens increases, primarily due to the higher n-grams
acceptance rate. As the n-grams pool composed of gener-
ated tokens grows larger, the candidate n-grams become
more diverse and accurate (Figure 3).

Larger models yield greater speedup benefits. The im-
pact of frequent model reloading varies with model scale,

4To compare with LLaMA3.1-8b, we pretrained a draft
model based on LLaMA3.1-8b. See Appendix C for details.

5

Lossless Acceleration of Ultra Long Sequence Generation

Table 3. Experimental results for LLaMA2 and LLaMA3.1 under varying prefix lengths, generating sequences from 20K to 100K tokens.
α denotes the acceptance rate of all draft tokens (Equation (4)), while ˆ represents the speedup ratio relative to AR (Equation (5)).
TriForce* refers to our improved version, and Medusa* indicates the model we retrained (§4.1).

Method Gen. Len.

Prefill Len. 2048 Prefill Len. 4096 Prefill Len. 8192 Prefill Len. 2048 Prefill Len. 4096 Prefill Len. 8192

YaRN-LLaMA2-7b-128k (MHA) LLaMA3.1-8b (GQA)

α ˆpą 1q α ˆpą 1q α ˆpą 1q α ˆpą 1q α ˆpą 1q α ˆpą 1q

Medusa*
20K

0.43 0.96 0.39 0.85 0.40 0.83 0.35 1.20 0.39 1.29 0.34 1.21
TriForce* 0.80 1.50 0.89 1.51 0.92 1.36 0.89 1.13 0.89 1.08 0.99 1.16
TOKENSWIFT 0.73˘0.09 2.11˘0.14 0.68˘0.09 2.02˘0.20 0.64˘0.08 1.91˘0.12 0.64˘0.08 1.87˘0.17 0.65˘0.07 1.93˘0.18 0.72˘0.09 1.99˘0.20

Medusa*
40K

0.52 1.08 0.42 0.86 0.43 0.88 0.35 1.26 0.40 1.39 0.34 1.26
TriForce* 0.84 1.64 0.93 1.67 0.96 1.49 0.93 1.18 0.94 0.99 0.99 1.18
TOKENSWIFT 0.82˘0.06 2.60˘0.05 0.79˘0.06 2.56˘0.09 0.79˘0.05 2.50˘0.07 0.72˘0.07 2.39˘0.16 0.73˘0.08 2.47˘0.22 0.81˘0.10 2.54˘0.22

Medusa*
60K

0.59 1.18 0.47 0.95 0.45 0.91 0.35 1.29 0.40 1.42 0.34 1.29
TriForce* 0.85 1.76 0.95 1.83 0.97 1.62 0.94 1.21 0.95 0.96 1.00 1.19
TOKENSWIFT 0.87˘0.04 2.92˘0.04 0.85˘0.04 2.89˘0.06 0.85˘0.04 2.84˘0.05 0.75˘0.06 2.73˘0.13 0.79˘0.06 2.88˘0.17 0.85˘0.08 2.93˘0.17

Medusa*
80K

0.61 1.17 0.51 0.99 0.47 0.93 0.35 1.30 0.40 1.43 0.34 1.29
TriForce* 0.84 1.86 0.95 1.98 0.97 1.74 0.95 1.23 0.95 0.94 1.00 1.21
TOKENSWIFT 0.89˘0.03 3.13˘0.04 0.88˘0.04 3.10˘0.06 0.88˘0.03 3.05˘0.03 0.77˘0.04 2.96˘0.07 0.82˘0.06 3.13˘0.16 0.88˘0.07 3.19˘0.13

Medusa*
100K

0.62 1.15 0.52 0.99 0.47 0.91 0.35 1.31 0.41 1.45 0.34 1.29
TriForce* 0.82 1.94 0.96 2.14 0.97 1.86 0.95 1.25 0.96 0.92 0.99 1.22
TOKENSWIFT 0.90˘0.02 3.25˘0.05 0.90˘0.03 3.23˘0.06 0.90˘0.02 3.20˘0.02 0.79˘0.03 3.13˘0.07 0.84˘0.05 3.27˘0.19 0.90˘0.06 3.38˘0.10

Table 4. Experimental results of TOKENSWIFT for Qwen2.5 across different scales under prefix length 4096, generating sequences from
20K to 100K tokens. TAR and TTOKENSWIFT denote the actual time required (in minutes) for AR and TOKENSWIFT, respectively. ∆T

represents the number of minutes saved by TOKENSWIFT compared to AR.

Gen. Len. Qwen2.5-1.5B Qwen2.5-7B Qwen2.5-14B
α ˆpą 1q TAR TTOKENSWIFT ∆T α ˆpą 1q TAR TTOKENSWIFT ∆T α ˆpą 1q TAR TTOKENSWIFT ∆T

20K 0.69˘0.11 1.69˘0.17 12.00 7.20 -4.80 0.64˘0.07 2.00˘0.16 15.60 7.80 -7.80 0.67˘0.06 2.12˘0.13 29.40 13.80 -15.60
40K 0.80˘0.06 2.31˘0.09 36.00 15.60 -20.40 0.77˘0.05 2.64˘0.10 47.40 18.00 -29.40 0.78˘0.03 2.68˘0.10 89.40 33.60 -55.80
60K 0.85˘0.04 2.69˘0.07 73.80 27.60 -46.20 0.78˘0.08 2.86˘0.25 95.40 33.60 -61.80 0.82˘0.02 3.01˘0.13 184.20 61.20 -123.00
80K 0.87˘0.03 2.95˘0.06 124.20 42.00 -82.20 0.80˘0.09 3.07˘0.30 161.40 52.80 -108.60 0.83˘0.02 3.20˘0.13 312.60 97.80 -214.80

100K 0.89˘0.07 3.13˘0.07 187.80 60.00 -127.80 0.82˘0.09 3.23˘0.28 244.20 75.60 -168.60 0.84˘0.02 3.34˘0.10 474.60 142.20 -332.40

as larger models require more time due to the increased pa-
rameters. As shown in Table 4, TOKENSWIFT demonstrates
robust performance across models of different scales, with
the acceleration advantage becoming more pronounced for
larger models. In particular, when generating 100K tokens,
TOKENSWIFT saves up to 5.54 hours for 14B model.

4.3. Ablation Studies

We conduct comprehensive ablation studies on TO-
KENSWIFT using LLaMA3.1-8b. For all experiments, the
prefix length is 4096.

4.3.1. TOKEN REUTILIZATION

We define the n-gram acceptance rate β similarly to Equa-
tion (4). Let a1

i denote the length of accepted n-gram candi-
date at iteration i. Then β is given by:

β “

řT
i“1 bi

pγ ` 1q ˆ T
, where, bi “

#

a1
i, a1

i “ ai

0, a1
i ă ai

. (6)

From Figure 3, we observe that removing token reutilization
(k “ 0) leads to a significant decrease in both acceptance
rate α and speedup ˆ. Furthermore, as the generation length
increases, the acceptance rate α for k “ 0 slightly drops.

20K 40K 60K 80K 100K
Gen. Len.

40

50

60

70

80

Ac
ce

pt
an

ce
 R

at
e

(%
)

(k = 20)
(k = 20)
(k = 0)

20K 40K 60K 80K 100K
Gen. Len.

1.5

2.0

2.5

3.0

Sp
ee

du
p × (k = 20)

× (k = 0)

Figure 3. Upper: The acceptance rate α for k “ 20 and k “ 0,
along with the n-gram acceptance rate β for k “ 20, plot-
ted against varying generation lengths. Lower: The speedup ˆ

achieved at different generation lengths.

This trend stems from the fact that, in ultra-long sequences,
the KV cache cannot be compressed indefinitely. In contrast,
TOKENSWIFT (k “ 20) shows an increasing acceptance
rate as the sequence length grows, demonstrating the effec-
tiveness of token reutilization in reducing the frequency
of model reloading.

4.3.2. DYNAMIC KV UPDATES

To evaluate the effectiveness of TOKENSWIFT’s dynamic
KV update policy, we experiment with three different strate-

6

Lossless Acceleration of Ultra Long Sequence Generation

gies of managing KV cache during drafting:

‚ Full Cache: Retaining full KV cache throughout drafting.

‚ Partial Cache: Updating partial KV cache only once during
the prefill phase.

‚ Dynamic Partial Cache: Dynamically updating KV cache
as described in §3.3

For a fair comparison, token reutilization is disabled (i.e.
k “ 0). As shown in Table 5, Partial Cache leads to a
low acceptance rate, resulting in reduced speedup. While
Full Cache achieves a higher acceptance rate, its compu-
tational overhead negates the speedup gains. In contrast,
Dynamic Partial Cache adopted by TOKENSWIFT strikes a
balanced trade-off, achieving both high acceptance rate and
significant speedup. As a result, Dynamic Partial Cache can
effectively manage partial KV under ultra-long sequence
generation.

Table 5. The ablation experiment results on KV management.

Gen. Len. Full Cache Partial Cache Dynamic Partial Cache

20K α 0.42 0.19 0.45
ˆpą 1q 1.36 0.94 1.56

40K α 0.42 0.16 0.43
ˆpą 1q 1.42 1.03 1.75

60K α 0.42 0.18 0.42
ˆpą 1q 1.45 1.19 1.88

80K α 0.42 0.19 0.42
ˆpą 1q 1.46 1.31 1.97

100K α 0.42 0.21 0.40
ˆpą 1q 1.47 1.44 1.96

Table 6. The ablation experiment results on contextual penalty us-
ing different sampling methods. Light cell represents the settings
adopted by TOKENSWIFT. We take θ “ 1.2,W “ 1024.

Distinct-1 Distinct-2 Distinct-3 Distinct-4 AVG. ˆ

top-p 0.15 0.25 0.29 0.31 0.25 3.42
w/o. penalty 0.09 0.15 0.18 0.20 0.16 3.53

η-sampling 0.25 0.43 0.49 0.53 0.43 3.42
w/o. penalty 0.06 0.10 0.12 0.13 0.11 3.57

min-p 0.41 0.71 0.81 0.82 0.69 3.27
w/o. penalty 0.07 0.11 0.14 0.15 0.12 3.58

4.3.3. CONTEXTUAL PENALTY

As an orthogonal method to min-p, top-p, and η-sampling
for mitigating the repetition, contextual penalty demon-
strates effectiveness across different sampling methods.

As shown in Table 6, without contextual penalty, the di-
versity of generated sequences is significantly lower for all
sampling methods. The most striking improvement emerges
in min-p sampling (See Appendix D for more sampling de-
tails), where the average Distinct-n score surges from 0.12
to 0.69 with only an 8% compromise in speedup. These
results clearly highlight the impact of contextual penalty in
mitigating repetitive token generation. It can seamlessly
integrate with existing sampling methods to enhance the

0 5 10 20 30 50 100 200 500 1000
k

0

25

50

75

Ac
ce

pt
an

ce
 R

at
e

(%
)

0 5 10 20 30 50 100 200 500 1000
k

2.0

2.5

3.0

3.5

Sp
ee

du
p

×

Figure 4. Upper: The acceptance rate α and n-gram acceptance
rate β versus varying k. Lower: The speedup ˆ versus varying k.

Table 7. Acceptance rate α (k “ 0) and speedup ˆ across dif-
ferent tree configurations. Each configuration is represented by a
4-digit array: they represent the number of candidates for different
decoding heads in §3.2.

Gen. Len. [3,3,3,3] [1,9,9,9]
[1,3,3,3]
(Ours)

20K α 0.44 0.50 0.45
ˆpą 1q 1.34 0.53 1.56

40K α 0.43 0.52 0.43
ˆpą 1q 1.58 0.67 1.75

60K α 0.43 0.53 0.42
ˆpą 1q 1.75 0.78 1.88

80K α 0.43 0.55 0.42
ˆpą 1q 1.85 0.88 1.97

100K α 0.42 0.57 0.40
ˆpą 1q 1.91 0.96 1.96

Table 8. Distinct-n score across different penalty value θ. 1.0 in-
dicate that no penalty is applied. We take W “ 1024 (See Ap-
pendix F.2 for ablation on W).

θ Distinct-1 Distinct-2 Distinct-3 Distinct-4 AVG.

1.0 0.07 0.11 0.14 0.15 0.12
1.1 0.08 0.13 0.15 0.16 0.13
1.2 0.41 0.71 0.81 0.82 0.69
1.3 0.57 0.86 0.93 0.95 0.83
1.4 0.52 0.73 0.76 0.77 0.70
1.5 0.74 0.96 0.98 0.99 0.92

quality of ultra-long sequence generation.

In addition, we can find that the higher the diversity, the
lower the speedup. Therefore, if TriForce is combined with
context penalty, the speedup in Table 3 will drop further.

4.4. Discussions

In this section, we explore the effects of different hyperpa-
rameters on TOKENSWIFT.

4.4.1. TREE CONFIGURATION

Due to the time-consuming nature of finding the optimal
tree in Medusa (Cai et al., 2024) and its limited impact on

7

Lossless Acceleration of Ultra Long Sequence Generation

accelerating ultra-long sequences generation, we employ a
simple 3-ary tree in tree attention. See Appendix B for the
tree structure.

As shown in Table 7, [1,9,9,9] has the highest accep-
tance rate but the lowest speedup. This is because more can-
didates increase the acceptance rate, but also increase the
verification burden. Similarly, by comparing [1,3,3,3]
and [3,3,3,3], we can find that the first head (i.e., the
original head of target model) achieves relatively high pre-
diction accuracy when using KV compression, so choosing
the top-1 token as candidate is sufficient. To balance the
trade-off of acceptance rate and verification efficiency, we
adopt [1,3,3,3] as the configuration of TOKENSWIFT.

4.4.2. N-GRAM CANDIDATES

As illustrated in Figure 4, increasing k enhances the n-gram
acceptance rate β due to a larger pool of n-gram candidates.
However, an excessive number of candidates can strain the
verification process, leading to reduced speedup ˆ.

Interestingly, a lower k does not always result in a lower
β. For instance, k “ 5 achieves a higher β than k “ 20,
resulting in both a higher acceptance rate α and greater
speedup ˆ. However, at k “ 5, the lack of diversity among
the candidates leads to increased repetition, which in turn
degrades the quality of generation.

4.4.3. PENALTY VALUE θ

As a key component of TOKENSWIFT, contextual penalty
significantly reduces repetition in generated text. We ex-
amine the effect of two parameters present in contextual
penalty, i.e. penalty value θ and penalty window W .

Table 8 presents the impact of introducing contextual penalty
on diversity. Without any penalty (θ “ 1.0), the generated
sequences exhibit severe repetition, with an average Distinct-
n score of only 0.12. As the value of θ increases gradually
to 1.2, the diversity improves significantly, highlighting
the effectiveness of contextual penalty in enhancing the
diversity of ultra-long sequence generation.

4.5. Temperature

Table 9 presents the results of an ablation experiment in-
vestigating the effect of varying temperature settings on the
generation length, acceptance rate, and speedup during text
generation. The experiment uses top-p sampling with a fixed
p of 0.9 and evaluates generation lengths ranging from 20K
to 100K tokens, with temperature values spanning from 0.4
to 1.2.

From the results, it is evident that as temperature increases,
acceptance rate generally decreases across all generation
lengths. Specifically, acceptance rate drops from 0.79 at a
temperature of 0.4 to 0.52 at a temperature of 1.2 for 20K-
length generation, and a similar trend is observed for longer

sequences. This suggests that higher temperatures result in
more diverse but less accurate output. On the other hand,
speedup tends to remain relatively stable or slightly decrease
with higher temperatures. The highest speedups, reaching
around 3.4, are observed across all generation lengths with
temperatures around 0.6 and 1.0, indicating that moderate
temperature settings offer the best balance between speed
and quality.

Table 9. Ablation results on varying temperatures. Using top-p
sampling, with p set to 0.9.

Gen. Len. 0.4 0.6 0.8 1.0 1.2

20K α 0.79 0.84 0.56 0.68 0.52
ˆpą 1q 2.25 2.34 1.80 2.10 1.72

40K α 0.85 0.88 0.73 0.81 0.69
ˆpą 1q 2.76 2.80 2.60 2.80 2.52

60K α 0.87 0.89 0.80 0.84 0.77
ˆpą 1q 3.07 3.10 3.05 3.07 2.96

80K α 0.88 0.90 0.83 0.86 0.81
ˆpą 1q 3.26 3.29 3.29 3.28 3.22

100K α 0.89 0.90 0.85 0.87 0.83
ˆpą 1q 3.39 3.41 3.45 3.42 3.42

4.5.1. CASE STUDY

Figure 5 presents a case study on the impact of the contex-
tual penalty. Without the Contextual Penalty, repetitions ap-
pear at about 5K tokens, compared to 60K with the penalty
applied. Additionally, generation without the penalty ex-
hibits word-for-word repetition, whereas generation with
the penalty primarily demonstrates semantic-level repetition,
highlighting its effectiveness in mitigating redundancy.

……(prompt)……

But the spring is now in full

bloom, the woods are green, and

the village is full of the sweetest

of scents.

……(about 5K words)……

The beauty of the spring is a time

of great change and great growth,

a time of great renewal and great

wonder. …, great wonder, and a

time of great delight.

The beauty of the spring is a time

of great change and great growth,

a time of great renewal and great

wonder. …, great wonder, and a

time of great delight.

……(about 10K words)……

Note: The text is a continuous

passage, but it has been split into

several sections for easier

reading. …, and into the heart of

the human experience.

……(about 10K words)……

The text is a work of art, and it

should be read as such. The

reader is encouraged to take his

time, to read slowly and to savor

the words, the images and the

emotions that they evoke. …, It is

a meditation on the human

experience

……(repeat to 100K)……

……(prompt)……

We know too well the fate of the

scarlet and crimson flowers,

which were so abundant and

beautiful in the earlier times, and

which now bloom only in the

wilder parts of the country.

……(about 10K words)……

In the midst of the struggle now

waging in our country, the

Confederate States have been

formally organized, …, few miles

north of the village of Brookline,

there rises a hill, upon which

stands a beautiful old oak tree.

……(about 30K words)……

Secede, as used in our language,

has its origin in the Latin word

'cedere,' to go, …, , and becomes

a separate nation.

……(about 20K words)……

The wild anemone is found in

many parts of the country,--in the

woodlands of the mountains, …,

contain numerous seeds, each

about an eighth of an inch long.

……(about 10K words)……

The wild anemone is found in

many parts of the country,--in the

woodlands of the mountains, …,

in order to defend themselves and

their lands against the, ……

Without penalty Penalty = 1.2

Figure 5. Case Study on LLaMA3.1-8b. Left: fragments of gen-
erated text without Contextual Penalty. Right: fragments of gener-
ated text with Contextual Penalty. The blue text is repetition part.
See Appendix G for more cases.

8

Lossless Acceleration of Ultra Long Sequence Generation

5. Related Works
5.1. Speculative Decoding

Recent advancements in speculative decoding have sig-
nificantly accelerated large language model (LLM) infer-
ence through diverse methodologies. Speculative decod-
ing (Leviathan et al., 2023; Chen et al., 2023) tradition-
ally leverages smaller draft models to propose candidate
tokens for verification by the target model. Early works
like SpecTr (Sun et al., 2023) introduced optimal transport
for multi-candidate selection, while SpecInfer (Miao et al.,
2024) and Medusa (Cai et al., 2024) pioneered tree-based
structures with tree-aware attention and multi-head decoding
to enable parallel verification of multiple candidates. Subse-
quent innovations, such as Sequoia (Chen et al., 2024b) and
EAGLE-2 (Li et al., 2024d), optimized tree construction us-
ing dynamic programming and reordering strategies, while
Hydra (Ankner et al., 2024) and ReDrafter (Cheng et al.,
2024) enhanced tree dependencies through sequential or re-
current heads. Hardware-aware optimizations, exemplified
by SpecExec (Svirschevski et al., 2024) and Triforce (Sun
et al., 2024a), further improved efficiency by leveraging
hierarchical KV caching and quantized inference.

Self-speculative approaches eliminate the need for exter-
nal draft models by exploiting internal model dynamics.
Draft&Verify (Zhang et al., 2024) and LayerSkip (Elhoushi
et al., 2024) utilized early-exit mechanisms and Bayesian op-
timization to skip layers adaptively, whereas Kangaroo (Liu
et al., 2024b) integrated dual early exits with lightweight
adapters. Sun et al. (2024b) and SpecDec++ (Huang et al.,
2024) introduced theoretical frameworks for block-level
token acceptance and adaptive candidate lengths. Parallel
decoding paradigms, such as PASS (Monea et al., 2023) and
MTJD (Qin et al., 2024), employed look-ahead embeddings
or joint probability modeling to generate multiple candidates
in a single pass, while CLLMs (Kou et al., 2024) and Looka-
head (Fu et al., 2024) reimagined autoregressive consistency
through Jacobi decoding and n-gram candidate pools.

Retrieval-augmented methods like REST (He et al., 2024),
and NEST (Li et al., 2024b) integrated vector or phrase re-
trieval to draft context-aware tokens, often combining copy
mechanisms with confidence-based attribution. Training-
centric strategies, including TR-Jacobi (Wang et al., 2024a),
enhanced parallel decoding capability via noisy training
or self-distilled multi-head architectures. System-level op-
timizations such as PipeInfer (Butler et al., 2024) and
Narasimhan et al. (2024) addressed scalability through asyn-
chronous pipelines and latency-aware scheduling, while
Goodput (Liu et al., 2024c) focused on dynamic resource
allocation and nested model deployment.

Approaches such as Triforce (Sun et al., 2024a) and Mag-
icDec (Chen et al., 2024a) incorporate KV cache compres-
sion during the drafting phase. However, their applicability

is limited to scenarios characterized by long prefixes and
short outputs, making them unsuitable for ultra-long se-
quence generation tasks. In such tasks, which are the focus
of our work, the need for efficient inference spans both
extended input contexts and lengthy outputs, presenting
challenges that existing methods fail to address.

5.2. Long Sequence Generation

Recent advances in long sequence generation have focused
on addressing the challenges of coherence, efficiency,
and scalability in producing extended outputs. A pivotal
contribution is the LongWriter (Bai et al., 2024) framework,
which introduces a task decomposition strategy to generate
texts exceeding 20,000 words. Complementing this,
Temp-Lora (Wang et al., 2024b) proposes inference-time
training with temporary Lora modules to dynamically
adapt model parameters during generation, offering a
scalable alternative to traditional KV caching. Similarly,
PLANET (Hu et al., 2022) leverages dynamic content
planning with sentence-level bag-of-words objectives
to improve logical coherence in opinion articles and
argumentative essays, demonstrating the effectiveness of
structured planning in autoregressive transformers.

In addition, lightweight decoding-side sampling strategies
have emerged for repetition mitigation. The foundational
work on Nucleus Sampling (Holtzman et al., 2020) first
demonstrated that dynamically truncating low-probability
token sets could reduce repetitive outputs while maintain-
ing tractable decoding latency. Building on this, Hewitt
et al. (2022) introduced η-sampling explicitly linking can-
didate set reduction to repetition mitigation by entropy-
guided token pruning. Recent variants like Min-p (Nguyen
et al., 2024) optimize truncation rules in real-time—scaling
thresholds to the maximum token probability. And Mirostat
Sampling (Basu et al., 2021) further integrate lightweight
Bayesian controllers to adjust η parameters on-the-fly. Our
work systematically analyzing how parameterized sampling
(e.g., Top-p Min-p, η-sampling) balances computational
overhead and repetition suppression in ultra-long sequence
generation pipelines.

6. Conclusion
In this study, we introduce TOKENSWIFT, a novel frame-
work designed to achieve lossless acceleration in generating
ultra-long sequences with LLMs. By analyzing and address-
ing three challenges, TOKENSWIFT significantly enhances
the efficiency of the generation process. Our experimental
results demonstrate that TOKENSWIFT achieves over 3ˆ

acceleration across various model scales and architectures.
Furthermore, TOKENSWIFT effectively mitigates issues re-
lated to repetitive content, ensuring the quality and coher-
ence of the generated sequences.

9

Lossless Acceleration of Ultra Long Sequence Generation

Impact Statement
This paper presents work aimed at advancing the field of
Machine Learning, specifically in the context of improving
efficiency and scalability in generating ultra-long sequences.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
None of the ethical concerns we foresee require specific
actions or warnings in the context of this work.

Acknowledgement
The authors thank the reviewers for their insightful sugges-
tions to improve the manuscript. This work presented herein
is supported by the National Natural Science Foundation of
China (62376031).

References
AI@Meta. The llama 3 herd of models, 2024. URL https:
//ai.meta.com/research/publications/
the-llama-3-herd-of-models.

Ankner, Z., Parthasarathy, R., Nrusimha, A., Rinard, C.,
Ragan-Kelley, J., and Brandon, W. Hydra: Sequentially-
dependent draft heads for medusa decoding. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=FbhjirzvJG.

Bai, Y., Zhang, J., Lv, X., Zheng, L., Zhu, S., Hou, L., Dong,
Y., Tang, J., and Li, J. Longwriter: Unleashing 10,000+
word generation from long context llms. arXiv preprint
arXiv:2408.07055, 2024.

Basu, S., Ramachandran, G. S., Keskar, N. S., and Varsh-
ney, L. R. {MIROSTAT}: A {neural} {text} {decoding}
{algorithm} {that} {directly} {controls} {perplexity}. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum
?id=W1G1JZEIy5_.

Butler, B., Yu, S., Mazaheri, A., and Jannesari, A. Pipeinfer:
Accelerating llm inference using asynchronous pipelined
speculation. In SC24: International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pp. 1–19, 2024. doi: 10.1109/SC41406.2024.00046.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D., and
Dao, T. Medusa: Simple LLM Inference Acceleration
Framework with Multiple Decoding Heads. In Forty-first
International Conference on Machine Learning, volume
abs/2401.10774, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Chen, J., Tiwari, V., Sadhukhan, R., Chen, Z., Shi, J., Yen,
I. E.-H., and Chen, B. Magicdec: Breaking the Latency-
Throughput Tradeoff for Long Context Generation with
Speculative Decoding. arXiv, abs/2408.11049, 2024a.

Chen, Z., May, A., Svirschevski, R., Huang, Y.-H., Ryabinin,
M., Jia, Z., and Chen, B. Sequoia: Scalable and ro-
bust speculative decoding. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024b. URL https://openreview.net/forum
?id=rk2L9YGDi2.

Cheng, Y., Zhang, A., Zhang, X., Wang, C., and Wang,
Y. Recurrent drafter for fast speculative decoding in
large language models. arXiv preprint arXiv:2403.09919,
2024.

Ding, Y., Zhang, L. L., Zhang, C., Xu, Y., Shang, N., Xu,
J., Yang, F., and Yang, M. LongroPE: Extending LLM
context window beyond 2 million tokens. In Forty-first
International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=
ONOtpXLqqw.

Elhoushi, M., Shrivastava, A., Liskovich, D., Hosmer, B.,
Wasti, B., Lai, L., Mahmoud, A., Acun, B., Agarwal,
S., Roman, A., Aly, A., Chen, B., and Wu, C.-J. Layer-
Skip: Enabling early exit inference and self-speculative
decoding. In Ku, L.-W., Martins, A., and Srikumar, V.
(eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 12622–12642, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.681. URL https:
//aclanthology.org/2024.acl-long.681/.

Fu, Y., Bailis, P., Stoica, I., and Zhang, H. Break the se-
quential dependency of LLM inference using lookahead
decoding. In Forty-first International Conference on Ma-
chine Learning, 2024. URL https://openreview
.net/forum?id=eDjvSFOkXw.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

He, Z., Zhong, Z., Cai, T., Lee, J., and He, D. REST:
Retrieval-based speculative decoding. In Duh, K., Gomez,
H., and Bethard, S. (eds.), Proceedings of the 2024 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pp. 1582–1595, Mex-
ico City, Mexico, June 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.naacl-long.88.
URL https://aclanthology.org/2024.na
acl-long.88/.

10

https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://openreview.net/forum?id=FbhjirzvJG
https://openreview.net/forum?id=FbhjirzvJG
https://openreview.net/forum?id=W1G1JZEIy5_
https://openreview.net/forum?id=W1G1JZEIy5_
https://openreview.net/forum?id=rk2L9YGDi2
https://openreview.net/forum?id=rk2L9YGDi2
https://openreview.net/forum?id=ONOtpXLqqw
https://openreview.net/forum?id=ONOtpXLqqw
https://aclanthology.org/2024.acl-long.681/
https://aclanthology.org/2024.acl-long.681/
https://openreview.net/forum?id=eDjvSFOkXw
https://openreview.net/forum?id=eDjvSFOkXw
https://aclanthology.org/2024.naacl-long.88/
https://aclanthology.org/2024.naacl-long.88/

Lossless Acceleration of Ultra Long Sequence Generation

Hewitt, J., Manning, C. D., and Liang, P. Truncation sam-
pling as language model desmoothing. In Findings of
the Association for Computational Linguistics: EMNLP
2022, pp. 3414–3427, 2022.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. In International
Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rygG
QyrFvH.

Hu, Z., Chan, H. P., Liu, J., Xiao, X., Wu, H., and Huang, L.
PLANET: Dynamic content planning in autoregressive
transformers for long-form text generation. In Muresan,
S., Nakov, P., and Villavicencio, A. (eds.), Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 2288–
2305, Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-long.163.
URL https://aclanthology.org/2022.ac
l-long.163/.

Huang, K., Guo, X., and Wang, M. Specdec++: Boost-
ing speculative decoding via adaptive candidate lengths.
arXiv preprint arXiv:2405.19715, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C.,
and Socher, R. Ctrl: A conditional transformer lan-
guage model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Kou, S., Hu, L., He, Z., Deng, Z., and Zhang, H. CLLMs:
Consistency large language models. In Forty-first Inter-
national Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=8uzB
OVmh8H.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B. A
diversity-promoting objective function for neural con-
versation models. In Knight, K., Nenkova, A., and
Rambow, O. (eds.), Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pp. 110–119, San Diego, California, June
2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1014. URL https://aclantho
logy.org/N16-1014/.

Li, J., Wang, X., Ding, W., Wang, Z., Kang, Y., Jia, Z., and
Zheng, Z. Ram: Towards an ever-improving memory
system by learning from communications. arXiv preprint
arXiv: 2404.12045, 2024a.

Li, M., Chen, X., Holtzman, A., Chen, B., Lin, J., tau Yih,
W., and Lin, X. V. Nearest neighbor speculative decoding
for LLM generation and attribution. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024b. URL https://openreview.net
/forum?id=Ni9kebsSTt.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. SnapKV: LLM
knows what you are looking for before generation. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024c. URL https://openre
view.net/forum?id=poE54GOq2l.

Li, Y., Wei, F., Zhang, C., and Zhang, H. EAGLE-2: Faster
inference of language models with dynamic draft trees.
In Empirical Methods in Natural Language Processing,
2024d.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024a.

Liu, F., Tang, Y., Liu, Z., Ni, Y., Tang, D., Han, K., and
Wang, Y. Kangaroo: Lossless self-speculative decoding
for accelerating LLMs via double early exiting. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024b. URL https://openre
view.net/forum?id=lT3oc04mDp.

Liu, X., Daniel, C., Hu, L., Kwon, W., Li, Z., Mo, X., Che-
ung, A., Deng, Z., Stoica, I., and Zhang, H. Optimizing
speculative decoding for serving large language models
using goodput. arXiv preprint arXiv:2406.14066, 2024c.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi, X.,
Shi, C., Chen, Z., Arfeen, D., Abhyankar, R., and Jia,
Z. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verifica-
tion. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ASPLOS
’24, pp. 932–949, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400703867.
doi: 10.1145/3620666.3651335. URL https:
//doi.org/10.1145/3620666.3651335.

Mikhaylovskiy, N. Long story generation challenge. In
Mille, S. (ed.), Proceedings of the 16th International
Natural Language Generation Conference: Generation

11

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/2022.acl-long.163/
https://aclanthology.org/2022.acl-long.163/
https://openreview.net/forum?id=8uzBOVmh8H
https://openreview.net/forum?id=8uzBOVmh8H
https://aclanthology.org/N16-1014/
https://aclanthology.org/N16-1014/
https://openreview.net/forum?id=Ni9kebsSTt
https://openreview.net/forum?id=Ni9kebsSTt
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=lT3oc04mDp
https://openreview.net/forum?id=lT3oc04mDp
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335

Lossless Acceleration of Ultra Long Sequence Generation

Challenges, pp. 10–16, Prague, Czechia, September 2023.
Association for Computational Linguistics. URL https:
//aclanthology.org/2023.inlg-genchal
.2/.

Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D., and
Finn, C. Detectgpt: Zero-shot machine-generated text de-
tection using probability curvature. In International Con-
ference on Machine Learning, pp. 24950–24962. PMLR,
2023.

Monea, G., Joulin, A., and Grave, E. Pass: Parallel specula-
tive sampling. arXiv preprint arXiv:2311.13581, 2023.

Narasimhan, H., Jitkrittum, W., Rawat, A. S., Kim, S.,
Gupta, N., Menon, A. K., and Kumar, S. Faster
cascades via speculative decoding. arXiv preprint
arXiv:2405.19261, 2024.

Nguyen, M., Baker, A., Kirsch, A., and Neo, C. Min p
sampling: Balancing creativity and coherence at high
temperature. arXiv e-prints, pp. arXiv–2407, 2024.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. YaRN: Ef-
ficient context window extension of large language mod-
els. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview
.net/forum?id=wHBfxhZu1u.

Qin, Z., Hu, Z., He, Z., Prakriya, N., Cong, J., and
Sun, Y. Optimized multi-token joint decoding with
auxiliary model for llm inference. arXiv preprint
arXiv:2407.09722, 2024.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang,
J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J.,
Dang, K., Lu, K., Bao, K., Yang, K., Yu, L., Li, M., Xue,
M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Tang,
T., Xia, T., Ren, X., Ren, X., Fan, Y., Su, Y., Zhang, Y.,
Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z. Qwen2.5
technical report, 2025. URL https://arxiv.org/
abs/2412.15115.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C.,
and Lillicrap, T. P. Compressive transformers for long-
range sequence modelling. In International Conference
on Learning Representations, 2020. URL https://op
enreview.net/forum?id=SylKikSYDH.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: language agents with verbal reinforce-
ment learning. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems, volume 36, pp.
8634–8652. Curran Associates, Inc., 2023. URL https:
//proceedings.neurips.cc/paper_files

/paper/2023/file/1b44b878bb782e6954c
d888628510e90-Paper-Conference.pdf.

Sun, H., Chen, Z., Yang, X., Tian, Y., and Chen, B. Triforce:
Lossless acceleration of long sequence generation with
hierarchical speculative decoding. In First Conference on
Language Modeling, 2024a. URL https://openre
view.net/forum?id=HVK6nl3i97.

Sun, Z., Suresh, A. T., Ro, J. H., Beirami, A., Jain, H.,
and Yu, F. Spectr: Fast speculative decoding via optimal
transport. In Oh, A., Naumann, T., Globerson, A., Saenko,
K., Hardt, M., and Levine, S. (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 30222–
30242. Curran Associates, Inc., 2023. URL https:
//proceedings.neurips.cc/paper_files
/paper/2023/file/6034a661584af6c28fd
97a6f23e56c0a-Paper-Conference.pdf.

Sun, Z., Ro, J. H., Beirami, A., and Suresh, A. T. Optimal
block-level draft verification for accelerating speculative
decoding. arXiv preprint arXiv:2403.10444, 2024b.

Svirschevski, R., May, A., Chen, Z., Chen, B., Jia, Z., and
Ryabinin, M. Specexec: Massively parallel speculative
decoding for interactive LLM inference on consumer
devices. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL ht
tps://openreview.net/forum?id=JAhNsZ
9dvG.

Wang, Y., Yang, K., Liu, X., and Klein, D. Improving pacing
in long-form story planning. In The 2023 Conference
on Empirical Methods in Natural Language Processing,
2023. URL https://openreview.net/forum
?id=KUSzNKRI2g.

Wang, Y., Luo, X., Wei, F., Liu, Y., Zhu, Q., Zhang, X.,
Yang, Q., Xu, D., and Che, W. Make some noise: Un-
locking language model parallel inference capability
through noisy training. In Al-Onaizan, Y., Bansal, M.,
and Chen, Y.-N. (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pp. 12914–12926, Miami, Florida, USA, November
2024a. Association for Computational Linguistics. doi:
10.18653/v1/2024.emnlp-main.718. URL https://ac
lanthology.org/2024.emnlp-main.718/.

Wang, Y., Ma, D., and Cai, D. With greater text comes
greater necessity: Inference-time training helps long text
generation. In First Conference on Language Modeling,
2024b. URL https://openreview.net/forum
?id=dj9x6JuiD5.

Wu, T., Zhao, Y., and Zheng, Z. An efficient recipe for long
context extension via middle-focused positional encod-
ing. In The Thirty-eighth Annual Conference on Neural

12

https://aclanthology.org/2023.inlg-genchal.2/
https://aclanthology.org/2023.inlg-genchal.2/
https://aclanthology.org/2023.inlg-genchal.2/
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://openreview.net/forum?id=HVK6nl3i97
https://openreview.net/forum?id=HVK6nl3i97
https://proceedings.neurips.cc/paper_files/paper/2023/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://openreview.net/forum?id=JAhNsZ9dvG
https://openreview.net/forum?id=JAhNsZ9dvG
https://openreview.net/forum?id=JAhNsZ9dvG
https://openreview.net/forum?id=KUSzNKRI2g
https://openreview.net/forum?id=KUSzNKRI2g
https://aclanthology.org/2024.emnlp-main.718/
https://aclanthology.org/2024.emnlp-main.718/
https://openreview.net/forum?id=dj9x6JuiD5
https://openreview.net/forum?id=dj9x6JuiD5

Lossless Acceleration of Ultra Long Sequence Generation

Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=aNHEqFMS0N.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient streaming language models with attention sinks. In
The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net
/forum?id=NG7sS51zVF.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. React: Synergizing reasoning and
acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=WE_v
luYUL-X.

Yuan, Z., Shang, Y., Zhou, Y., Dong, Z., Zhou, Z., Xue, C.,
Wu, B., Li, Z., Gu, Q., Lee, Y. J., et al. Llm inference un-
veiled: Survey and roofline model insights. arXiv preprint
arXiv:2402.16363, 2024.

Zhang, J., Wang, J., Li, H., Shou, L., Chen, K., Chen, G.,
and Mehrotra, S. Draft& verify: Lossless large language
model acceleration via self-speculative decoding. In
Ku, L.-W., Martins, A., and Srikumar, V. (eds.), Pro-
ceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pp. 11263–11282, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl- long.607. URL https:
//aclanthology.org/2024.acl-long.607/.

13

https://openreview.net/forum?id=aNHEqFMS0N
https://openreview.net/forum?id=aNHEqFMS0N
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2024.acl-long.607/
https://aclanthology.org/2024.acl-long.607/

Lossless Acceleration of Ultra Long Sequence Generation

A. Lossless Nature of Speculative Decoding
The speculative decoding (Leviathan et al., 2023; Chen et al., 2023) can easily be justified to be lossless and identical to
sample from qtarget alone, i.e., pSD “ qtarget. Note that, given prefix X1:j , the next token sampled from:

xj`1 „

#

pdraftpx|X1:jq, if Up0, 1q ą α,

normpmaxp0, qtargetpx|X1:jq ´ pdraftpx̂|X1:jqqq, otherwise,

where α is the acceptance rate given by

αpxq “ min

ˆ

1.0,
qtargetpxq

pdraftpxq

˙

.

If the draft token is accepted, we have

pSDpx|X1:j ; acceptedq “ pdraftpx|X1:jqαpx|X1:jq “ minppdraft, qtargetq.

If the token is rejected, we have

pSDpx|X1:j ; rejectedq “ p1 ´ αpx|X1:jqqnormpmaxp0, qtargetpx|X1:jq ´ pdraftpx̂|X1:jqqq

“ p1 ´ αq
qtarget ´ minppdraft, qtargetq

1 ´ α

“ qtarget ´ minppdraft, qtargetq

Therefore, the overall probability is given by

pSDpx|X1:jq “ pSDpx|X1:j ; acceptedq ` pSDpx|X1:j ; rejectedq “ qtargetppx|X1:jq

Proved.

B. Additional Training and Inference Details.
B.1. Training Details

During training, only three linear layers are fine-tuned, while the parameters of the LLM remained fixed. The model was
trained on an NVIDIA A100-SXM4-80GB GPU. The specific training parameters are outlined in Table 10.

Table 10. Additional training details. Note that these hyperparameters do not require extensive tuning.

LLaMA3.1-8b YaRN-LLaMA2-7b-128k Qwen2.5-1.5b Qwen2.5-7b Qwen2.5-14b

optimizer AdamW
betas (0.9, 0.999)
weight decay 0.1
warmup steps 50
learning rate scheduler cosine
num. GPUs 4
gradient accumulation steps 10

batch size per GPU 3 1
num. steps 200 600
learning rate 5e-3 1e-3

training parameters 50.3M 50.3M 7.1M 38.5M 78.6M
MAX kv cache size 13.4G 53.7G 2.9G 5.9G 20.1G

B.2. Inference Details

For inference, we used 4-grams to maintain consistency with multi-token generation. The specific inference parameters are
presented in Table 11.

For the tree attention mechanism, we selected a simple ternary full tree configuration, as depicted in Appendix B.2.

14

Lossless Acceleration of Ultra Long Sequence Generation

Table 11. k stands for the maximum number of retrieved n-grams in token reutilization

k temp. top-p min-p penalty penalty len.

LLaMA3.1-8b

20 1.0

- 0.1 1.2

1024
YaRN-LLaMA2-7b-128k 0.9 - 1.15
Qwen2.5-1.5b 0.9 - 1.15
Qwen2.5-7b - 0.05 1.15
Qwen2.5-14b - 0.05 1.13

C. Pre-training Details of the Llama3.1 Draft Model
To serve as the draft model for LLaMA3.1-8b in TriForce, we pretrain a tiny version of 250M parameters with the
same tokenizer from LLaMA3.1-8b. The model configuration is listed in Table 12. We train the model on Wikipedia
(20231101.en) 5 and part of C4-en6 for 1 epoch.

Table 12. Configuration of Llama 3.1 205M.

hidden size 768
hidden act silu

intermediate size 3072
max position embeddings 2048

num attention heads 12
num key value heads 12

rope theta 500000
vocab size 128256

D. Different Sampling Method
D.1. Introduction of Different Sampling Algorithms

Given a probability distribution P pxt|x1, x2, . . . , xt´1q over the vocabulary V at position t, top-p sampling (Holtzman
et al., 2020) first sorts the tokens in descending order of their probabilities. It then selects the smallest set of tokens whose
cumulative probability exceeds a predefined threshold p, where p P p0, 1s. Formally, let Vp Ă V be the smallest set such that:

ÿ

vPVp

P pxt “ v|x1, x2, . . . , xt´1q ě p.

5https://huggingface.co/datasets/wikimedia/wikipedia
6https://huggingface.co/datasets/allenai/c4

15

https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/datasets/allenai/c4

Lossless Acceleration of Ultra Long Sequence Generation

The next token x̂t is then randomly sampled from this reduced set Vp according to the renormalized probabilities:

x̂t „
P pxt “ v|x1, . . . , xt´1q

ř

v1PVp
P pxt “ v1|x1, . . . , xt´1q

for v P Vp.

Nguyen et al. (2024) introduced min-p sampling, which uses a relative probability threshold pbase P p0, 1s to scale the
maximum token probability pmax to determine the absolute probability threshold pscaled. Sampling is then performed on
tokens with probability greater than or equal to pscaled.

Formally, given the maximum probability over the token distribution pmax “ maxvPV P pxt “ v|x1, x2, . . . , xt´1q, the
absolute probability threshold pscaled is calculated as:

pscaled “ pbase ˆ pmax.

The sampling pool Vmin is then defined as the set of tokens whose probability is greater than or equal to pscaled:

Vmin “ tv P V | P pv|x1, x2, . . . , xt´1q ě pscaledu.

Finally, the next token x̂t is randomly sampled from the set Vmin according to the normalized probabilities:

x̂t „
P pv|x1, . . . , xt´1q

ř

v1PVmin
P pv1|x1, . . . , xt´1q

for v P Vmin.

The sampling pool of η-sampling (Hewitt et al., 2022) is defined as

Vη “ tv P V | P pv|x1, x2, . . . , xt´1q ě ηu,

η “ min pϵ, α expp´hθ,xăi
qq .

where hθ,xăi
is the entropy of P pV|x1, x2, . . . , xt´1q, α and ϵ are hyperparameters.

D.2. Impact of Different Sampling Algorithms

We also explored the impact of different sampling algorithms with disable token reutilization, including top-p sam-
pling (Holtzman et al., 2020), min-p sampling (Nguyen et al., 2024), and η-sampling (Hewitt et al., 2022). As summarized
in Table 13, TOKENSWIFT consistently demonstrates strong robustness across these methods. This versatility underscores
its compatibility with a wide range of decoding strategies, making it suitable for diverse applications and use cases.

Table 13. Ablation results on various sampling methods with disable token reutilization.

Gen. Len. top-p
pp “ 0.9q

min-p
pp “ 0.1q

η-sampling
(ϵ “2e-4)

20K α 0.68 0.66 0.56
ˆpą 1q 2.10 2.01 1.85

40K α 0.81 0.75 0.71
ˆpą 1q 2.80 2.58 2.59

60K α 0.84 0.79 0.78
ˆpą 1q 3.07 2.94 2.99

80K α 0.86 0.81 0.81
ˆpą 1q 3.28 3.15 3.24

100K α 0.87 0.82 0.84
ˆpą 1q 3.42 3.26 3.42

16

Lossless Acceleration of Ultra Long Sequence Generation

E. Tree-Based Attention
Tree attention is a mechanism designed to process multiple candidate continuations during speculative decoding efficiently.
Instead of selecting a single continuation as in traditional methods, tree attention leverages multiple candidates to increase
the expected acceptance length in each decoding step, balancing computational demands and performance.

The mechanism uses a tree structure where each branch represents a unique candidate continuation. For example, if two
heads generate top-2 and top-3 predictions, the Cartesian product of these predictions results in 6 candidates, forming a tree
with 6 branches. Each token in the tree attends only to its predecessors, and an attention mask ensures that this constraint is
upheld. Positional indices are also adjusted to align with the tree structure.

The tree structure is constructed by taking the Cartesian product of the predictions across all heads. If head k has sk top
predictions, then the tree structure consists of all possible combinations of predictions across the heads. Each combination
forms a unique branch in the tree.

Let the total number of candidates (i.e., branches) in the tree be denoted as C, which is the product of the number of
predictions for each head:

C “

K
ź

k“1

sk.

Each candidate is a distinct sequence of tokens formed by selecting one token from each set of predictions from the heads.

To ensure that tokens only attend to their predecessors (tokens generated earlier in the continuation), an attention mask is
applied. The attention mask for the tree structure ensures that for each token at level k, it can attend only to tokens in levels
t0, 1, . . . , k ´ 1u. This guarantees that each token’s attention is directed solely towards its predecessors in the tree.

Formally, the attention mask Mk for each token at level k is defined as:

Mkpi, jq “

#

1 if token j is a predecessor of token i,

0 otherwise.

where Mkpi, jq “ 1 means that the token at position j can attend to the token at position i, and Mkpi, jq “ 0 means no
attention is allowed from j to i.

F. More Ablation Experiments
F.1. Ablation of Prefill Length

We disable token reutilization and conduct ablation study on the different prefix length, as shown in Table 14. The experiment
explores the impact of varying prefix lengths on the generation of sequences of different lengths (from 20K to 100K). The
results include two key metrics: acceptance rate (α) and speedup factor (ˆ).

As the prefix length increases, the acceptance rate tends to stabilize, generally hovering around 0.35 to 0.39 across different
sequence lengths, with a slight fluctuation depending on the specific prefix length. This suggests that while the acceptance
rate does not dramatically change with longer sequences, it remains relatively consistent.

Table 14. Ablation results on different prefill length disable token reutilization.

Prefill Len. 20K 40K 60K 80K 100K
α ˆ α ˆ α ˆ α ˆ α ˆ

2048 0.35 1.41 0.35 1.63 0.35 1.76 0.35 1.83 0.34 1.87
3072 0.31 1.23 0.31 1.42 0.31 1.55 0.31 1.64 0.30 1.69
4096 0.35 1.32 0.35 1.54 0.35 1.69 0.35 1.76 0.35 1.85
5120 0.32 1.29 0.31 1.46 0.31 1.57 0.31 1.65 0.31 1.70
6144 0.39 1.46 0.39 1.66 0.39 1.80 0.39 1.88 0.39 1.94
7168 0.36 1.42 0.37 1.62 0.36 1.74 0.36 1.82 0.36 1.88
8192 0.36 1.21 0.36 1.42 0.36 1.58 0.36 1.69 0.36 1.77

In terms of speedup, it shows that with longer prefix lengths, the model achieves progressively higher acceleration. For
instance, a prefix length of 2048 achieves a speedup of 1.41 for 20K tokens, but with 8192, the speedup reaches up to 1.77

17

Lossless Acceleration of Ultra Long Sequence Generation

for 100K tokens. This indicates that increasing the prefix length contributes to better acceleration, especially for longer
sequences, while maintaining a relatively stable acceptance rate. The findings demonstrate the tradeoff between prefix length
and model efficiency, where larger prefix lengths tend to result in greater speed.

F.2. Ablation of Penalty Window

We investigate the effect of penalty window size (W) on the performance of a model generating sequences of varying lengths
(from 20K to 100K tokens). For each sequence length, we apply a penalty to generated tokens within a sliding window of
size W , and evaluate the impact on two key metrics: acceptance rate (α) and acceleration factor (ˆ). Additionally, we assess
the diversity of the generated sequences using the Distinct-n metric, where higher values indicate greater diversity.

Table 15. Ablation results on penalty length (W).

Penalty Len. (W) 20K 40K 60K 80K 100K
α ˆ α ˆ α ˆ α ˆ α ˆ

20 0.82 2.25 0.90 2.85 0.93 3.20 0.94 3.42 0.95 3.58
50 0.83 2.30 0.89 2.83 0.91 3.14 0.92 3.35 0.93 3.52
128 0.59 1.75 0.70 2.38 0.75 2.75 0.80 3.07 0.82 3.29
256 0.78 2.17 0.86 2.76 0.89 3.11 0.91 3.33 0.92 3.48
512 0.75 2.15 0.84 2.73 0.88 3.07 0.89 3.28 0.90 3.43

1024 0.66 2.01 0.75 2.58 0.79 2.94 0.81 3.15 0.82 3.26
2048 0.69 1.99 0.79 2.58 0.82 2.91 0.84 3.14 0.86 3.31

Table 16. Distinct-n score with different penalty length W .

Penalty Len. (W) Distinct-1 Distinct-2 Distinct-3 Distinct-4 AVG.

20 0.85 0.86 0.73 0.70 0.79
50 0.91 0.91 0.85 0.77 0.86

128 0.95 0.77 0.57 0.48 0.69
256 0.83 0.91 0.88 0.83 0.86
512 0.90 0.86 0.74 0.65 0.79
1024 0.79 0.86 0.77 0.71 0.78
2048 0.67 0.84 0.86 0.84 0.80

The results in Table 15 and Table 16 show a clear trade-off between the penalty window size and the model’s performance.
For smaller penalty window sizes, such as W “ 20, the model achieves higher acceptance rates and better acceleration, but
this comes at the cost of lower diversity in the generated sequences (as indicated by lower Distinct-n values). As the penalty
window size increases (e.g., W “ 256 or W “ 2048), the acceptance rate slightly decreases, but the model exhibits better
diversity and still maintains a significant speedup relative to the AR baseline. These findings suggest that larger penalty
windows can help reduce repetitiveness and improve the diversity of long sequence generation, but they may also slightly
reduce the model’s efficiency and acceptance rate.

Table 15 also reveals that for each penalty window size, increasing the sequence length (from 20K to 100K tokens) generally
results in higher acceleration and better diversity, with some fluctuations in acceptance rates.

G. More Cases
H. Training Loss Curve

18

Lossless Acceleration of Ultra Long Sequence Generation

……(prompt)……

of the literature which

has been devoted to him.

The Revolutionary Epoch in

Europe.

If we examine the last half of the

eighteenth century in Europe, we

find that it was marked by the

most extraordinary commotion

.…..(about 5K words)……

In the eighteenth century, the

Revolution was the result of the

revolt of the mob, and the Reign

of Terror was the result of the

revolt of the mob.

The American Revolution was the

result of the revolt of the

Revolutionary mob, and the

Reign of Terror was the result of

the revolt of the Revolutionary

mob.

……(about 55K words)……

In the eighteenth century, the

Revolution was the result of the

revolt of the mob, and the Reign

of Terror was the result of the

revolt of the mob.

……(repeat to 100K)……

……(prompt)……

of biography.

Among the several nations of

modern Europe, France stands in

a class by herself. She is the great

mother of ideas, the molder of the

thoughts of men, the very

fountain of civilization. France is,

or should be, the highest type of

culture, the seat of the

intellectual, the artistic, the

literary, the scientific, and

philosophical life of the world.

.…..(about 50K words)……

When Napoleon was a boy, he

was a friend of the French people,

and of the Corsicans. Though

born a Catholic, he became a

protestant, and for some time he

lived in the neighborhood of the

French protestants.

......

When he was a boy, he was a

friend of the French people, and

of the Corsicans.He was also

a friend of Rousseau, and his first

publication was a poem on the

verses of the great Swiss

philosopher.

Without penalty Penalty = 1.15

Figure 6. Case Study on YaRN-LLaMA2-7b-128k. Left: fragments of generated text without Contextual Penalty. Right: fragments of
generated text with Contextual Penalty. The blue text is repetition part.

19

Lossless Acceleration of Ultra Long Sequence Generation

(a) Cross Entropy Loss Training Curve of the First Linear Layer

(b) Cross Entropy Loss Training Curve of the Second Linear Layer

(c) Cross Entropy Loss Training Curve of the Third Linear Layer

Figure 7. Cross Entropy Loss Training Curve of Linear Layers

20

