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ABSTRACT

Efficiently computing approximate equilibrium strategies in large Imperfect In-
formation Extensive-Form Games (IIEFGs) poses significant challenges due to
the vast size of the game tree. Pruning and abstraction methods effectively reduce
this complexity, enhancing computational efficiency. However, seamlessly inte-
grating pruning techniques with variants of Counterfactual Regret Minimization
(CFR), a leading method for solving IIEFGs, remains a complex task. Further-
more, existing information abstraction methods often involve high computational
costs and may require extensive offline pre-computation, limiting their practical
applicability. In this paper, we introduce Expected-Value Pruning and Abstrac-
tion (EVPA), an online approach that improves efficiency by leveraging expected
value estimation within information sets. EVPA consists of three core compo-
nents: expected value estimation of information sets, expected value-based prun-
ing, and information abstraction for subgames. It estimates the expected value
of information sets based on approximate Nash equilibrium strategies, employing
these estimations for both pruning and abstraction. By integrating Minimax prun-
ing with CFR, EVPA streamlines decision-making by permanently eliminating
sub-optimal actions from the game tree before CFR starts. Additionally, EVPA
features an advanced information abstraction mechanism that merges information
sets based on both current and future expected values in the subgame, achieving
efficient online abstraction. Experiments on HUNL demonstrate that EVPA out-
performs DeepStack’s replication and Slumbot with significant win-rate margins
in multiple settings. Remarkably, EVPA requires only 1%-2% of the solving time
to reach an approximate Nash equilibrium compared to DeepStack’s replication.

1 INTRODUCTION

Imperfect Information Extensive-Form Games (IIEFGs) provide a robust framework for analyzing
sequential games with hidden information and multiple players. This framework is applicable across
various domains, such as Poker (Brown & Sandholm, 2019a), Mahjong (Li et al., 2020), and Strat-
ego (Perolat et al., 2022). While small IIEFGs can be efficiently solved using linear programming
techniques (Koller et al., 1996; Koller & Pfeffer, 1997), large games, such as Poker, present sub-
stantial computational challenges (Billings et al., 2002).

To address these complexities, researchers primarily employ approximation methods (Nesterov,
2005; Zinkevich et al., 2007b; Chaudhuri et al., 2009). Counterfactual Regret Minimization (CFR)
and its variants (Zinkevich et al., 2007b; Lanctot et al., 2009; Tammelin, 2014; Brown & Sandholm,
2019b; Xu et al., 2024) stand out as the leading approaches for solving IIEFGs. However, the com-
putational overhead of CFR scales with the size of game tree, making it challenging to compute
approximate equilibrium strategies for large IIEFGs, particularly in games like Heads-Up No-Limit
Texas Hold’em (HUNL), which features a game tree with roughly 10165 states (Johanson, 2013).

Reducing the size of the game tree is essential for making equilibrium computation feasible (Sand-
holm, 2010). Pruning techniques (Blair et al., 1996) eliminate sub-optimal branches, speeding up
CFR convergence and reducing computational overhead (Brown & Sandholm, 2015a). Similarly,
abstraction techniques (Sandholm, 2015) group similar information sets into buckets, significantly
shrinking the game tree size. Combining pruning and abstraction methods can substantially reduce
the game tree, making CFR more practical for large IIEFGs (Brown & Sandholm, 2016b; 2018).
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Despite their utility, current pruning and information abstraction techniques have limitations. Exist-
ing pruning methods often depend on intermediate computed values during CFR iterations (Lanctot
et al., 2009; Brown & Sandholm, 2015a; 2017a), leading to dynamic and tentative pruning. This
complexity requires tailored adjustments based on the specific CFR variant employed. More im-
portantly, when using generic techniques such as depth-limited solving (Moravčı́k et al., 2017) or
MCCFR (Lanctot et al., 2009), the computational overhead of these intermediate values may even
greatly exceed the original overhead of the iteration. Moreover, during the early iterations of CFR,
the game tree size remains unchanged, resulting in no reduction in memory usage.

Information abstraction methods can be broadly categorized into expectation-based abstraction
(Gilpin & Sandholm, 2007; Zinkevich et al., 2007a) and potential-aware abstraction (Gilpin et al.,
2007; 2008; Ganzfried & Sandholm, 2014). Expectation-based abstraction often neglects the future
evolution of information sets, making it less effective (Gilpin & Sandholm, 2008; Johanson et al.,
2013). While potential-aware abstraction is more comprehensive, it requires extensive simulation
and clustering, leading to significant computational overhead that can extend for months (Sand-
holm, 2010; Brown et al., 2015), making it impractical for online computation. Furthermore, when
utilizing subgame solving techniques (Ganzfried & Sandholm, 2015; Brown & Sandholm, 2017c),
previous methods often use the same pre-calculated abstraction across different subgames, which
can be sub-optimal.1 Additionally, many methods focus solely on the strength of information sets,
overlooking blocking effects (Sandholm, 2010).2

To address these challenges, we propose Expected-Value Pruning and Abstraction (EVPA), a novel
online method that integrates expected value estimation into pruning and abstraction processes. The
goal is to significantly reduce the solving time required to reach an ε-Nash equilibrium. EVPA
consists of three core components: expected value estimation of information sets, expected value-
based pruning, and information abstraction for subgames. Figure 1 illustrates how EVPA operates
in a HUNL subgame example.

The first component, expected value estimation of information sets, generates expected value estima-
tions for each information set in the subgame, based on the approximate Nash equilibrium strategy.
EVPA’s estimation does not rely on the probability distributions of information sets, allowing it to
efficiently sample data and avoid the overhead of probability distribution calculations typically re-
quired during CFR iterations (Kroer & Sandholm, 2015; Brown et al., 2018). The innovation of
EVPA lies in its ability to effectively harness these expected value estimations specifically for both
pruning and information abstraction before the CFR process begins. This capability optimizes the
decision-making process, enhancing computational efficiency while maintaining strategic depth—a
significant advancement in improving computational efficiency in large IIEFGs.

The second component, expected value-based pruning, employs Minimax pruning (Blair et al.,
1996) based on the expected value estimation of information sets. By permanently eliminating
sub-optimal branches before the CFR begins, EVPA enables the CFR to concentrate on the most
important branches, leading to a substantial increase in convergence speed. Notably, EVPA’s prun-
ing is efficient and does not require real-time computation of intermediate values, unlike previous
methods (Brown & Sandholm, 2015a; 2017a; Brown et al., 2017). Additionally, it can be seamlessly
integrated with various CFR variants (Lanctot et al., 2009; Brown & Sandholm, 2019b). We also
analysis the theoretical soundness of EVPA’s pruning.

The third component, information abstraction for subgames, introduces a novel online algorithm that
merges information sets based on both current and future expected values. Compared to previous
information abstraction methods (Gilpin & Sandholm, 2007; Ganzfried & Sandholm, 2014), EVPA’s
information abstraction algorithm considers relative strength, blocking effects, and potential strength
of the information sets, while achieving efficient abstraction in under 1 second. EVPA’s abstraction
is effective in online CFR solving and is scalable to larger IIEFGs beyond HUNL, such as Omaha
(Farha & Reback, 2007). Furthermore, the flexibility in selecting bucket sizes allows EVPA to
balance solving time and abstraction granularity.

1For example, in HUNL, holding a bottom pair may be advantageous if both players check to the river, but
can be weaker if significant pot increases occur before the river.

2For instance, in HUNL, when the public cards on the river are KsTs9d6c5s, holding As3h and holding
Ac3h have equal strength, but it is less likely for the opponent to hold the nuts (the strongest hand) with As3h,
allowing for more aggressive actions.
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Figure 1: In the HUNL example with 200 big blinds (20, 000 chips), the player in the small blind
(Player 1) raises to 250 chips, and the player in the big blind (Player 2) calls during the pre-flop
stage. The flop reveals Ks9d5d, after which Player 2 checks, making it Player 1’s turn to act. The
figure illustrates a portion of the current subgame constructed by EVPA. First, EVPA estimates the
expected value of each information set within the subgame. It then prunes branches with signif-
icantly lower expected values, as indicated by gray blocks representing pruned information sets.
Finally, EVPA clusters the remaining information sets based on their current and future expected
values. Information sets of the same color in the figure are grouped into the same bucket, where a
“bucket” refers to a collection of information sets that share the same strategy within the subgame.

We evaluate EVPA using Heads-up No-Limit Texas Hold’em (HUNL) poker and compare its perfor-
mance against DeepStack’s replication (Moravčı́k et al., 2017) and Slumbot (Jackson, 2013), which
won the 2018 annual computer poker competition (ACPC) (Bard et al., 2013). EVPA shows signifi-
cant improvements, including reductions in game tree sizes ranging from 42.67% to 79.51% across
different abstraction settings and subgames. Notably, EVPA reduces the solving time required to
reach an ε-Nash equilibrium to just 1%-2% of the time needed for DeepStack’s replication. EVPA
also outperformed the DeepStack’s replication with win-rates of 930± 23, 202± 31, 82± 60 mbb/h
when the information set is touched 1× 107, 1× 108 and 1× 109 times, respectively. Additionally,
EVPA beats Slumbot with win-rates of 10 ± 26, 96 ± 43, 100 ± 68 mbb/h under 0.02, 0.2 and 2
seconds of the solving time limits, respectively.

The main contributions of our work are as follows:

• Novel Expected Valued-Based Pruning Method. We introduce a highly effective pruning
technique that permanently and correctly eliminates sub-optimal actions from the game tree
before the CFR process begins. This approach achieves up to 98.6% reduction in exploitabil-
ity in HUNL subgames, enabling us to avoid traversing unnecessary paths. Notably, this
pruning method does not require complex computations and exhibits excellent scalability.

• Advanced Information Abstraction for Subgames. Our information abstraction method pro-
vides efficient abstractions that consider both current and future expected values, enabling
tailored online abstractions for different subgames with minimal computational overhead.
This abstraction method accelerates convergence significantly in HUNL subgames, and has
the potential to be applied to more complex games than HUNL.

• Super Performance on HUNL. EVPA effectively integrates the core techniques from previ-
ous superhuman performance HUNL AIs, such as Libratus (Brown & Sandholm, 2018) and
DeepStack. Experiments with limited solving time on HUNL demonstrate that EVPA sur-
passes both DeepStack’s replication and strong poker bot Slumbot with significant win-rate
margins, indicating that EVPA can achieve super performance with minimal solving time.
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2 RELATED WORK ON EXTENSIVE-FORM GAMES

Value Estimation in IIEFGs. Value estimation is primarily applied to replace leaf node values
in depth-limited solving. DeepStack (Moravčı́k et al., 2017) achieved superhuman performance
in HUNL through probability distribution-based value estimation, and subsequent works, such as
Supremus (Zarick et al., 2020) and ReBeL (Brown et al., 2020), further demonstrate the reliability
of this approach. Another method for estimating leaf node values involves selecting the highest value
from multiple strategies (Brown et al., 2018), which has also achieved superhuman performance in
multiplayer poker (Brown & Sandholm, 2019a). Beyond depth-limited solving, value estimation
has applications in various IIEFG techniques, including Deep CFR (Brown et al., 2019; Steinberger
et al., 2020), action abstraction (Li et al., 2024) and variance reduction (Burch et al., 2018).

Pruning in IIEFGs. Pruning in IIEFGs differs from traditional games (Marsland, 1986) because
these games are typically solved using the CFR algorithm. The value and reach probability of
the information set change with each iteration of the CFR algorithm, leading previous methods
(Lanctot et al., 2009; Brown & Sandholm, 2015a; 2017a; Brown et al., 2017) to rely on temporary
pruning based on intermediate computed values. Regret-based pruning (Brown & Sandholm, 2015a)
avoids traversing a path if either player takes actions leading to that path with zero probability.
Best-response pruning (Brown & Sandholm, 2017a) allows for the temporary pruning of poorly
performing actions. Additionally, dynamic thresholding pruning (Brown et al., 2017) enables the
pruning of actions with low probability. A more detailed description of pruning methods in IIEFGs,
including a comparison between EVPA and these existing methods, can be found in Appendix G.

Information Abstraction in IIEFGs. Information abstraction can be categorized into two main
classes (Gilpin & Sandholm, 2008): expectation-based abstraction and potential-aware abstraction.
Expectation-based abstraction methods (Gilpin & Sandholm, 2007; Zinkevich et al., 2007a) classify
information sets based on their current strength of expectation, while potential-aware abstraction
methods (Gilpin et al., 2007; 2008) consider the performance of information sets across different
future scenarios. The imperfect-recall technique (Waugh et al., 2009) enables players to disre-
gard certain information, significantly reducing the size of the game tree. The leading algorithm,
potential-aware imperfect-recall abstraction (Ganzfried & Sandholm, 2014), integrates potential-
aware abstraction with imperfect-recall, playing a crucial role in the success of many IIEFG AIs
(Tammelin et al., 2015; Brown & Sandholm, 2016b; 2018). A more detailed description of the
abstraction can be found in Appendix H.

3 BACKGROUND AND NOTATION

In an Imperfect Information Extensive-Form Game (IIEFG), there is a finite set of players N =
{1, · · · , N}. A state (or history) h is defined by the sequence of all historical actions taken from
the initial state ∅. Performing an action a in a non-terminating state h transitions to a new state h′,
denoted h · a = h′, where h is the parent of h′. If state h′ can be reached from h by performing
a sequence of actions, then h is an ancestor of h′. We denote h ⊑ h′ to mean h is an ancestor of
h′, and h ⊏ h′ to mean h is a strict ancestor of h′. A terminal state z is one where no actions are
available, and up(z) denotes the payoff for player p at terminal state z. The acting player at a non-
terminal state h is denoted by P(h) ∈ N ∪ {c}, where c represents the “chance player,” indicating
events beyond the control of players in N .

For each player p ∈ N , imperfect information is represented by an information set Ip. For an
information set Ip belonging to player p, all states h, h′ ∈ Ip are indistinguishable to p. If p is
the acting player, the information set Ip can be denoted simply as I . The set of information sets is
denoted by I.

A strategy σ(I) is a probability distribution over the available actions within information set I , and
the probability of choosing action a is denoted σ(I, a). The strategy for player P in all information
sets where they act is denoted σp, while the strategy for all other players is denoted σ−p. A strategy
profile σ = (σp)p∈N is a tuple of strategies, one for each player. A best response for player p to σ−p

is denoted BR(σ−p) = argmaxσ′
p
up(σ

′
p, σ−p). A Nash equilibrium σ∗ is a strategy profile where

every player’s strategy is a best response; that is, ∀p, up(σ
∗, σ∗

−p) = maxσ′
p
up(σ

′
p, σ

∗
−p). The

expected value (EV) of an information set Ip under a Nash equilibrium σ∗ is denoted EVσ∗(Ip).
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The exploitability e(σp) of a strategy σp in a two-player zero-sum game measures how much worse
the strategy performs compared to a best response against a Nash equilibrium strategy. Formally,
e(σp) = up(σ

∗
p, BR(σ∗

p)) − up(σp, BR(σp)). A strategy σ is an ε-Nash equilibrium if no player
has exploitability greater than ε under σ.

A subgame is defined as a continuous portion of a game tree. Formally, a subgame S is a set of
states such that ∀h ∈ S, if h ∈ Ip and h′ ∈ Ip then h′ ∈ S, and ∀x, z ∈ S, if x ⊏ y ⊏ z then
y ∈ S. A public state (or node) s contains the public information known to all players, with the
unique public state corresponding to a state h and an information set Ip denoted as s(h) and s(Ip),
respectively. If h ∈ S has no descendants within S, it is termed a leaf state, and the information sets
and nodes containing h are referred to as leaf information sets and leaf nodes. Conversely, if h ∈ S
has no ancestors within S, it is termed a root state, and the information sets and nodes containing h
are referred to as root information sets and root nodes. The root node of S is denoted as Sr.

4 EVPA ALGORITHM

In this section, we present the Expected-Value Pruning and Abstraction (EVPA) algorithm, which
consists of three core components: (i) expected value estimation of information sets (Section 4.1),
(ii) expected value-based pruning (Section 4.2), and (iii) information abstraction for subgames (Sec-
tion 4.3). Figure 2 illustrates how EVPA works in a depth-limited subgame.

Game Tree Node

Information Sets

Min,Max

Values

…

Player 1’s  Information Set

Expected

Value


Networks

Player 2’s Information Set

Features

2.Pruning

1.Expected Value Estimation

3.Abstraction

Unsolved Subgames

Depth-Limited 

Subgame

History Actions
Root Node

Original Game Tree

Figure 2: Framework of EVPA. We begin by estimating the maximum, minimum, and average
expected values of each information set in the subgame using expected value networks. Next, we
prune the game tree based on the maximum and minimum values. Finally, we utilize the average
values as features for information abstraction.

4.1 EXPECTED VALUE ESTIMATION OF INFORMATION SETS

We begin with the expected value estimation of information sets. To estimate the expected values of
approximate Nash equilibrium strategies for various information sets in IIEFGs, we adopt a frame-
work for computing depth-limited subgame equilibrium strategies, similar to DeepStack’s approach
(Moravčı́k et al., 2017). Further implementation details are available in Appendix D.

Our method involves sampling diverse subgames and calculating approximate Nash equilibrium
expected values for information sets within these subgames. The sampling process is outlined in
Algorithm 1, starting with the generation of a depth-limited subgame S from a random initial public
state. To ensure comprehensive action coverage, we utilize randomized action abstractions during
subgame construction. We then compute the Nash equilibrium strategy for this subgame, calculate
the expected value for each information set, and incorporate these values into our training data. The
process continues by sampling a leaf node s of the subgame S; if s is not a terminal node, we then
solve the subgame rooted at s. We emphasize that, unlike DeepStack, the information set features
in EVPA contain only public information and player’s private hand information, and do not include
range information of both players.
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Algorithm 1: Algorithm for Sampling of Nash Equilibrium Expected Value of Information Sets.
s←RandomInitPublicState()// Randomly initialize the public state
Data← ∅
while P(s) ̸= ∅ do

while P(s) = c do
s←TakeChance(s)// Process a random chance event

S ←DepthLimitedSubgame(s)// Build a depth-limited subgame with
randomized action abstractions

σ∗ ←StrategySolving(S) // Compute Nash equilibrium strategies
for Ip ∈ S do

EVσ∗(Ip)←CalculateExpectedValue(S, σ∗, Ip)
Add {Ip, EVσ∗(Ip)} to Data

s← SampleLeaf(S, σ∗) // Randomly sampling a leaf
Output: Data

We train M independent neural networks (with M = 10) for the purpose of expected value estima-
tion, using the Huber Loss (Huber, 1964) as our loss function. Each neural network receives a feature
vector describing the information set, and outputs a scalar representing the expected value (relative
to the pot size) of that information set. The network architecture consists of 6 layers of Multi-Layer
Perceptrons (MLPs), each with 1, 536 hidden units and ReLU activation functions (Glorot et al.,
2011). Each network is trained on at least 10 billion samples using the Adam optimizer (Kingma
& Ba, 2015). Each sample provides values for all information sets within subgame S, resulting in
a sampling size that is millions of times larger than the one used by DeepStack within the same
sampling time. Training the DeepStack replication requires 70 days, with sampling time being the
primary overhead. In contrast, training the expected value network in EVPA takes only 4 days, with
1 day of sampling time.

Upon completing the training, we obtain M expected value estimation networks. For each infor-
mation set Ip, the expected value estimation from the i-th network is denoted as EVi(Ip). We
calculate the average expected value estimation as EV (Ip) = 1

M

∑M
i=1 EVi(Ip). Additionally,

we determine the maximum and minimum expected value estimations across the M networks as
EVmax(Ip) = max{EV1(Ip), . . . , EVM (Ip)} and EVmin(Ip) = min{EV1(Ip), . . . , EVM (Ip)}, re-
spectively. These value estimations provide a comprehensive representation of the expected value
for each information set, which is used in the subsequent pruning and abstraction components.

The true innovation of EVPA lies in its effective use of these expected value insights, enabling
smarter decision-making and more efficient exploration of the game tree. This ultimately enhances
the overall performance of the algorithm.

4.2 EXPECTED VALUE-BASED PRUNING

The EVPA pruning method introduces a novel approach inspired by Minimax pruning (Blair et al.,
1996), based on the principle that an optimal player will not select an action for an information
set if another action has a higher expected value. For instance, in HUNL, discarding a pair of
Aces pre-flop is clearly sub-optimal compared to calling or raising, which yield higher expected
values. Formally, for an information set I , an action a, and a Nash equilibrium strategy σ∗, if
EVσ∗(I · a) < EVσ∗(I), then σ∗(I, a) = 0. Furthermore, if there exists another action a′ such that
EVσ∗(I · a) < EVσ∗(I · a′), then σ∗(I, a) = 0.

However, accurately calculating EVσ∗(I · a) for each information set I and action a in a subgame
can be computationally prohibitive. To address this challenge, the EVPA method leverages estimates
from M expected value estimation networks to perform pruning efficiently before applying the CFR
algorithm. This integration not only enhances the effectiveness of pruning but also significantly
reduces computational overhead.

The details of the pruning algorithm are outlined in Algorithm 2. The MaximumJudge function
evaluates whether the child information set Ison

p of Ip has the highest expected value for player p. If
the maximum expected value estimation for the child information set, EVmax(I

son
p ), plus a constant

6
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δ does not exceed the minimum expected value estimation for the current information set and the
maximum minimum expected value estimation in its sibling information sets, we can confidently
conclude that player p will not choose any sub-optimal actions leading to Ison

p .

The LegalFromRoot function innovates further by verifying that player p has not taken any sub-
optimal actions from the initial state up to Ip. This condition enables us to prune information sets
directly from the root node of the subgame S, streamlining the overall pruning process.

The Pruning function executes the novel pruning across all information sets in the subgame S. After
applying LegalFromRoot to the root node, the algorithm stores the remaining legal information
sets in a queue and uses MaximumJudge to assess whether child information sets can be pruned.
Ultimately, the function returns the necessary information sets to retain, completing the efficient
permanent pruning of the game tree before initiating the CFR algorithm.

Algorithm 2: Algorithm for EVPA subgame pruning.
Function MaximumJudge(Ip, Ison

p ):
if P(Ip) ̸= p then

return True// If the acting player is not p, return true
MaxMin← −∞
for I ′p ∈ Ip · a do

if Ison
p ̸= I ′p ∧ EVmin(I

′
p) > MaxMin then

MaxMin← EVmin(I
′
p)

if EVmax(I
son
p ) + δ > Min(MaxMin,EVmin(Ip)) then

return True
return False

Function LegalFromRoot(Ip):
if Parent(Ip) = ∅ then

return True
I ′p ← Parent(Ip)// There exists an action a such that I ′p · a = Ip
return MaximumJudge(I ′p, Ip) ∧ LegalFromRoot(I ′p)

Function Pruning(S):
Iroot, Isubgame ← ∅
for Ip ∈ Sr do

if LegalFromRoot(Ip) then
Add Ip to Iroot // Pruning root information sets

Iqueue, Isubgame ← Iroot
while Iqueue ̸= ∅ do

Ip ← TopElement(Iqueue)
Iqueue ← Iqueue \ Ip
for I ′p ∈ Ip · a do

if s(I ′p) ∈ S ∧MaximumJudge(Ip, I ′p) then
Add I ′p to Iqueue, Isubgame

return Iroot, Isubgame// Isubgame is the set of all feasible
information sets in the subgame after pruning

The parameter δ is introduced to mitigate errors generated by sampling data. When δ is no less than
the maximum average regret O( 1√

T
) of CFR, where T is the CFR iterations, we can eliminate the

error generated by CFR with DeepStack.3 After δ elimination of errors generated by CFR iterations
in the sampling process, we can be confident that the sampled data fully reflects the exact expected
value of the information set. For the information set Ip, the value estimation of the neural network
can be expressed as EV ∗(Ip) + err, where err is the random error generated by the network itself.
Below, we provide an analysis that the upper bound on the error rate is |A|−1

CM
3M

, where |A| is the
number of action branches and M is the number of expected value estimation networks.

Analysis. First of all, if a branch Ison
p = I · a with EV ∗(Ison

p ) = EV ∗(I) is pruned, a pruning error
occurs. Next, note that the worst-case scenario is the case where all branches I ·a of the information

3We set δ = 0.01 since the performance of DCFR significantly exceeds the theoretical bounds.
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set I have the same EVs, i.e., ∀I · a ∈ S,EV ∗(I) = EV ∗(I · a). Such a case is most challenging
for the pruning algorithm as it required to prune no optimal branches.

We now analyze the maximum probability of an pruning error in Ison
p occurring in the worst-case. We

enumerate each sibling information set Ibro
p of Ison

p , the pruning error occurs in the Ison
p branch if all

M estimates about Ison
p are smaller than the other 2M estimates about Ip and the sibling information

set Ibro
p . The probability of selecting the exactly M minimum values out of 3M random values is

1
CM

3M

. The Ison
p has |A| − 1 siblings, and the upper bound pruning error probability of Ison

p is |A|−1

CM
3M

.

The pruning algorithm estimates the expected values of O(M ·D · |I|+M · |S| · |I|) information
sets, where M represents the number of expected value estimation networks, D is the current depth
of the subgame, |S| is the number of nodes in the subgame, and |I| denotes the number of distinct
information sets per node. Notably, the computational overhead of the pruning algorithm is minimal
compared to that of the CFR algorithm, highlighting its practicality and efficiency in large IIEFGs.
By directly and correctly eliminating unimportant branches, EVPA’s pruning algorithm enables the
CFR algorithm to concentrate on more critical branches, significantly enhancing convergence and
overall performance. This strategic focus not only accelerates computation but also facilitates more
effective exploration of promising areas within the game tree.

4.3 INFORMATION ABSTRACTION FOR SUBGAMES

EVPA’s information abstraction method innovatively clusters both current and future expected val-
ues of information sets as features. The core idea is to merge two information sets I and I ′ when
their current and future expected values align closely, following specific criteria: (1) s(I) = s(I ′),
and (2) for any action sequences a1, · · · , an (where n ≥ 0), if ∀i < n, P(I ·a1 · · · ai) ̸= P(I), then
EVσ∗(I ·a1 · · · an) ≈ EVσ∗(I ′ ·a1 · · · an). If these conditions hold, it follows that σ∗(I) ≈ σ∗(I ′).

This merging approach extends to subgame solving, allowing for the consolidation of root informa-
tion sets into K buckets within subgames. For player p, all information sets in bucket k are denoted
as Irootbucket,p,k. All information sets in Irootbucket,p,k adopt the same strategy in the subgame.

Algorithm 3: Algorithm for EVPA information abstraction.
Function Abstraction(S,K):
Iroot, Isubgame ← Pruning(S)
for Ip ∈ Iroot do

feature(Ip)← ∅// Define features for information sets
for s ∈ S do

a1, · · · , an ← SequenceActions(Sr, s)// Actions from Sr to s
for Ip ∈ Iroot do

Append EV (Ip · a1 · · · an) · f(g(s), n) into feature(Ip)
Irootbucket, Isubgamebucket ← ∅
for p ∈ N do
Irootbucket,p,1 · · · Irootbucket,p,K ← k-means++({Ip, feature(Ip)}Ip∈Iroot ,K)
for s ∈ S do

a1, · · · , an ← SequenceActions(Sr, s)
for k = 1 to K do

for Ip ∈ Irootbucket,p,k do
if Ip · a1 · · · an ∈ Isubgame then

Add Irootbucket,p,k to Isubgamebucket,p,s
break// Exit loop once a match is found

return Irootbucket, Isubgamebucket

The details of the EVPA information abstraction algorithm are outlined in Algorithm 3. The process
begins by pruning all root information sets and storing the viable root information sets in Iroot.

Next, we enumerate each node s of the subgame S and predict the expected value of each root
information set Ip at that node. To estimate this expected value, we utilize the average output from
M expected value estimation networks. This estimated value is then multiplied by a significance
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function f(g(s), n) and appended to the features of Ip. Here, g(s) encapsulates various pieces of
information about node s, while n represents the distance from the root node Sr to node s. In
the context of HUNL, we define the significance function as f(g(s), n) = 1

pot(s)·max{n,0.2} , where
pot(s) indicates the number of chips in the pot at node s.

After calculating expected value features, we cluster the root information sets for each player using
the k-means++ algorithm (Arthur & Vassilvitskii, 2007), categorizing them into K buckets. The
clustering process has a time complexity of O(T ·K ·|S|·|Iroot|), where T is the number of iterations
of the k-means++ algorithm (set to T = 8), K is the number of buckets, |S| is the number of nodes in
the subgame, and |Iroot| is the number of legitimate information sets at the root node. Remarkably,
even for large IIEFGs, such as HUNL, the information abstraction process completes in under 1
second on a standard server, highlighting the algorithm’s practicality for real-time applications.

Following the clustering, we retain the original pruning results of the subgame in Isubgame. For any
node s in the subgame, we can prune bucket k at node s if all corresponding information sets in that
bucket are absent from Isubgame.

A key innovation of EVPA is its ability to provide dynamic, subgame-specific abstractions that ef-
fectively integrate both current and future expected values. This method significantly reduces the
computational overhead associated with information abstraction, enabling customized online ab-
stractions for diverse subgames. Additionally, the flexibility in choosing the bucket size K allows
for an optimal balance between solving time and abstraction accuracy, further enhancing the algo-
rithm’s applicability in real-time scenarios.

5 EXPERIMENT

As in previous studies on large IIEFGs (Moravčı́k et al., 2017; Brown & Sandholm, 2018), we use
Heads-Up No-Limit Texas Hold’em (HUNL) (see Appendix A for detailed rules) as our experimen-
tal benchmark due to its representativeness and complexity. In our evaluation, players start with
200 big blinds and switch positions every two hands, replicating conditions of the annual computer
poker competition (ACPC) (Bard et al., 2013). All experiments employed the leading discounted
CFR (DCFR) algorithm (Brown & Sandholm, 2019b), as outlined in Appendix C. To maintain strat-
egy soundness, we utilized subgame re-solving techniques (Burch et al., 2014; Brown & Sandholm,
2017c). Additionally, the AIVAT technique (Burch et al., 2018) is applied to reduce variance in
heads-up evaluations. Training and experiments were executed on a server with 4 NVIDIA A100
80GB PCIe GPUs and 112 Intel(R) Xeon(R) Gold 6348 2.60GHz CPUs. For our evaluations, we
replicated DeepStack (Moravčı́k et al., 2017) as a baseline (BASE) and implemented three AIs using
the EVPA algorithm: EVPA-full (which employs pruning only), EVPA-169 (pruning combined with
169 buckets for abstraction), and EVPA-30 (pruning combined with 30 buckets for abstraction).

Pruning Effectiveness. To evaluate the impact of pruning, we randomly generated at least 10, 000
depth-limited subgames across different stages of HUNL. The pruning rates are summarized in
Table 1. EVPA-full achieved pruning rates between 69.72% and 79.51%. EVPA-169 achieved
pruning rates between 55.68% and 69.50%, while EVPA-30 achieved pruning rates between 42.67%
and 51.58%. These results clearly indicate that EVPA effectively prunes a significant portion of the
game tree across various settings.

Table 1: Game tree pruning rate of depth-limited subgame at each stage of HUNL.

EVPA AIs Pre-flop Flop Turn River

EVPA-full 69.72% 69.87% 77.00% 79.51%
EVPA-169 69.50% 55.68% 63.07% 65.31%
EVPA-30 51.58% 42.67% 49.60% 49.79%

Exploitability Evaluation. In our evaluation of exploitability at the river stage subgame, as illus-
trated in Figure 3, the EVPA AIs demonstrate a marked reduction in exploitability compared to
the baseline. Specifically, EVPA-full achieves the lowest exploitability with 1 × 108 information
set touches, reducing exploitability to approximately 1.4% of the baseline’s level. Further analysis

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

reveals that EVPA-169 reduces exploitability by 47% relative to EVPA-full with 1 × 107 touches,
while EVPA-30 achieves a 54% reduction relative to EVPA-169 with 1× 106 touches.

1e6 1e7 1e8 1e9

Touched Information Sets

0.0001

0.001
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0.1

1

E
xp

lo
ita
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lit

y

EVPA-169
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Figure 3: The average exploitability (relative
to the current pot size) of various HUNL AIs
during river subgames is plotted against the
number of information sets touched by DCFR.

Notably, to reach an exploitability of no more than
0.08, the baseline requires around 1×108 informa-
tion set touches, whereas EVPA-30 achieves this
with only 1 × 106. Similarly, for an exploitabil-
ity threshold of 0.01, the baseline necessitates over
5 × 108 touches, while EVPA-169 can already
achieve this with just 1 × 107 touches. These re-
sults underscore that EVPA can attain an ε-Nash
equilibrium with only 1%-2% of the information
set touches required by the baseline, highlighting
the efficiency and effectiveness of the EVPA.

Heads-up Evaluation Against Slumbot. We
conducted heads-up evaluations against Slumbot
(Jackson, 2013), a strong open-source HUNL AI
that won the 2018 ACPC. The results are presented
in Table 2. In the initial trials with a solving time
limit of 0.02 seconds, DeepStack’s replication suf-
fered a significant defeat, recording a win-rate of
−573±28 mbb/h against Slumbot. In contrast, the
EVPA algorithms—EVPA-full, EVPA-169, and EVPA-30—demonstrated comparable performance
levels to Slumbot, with EVPA-169 achieving a win-rate of 10 ± 26 mbb/h. When the solving time
was increased to 0.2 seconds, DeepStack’s replication continued to struggle, showing a win-rate of
−109±52 mbb/h. Meanwhile, EVPA-full succeeded in defeating Slumbot with a win-rate of 96±43
mbb/h. When the solving time was further increased to 2 seconds, DeepStack’s replication managed
to beat Slumbot with a win-rate of 33± 65 mbb/h, but still fell short of EVPA’s performance.

Table 2: Heads-up results of AIs against Slumbot with solving time limits, measured in mbb/h.

Solving Time Limits BASE EVPA-full EVPA-169 EVPA-30

0.02 seconds −573± 28 8± 25 10± 26 −4± 28
0.2 seconds −109± 52 96± 43 31± 57 -
2 seconds 33± 65 100± 68 - -

Heads-up Evaluation Against DeepStack’s Replication. We further conducted heads-up evalua-
tion between DeepStack’s replication and various EVPA AIs, varying the limits on the number of
information set touches, as presented in Table 3. After the CFR algorithm touches the information
set 1 × 107 times, the EVPA algorithm significantly outperforms DeepStack’s replication, demon-
strating a win-rate of up to 930 ± 23 mbb/h. Even after 1 × 108 touches, EVPA maintained its
advantage, defeating DeepStack’s replication with a win-rate of 202± 31 mbb/h. When the number
of touched information sets came to 1 × 109, DeepStack’s replication was still outperformed by
EVPA, with recorded a win-rate of 82± 60 mbb/h.

Table 3: Heads-up results of EVPA AIs against DeepStack’s replication with different limits on the
number of information set touches, measured in mbb/h.

Touched Information Sets EVPA-full EVPA-169 EVPA-30

1× 107 844± 26 930± 23 865± 29
1× 108 202± 31 125± 27 -
1× 109 82± 60 - -

These results highlight that EVPA consistently outperforms DeepStack’s replication across various
levels of computational resources, particularly in settings with limited solving time.
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ETHICS STATEMENT

The primary concern of this work is the potential for cheating in games such as poker. While AI has
previously demonstrated superhuman performance in poker, it often relies on specific assumptions
about players’ initial chips or bet sizes, limiting its applicability in real-time scenarios. In contrast,
EVPA can compute strategies for any initial chip count, subgame, and bet size with remarkable
speed.
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A A GUIDE TO HEADS-UP NO-LIMIT TEXAS HOLD’EM RULES

Heads-up No-Limit Texas Hold’em (HUNL) is a two-player variant of Texas Hold’em poker, played
over four stages:

1. Pre-flop. Players start by posting a pre-specified number of chips: the “small blind” and the “big
blind”, with the small blind typically being half the size of the big blind. Each player is dealt two
private cards at the beginning.

2. Flop. Three public cards are revealed.

3. Turn. A fourth public card is revealed.

4. River. The final public card is revealed.

During the pre-flop stage, the small blind player acts first; thereafter, the big blind player acts first in
all subsequent stages. Players can fold, check/call, or bet/raise, with bets/raises ranging from the last
bet/raise amount to their remaining chips (all-in). If a player folds, the other wins the pot. If neither
folds by the end of the river stage, the players compare their best five-card hands, which consist of
two private cards and the five public cards. The player with the best hand wins the pot.

Win-rate and exploitability are measured in milli big blinds per hand (mbb/h). For instance, a win-
rate of 0.1 big blind per hand equates to 100 mbb/h.

B BREAKTHROUGHS IN HUNL AIS

Tartanian7 (Brown et al., 2015), Baby Tartanian8 (Brown & Sandholm, 2016b), and Slumbot (Jack-
son, 2013)—winners of annual computer poker competition (ACPC) (Bard et al., 2013) in 2014,
2016, and 2018, respectively—initially computed a blueprint strategy based on a post-abstraction
game tree (Ganzfried & Sandholm, 2014; Brown & Sandholm, 2014; 2016a), followed by the strat-
egy execution based on the blueprint strategy (Ganzfried et al., 2011; 2012; Ganzfried & Sandholm,
2013a). While this approach is effective for IIEFGs with fewer states, such as limit Texas Hold’em
(Tammelin et al., 2015), it struggles in HUNL. A significant challenge arises when an opponent
makes an “off-tree” action, in such cases, the AI must substitute an approximation from the blueprint
strategy (Schnizlein et al., 2009; Ganzfried & Sandholm, 2013a), potentially leading to sub-optimal
performance (Ganzfried & Sandholm, 2013b; Bard et al., 2014). Additionally, the blueprint strategy

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

often lacks the granularity necessary for effective endgame solving (Ganzfried & Sandholm, 2013b;
2015).

Libratus (Brown & Sandholm, 2018) addressed these challenges through a safe and nested sub-
game solving technique (Brown & Sandholm, 2017c) and a self-improver to enhance its blueprint
strategy (Brown & Sandholm, 2017b), ultimately achieving superhuman performance. However, its
substantial computational resource requirements limit its implementation to supercomputers, and it
can only solve for fixed initial chip counts, which is impractical in real poker scenarios where chip
counts fluctuate (Burch et al., 2018).

DeepStack (Moravčı́k et al., 2017) achieved superhuman performance through depth-limited sub-
game solving (Kroer & Sandholm, 2015) and probability distribution-based value estimation of leaf
information sets. Subsequent works, such as ReBeL (Brown et al., 2020) and Supremus (Zarick
et al., 2020), further demonstrate the reliability of this approach. However, none of these AIs have
incorporated online pruning and abstraction of depth-limited subgames, suggesting potential areas
for improvement. Modicum (Brown et al., 2018) introduced a multiple-value depth-limited solv-
ing technique based on a pre-calculated blueprint strategy, which allows for minimal training and
solving time. Nevertheless, its performance remains constrained by the limitations of the blueprint
strategy. AlphaHoldem (Zhao et al., 2022), a reinforcement learning-based method, achieves decent
performance with short training and solving times. However, its lack of CFR integration makes it
susceptible to exploitation.

Table 4 compares the training and solving time of these AIs and the EVPA algorithm, along with
their win-rates against Slumbot or Baby Tartanian8. EVPA demonstrates significant advantages in
processing off-tree actions compared to blueprint strategy-based AIs, achieving higher win-rates
than these methods. Additionally, EVPA outperforms other subgame-solving AIs in solving time
while maintaining a comparable win-rate. Though it has similar solving times and win-rates to
AlphaHoldem, EVPA provides stronger guarantees against exploitability.

Notably, Supremus and AlphaHoldem often make decisions that deviate from Slumbot’s blueprint
strategy, which may confuse Slumbot. For a fairer comparison with Supremus and AlphaHoldem,
we implemented an EVPA-based AI using bet/raise sizes of 0.2, 0.4, 0.8, 1.6 times the pot (EVPA-
full-0.2s-confuseSlumbot). The results show that EVPA-full-0.2s-confuseSlumbot outperformed
Slumbot, achieving a win-rate of 187± 66 mbb/h, surpassing both Supremus and AlphaHoldem.

Table 4: This table compares various HUNL AIs based on estimated training and solving times
using 4 NVIDIA A100 80GB PCIe GPUs and 112 Intel(R) Xeon(R) Gold 6348 CPUs. Win-rates
indicate performance against Slumbot or Baby Tartanian8, measured in mbb/h. Note that Slumbot
is continually improved, so earlier results may not reflect its current performance. X is the training
days of the baseline strategy.

HUNL AI Name Training Time Solving Time Win-rate

Tartanian7 (Brown et al., 2015) 428 Days 0 seconds 33± 16
Baby Tartanian8 (Brown & Sandholm, 2016b) 744 Days 0 seconds 36± 12

Slumbot (Jackson, 2013) 93 Days 0 seconds 0± 0
DeepStack (Moravčı́k et al., 2017) 569 Days 2 seconds -

Libratus (Brown & Sandholm, 2018) 8, 370 Days 160 seconds 63± 28
Modicum (Brown et al., 2018) X + 1 Days 2 seconds 11± 9

ReBeL (Brown et al., 2020) 926 Days 1 second 45± 5
Supremus (Zarick et al., 2020) 351 Days 2 seconds 176± 44

AlphaHoldem (Zhao et al., 2022) 6 Days 0.003 seconds 112± 16
EVPA-full-0.2s (Ours) X + 4 Days 0.2 seconds 96± 43

EVPA-full-0.2s-confuseSlumbot (Ours) X + 4 Days 0.2 seconds 187± 66
EVPA-169-0.02s (Ours) X + 4 Days 0.02 seconds 10± 26
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C COUNTERFACTUAL REGRET MINIMIZATION

Counterfactual Regret Minimization (CFR) is a prominent algorithm for solving large IIEFGs by
minimizing regret independently at each information set (Zinkevich et al., 2007b). CFR can find
ε-Nash equilibrium in two-player zero-sum IIEFGs.

πσ(h) is the probability of reaching h if all players act according to strategy σ. πσ
−p(h) the

probability of reaching h if all players expect p act according to strategy σ, and the player
p act to h. The counterfactual value (CFV) of an information set I under strategy profile σ
represents the expected utility to player P(I) if I has been reached, calculated as vσ(I) =∑

h∈I(π
σ
−P(I)(h|I)

∑
z∈Z(π

σ(z|h)uP(I)(z))). And the counterfactual value of an action a is cal-
culated as vσ(I, a) =

∑
h∈I(π

σ
−P(I)(h|I)

∑
z∈Z πσ(z|h · a)uP(I)(z)).

Let σt denote the strategy profile at iteration t. The instantaneous regret for taking an action a at
information set I during iteration t is given by: rt(I, a) = vσ

t

(I, a) − vσ
t

p (I), where vσ
t

(I, a) is
the counterfactual value of taking an action a at I , and vσ

t

(I) is the counterfactual value of the
information set I .

The accumulated counterfactual regret for taking an action a at information set I after T iterations
is: RT (I, a) =

∑T
t=1 r

t(I, a).

At each iteration t, an action a at information set I is selected with probability: σt(I, a) =
Rt−1

+ (I,a)∑
a′ R

t−1
+ (I,a′)

, where Rt
+(I, a) = max{0, Rt(I, a)}. If

∑
a′ Rt

+(I, a
′) = 0, an arbitrary strategy is

used.

Discounted CFR (DCFR) (Brown & Sandholm, 2019b) is an advanced variant of CFR designed
for large IIEFGs. DCFR introduces parameters α, β and γ to adjust the impact of accumulated
counterfactual regrets over time. Specifically, at each iteration t:

• Positive accumulated counterfactual regrets are multiplied by tα

tα+1 .

• Negative accumulated counterfactual regrets are multiplied by tβ

tβ+1
.

• Contributions to the average strategy σ are weighted by ( t
t+1 )

γ .

In our experimental setup, we use α = 1.5, β = 0 and γ = 2.

D DEEPSTACK’S IMPLEMENTATION

Our replication of DeepStack’s implementation builds upon several prior works (Moravčı́k et al.,
2017; Zarick et al., 2020; Brown et al., 2020). At each stage of the game, we construct a depth-
limited subgame up to the end of that stage and utilize a neural network to estimate the values of the
leaf information sets (excluding the river stage).

For the first two levels of the subgame, we employ raising scales of 0.25, 0.5, 1, and 2 times the pot,
along with an all-in option. For the third level, we use scales of 0.5 and 1 times the pot, plus all-in.
For subsequent levels, we apply a raising scale of 0.75 times the pot and an all-in option. To enhance
sample diversity, we randomly multiply all raising scales (except for all-in) by a factor between 0.7
and 1.4. During sample generation, we use the DCFR algorithm (Brown & Sandholm, 2019b) for
1, 000 iterations.

We train 6 neural networks corresponding to the following stages: pre-flop stage end, flop stage
start, flop stage end, turn stage start, turn stage end, and river stage start. Each network consists of 6
layers of Multi-Layer Perceptrons (MLPs) with ReLU activation functions (Glorot et al., 2011). The
networks are trained using the Adam optimizer (Kingma & Ba, 2015) and the Huber loss function
(Huber, 1964). The input layer has 2, 678 dimensions, corresponding to the probability of private
hands for both players and the public state information. Each hidden layer contains 1, 536 dimen-
sions, while the output layer has 2, 652 dimensions, representing the expected value of the private
hands.
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Training progresses as follows: we first train the river stage network with 5 million randomly gener-
ated river subgames, followed by training the turn stage network with 3 million randomly generated
turn subgames, the flop stage network with 1 million randomly generated flop stage subgames, and
finally the pre-flop stage network with 100, 000 randomly generated pre-flop scenarios. After this
initial training, we regenerate samples from initial states (with initial chips between 50 and 250 big
blinds) to terminal states for 100 epochs, generating at least 36 million samples in total. After each
epoch, we retrain the neural networks using the most recent samples. In the EVPA process for sam-
pling and evaluation, we apply the depth-limited subgame building method and leverage the trained
neural networks to estimate the values of the leaf information sets.

It is important to note that DeepStack dedicates a significant amount of training time to computing
the information abstraction for the initial 200 big blinds due to its reliance on offline abstraction
methods. To reduce training overhead, our implementation of the DeepStack replica omits this
information abstraction step and does not fix the initial chip count. Furthermore, inspired by methods
such as Supremus (Zarick et al., 2020) and ReBeL (Brown et al., 2020), we incorporate a warm-up
phase and then the trained neural network is used to generate subsequent data, allowing for more
efficient training process.

E CONCLUSION

In this paper, we propose the Expected-Value Pruning and Abstraction (EVPA) algorithm, which
marks a significant advancement in solving large imperfect information extensive-form games.
EVPA is featured with three core components, namely expected value estimation of information
sets, expected value-based pruning, and information abstraction for subgames. Our extensive exper-
iments with Heads-up No-Limit Texas Hold’em (HUNL) show that EVPA enhances computational
efficiency while ensuring robust strategy development, achieving competitive performance with sig-
nificantly reduced solving time compared to existing benchmarks. Its dynamic adaptability positions
EVPA as a pivotal tool for advancing AI capabilities in complex strategic environments.

F FUTURE DIRECTIONS FOR RESEARCH AND APPLICATION

As EVPA demonstrates significant advancements in solving HUNL, several promising directions for
future research emerge.

• Generalization to Other IIEFGs. A compelling avenue for future research is to explore
the applicability of EVPA across a broader spectrum of IIEFGs. While the methodology
has been validated in HUNL, expanding its scope to card games such as Omaha (Farha &
Reback, 2007), Bridge (Yeh et al., 2018), and strategic board games such as Mahjong (Li
et al., 2020) and Stratego (Perolat et al., 2022) could yield insights into the versatility of
the EVPA framework. Understanding how EVPA can efficiently manage diverse informa-
tion structures and player strategies in these contexts will contribute to more generalized
solutions in game theory.

• Online Strategy Solving Beyond Poker. The development of EVPA positions it well for
applications beyond poker, particularly in online strategy solving. Many real-world sce-
narios involve sequential decision-making under uncertainty, such as auctions (Milgrom &
Weber, 1982) and diplomacy (Bakhtin et al., 2022). Future work could focus on adapting
the EVPA framework to these domains, enabling robust online strategy solving that lever-
ages its expected value-based pruning and abstraction techniques. Implementing EVPA in
these settings could provide a powerful tool for developing competitive agents capable of
navigating complex interactions and dynamic information.

• Integration with Multi-Agent Systems. Leveraging extensive training data, EVPA could
potentially solve multi-player poker, particularly in tournament settings (Snyder, 2006;
Ganzfried & Sandholm, 2009), in mere seconds. This capability provides a promising en-
try point for exploring EVPA’s application in multi-agent systems. By expanding EVPA’s
functionalities to operate effectively in both collaborative and adversarial environments
(Luo et al., 2020), we can investigate its adaptability to scenarios involving multiple agents,
each with unique strategies and objectives. This exploration will facilitate more sophisti-
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cated strategic interactions, proving particularly valuable in domains such as negotiations
(Thompson, 1990) and cooperative games (Driessen, 2013).

By pursuing these research directions, future work can build on the successes of EVPA, enabling
the development of robust and adaptable strategies for a wide range of sequential decision-making
problems beyond poker. This expansion will contribute to the ongoing evolution of AI in complex
strategic environments, pushing the boundaries of what is achievable in the field of IIEFGs.

G PRUNING WITH CFR

Pruning techniques in CFR help the algorithm avoid exploring suboptimal branches of the game
tree, thus improving computational efficiency without sacrificing convergence guarantees (Brown
& Sandholm, 2015a). One of the most widely used pruning methods is partial pruning (Lanctot
et al., 2009), which reduces unnecessary computations when updating the regret of an information
set belonging to one player. Specifically, if the other player has zero probability of reaching any
history within an information set, the subgame rooted at that history can be pruned without affecting
the overall computation. Formally, for an information set I and the strategy profile σt at iteration t,
if history h ∈ I satisfies πσt

−P(I)(h) = 0, the subgame rooted at h can be pruned in iteration t. This
technique can be combined with EVPA or other pruning methods for even more effective pruning
during CFR iterations. However partial pruning techniques are unable to prune the information set
I belonging to the action player P(I), limiting its pruning rate.

Regret-based pruning (RBP) (Brown & Sandholm, 2015a) avoids traversing branches where either
player is unlikely to take actions with positive probability. If the cumulative counterfactual regret
R(I, a) ≤ 0 for an action a in information set I , RBP temporarily prunes the path from I to a for
⌊ −R(I,a)
U(I,a)−L(I)⌋ iterations, where U(I, a) is the upper bound of v(I, a) and L(I) is the lower bound of

v(I). Although RBP is efficient for standard CFR, many CFR variants (Brown & Sandholm, 2019b;
Xu et al., 2024) require more complicated computation of R(I, a), as it is not always a simple
cumulative quantity. Additionally, RBP necessitates computing both the upper and lower bounds
and recalculating the best response after pruning. These extra computations introduce significant
overhead, particularly in real-time solving scenarios.

Best-Response Pruning (BRP) (Brown & Sandholm, 2017a) is another approach that eliminates
suboptimal branches, based on the assumption that players will avoid suboptimal actions. For each
information set I and action a, BRP computes the best response against the player −P(I) in a sub-
game of non-suboptimal actions. A regret upper bound U for information set I and action a with T
iterations is derived. If U < 0, the path from I to a can be pruned for the next U

L(I) iterations. While
BRP can improve both convergence speed and computational efficiency, it introduces complexity
by requiring the computation of the best response at each information set during every iteration.
This is particularly challenging in depth-limited solving, where best responses calculation is costly
compared to the depth-limited subgame solving (Moravčı́k et al., 2017).

Table 5: Comparison of Pruning Methods.

Pruning Methods Depth-limited Solving Permanent Pruning

Partial Pruning (Lanctot et al., 2009) ✔ ✘
RBP (Brown & Sandholm, 2015a) ✘ ✘
BRP (Brown & Sandholm, 2017a) ✘ ✘

EVPA(Ours) ✔ ✔

The comparison of EVPA with previous pruning algorithms is summarized in Table 5. The key dif-
ference between EVPA and other pruning methods is that EVPA offers permanent pruning, making
it compatible with techniques such as depth-limited solving. Furthermore, EVPA does not require
any additional overhead for intermediate value calculations after pruning is completed. This makes
EVPA not only more efficient but also more versatile, as it can be seamlessly integrated with various
CFR variants. As a result, EVPA offers substantial performance improvements without the added
computational burden associated with methods like RBP or BRP.
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H ABSTRACTION FOR SOLVING LARGE IIEFGS

In large IIEFGs, the size of the game tree often makes it computationally prohibitive to compute an
equilibrium. Abstraction algorithms help address this challenge by simplifying the original game
into a smaller, abstracted version, which is then solved for equilibrium strategies. While abstraction
techniques necessarily sacrifice some accuracy, they are theoretically bounded (Kroer & Sandholm,
2016). However, determining the optimal abstraction remains an NP-complete problem (Sandholm
& Singh, 2012; Kroer & Sandholm, 2014).

Abstraction algorithms typically reduce the complexity of the game tree in the following ways: 1.
Information Abstraction (Gilpin & Sandholm, 2007; Ganzfried & Sandholm, 2014): This method
groups similar information sets together, treating them as a single entity with a shared strategy. 2.
Action Abstraction (Brown & Sandholm, 2014; 2015b; Li et al., 2024): By limiting the available
actions in the game, action abstraction reduces the size of the game tree. 3. Depth-Limited Solving
(Kroer & Sandholm, 2015; Moravčı́k et al., 2017; Brown et al., 2018): This approach limits the
depth to which the game tree is explored, reducing the computational load. 4. Subgame Solving
(Ganzfried & Sandholm, 2013b; 2015; Brown & Sandholm, 2017c): Instead of solving the entire
game tree, subgame solving focuses on specific portions of the tree, starting from the current state,
to avoid unnecessary computation.

In EVPA, we leverage advanced techniques such as action abstraction, depth-limited solving, and
subgame solving simultaneously, while also introducing a novel approach to information abstraction.
This combination enables us to achieve substantial improvements in efficiency and performance.
The key advantages of EVPA include: 1. Online Execution: EVPA performs the abstraction in
less than 1 second for HUNL subgames, making it highly efficient in real-time applications. 2.
Efficient Performance: EVPA excels in abstraction quality, providing significant performances in
convergence speed and eventual exploitability. When combined with subgame solving techniques,
EVPA’s abstraction method has more significant advantages over other offline abstraction methods.
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