
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT ONLINE PRUNING AND ABSTRACTION FOR
IMPERFECT INFORMATION EXTENSIVE-FORM GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently computing approximate equilibrium strategies in large Imperfect In-
formation Extensive-Form Games (IIEFGs) poses significant challenges due to
the vast size of the game tree. Pruning and abstraction methods effectively reduce
this complexity, enhancing computational efficiency. However, seamlessly inte-
grating pruning techniques with variants of Counterfactual Regret Minimization
(CFR), a leading method for solving IIEFGs, remains a complex task. Further-
more, existing information abstraction methods often involve high computational
costs and may require extensive offline pre-computation, limiting their practical
applicability. In this paper, we introduce Expected-Value Pruning and Abstrac-
tion (EVPA), an online approach that improves efficiency by leveraging expected
value estimation within information sets. EVPA consists of three core compo-
nents: expected value estimation of information sets, expected value-based prun-
ing, and information abstraction for subgames. It estimates the expected value
of information sets based on approximate Nash equilibrium strategies, employing
these estimations for both pruning and abstraction. By integrating Minimax prun-
ing with CFR, EVPA streamlines decision-making by permanently eliminating
sub-optimal actions from the game tree before CFR starts. Additionally, EVPA
features an advanced information abstraction mechanism that merges information
sets based on both current and future expected values in the subgame, achieving
efficient online abstraction. Experiments on HUNL demonstrate that EVPA out-
performs DeepStack’s replication and Slumbot with significant win-rate margins
in multiple settings. Remarkably, EVPA requires only 1%-2% of the solving time
to reach an approximate Nash equilibrium compared to DeepStack’s replication.

1 INTRODUCTION

Imperfect Information Extensive-Form Games (IIEFGs) provide a robust framework for analyzing
sequential games with hidden information and multiple players. This framework is applicable across
various domains, such as Poker (Brown & Sandholm, 2019a), Mahjong (Li et al., 2020), and Strat-
ego (Perolat et al., 2022). While small IIEFGs can be efficiently solved using linear programming
techniques (Koller et al., 1996; Koller & Pfeffer, 1997), large games, such as Poker, present sub-
stantial computational challenges (Billings et al., 2002).

To address these complexities, researchers primarily employ approximation methods (Nesterov,
2005; Zinkevich et al., 2007b; Chaudhuri et al., 2009). Counterfactual Regret Minimization (CFR)
and its variants (Zinkevich et al., 2007b; Lanctot et al., 2009; Tammelin, 2014; Brown & Sandholm,
2019b; Xu et al., 2024) stand out as the leading approaches for solving IIEFGs. However, the com-
putational overhead of CFR scales with the size of game tree, making it challenging to compute
approximate equilibrium strategies for large IIEFGs, particularly in games like Heads-Up No-Limit
Texas Hold’em (HUNL), which features a game tree with roughly 10165 states (Johanson, 2013).

Reducing the size of the game tree is essential for making equilibrium computation feasible (Sand-
holm, 2010). Pruning techniques (Blair et al., 1996) eliminate sub-optimal branches, speeding up
CFR convergence and reducing computational overhead (Brown & Sandholm, 2015a). Similarly,
abstraction techniques (Sandholm, 2015) group similar information sets into buckets, significantly
shrinking the game tree size. Combining pruning and abstraction methods can substantially reduce
the game tree, making CFR more practical for large IIEFGs (Brown & Sandholm, 2016b; 2018).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite their utility, current pruning and information abstraction techniques have limitations. Exist-
ing pruning methods often depend on intermediate computed values during CFR iterations (Lanctot
et al., 2009; Brown & Sandholm, 2015a; 2017a), leading to dynamic and tentative pruning. This
complexity requires tailored adjustments based on the specific CFR variant employed. More im-
portantly, when using generic techniques such as depth-limited solving (Moravčı́k et al., 2017) or
MCCFR (Lanctot et al., 2009), the computational overhead of these intermediate values may even
greatly exceed the original overhead of the iteration. Moreover, during the early iterations of CFR,
the game tree size remains unchanged, resulting in no reduction in memory usage.

Information abstraction methods can be broadly categorized into expectation-based abstraction
(Gilpin & Sandholm, 2007; Zinkevich et al., 2007a) and potential-aware abstraction (Gilpin et al.,
2007; 2008; Ganzfried & Sandholm, 2014). Expectation-based abstraction often neglects the future
evolution of information sets, making it less effective (Gilpin & Sandholm, 2008; Johanson et al.,
2013). While potential-aware abstraction is more comprehensive, it requires extensive simulation
and clustering, leading to significant computational overhead that can extend for months (Sand-
holm, 2010; Brown et al., 2015), making it impractical for online computation. Furthermore, when
utilizing subgame solving techniques (Ganzfried & Sandholm, 2015; Brown & Sandholm, 2017c),
previous methods often use the same pre-calculated abstraction across different subgames, which
can be sub-optimal.1 Additionally, many methods focus solely on the strength of information sets,
overlooking blocking effects (Sandholm, 2010).2

To address these challenges, we propose Expected-Value Pruning and Abstraction (EVPA), a novel
online method that integrates expected value estimation into pruning and abstraction processes. The
goal is to significantly reduce the solving time required to reach an ε-Nash equilibrium. EVPA
consists of three core components: expected value estimation of information sets, expected value-
based pruning, and information abstraction for subgames. Figure 1 illustrates how EVPA operates
in a HUNL subgame example.

The first component, expected value estimation of information sets, generates expected value estima-
tions for each information set in the subgame, based on the approximate Nash equilibrium strategy.
EVPA’s estimation does not rely on the probability distributions of information sets, allowing it to
efficiently sample data and avoid the overhead of probability distribution calculations typically re-
quired during CFR iterations (Kroer & Sandholm, 2015; Brown et al., 2018). The innovation of
EVPA lies in its ability to effectively harness these expected value estimations specifically for both
pruning and information abstraction before the CFR process begins. This capability optimizes the
decision-making process, enhancing computational efficiency while maintaining strategic depth—a
significant advancement in improving computational efficiency in large IIEFGs.

The second component, expected value-based pruning, employs Minimax pruning (Blair et al.,
1996) based on the expected value estimation of information sets. By permanently eliminating
sub-optimal branches before the CFR begins, EVPA enables the CFR to concentrate on the most
important branches, leading to a substantial increase in convergence speed. Notably, EVPA’s prun-
ing is efficient and does not require real-time computation of intermediate values, unlike previous
methods (Brown & Sandholm, 2015a; 2017a; Brown et al., 2017). Additionally, it can be seamlessly
integrated with various CFR variants (Lanctot et al., 2009; Brown & Sandholm, 2019b). We also
analysis the theoretical soundness of EVPA’s pruning.

The third component, information abstraction for subgames, introduces a novel online algorithm that
merges information sets based on both current and future expected values. Compared to previous
information abstraction methods (Gilpin & Sandholm, 2007; Ganzfried & Sandholm, 2014), EVPA’s
information abstraction algorithm considers relative strength, blocking effects, and potential strength
of the information sets, while achieving efficient abstraction in under 1 second. EVPA’s abstraction
is effective in online CFR solving and is scalable to larger IIEFGs beyond HUNL, such as Omaha
(Farha & Reback, 2007). Furthermore, the flexibility in selecting bucket sizes allows EVPA to
balance solving time and abstraction granularity.

1For example, in HUNL, holding a bottom pair may be advantageous if both players check to the river, but
can be weaker if significant pot increases occur before the river.

2For instance, in HUNL, when the public cards on the river are KsTs9d6c5s, holding As3h and holding
Ac3h have equal strength, but it is less likely for the opponent to hold the nuts (the strongest hand) with As3h,
allowing for more aggressive actions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

KdKh

+1025

5s5h

+956

KhQs

+313

KcQs

+313

JdTd

+317

3h3c

-96

7d6h

-7

5s4s

-4

5h3h

-44

5s4h

-44

8d2h

Pruned

7d2h

Pruned

KdKh

+1023

5s5h

+910

KhQs

+314

KcQs

+314

JdTd

+316

2h2c

-101

7d6h

-7

5s4s

-4

5h3h

-44

5s4h

-44

KdKh

+1027

5s5h

+957

KhQs

+314

KcQs

+314

JdTd

+317

2h2c

-117

7d6h

-7

5s4s

-4

5h3h

-44

5s4h

-44

KdKh

+1024

5s5h

+955

KhQs

+313

KcQs

+313

JdTd

+316

2h2c

-131

7d6h

-8

5s4s

-5

5h3h

-44

5s4h

-46

Check Bet 165 Bet 500

2h2c

-101

3h3c

-116

3h3c

-132

KdKh

+250

5s5h

+250

KhQs

+250

KcQs

+250

JdTd

+250

7d6h

+250

5s4s

+250

5h3h

+250

5s4h

+250

KdKh

+1161

5s5h

+1082

KhQs

+390

KcQs

+390

JdTd

+327

7d6h

-82

5s4s

-60

5h3h

-121

5s4h

-121

KdKh

+2718

5s5h

+2234

KhQs

+140

KcQs

+140

JdTd

+483

7d6h

-184

5s4s

-311

5h3h

-415

5s4h

-414

KdKh

+3966

5s5h

+2831

KhQs

-186

KcQs

-186

JdTd

+460

7d6h

-326

5s4s

-408

5h3h

-415

5s4h

-415

KdKh

-415

5s5h

-415

KhQs

-415

KcQs

-415

JdTd

-415

7d6h

-415

5s4s

-415

5h3h

-415

5s4h

-415

KdKh

+3975

5s5h

+2845

KhQs

-186

KcQs

-186

JdTd

+463

7d6h

-326

5s4s

-408

5h3h

-542

5s4h

-551

KdKh

+3941

5s5h

+2813

KhQs

-231

KcQs

-231

JdTd

+436

7d6h

-407

5s4s

-440

5h3h

-568

5s4h

-574

Player 1’s Action

Player 2’s Action

Hand

EV

Player 1’s Information set

Game Tree Public State

Subgame

Fold CallRaise 995Raise 580

Player 1’s Action Fold Call Raise 3485

Flop: Ks9d5d
Pre Action: Raise250-Call-Check

Hand

EV

Pruned Information Set

…

… … …

… … … …

… … …
Pruned Public State

3h3c

-96

Subgame Root

Figure 1: In the HUNL example with 200 big blinds (20, 000 chips), the player in the small blind
(Player 1) raises to 250 chips, and the player in the big blind (Player 2) calls during the pre-flop
stage. The flop reveals Ks9d5d, after which Player 2 checks, making it Player 1’s turn to act. The
figure illustrates a portion of the current subgame constructed by EVPA. First, EVPA estimates the
expected value of each information set within the subgame. It then prunes branches with signif-
icantly lower expected values, as indicated by gray blocks representing pruned information sets.
Finally, EVPA clusters the remaining information sets based on their current and future expected
values. Information sets of the same color in the figure are grouped into the same bucket, where a
“bucket” refers to a collection of information sets that share the same strategy within the subgame.

We evaluate EVPA using Heads-up No-Limit Texas Hold’em (HUNL) poker and compare its perfor-
mance against DeepStack’s replication (Moravčı́k et al., 2017) and Slumbot (Jackson, 2013), which
won the 2018 annual computer poker competition (ACPC) (Bard et al., 2013). EVPA shows signifi-
cant improvements, including reductions in game tree sizes ranging from 42.67% to 79.51% across
different abstraction settings and subgames. Notably, EVPA reduces the solving time required to
reach an ε-Nash equilibrium to just 1%-2% of the time needed for DeepStack’s replication. EVPA
also outperformed the DeepStack’s replication with win-rates of 930± 23, 202± 31, 82± 60 mbb/h
when the information set is touched 1× 107, 1× 108 and 1× 109 times, respectively. Additionally,
EVPA beats Slumbot with win-rates of 10 ± 26, 96 ± 43, 100 ± 68 mbb/h under 0.02, 0.2 and 2
seconds of the solving time limits, respectively.

The main contributions of our work are as follows:

• Novel Expected Valued-Based Pruning Method. We introduce a highly effective pruning
technique that permanently and correctly eliminates sub-optimal actions from the game tree
before the CFR process begins. This approach achieves up to 98.6% reduction in exploitabil-
ity in HUNL subgames, enabling us to avoid traversing unnecessary paths. Notably, this
pruning method does not require complex computations and exhibits excellent scalability.

• Advanced Information Abstraction for Subgames. Our information abstraction method pro-
vides efficient abstractions that consider both current and future expected values, enabling
tailored online abstractions for different subgames with minimal computational overhead.
This abstraction method accelerates convergence significantly in HUNL subgames, and has
the potential to be applied to more complex games than HUNL.

• Super Performance on HUNL. EVPA effectively integrates the core techniques from previ-
ous superhuman performance HUNL AIs, such as Libratus (Brown & Sandholm, 2018) and
DeepStack. Experiments with limited solving time on HUNL demonstrate that EVPA sur-
passes both DeepStack’s replication and strong poker bot Slumbot with significant win-rate
margins, indicating that EVPA can achieve super performance with minimal solving time.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 RELATED WORK ON EXTENSIVE-FORM GAMES

Value Estimation in IIEFGs. Value estimation is primarily applied to replace leaf node values
in depth-limited solving. DeepStack (Moravčı́k et al., 2017) achieved superhuman performance
in HUNL through probability distribution-based value estimation, and subsequent works, such as
Supremus (Zarick et al., 2020) and ReBeL (Brown et al., 2020), further demonstrate the reliability
of this approach. Another method for estimating leaf node values involves selecting the highest value
from multiple strategies (Brown et al., 2018), which has also achieved superhuman performance in
multiplayer poker (Brown & Sandholm, 2019a). Beyond depth-limited solving, value estimation
has applications in various IIEFG techniques, including Deep CFR (Brown et al., 2019; Steinberger
et al., 2020), action abstraction (Li et al., 2024) and variance reduction (Burch et al., 2018).

Pruning in IIEFGs. Pruning in IIEFGs differs from traditional games (Marsland, 1986) because
these games are typically solved using the CFR algorithm. The value and reach probability of
the information set change with each iteration of the CFR algorithm, leading previous methods
(Lanctot et al., 2009; Brown & Sandholm, 2015a; 2017a; Brown et al., 2017) to rely on temporary
pruning based on intermediate computed values. Regret-based pruning (Brown & Sandholm, 2015a)
avoids traversing a path if either player takes actions leading to that path with zero probability.
Best-response pruning (Brown & Sandholm, 2017a) allows for the temporary pruning of poorly
performing actions. Additionally, dynamic thresholding pruning (Brown et al., 2017) enables the
pruning of actions with low probability. A more detailed description of pruning methods in IIEFGs,
including a comparison between EVPA and these existing methods, can be found in Appendix G.

Information Abstraction in IIEFGs. Information abstraction can be categorized into two main
classes (Gilpin & Sandholm, 2008): expectation-based abstraction and potential-aware abstraction.
Expectation-based abstraction methods (Gilpin & Sandholm, 2007; Zinkevich et al., 2007a) classify
information sets based on their current strength of expectation, while potential-aware abstraction
methods (Gilpin et al., 2007; 2008) consider the performance of information sets across different
future scenarios. The imperfect-recall technique (Waugh et al., 2009) enables players to disre-
gard certain information, significantly reducing the size of the game tree. The leading algorithm,
potential-aware imperfect-recall abstraction (Ganzfried & Sandholm, 2014), integrates potential-
aware abstraction with imperfect-recall, playing a crucial role in the success of many IIEFG AIs
(Tammelin et al., 2015; Brown & Sandholm, 2016b; 2018). A more detailed description of the
abstraction can be found in Appendix H.

3 BACKGROUND AND NOTATION

In an Imperfect Information Extensive-Form Game (IIEFG), there is a finite set of players N =
{1, · · · , N}. A state (or history) h is defined by the sequence of all historical actions taken from
the initial state ∅. Performing an action a in a non-terminating state h transitions to a new state h′,
denoted h · a = h′, where h is the parent of h′. If state h′ can be reached from h by performing
a sequence of actions, then h is an ancestor of h′. We denote h ⊑ h′ to mean h is an ancestor of
h′, and h ⊏ h′ to mean h is a strict ancestor of h′. A terminal state z is one where no actions are
available, and up(z) denotes the payoff for player p at terminal state z. The acting player at a non-
terminal state h is denoted by P(h) ∈ N ∪ {c}, where c represents the “chance player,” indicating
events beyond the control of players in N .

For each player p ∈ N , imperfect information is represented by an information set Ip. For an
information set Ip belonging to player p, all states h, h′ ∈ Ip are indistinguishable to p. If p is
the acting player, the information set Ip can be denoted simply as I . The set of information sets is
denoted by I.

A strategy σ(I) is a probability distribution over the available actions within information set I , and
the probability of choosing action a is denoted σ(I, a). The strategy for player P in all information
sets where they act is denoted σp, while the strategy for all other players is denoted σ−p. A strategy
profile σ = (σp)p∈N is a tuple of strategies, one for each player. A best response for player p to σ−p

is denoted BR(σ−p) = argmaxσ′
p
up(σ

′
p, σ−p). A Nash equilibrium σ∗ is a strategy profile where

every player’s strategy is a best response; that is, ∀p, up(σ
∗, σ∗

−p) = maxσ′
p
up(σ

′
p, σ

∗
−p). The

expected value (EV) of an information set Ip under a Nash equilibrium σ∗ is denoted EVσ∗(Ip).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The exploitability e(σp) of a strategy σp in a two-player zero-sum game measures how much worse
the strategy performs compared to a best response against a Nash equilibrium strategy. Formally,
e(σp) = up(σ

∗
p, BR(σ∗

p)) − up(σp, BR(σp)). A strategy σ is an ε-Nash equilibrium if no player
has exploitability greater than ε under σ.

A subgame is defined as a continuous portion of a game tree. Formally, a subgame S is a set of
states such that ∀h ∈ S, if h ∈ Ip and h′ ∈ Ip then h′ ∈ S, and ∀x, z ∈ S, if x ⊏ y ⊏ z then
y ∈ S. A public state (or node) s contains the public information known to all players, with the
unique public state corresponding to a state h and an information set Ip denoted as s(h) and s(Ip),
respectively. If h ∈ S has no descendants within S, it is termed a leaf state, and the information sets
and nodes containing h are referred to as leaf information sets and leaf nodes. Conversely, if h ∈ S
has no ancestors within S, it is termed a root state, and the information sets and nodes containing h
are referred to as root information sets and root nodes. The root node of S is denoted as Sr.

4 EVPA ALGORITHM

In this section, we present the Expected-Value Pruning and Abstraction (EVPA) algorithm, which
consists of three core components: (i) expected value estimation of information sets (Section 4.1),
(ii) expected value-based pruning (Section 4.2), and (iii) information abstraction for subgames (Sec-
tion 4.3). Figure 2 illustrates how EVPA works in a depth-limited subgame.

Game Tree Node

Information Sets

Min,Max

Values

…

Player 1’s Information Set

Expected

Value

Networks

Player 2’s Information Set

Features

2.Pruning

1.Expected Value Estimation

3.Abstraction

Unsolved Subgames

Depth-Limited

Subgame

History Actions
Root Node

Original Game Tree

Figure 2: Framework of EVPA. We begin by estimating the maximum, minimum, and average
expected values of each information set in the subgame using expected value networks. Next, we
prune the game tree based on the maximum and minimum values. Finally, we utilize the average
values as features for information abstraction.

4.1 EXPECTED VALUE ESTIMATION OF INFORMATION SETS

We begin with the expected value estimation of information sets. To estimate the expected values of
approximate Nash equilibrium strategies for various information sets in IIEFGs, we adopt a frame-
work for computing depth-limited subgame equilibrium strategies, similar to DeepStack’s approach
(Moravčı́k et al., 2017). Further implementation details are available in Appendix D.

Our method involves sampling diverse subgames and calculating approximate Nash equilibrium
expected values for information sets within these subgames. The sampling process is outlined in
Algorithm 1, starting with the generation of a depth-limited subgame S from a random initial public
state. To ensure comprehensive action coverage, we utilize randomized action abstractions during
subgame construction. We then compute the Nash equilibrium strategy for this subgame, calculate
the expected value for each information set, and incorporate these values into our training data. The
process continues by sampling a leaf node s of the subgame S; if s is not a terminal node, we then
solve the subgame rooted at s. We emphasize that, unlike DeepStack, the information set features
in EVPA contain only public information and player’s private hand information, and do not include
range information of both players.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Algorithm for Sampling of Nash Equilibrium Expected Value of Information Sets.
s←RandomInitPublicState()// Randomly initialize the public state
Data← ∅
while P(s) ̸= ∅ do

while P(s) = c do
s←TakeChance(s)// Process a random chance event

S ←DepthLimitedSubgame(s)// Build a depth-limited subgame with
randomized action abstractions

σ∗ ←StrategySolving(S) // Compute Nash equilibrium strategies
for Ip ∈ S do

EVσ∗(Ip)←CalculateExpectedValue(S, σ∗, Ip)
Add {Ip, EVσ∗(Ip)} to Data

s← SampleLeaf(S, σ∗) // Randomly sampling a leaf
Output: Data

We train M independent neural networks (with M = 10) for the purpose of expected value estima-
tion, using the Huber Loss (Huber, 1964) as our loss function. Each neural network receives a feature
vector describing the information set, and outputs a scalar representing the expected value (relative
to the pot size) of that information set. The network architecture consists of 6 layers of Multi-Layer
Perceptrons (MLPs), each with 1, 536 hidden units and ReLU activation functions (Glorot et al.,
2011). Each network is trained on at least 10 billion samples using the Adam optimizer (Kingma
& Ba, 2015). Each sample provides values for all information sets within subgame S, resulting in
a sampling size that is millions of times larger than the one used by DeepStack within the same
sampling time. Training the DeepStack replication requires 70 days, with sampling time being the
primary overhead. In contrast, training the expected value network in EVPA takes only 4 days, with
1 day of sampling time.

Upon completing the training, we obtain M expected value estimation networks. For each infor-
mation set Ip, the expected value estimation from the i-th network is denoted as EVi(Ip). We
calculate the average expected value estimation as EV (Ip) = 1

M

∑M
i=1 EVi(Ip). Additionally,

we determine the maximum and minimum expected value estimations across the M networks as
EVmax(Ip) = max{EV1(Ip), . . . , EVM (Ip)} and EVmin(Ip) = min{EV1(Ip), . . . , EVM (Ip)}, re-
spectively. These value estimations provide a comprehensive representation of the expected value
for each information set, which is used in the subsequent pruning and abstraction components.

The true innovation of EVPA lies in its effective use of these expected value insights, enabling
smarter decision-making and more efficient exploration of the game tree. This ultimately enhances
the overall performance of the algorithm.

4.2 EXPECTED VALUE-BASED PRUNING

The EVPA pruning method introduces a novel approach inspired by Minimax pruning (Blair et al.,
1996), based on the principle that an optimal player will not select an action for an information
set if another action has a higher expected value. For instance, in HUNL, discarding a pair of
Aces pre-flop is clearly sub-optimal compared to calling or raising, which yield higher expected
values. Formally, for an information set I , an action a, and a Nash equilibrium strategy σ∗, if
EVσ∗(I · a) < EVσ∗(I), then σ∗(I, a) = 0. Furthermore, if there exists another action a′ such that
EVσ∗(I · a) < EVσ∗(I · a′), then σ∗(I, a) = 0.

However, accurately calculating EVσ∗(I · a) for each information set I and action a in a subgame
can be computationally prohibitive. To address this challenge, the EVPA method leverages estimates
from M expected value estimation networks to perform pruning efficiently before applying the CFR
algorithm. This integration not only enhances the effectiveness of pruning but also significantly
reduces computational overhead.

The details of the pruning algorithm are outlined in Algorithm 2. The MaximumJudge function
evaluates whether the child information set Ison

p of Ip has the highest expected value for player p. If
the maximum expected value estimation for the child information set, EVmax(I

son
p), plus a constant

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

δ does not exceed the minimum expected value estimation for the current information set and the
maximum minimum expected value estimation in its sibling information sets, we can confidently
conclude that player p will not choose any sub-optimal actions leading to Ison

p .

The LegalFromRoot function innovates further by verifying that player p has not taken any sub-
optimal actions from the initial state up to Ip. This condition enables us to prune information sets
directly from the root node of the subgame S, streamlining the overall pruning process.

The Pruning function executes the novel pruning across all information sets in the subgame S. After
applying LegalFromRoot to the root node, the algorithm stores the remaining legal information
sets in a queue and uses MaximumJudge to assess whether child information sets can be pruned.
Ultimately, the function returns the necessary information sets to retain, completing the efficient
permanent pruning of the game tree before initiating the CFR algorithm.

Algorithm 2: Algorithm for EVPA subgame pruning.
Function MaximumJudge(Ip, Ison

p):
if P(Ip) ̸= p then

return True// If the acting player is not p, return true
MaxMin← −∞
for I ′p ∈ Ip · a do

if Ison
p ̸= I ′p ∧ EVmin(I

′
p) > MaxMin then

MaxMin← EVmin(I
′
p)

if EVmax(I
son
p) + δ > Min(MaxMin,EVmin(Ip)) then

return True
return False

Function LegalFromRoot(Ip):
if Parent(Ip) = ∅ then

return True
I ′p ← Parent(Ip)// There exists an action a such that I ′p · a = Ip
return MaximumJudge(I ′p, Ip) ∧ LegalFromRoot(I ′p)

Function Pruning(S):
Iroot, Isubgame ← ∅
for Ip ∈ Sr do

if LegalFromRoot(Ip) then
Add Ip to Iroot // Pruning root information sets

Iqueue, Isubgame ← Iroot
while Iqueue ̸= ∅ do

Ip ← TopElement(Iqueue)
Iqueue ← Iqueue \ Ip
for I ′p ∈ Ip · a do

if s(I ′p) ∈ S ∧MaximumJudge(Ip, I ′p) then
Add I ′p to Iqueue, Isubgame

return Iroot, Isubgame// Isubgame is the set of all feasible
information sets in the subgame after pruning

The parameter δ is introduced to mitigate errors generated by sampling data. When δ is no less than
the maximum average regret O(1√

T
) of CFR, where T is the CFR iterations, we can eliminate the

error generated by CFR with DeepStack.3 After δ elimination of errors generated by CFR iterations
in the sampling process, we can be confident that the sampled data fully reflects the exact expected
value of the information set. For the information set Ip, the value estimation of the neural network
can be expressed as EV ∗(Ip) + err, where err is the random error generated by the network itself.
Below, we provide an analysis that the upper bound on the error rate is |A|−1

CM
3M

, where |A| is the
number of action branches and M is the number of expected value estimation networks.

Analysis. First of all, if a branch Ison
p = I · a with EV ∗(Ison

p) = EV ∗(I) is pruned, a pruning error
occurs. Next, note that the worst-case scenario is the case where all branches I ·a of the information

3We set δ = 0.01 since the performance of DCFR significantly exceeds the theoretical bounds.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

set I have the same EVs, i.e., ∀I · a ∈ S,EV ∗(I) = EV ∗(I · a). Such a case is most challenging
for the pruning algorithm as it required to prune no optimal branches.

We now analyze the maximum probability of an pruning error in Ison
p occurring in the worst-case. We

enumerate each sibling information set Ibro
p of Ison

p , the pruning error occurs in the Ison
p branch if all

M estimates about Ison
p are smaller than the other 2M estimates about Ip and the sibling information

set Ibro
p . The probability of selecting the exactly M minimum values out of 3M random values is

1
CM

3M

. The Ison
p has |A| − 1 siblings, and the upper bound pruning error probability of Ison

p is |A|−1

CM
3M

.

The pruning algorithm estimates the expected values of O(M ·D · |I|+M · |S| · |I|) information
sets, where M represents the number of expected value estimation networks, D is the current depth
of the subgame, |S| is the number of nodes in the subgame, and |I| denotes the number of distinct
information sets per node. Notably, the computational overhead of the pruning algorithm is minimal
compared to that of the CFR algorithm, highlighting its practicality and efficiency in large IIEFGs.
By directly and correctly eliminating unimportant branches, EVPA’s pruning algorithm enables the
CFR algorithm to concentrate on more critical branches, significantly enhancing convergence and
overall performance. This strategic focus not only accelerates computation but also facilitates more
effective exploration of promising areas within the game tree.

4.3 INFORMATION ABSTRACTION FOR SUBGAMES

EVPA’s information abstraction method innovatively clusters both current and future expected val-
ues of information sets as features. The core idea is to merge two information sets I and I ′ when
their current and future expected values align closely, following specific criteria: (1) s(I) = s(I ′),
and (2) for any action sequences a1, · · · , an (where n ≥ 0), if ∀i < n, P(I ·a1 · · · ai) ̸= P(I), then
EVσ∗(I ·a1 · · · an) ≈ EVσ∗(I ′ ·a1 · · · an). If these conditions hold, it follows that σ∗(I) ≈ σ∗(I ′).

This merging approach extends to subgame solving, allowing for the consolidation of root informa-
tion sets into K buckets within subgames. For player p, all information sets in bucket k are denoted
as Irootbucket,p,k. All information sets in Irootbucket,p,k adopt the same strategy in the subgame.

Algorithm 3: Algorithm for EVPA information abstraction.
Function Abstraction(S,K):
Iroot, Isubgame ← Pruning(S)
for Ip ∈ Iroot do

feature(Ip)← ∅// Define features for information sets
for s ∈ S do

a1, · · · , an ← SequenceActions(Sr, s)// Actions from Sr to s
for Ip ∈ Iroot do

Append EV (Ip · a1 · · · an) · f(g(s), n) into feature(Ip)
Irootbucket, Isubgamebucket ← ∅
for p ∈ N do
Irootbucket,p,1 · · · Irootbucket,p,K ← k-means++({Ip, feature(Ip)}Ip∈Iroot ,K)
for s ∈ S do

a1, · · · , an ← SequenceActions(Sr, s)
for k = 1 to K do

for Ip ∈ Irootbucket,p,k do
if Ip · a1 · · · an ∈ Isubgame then

Add Irootbucket,p,k to Isubgamebucket,p,s
break// Exit loop once a match is found

return Irootbucket, Isubgamebucket

The details of the EVPA information abstraction algorithm are outlined in Algorithm 3. The process
begins by pruning all root information sets and storing the viable root information sets in Iroot.

Next, we enumerate each node s of the subgame S and predict the expected value of each root
information set Ip at that node. To estimate this expected value, we utilize the average output from
M expected value estimation networks. This estimated value is then multiplied by a significance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

function f(g(s), n) and appended to the features of Ip. Here, g(s) encapsulates various pieces of
information about node s, while n represents the distance from the root node Sr to node s. In
the context of HUNL, we define the significance function as f(g(s), n) = 1

pot(s)·max{n,0.2} , where
pot(s) indicates the number of chips in the pot at node s.

After calculating expected value features, we cluster the root information sets for each player using
the k-means++ algorithm (Arthur & Vassilvitskii, 2007), categorizing them into K buckets. The
clustering process has a time complexity of O(T ·K ·|S|·|Iroot|), where T is the number of iterations
of the k-means++ algorithm (set to T = 8), K is the number of buckets, |S| is the number of nodes in
the subgame, and |Iroot| is the number of legitimate information sets at the root node. Remarkably,
even for large IIEFGs, such as HUNL, the information abstraction process completes in under 1
second on a standard server, highlighting the algorithm’s practicality for real-time applications.

Following the clustering, we retain the original pruning results of the subgame in Isubgame. For any
node s in the subgame, we can prune bucket k at node s if all corresponding information sets in that
bucket are absent from Isubgame.

A key innovation of EVPA is its ability to provide dynamic, subgame-specific abstractions that ef-
fectively integrate both current and future expected values. This method significantly reduces the
computational overhead associated with information abstraction, enabling customized online ab-
stractions for diverse subgames. Additionally, the flexibility in choosing the bucket size K allows
for an optimal balance between solving time and abstraction accuracy, further enhancing the algo-
rithm’s applicability in real-time scenarios.

5 EXPERIMENT

As in previous studies on large IIEFGs (Moravčı́k et al., 2017; Brown & Sandholm, 2018), we use
Heads-Up No-Limit Texas Hold’em (HUNL) (see Appendix A for detailed rules) as our experimen-
tal benchmark due to its representativeness and complexity. In our evaluation, players start with
200 big blinds and switch positions every two hands, replicating conditions of the annual computer
poker competition (ACPC) (Bard et al., 2013). All experiments employed the leading discounted
CFR (DCFR) algorithm (Brown & Sandholm, 2019b), as outlined in Appendix C. To maintain strat-
egy soundness, we utilized subgame re-solving techniques (Burch et al., 2014; Brown & Sandholm,
2017c). Additionally, the AIVAT technique (Burch et al., 2018) is applied to reduce variance in
heads-up evaluations. Training and experiments were executed on a server with 4 NVIDIA A100
80GB PCIe GPUs and 112 Intel(R) Xeon(R) Gold 6348 2.60GHz CPUs. For our evaluations, we
replicated DeepStack (Moravčı́k et al., 2017) as a baseline (BASE) and implemented three AIs using
the EVPA algorithm: EVPA-full (which employs pruning only), EVPA-169 (pruning combined with
169 buckets for abstraction), and EVPA-30 (pruning combined with 30 buckets for abstraction).

Pruning Effectiveness. To evaluate the impact of pruning, we randomly generated at least 10, 000
depth-limited subgames across different stages of HUNL. The pruning rates are summarized in
Table 1. EVPA-full achieved pruning rates between 69.72% and 79.51%. EVPA-169 achieved
pruning rates between 55.68% and 69.50%, while EVPA-30 achieved pruning rates between 42.67%
and 51.58%. These results clearly indicate that EVPA effectively prunes a significant portion of the
game tree across various settings.

Table 1: Game tree pruning rate of depth-limited subgame at each stage of HUNL.

EVPA AIs Pre-flop Flop Turn River

EVPA-full 69.72% 69.87% 77.00% 79.51%
EVPA-169 69.50% 55.68% 63.07% 65.31%
EVPA-30 51.58% 42.67% 49.60% 49.79%

Exploitability Evaluation. In our evaluation of exploitability at the river stage subgame, as illus-
trated in Figure 3, the EVPA AIs demonstrate a marked reduction in exploitability compared to
the baseline. Specifically, EVPA-full achieves the lowest exploitability with 1 × 108 information
set touches, reducing exploitability to approximately 1.4% of the baseline’s level. Further analysis

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

reveals that EVPA-169 reduces exploitability by 47% relative to EVPA-full with 1 × 107 touches,
while EVPA-30 achieves a 54% reduction relative to EVPA-169 with 1× 106 touches.

1e6 1e7 1e8 1e9

Touched Information Sets

0.0001

0.001

0.01

0.1

1

E
xp

lo
ita

bi
lit

y

EVPA-169
EVPA-30
EVPA-full
BASE

Figure 3: The average exploitability (relative
to the current pot size) of various HUNL AIs
during river subgames is plotted against the
number of information sets touched by DCFR.

Notably, to reach an exploitability of no more than
0.08, the baseline requires around 1×108 informa-
tion set touches, whereas EVPA-30 achieves this
with only 1 × 106. Similarly, for an exploitabil-
ity threshold of 0.01, the baseline necessitates over
5 × 108 touches, while EVPA-169 can already
achieve this with just 1 × 107 touches. These re-
sults underscore that EVPA can attain an ε-Nash
equilibrium with only 1%-2% of the information
set touches required by the baseline, highlighting
the efficiency and effectiveness of the EVPA.

Heads-up Evaluation Against Slumbot. We
conducted heads-up evaluations against Slumbot
(Jackson, 2013), a strong open-source HUNL AI
that won the 2018 ACPC. The results are presented
in Table 2. In the initial trials with a solving time
limit of 0.02 seconds, DeepStack’s replication suf-
fered a significant defeat, recording a win-rate of
−573±28 mbb/h against Slumbot. In contrast, the
EVPA algorithms—EVPA-full, EVPA-169, and EVPA-30—demonstrated comparable performance
levels to Slumbot, with EVPA-169 achieving a win-rate of 10 ± 26 mbb/h. When the solving time
was increased to 0.2 seconds, DeepStack’s replication continued to struggle, showing a win-rate of
−109±52 mbb/h. Meanwhile, EVPA-full succeeded in defeating Slumbot with a win-rate of 96±43
mbb/h. When the solving time was further increased to 2 seconds, DeepStack’s replication managed
to beat Slumbot with a win-rate of 33± 65 mbb/h, but still fell short of EVPA’s performance.

Table 2: Heads-up results of AIs against Slumbot with solving time limits, measured in mbb/h.

Solving Time Limits BASE EVPA-full EVPA-169 EVPA-30

0.02 seconds −573± 28 8± 25 10± 26 −4± 28
0.2 seconds −109± 52 96± 43 31± 57 -
2 seconds 33± 65 100± 68 - -

Heads-up Evaluation Against DeepStack’s Replication. We further conducted heads-up evalua-
tion between DeepStack’s replication and various EVPA AIs, varying the limits on the number of
information set touches, as presented in Table 3. After the CFR algorithm touches the information
set 1 × 107 times, the EVPA algorithm significantly outperforms DeepStack’s replication, demon-
strating a win-rate of up to 930 ± 23 mbb/h. Even after 1 × 108 touches, EVPA maintained its
advantage, defeating DeepStack’s replication with a win-rate of 202± 31 mbb/h. When the number
of touched information sets came to 1 × 109, DeepStack’s replication was still outperformed by
EVPA, with recorded a win-rate of 82± 60 mbb/h.

Table 3: Heads-up results of EVPA AIs against DeepStack’s replication with different limits on the
number of information set touches, measured in mbb/h.

Touched Information Sets EVPA-full EVPA-169 EVPA-30

1× 107 844± 26 930± 23 865± 29
1× 108 202± 31 125± 27 -
1× 109 82± 60 - -

These results highlight that EVPA consistently outperforms DeepStack’s replication across various
levels of computational resources, particularly in settings with limited solving time.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

The primary concern of this work is the potential for cheating in games such as poker. While AI has
previously demonstrated superhuman performance in poker, it often relies on specific assumptions
about players’ initial chips or bet sizes, limiting its applicability in real-time scenarios. In contrast,
EVPA can compute strategies for any initial chip count, subgame, and bet size with remarkable
speed.

REFERENCES

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In SODA, pp.
1027–1035. SIAM, 2007.

Anton Bakhtin, David J Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele Farina, Alexan-
der H Miller, and Noam Brown. Mastering the game of no-press diplomacy via human-regularized
reinforcement learning and planning. arXiv preprint arXiv:2210.05492, 2022.

Nolan Bard, John Alexander Hawkin, Jonathan Rubin, and Martin Zinkevich. The annual computer
poker competition. AI Mag., 34(2):112, 2013.

Nolan Bard, Michael Johanson, and Michael H. Bowling. Asymmetric abstractions for adversarial
settings. In AAMAS, pp. 501–508. IFAAMAS/ACM, 2014.

Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The challenge of poker.
Artif. Intell., 134(1-2):201–240, 2002.

Jean R. S. Blair, David Mutchler, and Michael van Lent. Perfect recall and pruning in games with
imperfect information. Comput. Intell., 12:131–154, 1996.

Noam Brown and Tuomas Sandholm. Regret transfer and parameter optimization. In AAAI, pp.
594–601. AAAI Press, 2014.

Noam Brown and Tuomas Sandholm. Regret-based pruning in extensive-form games. In NIPS, pp.
1972–1980, 2015a.

Noam Brown and Tuomas Sandholm. Strategy-based warm starting for regret minimization in
games. In AAAI, pp. 432–438. AAAI Press, 2016a.

Noam Brown and Tuomas Sandholm. Baby tartanian8: Winning agent from the 2016 annual com-
puter poker competition. In IJCAI, pp. 4238–4239. IJCAI/AAAI Press, 2016b.

Noam Brown and Tuomas Sandholm. Reduced space and faster convergence in imperfect-
information games via pruning. In ICML, volume 70 of Proceedings of Machine Learning Re-
search, pp. 596–604. PMLR, 2017a.

Noam Brown and Tuomas Sandholm. Libratus: The superhuman AI for no-limit poker. In IJCAI,
pp. 5226–5228. ijcai.org, 2017b.

Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information
games. In NIPS, pp. 689–699, 2017c.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
eaay2400, 2019a.

Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret
minimization. In AAAI, pp. 1829–1836. AAAI Press, 2019b.

Noam Brown and Tuomas W Sandholm. Simultaneous abstraction and equilibrium finding in games.
2015b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Hierarchical abstraction, distributed equi-
librium computation, and post-processing, with application to a champion no-limit texas hold’em
agent. In AAAI Workshop: Computer Poker and Imperfect Information, volume WS-15-07 of
AAAI Technical Report. AAAI Press, 2015.

Noam Brown, Christian Kroer, and Tuomas Sandholm. Dynamic thresholding and pruning for regret
minimization. In AAAI, pp. 421–429. AAAI Press, 2017.

Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-
information games. In NeurIPS, pp. 7674–7685, 2018.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret min-
imization. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 793–802.
PMLR, 2019.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. In NeurIPS, 2020.

Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information games using
decomposition. In AAAI, pp. 602–608. AAAI Press, 2014.

Neil Burch, Martin Schmid, Matej Moravcik, Dustin Morrill, and Michael Bowling. AIVAT: A new
variance reduction technique for agent evaluation in imperfect information games. In AAAI, pp.
949–956. AAAI Press, 2018.

Kamalika Chaudhuri, Yoav Freund, and Daniel J. Hsu. A parameter-free hedging algorithm. In
NIPS, pp. 297–305. Curran Associates, Inc., 2009.

Theo SH Driessen. Cooperative games, solutions and applications, volume 3. Springer Science &
Business Media, 2013.

Sam Farha and Storms Reback. Farha on Omaha: Expert strategy for beating cash games and
tournaments. Triumph Books, 2007.

Sam Ganzfried and Tuomas Sandholm. Computing equilibria in multiplayer stochastic games of
imperfect information. In IJCAI, pp. 140–146, 2009.

Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-form games with large ac-
tion spaces: Axioms, paradoxes, and the pseudo-harmonic mapping. In IJCAI, pp. 120–128.
IJCAI/AAAI, 2013a.

Sam Ganzfried and Tuomas Sandholm. Improving performance in imperfect-information games
with large state and action spaces by solving endgames. In Workshops at the twenty-seventh AAAI
conference on artificial intelligence, 2013b.

Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In AAAI, pp. 682–690. AAAI Press, 2014.

Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games. In
AAMAS, pp. 37–45. ACM, 2015.

Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh. Strategy purification. In AAMAS, pp. 1111–
1112. IFAAMAS, 2011.

Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh. Strategy purification and thresholding: effec-
tive non-equilibrium approaches for playing large games. In AAMAS, pp. 871–878. IFAAMAS,
2012.

Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for imperfect infor-
mation games, with application to texas hold’em poker. In AAMAS, pp. 192. IFAAMAS, 2007.

Andrew Gilpin and Tuomas Sandholm. Expectation-based versus potential-aware automated ab-
straction in imperfect information games: An experimental comparison using poker. In AAAI, pp.
1454–1457. AAAI Press, 2008.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. Potential-aware automated abstrac-
tion of sequential games, and holistic equilibrium analysis of texas hold’em poker. In AAAI, pp.
50–57. AAAI Press, 2007.

Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. A heads-up no-limit texas hold’em
poker player: discretized betting models and automatically generated equilibrium-finding pro-
grams. In AAMAS (2), pp. 911–918. IFAAMAS, 2008.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudı́k (eds.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale,
USA, April 11-13, 2011, volume 15 of JMLR Proceedings, pp. 315–323. JMLR.org, 2011.

Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics,
35(1):73 – 101, 1964.

Eric Jackson. Slumbot nl: Solving large games with counterfactual regret minimization using sam-
pling and distributed processing. In AAAI Workshop on Computer Poker and Imperfect Informa-
tion, 2013.

Michael Johanson. Measuring the size of large no-limit poker games. CoRR, abs/1302.7008, 2013.

Michael Johanson, Neil Burch, Richard Anthony Valenzano, and Michael Bowling. Evaluating
state-space abstractions in extensive-form games. In AAMAS, pp. 271–278. IFAAMAS, 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Daphne Koller and Avi Pfeffer. Representations and solutions for game-theoretic problems. Artificial
intelligence, 94(1-2):167–215, 1997.

Daphne Koller, Nimrod Megiddo, and Bernhard Von Stengel. Efficient computation of equilibria
for extensive two-person games. Games and economic behavior, 14(2):247–259, 1996.

Christian Kroer and Tuomas Sandholm. Extensive-form game abstraction with bounds. In EC, pp.
621–638. ACM, 2014.

Christian Kroer and Tuomas Sandholm. Limited lookahead in imperfect-information games. In
IJCAI, pp. 575–581. AAAI Press, 2015.

Christian Kroer and Tuomas Sandholm. Imperfect-recall abstractions with bounds in games. In EC,
pp. 459–476. ACM, 2016.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael H. Bowling. Monte carlo sampling for
regret minimization in extensive games. In NIPS, pp. 1078–1086. Curran Associates, Inc., 2009.

Boning Li, Zhixuan Fang, and Longbo Huang. RL-CFR: Improving action abstraction for imper-
fect information extensive-form games with reinforcement learning. In Forty-first International
Conference on Machine Learning, 2024.

Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang, Ruihan Yang, Li Zhao, Tao
Qin, Tie-Yan Liu, and Hsiao-Wuen Hon. Suphx: Mastering mahjong with deep reinforcement
learning. CoRR, abs/2003.13590, 2020.

Guiyang Luo, Hui Zhang, Haibo He, Jinglin Li, and Fei-Yue Wang. Multiagent adversarial collab-
orative learning via mean-field theory. IEEE Transactions on Cybernetics, 51(10):4994–5007,
2020.

T. A. Marsland. A review of game-tree pruning. J. Int. Comput. Games Assoc., 9(1):3–19, 1986.

Paul R Milgrom and Robert J Weber. A theory of auctions and competitive bidding. Econometrica:
Journal of the Econometric Society, pp. 1089–1122, 1982.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017. doi: 10.1126/science.
aam6960.

Yurii E. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim., 16
(1):235–249, 2005.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

Tuomas Sandholm. The state of solving large incomplete-information games, and application to
poker. AI Mag., 31(4):13–32, 2010.

Tuomas Sandholm. Abstraction for solving large incomplete-information games. In AAAI, pp.
4127–4131. AAAI Press, 2015.

Tuomas Sandholm and Satinder Singh. Lossy stochastic game abstraction with bounds. In EC, pp.
880–897. ACM, 2012.

David Schnizlein, Michael H. Bowling, and Duane Szafron. Probabilistic state translation in exten-
sive games with large action sets. In IJCAI, pp. 278–284, 2009.

Arnold Snyder. Poker Tournament Formula. Cardoza Publishing, 2006.

Eric Steinberger, Adam Lerer, and Noam Brown. DREAM: deep regret minimization with advantage
baselines and model-free learning. CoRR, abs/2006.10410, 2020.

Oskari Tammelin. Solving large imperfect information games using CFR+. CoRR, abs/1407.5042,
2014.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In IJCAI, pp. 645–652. AAAI Press, 2015.

Leigh Thompson. Negotiation behavior and outcomes: Empirical evidence and theoretical issues.
Psychological bulletin, 108(3):515, 1990.

Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schnizlein, and Michael H.
Bowling. A practical use of imperfect recall. In SARA. AAAI, 2009.

Hang Xu, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Dynamic discounted coun-
terfactual regret minimization. In ICLR. OpenReview.net, 2024.

Chih-Kuan Yeh, Cheng-Yu Hsieh, and Hsuan-Tien Lin. Automatic bridge bidding using deep rein-
forcement learning. IEEE Transactions on Games, 10(4):365–377, 2018.

Ryan Zarick, Bryan Pellegrino, Noam Brown, and Caleb Banister. Unlocking the potential of deep
counterfactual value networks. CoRR, abs/2007.10442, 2020.

Enmin Zhao, Renye Yan, Jinqiu Li, Kai Li, and Junliang Xing. Alphaholdem: High-performance
artificial intelligence for heads-up no-limit poker via end-to-end reinforcement learning. In AAAI,
pp. 4689–4697. AAAI Press, 2022.

Martin Zinkevich, Michael H. Bowling, and Neil Burch. A new algorithm for generating equilibria
in massive zero-sum games. In AAAI, pp. 788–794. AAAI Press, 2007a.

Martin Zinkevich, Michael Johanson, Michael H. Bowling, and Carmelo Piccione. Regret mini-
mization in games with incomplete information. In NIPS, pp. 1729–1736. Curran Associates,
Inc., 2007b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

A A Guide to Heads-Up No-Limit Texas Hold’em Rules 15

B Breakthroughs in HUNL AIs 15

C Counterfactual Regret Minimization 17

D DeepStack’s Implementation 17

E Conclusion 18

F Future Directions for Research and Application 18

G Pruning with CFR 19

H Abstraction for Solving Large IIEFGs 20

A A GUIDE TO HEADS-UP NO-LIMIT TEXAS HOLD’EM RULES

Heads-up No-Limit Texas Hold’em (HUNL) is a two-player variant of Texas Hold’em poker, played
over four stages:

1. Pre-flop. Players start by posting a pre-specified number of chips: the “small blind” and the “big
blind”, with the small blind typically being half the size of the big blind. Each player is dealt two
private cards at the beginning.

2. Flop. Three public cards are revealed.

3. Turn. A fourth public card is revealed.

4. River. The final public card is revealed.

During the pre-flop stage, the small blind player acts first; thereafter, the big blind player acts first in
all subsequent stages. Players can fold, check/call, or bet/raise, with bets/raises ranging from the last
bet/raise amount to their remaining chips (all-in). If a player folds, the other wins the pot. If neither
folds by the end of the river stage, the players compare their best five-card hands, which consist of
two private cards and the five public cards. The player with the best hand wins the pot.

Win-rate and exploitability are measured in milli big blinds per hand (mbb/h). For instance, a win-
rate of 0.1 big blind per hand equates to 100 mbb/h.

B BREAKTHROUGHS IN HUNL AIS

Tartanian7 (Brown et al., 2015), Baby Tartanian8 (Brown & Sandholm, 2016b), and Slumbot (Jack-
son, 2013)—winners of annual computer poker competition (ACPC) (Bard et al., 2013) in 2014,
2016, and 2018, respectively—initially computed a blueprint strategy based on a post-abstraction
game tree (Ganzfried & Sandholm, 2014; Brown & Sandholm, 2014; 2016a), followed by the strat-
egy execution based on the blueprint strategy (Ganzfried et al., 2011; 2012; Ganzfried & Sandholm,
2013a). While this approach is effective for IIEFGs with fewer states, such as limit Texas Hold’em
(Tammelin et al., 2015), it struggles in HUNL. A significant challenge arises when an opponent
makes an “off-tree” action, in such cases, the AI must substitute an approximation from the blueprint
strategy (Schnizlein et al., 2009; Ganzfried & Sandholm, 2013a), potentially leading to sub-optimal
performance (Ganzfried & Sandholm, 2013b; Bard et al., 2014). Additionally, the blueprint strategy

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

often lacks the granularity necessary for effective endgame solving (Ganzfried & Sandholm, 2013b;
2015).

Libratus (Brown & Sandholm, 2018) addressed these challenges through a safe and nested sub-
game solving technique (Brown & Sandholm, 2017c) and a self-improver to enhance its blueprint
strategy (Brown & Sandholm, 2017b), ultimately achieving superhuman performance. However, its
substantial computational resource requirements limit its implementation to supercomputers, and it
can only solve for fixed initial chip counts, which is impractical in real poker scenarios where chip
counts fluctuate (Burch et al., 2018).

DeepStack (Moravčı́k et al., 2017) achieved superhuman performance through depth-limited sub-
game solving (Kroer & Sandholm, 2015) and probability distribution-based value estimation of leaf
information sets. Subsequent works, such as ReBeL (Brown et al., 2020) and Supremus (Zarick
et al., 2020), further demonstrate the reliability of this approach. However, none of these AIs have
incorporated online pruning and abstraction of depth-limited subgames, suggesting potential areas
for improvement. Modicum (Brown et al., 2018) introduced a multiple-value depth-limited solv-
ing technique based on a pre-calculated blueprint strategy, which allows for minimal training and
solving time. Nevertheless, its performance remains constrained by the limitations of the blueprint
strategy. AlphaHoldem (Zhao et al., 2022), a reinforcement learning-based method, achieves decent
performance with short training and solving times. However, its lack of CFR integration makes it
susceptible to exploitation.

Table 4 compares the training and solving time of these AIs and the EVPA algorithm, along with
their win-rates against Slumbot or Baby Tartanian8. EVPA demonstrates significant advantages in
processing off-tree actions compared to blueprint strategy-based AIs, achieving higher win-rates
than these methods. Additionally, EVPA outperforms other subgame-solving AIs in solving time
while maintaining a comparable win-rate. Though it has similar solving times and win-rates to
AlphaHoldem, EVPA provides stronger guarantees against exploitability.

Notably, Supremus and AlphaHoldem often make decisions that deviate from Slumbot’s blueprint
strategy, which may confuse Slumbot. For a fairer comparison with Supremus and AlphaHoldem,
we implemented an EVPA-based AI using bet/raise sizes of 0.2, 0.4, 0.8, 1.6 times the pot (EVPA-
full-0.2s-confuseSlumbot). The results show that EVPA-full-0.2s-confuseSlumbot outperformed
Slumbot, achieving a win-rate of 187± 66 mbb/h, surpassing both Supremus and AlphaHoldem.

Table 4: This table compares various HUNL AIs based on estimated training and solving times
using 4 NVIDIA A100 80GB PCIe GPUs and 112 Intel(R) Xeon(R) Gold 6348 CPUs. Win-rates
indicate performance against Slumbot or Baby Tartanian8, measured in mbb/h. Note that Slumbot
is continually improved, so earlier results may not reflect its current performance. X is the training
days of the baseline strategy.

HUNL AI Name Training Time Solving Time Win-rate

Tartanian7 (Brown et al., 2015) 428 Days 0 seconds 33± 16
Baby Tartanian8 (Brown & Sandholm, 2016b) 744 Days 0 seconds 36± 12

Slumbot (Jackson, 2013) 93 Days 0 seconds 0± 0
DeepStack (Moravčı́k et al., 2017) 569 Days 2 seconds -

Libratus (Brown & Sandholm, 2018) 8, 370 Days 160 seconds 63± 28
Modicum (Brown et al., 2018) X + 1 Days 2 seconds 11± 9

ReBeL (Brown et al., 2020) 926 Days 1 second 45± 5
Supremus (Zarick et al., 2020) 351 Days 2 seconds 176± 44

AlphaHoldem (Zhao et al., 2022) 6 Days 0.003 seconds 112± 16
EVPA-full-0.2s (Ours) X + 4 Days 0.2 seconds 96± 43

EVPA-full-0.2s-confuseSlumbot (Ours) X + 4 Days 0.2 seconds 187± 66
EVPA-169-0.02s (Ours) X + 4 Days 0.02 seconds 10± 26

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C COUNTERFACTUAL REGRET MINIMIZATION

Counterfactual Regret Minimization (CFR) is a prominent algorithm for solving large IIEFGs by
minimizing regret independently at each information set (Zinkevich et al., 2007b). CFR can find
ε-Nash equilibrium in two-player zero-sum IIEFGs.

πσ(h) is the probability of reaching h if all players act according to strategy σ. πσ
−p(h) the

probability of reaching h if all players expect p act according to strategy σ, and the player
p act to h. The counterfactual value (CFV) of an information set I under strategy profile σ
represents the expected utility to player P(I) if I has been reached, calculated as vσ(I) =∑

h∈I(π
σ
−P(I)(h|I)

∑
z∈Z(π

σ(z|h)uP(I)(z))). And the counterfactual value of an action a is cal-
culated as vσ(I, a) =

∑
h∈I(π

σ
−P(I)(h|I)

∑
z∈Z πσ(z|h · a)uP(I)(z)).

Let σt denote the strategy profile at iteration t. The instantaneous regret for taking an action a at
information set I during iteration t is given by: rt(I, a) = vσ

t

(I, a) − vσ
t

p (I), where vσ
t

(I, a) is
the counterfactual value of taking an action a at I , and vσ

t

(I) is the counterfactual value of the
information set I .

The accumulated counterfactual regret for taking an action a at information set I after T iterations
is: RT (I, a) =

∑T
t=1 r

t(I, a).

At each iteration t, an action a at information set I is selected with probability: σt(I, a) =
Rt−1

+ (I,a)∑
a′ R

t−1
+ (I,a′)

, where Rt
+(I, a) = max{0, Rt(I, a)}. If

∑
a′ Rt

+(I, a
′) = 0, an arbitrary strategy is

used.

Discounted CFR (DCFR) (Brown & Sandholm, 2019b) is an advanced variant of CFR designed
for large IIEFGs. DCFR introduces parameters α, β and γ to adjust the impact of accumulated
counterfactual regrets over time. Specifically, at each iteration t:

• Positive accumulated counterfactual regrets are multiplied by tα

tα+1 .

• Negative accumulated counterfactual regrets are multiplied by tβ

tβ+1
.

• Contributions to the average strategy σ are weighted by (t
t+1)

γ .

In our experimental setup, we use α = 1.5, β = 0 and γ = 2.

D DEEPSTACK’S IMPLEMENTATION

Our replication of DeepStack’s implementation builds upon several prior works (Moravčı́k et al.,
2017; Zarick et al., 2020; Brown et al., 2020). At each stage of the game, we construct a depth-
limited subgame up to the end of that stage and utilize a neural network to estimate the values of the
leaf information sets (excluding the river stage).

For the first two levels of the subgame, we employ raising scales of 0.25, 0.5, 1, and 2 times the pot,
along with an all-in option. For the third level, we use scales of 0.5 and 1 times the pot, plus all-in.
For subsequent levels, we apply a raising scale of 0.75 times the pot and an all-in option. To enhance
sample diversity, we randomly multiply all raising scales (except for all-in) by a factor between 0.7
and 1.4. During sample generation, we use the DCFR algorithm (Brown & Sandholm, 2019b) for
1, 000 iterations.

We train 6 neural networks corresponding to the following stages: pre-flop stage end, flop stage
start, flop stage end, turn stage start, turn stage end, and river stage start. Each network consists of 6
layers of Multi-Layer Perceptrons (MLPs) with ReLU activation functions (Glorot et al., 2011). The
networks are trained using the Adam optimizer (Kingma & Ba, 2015) and the Huber loss function
(Huber, 1964). The input layer has 2, 678 dimensions, corresponding to the probability of private
hands for both players and the public state information. Each hidden layer contains 1, 536 dimen-
sions, while the output layer has 2, 652 dimensions, representing the expected value of the private
hands.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Training progresses as follows: we first train the river stage network with 5 million randomly gener-
ated river subgames, followed by training the turn stage network with 3 million randomly generated
turn subgames, the flop stage network with 1 million randomly generated flop stage subgames, and
finally the pre-flop stage network with 100, 000 randomly generated pre-flop scenarios. After this
initial training, we regenerate samples from initial states (with initial chips between 50 and 250 big
blinds) to terminal states for 100 epochs, generating at least 36 million samples in total. After each
epoch, we retrain the neural networks using the most recent samples. In the EVPA process for sam-
pling and evaluation, we apply the depth-limited subgame building method and leverage the trained
neural networks to estimate the values of the leaf information sets.

It is important to note that DeepStack dedicates a significant amount of training time to computing
the information abstraction for the initial 200 big blinds due to its reliance on offline abstraction
methods. To reduce training overhead, our implementation of the DeepStack replica omits this
information abstraction step and does not fix the initial chip count. Furthermore, inspired by methods
such as Supremus (Zarick et al., 2020) and ReBeL (Brown et al., 2020), we incorporate a warm-up
phase and then the trained neural network is used to generate subsequent data, allowing for more
efficient training process.

E CONCLUSION

In this paper, we propose the Expected-Value Pruning and Abstraction (EVPA) algorithm, which
marks a significant advancement in solving large imperfect information extensive-form games.
EVPA is featured with three core components, namely expected value estimation of information
sets, expected value-based pruning, and information abstraction for subgames. Our extensive exper-
iments with Heads-up No-Limit Texas Hold’em (HUNL) show that EVPA enhances computational
efficiency while ensuring robust strategy development, achieving competitive performance with sig-
nificantly reduced solving time compared to existing benchmarks. Its dynamic adaptability positions
EVPA as a pivotal tool for advancing AI capabilities in complex strategic environments.

F FUTURE DIRECTIONS FOR RESEARCH AND APPLICATION

As EVPA demonstrates significant advancements in solving HUNL, several promising directions for
future research emerge.

• Generalization to Other IIEFGs. A compelling avenue for future research is to explore
the applicability of EVPA across a broader spectrum of IIEFGs. While the methodology
has been validated in HUNL, expanding its scope to card games such as Omaha (Farha &
Reback, 2007), Bridge (Yeh et al., 2018), and strategic board games such as Mahjong (Li
et al., 2020) and Stratego (Perolat et al., 2022) could yield insights into the versatility of
the EVPA framework. Understanding how EVPA can efficiently manage diverse informa-
tion structures and player strategies in these contexts will contribute to more generalized
solutions in game theory.

• Online Strategy Solving Beyond Poker. The development of EVPA positions it well for
applications beyond poker, particularly in online strategy solving. Many real-world sce-
narios involve sequential decision-making under uncertainty, such as auctions (Milgrom &
Weber, 1982) and diplomacy (Bakhtin et al., 2022). Future work could focus on adapting
the EVPA framework to these domains, enabling robust online strategy solving that lever-
ages its expected value-based pruning and abstraction techniques. Implementing EVPA in
these settings could provide a powerful tool for developing competitive agents capable of
navigating complex interactions and dynamic information.

• Integration with Multi-Agent Systems. Leveraging extensive training data, EVPA could
potentially solve multi-player poker, particularly in tournament settings (Snyder, 2006;
Ganzfried & Sandholm, 2009), in mere seconds. This capability provides a promising en-
try point for exploring EVPA’s application in multi-agent systems. By expanding EVPA’s
functionalities to operate effectively in both collaborative and adversarial environments
(Luo et al., 2020), we can investigate its adaptability to scenarios involving multiple agents,
each with unique strategies and objectives. This exploration will facilitate more sophisti-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

cated strategic interactions, proving particularly valuable in domains such as negotiations
(Thompson, 1990) and cooperative games (Driessen, 2013).

By pursuing these research directions, future work can build on the successes of EVPA, enabling
the development of robust and adaptable strategies for a wide range of sequential decision-making
problems beyond poker. This expansion will contribute to the ongoing evolution of AI in complex
strategic environments, pushing the boundaries of what is achievable in the field of IIEFGs.

G PRUNING WITH CFR

Pruning techniques in CFR help the algorithm avoid exploring suboptimal branches of the game
tree, thus improving computational efficiency without sacrificing convergence guarantees (Brown
& Sandholm, 2015a). One of the most widely used pruning methods is partial pruning (Lanctot
et al., 2009), which reduces unnecessary computations when updating the regret of an information
set belonging to one player. Specifically, if the other player has zero probability of reaching any
history within an information set, the subgame rooted at that history can be pruned without affecting
the overall computation. Formally, for an information set I and the strategy profile σt at iteration t,
if history h ∈ I satisfies πσt

−P(I)(h) = 0, the subgame rooted at h can be pruned in iteration t. This
technique can be combined with EVPA or other pruning methods for even more effective pruning
during CFR iterations. However partial pruning techniques are unable to prune the information set
I belonging to the action player P(I), limiting its pruning rate.

Regret-based pruning (RBP) (Brown & Sandholm, 2015a) avoids traversing branches where either
player is unlikely to take actions with positive probability. If the cumulative counterfactual regret
R(I, a) ≤ 0 for an action a in information set I , RBP temporarily prunes the path from I to a for
⌊ −R(I,a)
U(I,a)−L(I)⌋ iterations, where U(I, a) is the upper bound of v(I, a) and L(I) is the lower bound of

v(I). Although RBP is efficient for standard CFR, many CFR variants (Brown & Sandholm, 2019b;
Xu et al., 2024) require more complicated computation of R(I, a), as it is not always a simple
cumulative quantity. Additionally, RBP necessitates computing both the upper and lower bounds
and recalculating the best response after pruning. These extra computations introduce significant
overhead, particularly in real-time solving scenarios.

Best-Response Pruning (BRP) (Brown & Sandholm, 2017a) is another approach that eliminates
suboptimal branches, based on the assumption that players will avoid suboptimal actions. For each
information set I and action a, BRP computes the best response against the player −P(I) in a sub-
game of non-suboptimal actions. A regret upper bound U for information set I and action a with T
iterations is derived. If U < 0, the path from I to a can be pruned for the next U

L(I) iterations. While
BRP can improve both convergence speed and computational efficiency, it introduces complexity
by requiring the computation of the best response at each information set during every iteration.
This is particularly challenging in depth-limited solving, where best responses calculation is costly
compared to the depth-limited subgame solving (Moravčı́k et al., 2017).

Table 5: Comparison of Pruning Methods.

Pruning Methods Depth-limited Solving Permanent Pruning

Partial Pruning (Lanctot et al., 2009) ✔ ✘
RBP (Brown & Sandholm, 2015a) ✘ ✘
BRP (Brown & Sandholm, 2017a) ✘ ✘

EVPA(Ours) ✔ ✔

The comparison of EVPA with previous pruning algorithms is summarized in Table 5. The key dif-
ference between EVPA and other pruning methods is that EVPA offers permanent pruning, making
it compatible with techniques such as depth-limited solving. Furthermore, EVPA does not require
any additional overhead for intermediate value calculations after pruning is completed. This makes
EVPA not only more efficient but also more versatile, as it can be seamlessly integrated with various
CFR variants. As a result, EVPA offers substantial performance improvements without the added
computational burden associated with methods like RBP or BRP.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

H ABSTRACTION FOR SOLVING LARGE IIEFGS

In large IIEFGs, the size of the game tree often makes it computationally prohibitive to compute an
equilibrium. Abstraction algorithms help address this challenge by simplifying the original game
into a smaller, abstracted version, which is then solved for equilibrium strategies. While abstraction
techniques necessarily sacrifice some accuracy, they are theoretically bounded (Kroer & Sandholm,
2016). However, determining the optimal abstraction remains an NP-complete problem (Sandholm
& Singh, 2012; Kroer & Sandholm, 2014).

Abstraction algorithms typically reduce the complexity of the game tree in the following ways: 1.
Information Abstraction (Gilpin & Sandholm, 2007; Ganzfried & Sandholm, 2014): This method
groups similar information sets together, treating them as a single entity with a shared strategy. 2.
Action Abstraction (Brown & Sandholm, 2014; 2015b; Li et al., 2024): By limiting the available
actions in the game, action abstraction reduces the size of the game tree. 3. Depth-Limited Solving
(Kroer & Sandholm, 2015; Moravčı́k et al., 2017; Brown et al., 2018): This approach limits the
depth to which the game tree is explored, reducing the computational load. 4. Subgame Solving
(Ganzfried & Sandholm, 2013b; 2015; Brown & Sandholm, 2017c): Instead of solving the entire
game tree, subgame solving focuses on specific portions of the tree, starting from the current state,
to avoid unnecessary computation.

In EVPA, we leverage advanced techniques such as action abstraction, depth-limited solving, and
subgame solving simultaneously, while also introducing a novel approach to information abstraction.
This combination enables us to achieve substantial improvements in efficiency and performance.
The key advantages of EVPA include: 1. Online Execution: EVPA performs the abstraction in
less than 1 second for HUNL subgames, making it highly efficient in real-time applications. 2.
Efficient Performance: EVPA excels in abstraction quality, providing significant performances in
convergence speed and eventual exploitability. When combined with subgame solving techniques,
EVPA’s abstraction method has more significant advantages over other offline abstraction methods.

20

	Introduction
	Related Work on Extensive-Form Games
	Background and Notation
	EVPA Algorithm
	Expected Value Estimation of Information Sets
	Expected Value-based Pruning
	Information Abstraction for Subgames

	Experiment
	A Guide to Heads-Up No-Limit Texas Hold'em Rules
	Breakthroughs in HUNL AIs
	Counterfactual Regret Minimization
	DeepStack's Implementation
	Conclusion
	Future Directions for Research and Application
	Pruning with CFR
	Abstraction for Solving Large IIEFGs

