
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING PSEUDORANDOM NUMBERS WITH TRANS-
FORMERS: PERMUTED CONGRUENTIAL GENERATORS,
CURRICULA, AND INTERPRETABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the ability of Transformer models to learn sequences generated by Per-
muted Congruential Generators (PCGs), a widely used family of pseudo-random
number generators (PRNGs). PCGs introduce substantial additional difficulty
over linear congruential generators (LCGs) by applying a series of bit-wise shifts,
XORs, rotations and truncations to the hidden state. We show that Transformers
can nevertheless successfully perform in-context prediction on unseen sequences
from diverse PCG variants, in tasks that are beyond published classical attacks. In
our experiments we scale moduli up to 222 using up to 50 million model parame-
ters and datasets with up to 5 billion tokens. Surprisingly, we find even when the
output is truncated to a single bit, it can be reliably predicted by the model. When
multiple distinct PRNGs are presented together during training, the model can
jointly learn them, identifying structures from different permutations. We demon-
strate a scaling law with modulus m: the number of in-context sequence elements
required for near-perfect prediction grows as

√
m. For larger moduli, optimization

enters extended stagnation phases; in our experiments, learning moduli m ≥ 220

requires incorporating training data from smaller moduli, demonstrating a critical
necessity for curriculum learning. Finally, we analyze embedding layers and un-
cover a novel clustering phenomenon: the model spontaneously groups the integer
inputs into bitwise rotationally-invariant clusters, revealing how representations
can transfer from smaller to larger moduli.

1 INTRODUCTION

Transformer-based models have achieved remarkable success across language, vision, and algo-
rithmic tasks, demonstrating an ability to capture complex patterns from large-scale data (Vaswani
et al., 2023; Dosovitskiy et al., 2021). Beyond supervised training, they can acquire new behaviors
directly from examples provided in the input, a phenomenon known as in-context learning (Brown
et al., 2020; Olsson et al., 2022). Despite these successes, fundamental questions remain: what kinds
of patterns can Transformers reliably learn, how can we train them efficiently and what mechanisms
underlie their ability to generalize? To address these questions, we use pseudo-random number gen-
erators (PRNGs) as a controlled benchmark. PRNGs are designed to pass statistical tests of random-
ness, yet their sequences are governed by hidden deterministic patterns. This contrast makes them
an effective benchmark for testing whether Transformers can uncover hidden recurrence, scale to
practical prediction tasks, and reveal the mechanisms that support generalization to unseen regimes.

PRNGs also comprise a fundamental primitive in cryptography. Like all primitives, their crypto-
graphic security is based on hardness assumptions and it is therefore imperative to understand the
extent to which modern AI systems can successfully attack them.

In this work, we focus on the widely used non-cryptographic family of Permuted Congruential
Generators (PCGs) (O’Neill, 2014). They are practically relevant as the default generator in NumPy.
PCG generates outputs based on the recurrence:

si = (asi−1 + c) mod m, xi = f(si), (1)

where si is the hidden LCG state at step i, and xi is the output. The parameters a, c, and m denote the
multiplier, increment, and modulus, respectively, and are fixed for a given generator. The function

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

f consists of a series of shifts, XORs, rotations and truncations to improve statistical quality and
increase prediction difficulty. Transformers can learn linear congruential generators (LCGs) (Tao
et al., 2025), but PCGs are far tougher: they pass BigCrush at only 49-bit state (m=249) or less,
whereas LCGs require 88 bits (m=288) (O’Neill, 2014; L’Ecuyer & Simard, 2007). Our main
findings are as follows:

In-context prediction across PCG variants: Transformers can perform in-context prediction of
PCG sequences from multiple variants without explicit knowledge of the generator, and they gen-
eralize to unseen parameters (a, c). This capability goes beyond classical PCG attacks (Bouillaguet
et al., 2020), which assume the modulus m and multiplier a are known and exploit the recurrence
and permutation directly. Predictions remain remarkably robust under truncation: even when only
the highest bit of si is retained in the output xi, the model achieves accuracy far above random
guessing.

Scaling law with modulus: We evaluate PCGs with modulus m ranging from 214 to 222. The
number of in-context sequence elements required to exceed 90% prediction accuracy scales as

√
m.

This scaling is steeper than the m0.25 law observed for LCGs.

Curriculum is essential for large-modulus training: At large scales (m ≥ 220), direct training
fails within the fixed budget (75k steps, batch size 512): models enter a prolonged stagnation phase
with minimal loss reduction. A curriculum learning strategy is found to be essential to surmount this
difficulty. The model is initialized with weights from a model trained on a smaller modulus. During
training, 1% of sequences are sampled from the smaller modulus, with this probability decayed to
zero over the course of training. The curriculum provides two main benefits: (1) it removes the initial
loss stagnation phase and yields substantially stronger final performance under the same budget, and
(2) it broadens the range of stable learning rates.

Interpretability of learned representations: Principle component analysis (PCA) of the embed-
ding matrix reveals that when learning PCGs, the model spontaneously organizes tokens by rotation-
invariant features of their binary representations. In particular, embeddings cluster by the number
and arrangement of contiguous zero runs, a rule that remains consistent across different moduli. This
structure emerges naturally when training on PCGs that apply rotations before the output, suggesting
that the model has internalized the invariances inherent to the generator. When trained jointly on
sequences from multiple distinct PCG variants, we show how the model’s intermediate activations
learn to differentiate between sequences from different variants.

2 EXPERIMENTAL SETTINGS

Our experiments are designed to isolate how different aspects of PRNG structure, model configura-
tion and training strategies affect prediction performance. Here we describe the generator variants,
the datasets for training and evaluation, and the model architecture and training setups.

2.1 PCG VARIANTS

PCGs come in different varieties, depending on the precise set of shifts, XORs, rotations and trunca-
tions, encapsulated in the function f in Eq. 1. When a and c are chosen according to the Hull–Dobell
theorem (Hull & Dobell, 1962), the state sequence si in Eq. 1 achieves the maximal period m. For
power-of-two moduli, however, the bits of si exhibit position-dependent periodicities: the k-th least
significant bit cycles with period 2k, far shorter than the full state period m (Knuth, 1997). This
makes the low-order bits especially weak, revealing structural patterns in the generator. PCG per-
mutations mitigate this weakness by redistributing high-period structure across all bit positions using
operations like XOR, shifts, and rotations. We consider the following variants:

• TLCG (Truncated LCG): Outputs only the high bits of the state. Part of the information of
the internal state is hidden by the truncation.

• XSLRR (XORShift Low with Random Rotation): The state is right-shifted by half the bit
length of m and XORed with the original state, improving the quality of the lower half bits.
This lower half is retained and rotated by an amount determined by the control bits.

• XSHRR (XORShift High with Random Rotation): Applies a right-shift smaller than
XSLRR, then XORs with the original state. The higher bits are retained and rotated by
an amount determined by control bits.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Depiction of PCG protocols at m = 216 with 8-bit output. Left: XSLRR-16/8. (a) State
si. The top 3 bits are control bits. (b) si is right-shifted by 8 bits. (c) The shifted state is XORed
with si. (d) The lower 8 bits are retained and rotated right by the value of the control bits to produce
the output. Middle: XSHRR-16/8. (e) State si, with the top 3 bits as control; the lowest few bits are
unused. (f) si is right-shifted by 5 bits. (g) The shifted state is XORed with si. (h) The upper 8 bits
immediately following the control bits are retained and rotated right by the control bits to produce
the output. Right: XSHRS-16/8. (i) State si, with the top 2 bits as control bits. (j) si is right-shifted
by 3 bits. (k) The shifted state is XORed with si. (l) Starting from after the control bits, the output
window is right-shifted by the control bits, producing the output.

• XSHRS (XORShift High with Random Shift): Applies a smaller right-shift than XSLRR
and XSHRR, followed by an XOR with the original state. The output window begins
immediately after the control bits and is shifted right by an offset determined by those bits.

The permutations are illustrated in Figure 1. Bits are labeled from most significant (left, bit 16) to
least significant (right, bit 1). Top row shows the internal state si, where the k-th bit in si has period
2k. The lower three rows show the function f . Bits are split into high and low, with the low bits
enhanced by the higher bits during the permutation; cross-hatched overlaps mark areas enhanced
by XOR. The final rotation and shift in the permutation are controlled by the top bits of the state.
This ensures that all bits in the output inherit the full period of the highest bit. A full description
of the initial-shift calculation and pseudo-code for each generator is given in Appendix A. In prac-
tice, PCGs typically adopt a power-of-two modulus m = 2state size, ensuring that the control bits
achieve maximal period. We denote generators as generator type-state size/output size; for example,
XSLRR-16/8 refers to an XSLRR generator with a 16-bit state and an 8-bit output.

2.2 DATASETS

We consider two settings:
• Separate: Training and test sets each contain sequences from the output of a single gener-

ator type, with no mixing between types.
• Combined: Training and test sets contain sequences from all four generator types.

In both cases, test sequences are generated from a, c values not seen during training. The combined
setting is more challenging, as the model must simultaneously learn and distinguish multiple gener-
ation rules, effectively forming a multi-task problem across PRNG variants. The separate setting, by
contrast, isolates each variant, simplifying analysis. For scaling studies on dataset size, model size,
and modulus, we focus on the XSLRR variant.
For a given modulus m, we select a and c according to the Hull–Dobell Theorem to ensure maximal
period. The training set consists of sequences of length L+1, generated using na distinct multipliers
a and nc distinct increments c. Each (a, c) pair contributes one sequence.
Specifically: For all experiments at m = 216, we fix the sequence length to L+1 = 513. For
m ≥ 216, we increase the sequence length, setting L > 1

2

√
m to provide sufficient context. At

m = 216 (except in dataset scaling experiments), we use na = nc = 1024, giving a dataset of
1024 × 1024 × 513 ≈ 5.4 × 108 tokens. At m = 222, we use na = nc = 2048 and L+1 = 1280,
giving a dataset of 2048× 2048× 1280 ≈ 5.4× 109 tokens.

2.3 MODEL AND TRAINING SETUP

We train Transformers to autoregressively predict the next number in sequences generated by
PRNGs. Given an input x0, x1, . . . , xL−1 of length L, the model outputs predictions x̂1, x̂2, . . . , x̂L.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: (a) Test accuracy at the 512th token during training on combined datasets of diverse
PRNG variants. (b) Accuracy during training on XSLRR-16/8 dataset. “512th” refers to the model’s
prediction accuracy at the 512-th token. “Avg” denotes accuracy averaged across all token positions.
(c) Final test accuracy by position index for combined training. (d) Final test accuracy when trained
separately on each generator type, where all variants achieve near 100% accuracy with only 128
in-context elements.

We use a GPT-style decoder-only Transformer (Radford et al., 2019) with Rotary Positional Embed-
dings (RoPE) (Su et al., 2023). Except in the model scaling experiments, models use nlayers = 4
layers, nheads = 8 attention heads, and an embedding dimension of dmodel = 1024. The vocabulary
size is 2k when predicting k-bit outputs. For example, at m = 222 with k = 11, the vocabulary
size is 2048, and the model has 52M parameters. Models are trained with cross-entropy loss and the
AdamW optimizer (Loshchilov & Hutter, 2019), using a batch size of 512 for 50k–100k training
steps. The learning rate uses a linear warm-up followed by cosine decay. The context length is L,
corresponding to sequences of length L+1. Training details are provided in Appendix B.

3 TRANSFORMERS CAN IN-CONTEXT LEARN PCGS

We find that Transformers achieve reliable in-context prediction across diverse PCG variants. As
shown in Figure 2(a,c), a single model trained on the combined dataset reaches over 90% test
accuracy after having seen 512 in-context elements of a test sequence, across all PCG variants.
We use “position index” to denote the location i within the predicted sequence. At position i, the
model predicts the token x̂i given all previous tokens x0:(i−1). Training runs for 100k steps (about
8 epochs). For all generators we fix the generator state to 16 bits and the output to 8 bits. For
XSLRR and XSHRR we evaluate both 2- and 3-control-bit (cb) configurations, while for XSHRS
the maximum feasible number of control bits is 2, since larger values would shift the output window
beyond the available state length. Transformers can simultaneously learn multiple recurrence rules,
whereas classical cracking algorithms are tailored to a single generator. We observe systematic
differences in convergence: truncated LCGs are learned fastest; permutations with more control
bits converge more slowly and reach lower accuracy. When trained on separate generator datasets
(Figure 2 b,d), models converge faster and achieve near-perfect accuracy after having seen 128 in-
context elements of the test sequence. This confirms that each generator type is fully learnable on
its own. Each model is trained for 50k steps, corresponding to 24 epochs.

The increased difficulty of the combined setting stems from the need to infer which permutation
generated the sequence, as evidenced by the clear generator-wise separation emerging in the middle
layers shown in Section 6.2. For both settings, test sets are generated from unseen a and c values,
demonstrating generalization to unseen parameters. This is beyond current classical attacks, which
require prior knowledge of both m and a. Accuracy–position curves (Figure 2c,d) exhibit step-like
improvements at powers of two. This is also observed in LCGs (Tao et al., 2025), where models
exploit bit periodicity and show sudden accuracy gains once low-order bits complete their cycle
in context. The persistence of this phenomenon in PCGs shows that, despite added permutations,
significant residual bit-wise patterns appear at certain positions in the sequence that the model can
exploit, although we have not studied their precise nature here. As shown in Appendix H.2, the
model’s attention patterns reflect this periodic structure.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 WHAT LIMITS PREDICTION PERFORMANCE?

4.1 EFFECT OF TRUNCATIONS

To quantify the difficulty introduced by truncation, we study truncated LCGs where the low bits of
the internal state are hidden and only the top k bits are retained as output. For m = 216, this yields
a 216−k-to-1 mapping from states to outputs, so smaller k increases ambiguity. To examine this
effect, we train separate models for each k (Figure 3, left). Despite the severe information loss, the
models are surprisingly robust to truncation. Even with k = 1, the model attains 95% accuracy at
the 256th element, far above the random-guessing baseline of 1/2k. At earlier positions (e.g., the
64th element), performance is lower under heavy truncation but improves quickly as k increases.
These results indicate that Transformers can extract patterns even from heavily truncated outputs,
with longer contexts compensating for reduced information.

4.2 SCALING STUDIES

Practical PCGs, such as the XSLRR-128/64 generator used as NumPy’s default generator, operate
at a scale far beyond the 16-bit state settings. To bridge this gap, we study how performance on
XSLRR changes when scaling along three axes: modulus m, dataset size, and model capacity.

Effect of Generator Modulus: We first analyze how the modulus m affects prediction performance.
Using a 4-layer, 8-head Transformer, we evaluate moduli ranging from m = 214 to m = 222 and
observe a clear scaling law: the number of sequence elements required to reach at least 90% test
accuracy grows as 1

2

√
m. This relationship is shown in Figure 3 (middle, right) and indicates that

context length becomes the primary bottleneck as the modulus increases. Compared to LCGs, where
the requirement grows as m0.25 (Tao et al., 2025), PCGs demand substantially longer contexts,
reflecting the information obscuration introduced by truncation and permutations. If we change the
accuracy threshold from 90% to ϵ + 1/

√
m or γ/

√
m, where 1/

√
m is the threshold for random

guessing, we find the scaling law for number of required in-context sequence elements ∝ mβ , with
β ∈ [0.4, 0.5] and [0.33, 0.34], respectively. (See Appendix C.1). In Appendix C.2 we compare
our models’ inference time compute scaling (∝ m0.53 for L ≤ dmodel, which would ∝ m once the
context length becomes significant) for achieving over 90% accuracy to a brute force search baseline
(∝ m2.5); more efficient architectures, such as state-space models (Gu & Dao, 2024) or efficient
attention mechanisms, could improve the inference-time compute scaling law for ML-based attacks.
At large moduli, we use pretrained initialization combined with curriculum training (see Section 5
for details).

Effect of Dataset Size: We assess how much data is required to solve the XSLRR-16/8 prediction
task by varying the number of distinct (a, c) pairs. For m = 216, there are 16,384 valid multipliers
a and 32,768 valid increments c under the Hull–Dobell conditions, yielding over 5 × 108 possible
(a, c) pairs. In practice, however, we find that only a small subset is sufficient to achieve general-
ization, with na = nc = 1024 already providing enough diversity (Figure 4, left). Moreover, as
dataset size increases, training accuracy at early positions (e.g., the 64th) decreases while test ac-
curacy at intermediate positions (e.g., the 128th) improves, reflecting a shift from memorization to
more generalizable strategies. All experiments use a fixed budget of 50k steps with batch size 512.
Appendix D shows that increasing na or nc has equivalent benefits, with no clear advantage from
expanding one parameter over the other.

Effect of Model Size: We evaluate performance on XSLRR-16/8 while varying Transformer depth
and width. Model width is controlled through the number of attention heads while keeping head
dimension fixed at 128. Figure 4 shows test accuracy at positions 128 and 256 across model sizes.
Larger models need only half as many observed elements, matching smaller models’ 256th-position
accuracy by the 128th position, suggesting that increased scale allows the model to develop more
element-efficient strategies. Appendix E shows an 1-layer model solves XSLRR 14/7, indicating
that depth 1 can suffice for small-modulus PCG variants.

5 CURRICULUM LEARNING

Training directly on large-modulus generators leads to slow convergence and can be unsuccessful
within a fixed compute budget. Here we show that curriculum learning strategies, where we incor-
porate data from smaller moduli, are crucial in successfully training at large moduli.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Left: Prediction accuracy at the 64th, 128th, and 256th sequence positions as a function of
bits kept (k) in truncated LCGs with m = 216. Accuracy improves with larger k and longer context,
remaining far above the random baseline 1/2k even under severe truncation. Middle: For XSLRR,
accuracy improves stepwise as more context is observed, with reliable predictions emerging once
the context length reaches exactly 0.5

√
m elements. Right: Context length required to exceed 90%

test accuracy scales as 1
2

√
m with modulus m.

Figure 4: Scaling studies of dataset size and model capacity. Left: Prediction accuracy at positions
64, 128, and 256 as a function of dataset size (na × nc sequences). Accuracy improves rapidly with
larger datasets and saturates once sufficient diversity is reached. Middle and Right: Test accuracy
heatmaps across model depth (nlayers) and number of heads (nheads), evaluated at positions 128 and
256. Larger models achieve higher accuracy, with nearly perfect prediction at 128 positions once
nlayers ≥ 4 and nheads ≥ 8.

5.1 DATA MIXING STRATEGIES: FIXED RATIO VS. CURRICULUM

To evaluate how mixed-modulus training improves large-modulus performance, we combine se-
quences from XSLRR-18/9 (m = 218) with additional examples from XSLRR-16/8 (m = 216),
where the mixing ratio α specifies the probability of sampling from the m = 216 dataset. In the cur-
riculum setting, we decay α to zero over 40k steps, whereas in fixed-α training α is held constant.
As shown in Figure 5(a), both approaches remove the long stagnation observed when training solely
on m = 218. Figure 5(b,c) compare the learning-rate/weight-decay landscapes with and without
curriculum. Curriculum training substantially broadens the range of stable learning rates, enabling
much larger step sizes without instability. Figure 5(d) shows how varying the initial mixing ratio
α influences prediction accuracy under both fixed and curriculum training. The blue and orange
curves show test accuracy on m=216 and m=218 respectively under fixed-α training. The green
curve shows test accuracy on m=218 under curriculum training. These results demonstrate two key
effects: (1) Even when m=216 itself is not learned, mixing a small fraction of its data substantially
boosts performance on m=218; (2) As α increases, the model learns to handle both moduli simulta-
neously. Curriculum consistently yields higher accuracy on m=218 than fixed-α, achieving its best
performance at initial mixing ratio α = 1%. In Appendix F, we compare cosine, exponential, linear,
and step decay schedules for α and find exponential decay yields the best performance.

5.2 PRETRAINED INITIALIZATION: LEVERAGING SMALLER-MODULUS MODELS

Using a model trained on a smaller modulus at initialization can be viewed as a discrete form of
curriculum learning. Instead of gradually transitioning from easy to hard data, the model is first
exposed to the smaller modulus and then fine-tuned on the harder task. To evaluate whether the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Effect of mixing smaller-modulus data on training stability and final accuracy. (a) Test
loss on m=218 under three training setups: training only on m=218 (blue), fixed mixing with α=0.2
(orange), and curriculum mixing starting at α=0.2 and decaying to 0 over 40k steps (green). (b,c)
Learning-rate and weight-decay landscapes for 256th-token accuracy on m=218, comparing training
solely on m=218 (b) versus with the curriculum (c). (d) Test accuracy at the 256th token for both
m=216 and m=218 under fixed mixing and curriculum mixing as the initial α varies.

Figure 6: Impact of pretrained initialization and curriculum training on scaling to larger moduli. (a)
Test accuracy at the 640-th token on mtest=220 across training steps. (b) Test loss on mtest=220

across training steps. (c) Cosine distance of parameters from their final values and test loss when
training a 3-layer Transformer from scratch for 400k steps. (d) Cosine distance of parameters from
their final values and test loss when training the same model for 100k steps starting from a pretrained
model. Shading in (c) and (d) shows the standard deviation

recurrence and permutation structures learned at smaller moduli transfer effectively to larger ones,
we train models on XSLRR-20/10 (mtest=220) and compare pretrained initialization against random
initialization (Figure 6a,b). We evaluate four settings: (1) random initialization: train directly on
XSLRR-20/10 from scratch; (2) pretrained initialization: initialize from a model trained on XSLRR-
18/9 (m=218), then train on XSLRR-20/10; (3) smooth curriculum: start from random initialization
but mix in data from XSLRR-16/8 during training (as Figure 12 shows, mixing in XSLRR-18/9
gives little benefit); (4) smooth curriculum + pretrained initialization: initialize from XSLRR-18/9
model and mix in XSLRR-18/9 data. For curriculum training, the probability of sampling from the
smaller-modulus dataset starts at α = 0.01 and decays exponentially to zero over the first 50k steps,
after which training continues for an additional 25k steps exclusively on the target modulus. For
pretrained initialization, the overlapping portion of the embedding matrix is transferred, while ad-
ditional tokens required for the larger vocabulary are randomly initialized. Although higher moduli
require longer contexts, RoPE’s extended positional scaling allows pretrained models to adapt to the
larger sequence lengths.

As shown in Figure 6(a,b), training from random initialization without curriculum does not converge
within the allotted 75k steps, remaining stuck at high loss and only 4% accuracy at the 640th token.
Pretrained initialization provides the main benefit: models skip the long stagnation phase, converge
faster, and consistently reach higher final accuracy than those trained from random initialization.
Curriculum provides additional gains when combined with pretraining and, when used alone, par-
tially mitigates stagnation. Together, these results show that both pretraining and curriculum are
crucial for scaling to larger moduli under fixed training budgets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

-0.60 -0.29 0.12 0.54
PC1 (0.051)

-0.45

-0.10

0.23

0.58
PC

2
(0

.0
40

)

1 2

3 4 5 6 7 8 9

10 11 12 13 14

15 16 17

18

Cluster Zero-run pattern Example
1 All 1s 11111111
2 All 0s 00000000
3 Z(1) 01111111
4 Z(2) 00111111
5 Z(3) 00011111
6 Z(4) 00001111
7 Z(5) 00000111
8 Z(6) 00000011
9 Z(7) 00000001
10 Z(1,1) 01011111
11 Z(2,1) 00101111
12 Z(3,1), Z(2,2) 00010111
13 Z(4,1), Z(3,2) 00001011
14 Z(5,1), Z(4,2), Z(3,3) 00000101
15 Z(1,1,1) 01010111
16 Z(2,1,1) 00101011
17 Z(3,1,1), Z(2,2,1) 00010101
18 Z(1,1,1,1) 01010101

Figure 7: PCA of token–embedding matrix for XSLRR-16/8 (left) and cluster summary (right). To-
kens group by rotation-invariant zero-run structures; full table with all tokens provided in appendix.

5.3 PRETRAINING AS A SHORTCUT TO STABLE REPRESENTATIONS

To understand why pretrained initialization accelerates training, we examine how model weights
evolve over time. We train a three-layer Transformer on XSLRR-18/9 under two settings: (i) from
scratch for 400k steps, and (ii) for 100k steps starting from a pretrained model on XSLRR-16/8.
Figure 6(c,d) tracks how each layer of the model changes during training by measuring the cosine
distance between parameters at each step and their final trained values. The green curve represents
the token embedding matrix, the orange curves correspond to the three Transformer layers, and the
blue curve (right axis) shows test loss. In both training regimes, the embedding layer reaches a usable
representation first, after which the deeper layers evolve more rapidly. With pretrained initialization
the model starts much closer to its final state: embeddings reach this usable representation almost
immediately, allowing deeper layers to adapt right away. This strong embedding space prior shortens
stagnation and accelerates convergence. As shown in the next section and in Appendix H.1, a clear
structure in the embedding space persists across moduli, supporting this transfer effect.

6 INTERPRETABILITY OF MODEL REPRESENTATIONS

6.1 TOKEN EMBEDDINGS

To understand how Transformers model PCG patterns, we analyze the token embedding layer of a
model trained on XSLRR-16/8. We apply principal component analysis (PCA) to the embedding
matrix and visualize the first two components in Figure 7. Representing tokens in binary form
reveals that the learned embeddings encode a rotation-invariant structure, reflecting the symmetries
of the generator. To formalize the structure, we use zero-run notation Z(a1, a2, . . . , ak), where each
ai denotes the length of a contiguous run of 0s between 1s. The zero-run patterns and representative
binary tokens for each cluster are shown in Figure 7(Right), with the complete listing provided in
Table 1. We find that the first principal component (PC1) perfectly correlates the total number
of zero bits N0 in a token, while the second (PC2) perfectly correlates with the number of zero
runs. Vertical bands in Figure 7 correspond to constant N0 (e.g., clusters 6, 12, 16, and 18 all have
N0 = 4), while horizontal groupings reflect constant run counts (e.g., clusters 10–14 all contain two
zero runs). The embeddings automatically encode rotation-invariant features, grouping tokens by
both zero-count and zero-run statistics in a way that mirrors the generator’s permutation. As shown
in Appendix H.1, these grouping rules persist at larger moduli. The persistence of this learned
structure across moduli explains why pretrained initialization is so effective.

6.2 GENERATOR SEPARATION

When trained on combined datasets, the model develops a permutation-agnostic grouping of to-
kens(Figure 25). This raises the question of how the model is able to predict different PRNG variants
at test time. Despite receiving no explicit supervision about generator identity, the model’s internal
representations spontaneously distinguish PRNG variants. In a 4-layer model, this structure emerges

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8: Cosine similarity of representations across different PRNG variants for a 4-layer Trans-
former trained on the combined dataset. Numbers in parentheses indicate the number of control
bits. Left: At the 64th token position, third-layer MLP outputs already separate truncated LCGs
from PCG variants, though PCG types remain highly overlapping. Middle: At the 128th token po-
sition, the same MLP outputs cleanly separate all PCG variants. Variants with the same permutation
type but different control-bit counts are more similar to each other than to other types. Right: Gen-
erator separation across the network for selected token positions (64th, 128th, 256th, 512th) defined
as 1− mean off-diagonal cosine similarity. Higher values indicate stronger generator separation.

most clearly in the MLP output of the third Transformer block: by the 64th token position, the model
already distinguishes truncated LCGs from PCG variants, and by the 128th token, it cleanly differen-
tiates between all PCG variants (see Figure 8, left and middle). To quantify this effect across layers,
we plot the average off-diagonal cosine dissimilarity between generators at each position (Figure 8
right). Separation is weakest in the embeddings and first layer, rising sharply through the middle
MLP and attention layers, suggesting that model first forms a shared representation of the underlying
recurrence and then, in deeper layers, refines generator-specific distinctions. In Appendix H.3, we
present head-level ablations showing that several attention heads in the last three layers specialize
differently across generator variants.

7 RELATED WORK

Cracking PCGs: Classical approaches to cracking PRNGs rely on exploiting algebraic structure
with strong assumptions about the generator. Bouillaguet et al. (2020) present an attack on XSLRR-
128/64 that assumes knowledge of the multiplier, modulus, and permutation. The internal state can
be recovered from 64 outputs via a guess-and-procedure. An asymptotic scaling law with modulus
m is not provided in those attacks, although the wall-clock time is significant (20, 000 CPU hours in
the worst case). In our work, the models must discover the hidden structure from training data alone,
learning to predict outputs without explicit knowledge of the recurrence or transformation rules.

Curriculum Learning: Many studies have explored curriculum learning (Bengio et al., 2009). Wu
et al. (2021) finds that on standard benchmarks, explicit curricula offer little advantage when training
steps are sufficient, but can yield higher accuracy and stability under limited compute or noisy
data. Garg et al. (2023) observes that curriculum training can speed up training drastically when
training Transformers to in-context learn linear functions. Recently Saxena et al. (2024) observed
that curriculum learning strategies can be helpful in modular addition.

AI for Cryptography: There is a classic duality between machine learning and cryptography
(Rivest, 1991). Recently there has been increased interest in using modern AI systems to attack
cryptographic schemes, such as the learning with errors problem (Wenger et al., 2022). Our work
builds on Tao et al. (2025), which uses transformers to learn vanilla LCGs.

Interpretability and Modular arithmetic: A growing body of work examines how Transformers
learn modular arithmetic tasks, uncovering phenomena such as grokking and structured internal
representations (Power et al., 2022; Gromov, 2023; Zhong et al., 2023; Nanda et al., 2023; Doshi
et al., 2024; Charton & Kempe, 2024). Prior studies (Liu et al., 2022; He et al., 2024) also find
emergent structures in embedding matrices and interpretable attention patterns. Our work extends
this literature by studying modular arithmetic tasks involving permutation structures and identifying
a novel pattern in embedding space.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

All model architectures, training hyperparameters and data generation procedures are full described
in Appendix B. We provide data generation and training scripts in the supplementary material to
enable reproduction of our results.

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605585161. doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/
1553374.1553380.

Charles Bouillaguet, Florette Martinez, and Julia Sauvage. Practical seed-recovery for the pcg
pseudo-random number generator. IACR Transactions on Symmetric Cryptology, 2020(3):
175–196, Sep. 2020. doi: 10.13154/tosc.v2020.i3.175-196. URL https://tosc.iacr.
org/index.php/ToSC/article/view/8700.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

François Charton and Julia Kempe. Emergent properties with repeated examples, 2024. URL
https://arxiv.org/abs/2410.07041.

Darshil Doshi, Aritra Das, Tianyu He, and Andrey Gromov. To grok or not to grok: Dis-
entangling generalization and memorization on corrupted algorithmic datasets, 2024. URL
https://arxiv.org/abs/2310.13061.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes, 2023. URL https://arxiv.org/abs/
2208.01066.

Andrey Gromov. Grokking modular arithmetic, 2023. URL https://arxiv.org/abs/
2301.02679.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence
of in-context learning and skill composition in modular arithmetic tasks. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in
Neural Information Processing Systems, volume 37, pp. 13244–13273. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/17d60fef592086d1a5cb136f1946df59-Paper-Conference.pdf.

T. E. Hull and A. R. Dobell. Random number generators. SIAM Review, 4(3):230–254, 1962. doi:
10.1137/1004061. URL https://doi.org/10.1137/1004061.

Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.): seminumerical algorithms.
Addison-Wesley Longman Publishing Co., Inc., USA, 1997. ISBN 0201896842.

10

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://tosc.iacr.org/index.php/ToSC/article/view/8700
https://tosc.iacr.org/index.php/ToSC/article/view/8700
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2410.07041
https://arxiv.org/abs/2310.13061
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2301.02679
https://arxiv.org/abs/2301.02679
https://arxiv.org/abs/2312.00752
https://proceedings.neurips.cc/paper_files/paper/2024/file/17d60fef592086d1a5cb136f1946df59-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/17d60fef592086d1a5cb136f1946df59-Paper-Conference.pdf
https://doi.org/10.1137/1004061

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pierre L’Ecuyer and Richard Simard. Testu01: A c library for empirical testing of random number
generators. ACM Trans. Math. Softw., 33(4), August 2007. ISSN 0098-3500. doi: 10.1145/
1268776.1268777. URL https://doi.org/10.1145/1268776.1268777.

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J. Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning, 2022. URL
https://arxiv.org/abs/2205.10343.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability, 2023. URL https://arxiv.org/abs/2301.
05217.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

Melissa E. O’Neill. Pcg: A family of simple fast space-efficient statistically good algorithms for ran-
dom number generation. Technical Report HMC-CS-2014-0905, Harvey Mudd College, Clare-
mont, CA, September 2014.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets, 2022. URL https://arxiv.org/
abs/2201.02177.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI, 2019. URL https:
//cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf. Accessed: 2024-11-15.

Ronald L Rivest. Cryptography and machine learning. In International Conference on the Theory
and Application of Cryptology, pp. 427–439. Springer, 1991.

Eshika Saxena, Alberto Alfarano, François Charton, Zeyuan Allen-Zhu, Emily Wenger, and Kristin
Lauter. Making hard problems easier with custom data distributions and loss regularization: A
case study in modular arithmetic. arXiv preprint arXiv:2410.03569, 2024.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Tao Tao, Darshil Doshi, Dayal Singh Kalra, Tianyu He, and Maissam Barkeshli. (how) can trans-
formers predict pseudo-random numbers?, 2025. URL https://arxiv.org/abs/2502.
10390.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Emily Wenger, Mingjie Chen, Francois Charton, and Kristin E Lauter. Salsa: Attacking lattice
cryptography with transformers. Advances in Neural Information Processing Systems, 35:34981–
34994, 2022.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work?, 2021. URL https:
//arxiv.org/abs/2012.03107.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks, 2023. URL https://arxiv.org/
abs/2306.17844.

11

https://doi.org/10.1145/1268776.1268777
https://arxiv.org/abs/2205.10343
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2502.10390
https://arxiv.org/abs/2502.10390
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2012.03107
https://arxiv.org/abs/2012.03107
https://arxiv.org/abs/2306.17844
https://arxiv.org/abs/2306.17844

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PERMUTED CONGRUENTIAL GENERATORS

In this section we review the background of LCGs, truncated LCGs and PCGs.

A.1 HULL–DOBELL THEOREM.

For an LCG
si = asi−1 + c (mod m), (2)

the sequence {si} has full period m if and only if the following three conditions hold:

1. c and m are relatively prime,

2. a− 1 is divisible by all prime factors of m,

3. if m is divisible by 4, then a− 1 is also divisible by 4.

A.2 PERIOD OF LOW-ORDER BITS IN LCGS

Consider the LCG

xt+1 = (axt + c) mod m, (3)

with m = 2K , c coprime to m, and a − 1 divisible by 4, so that {xt} has full period m by the
Hull–Dobell theorem. Let

zt,k = xt mod 2k (4)

denote the lowest k bits of xt. Then

zt+1,k = (azt,k + c) mod 2k, (5)

so {zt,k} itself is an LCG with modulus 2k. Since c is coprime to 2k and a− 1 is divisible by 4, this
reduced generator achieves full period 2k. Thus, the k-th lowest bit of an LCG with power-of-two
modulus cycles with period exactly 2k, much shorter than the full state period m.

A.3 PRNG VARIANTS.

We consider three widely used PCG permutations, each defined for a 2n-bit state with cb control
bits and an n-bit output. The internal state evolves as:

si = asi−1 + c (mod m), m = 22n. (6)

• XSLRR (Xorshift Low, Random Rotation). First apply a right shift of n bits and XOR
with the original state, folding the high and low halves together. The low n bits of the result
are then retained and rotated right by the control value to produce the output. Formally:

control bits value: v = si ≫ (2n− cb), (7)

state XOR shifted state: s′i = si ⊕ (si ≫ n), (8)

n-bit output: xi = rotv(s′i mod 2n) , (9)

where si ≫ n denotes right shift si by n bits and rotv denotes an n-bit right rotation by v.

• XSH-RR (Xorshift High, Random Rotation). First apply a right shift by ⌊(n+cb)/2⌋ bits
and XOR the result with the original state. The n bits immediately following the control
bits are then retained and rotated right by the control value to produce the output. Formally:

control bits value: v = si ≫ (2n− cb), (10)

state XOR shifted state: s′i = si ⊕ (si ≫ ⌊(n+ cb)/2⌋), (11)

n-bit output: xi = rotv((s′i ≫ (n− cb)) mod 2n) (12)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 9: Test loss curves for each generator type when the model is trained on the combined dataset.

• XSH-RS (Xorshift High, Random Shift). First apply a right shift by (n−cb−2cb+1) bits
and XOR the result with the original state. The n-bit output window begins immediately
after the control bits, but its starting position is shifted further right by the control value v,
selecting a different n-bit segment of the state. Formally:

control bits value: v = si ≫ (2n− cb), (13)

state XOR shifted state: s′i = si ⊕ (si ≫ (n− cb− 2cb + 1)), (14)

n-bit output: xi = (s′i ≫ (n+ v)) mod 2n. (15)

We also consider truncated LCGs, where the output is formed by retaining only the top k bits of the
internal state si, hiding the lower-order bits. This preserves the recurrence structure and full period
of the LCG while exposing only partial information about the state. Formally:

xi = si ≫ (2n− k) mod 2k, (16)

B TRAINING DETAILS

Combined Dataset (Figure 2a,c). For each generator type, we select na=nc=1024 training mul-
tipliers a and increments c using the Hull–Dobell theorem. One sequence per (a, c) pair is generated
with its initial state x0 sampled randomly using NumPy’s RNG. All sequences from all generator
types are merged into a single dataset and reshuffled at the start of each epoch to randomize the
sampling order. Test loss and accuracy in Figure 2(a) and Figure 9 are computed on a held-out set
with ntest a=128 multipliers and ntest c=16 increments; in Figure 2(c), evaluation uses ntest a=128
and ntest c=64.

We train a Transformer with depth nlayers = 4, nheads = 8 attention heads, and dmodel=1024 for 100k
steps with batch size 512 (about 8 epochs). The learning rate is 0.0001 with weight decay 1.0, using
5000 warm up steps (linear) followed by cosine decay. Training is performed on two NVIDIA A100
GPUs and takes roughly 8 hours.

Separate Datasets (Figure 2b,d). We follow the same procedure for selecting a and c but train a
separate model on each generator type individually. Each model is trained for 50k steps with batch
size 512 (roughly 4 hours on two A100 GPUs). We perform a grid search over learning rate and
weight decay for each generator to ensure fair comparison across configurations.

Truncated LCG (Figure 3 left). We evaluate truncated LCGs with m = 216, varying the number
of retained bits k from 1 to 16, which determines the effective output range. Each integer is tokenized
into two base-256 digits, except for special cases where a smaller base performed better: for k=7 we
use base-128 with one digit, and for k=9 we use base-64 because training with base-256 consistently
yielded worse performance. This tokenization dramatically reduces the vocabulary size (e.g., k=16
would otherwise require 65,536 symbols) and empirically improves convergence. Because each
number is split into two tokens, the context length doubles, and a prediction is counted correct only
when both digits are predicted correctly. For each configuration, we train for 50k steps with batch

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 10: Curriculum training with random initialization from m=216 to m=218. (a) Training
and test loss over steps. (b) Evolution of mixing ratio α. (c) Last-token accuracy over time for both
moduli. (d) Learning rate schedule during training.

Figure 11: Curriculum training with pre-trained initialization from m=218 to m=220. (a)
Training and test loss over steps. (b) Evolution of mixing ratio α. (c) Last-token accuracy over time
for both moduli. (d) Learning rate schedule during training.

size 512, taking roughly four hours on two NVIDIA H100 GPUs for two-digit experiments and
about two hours for one-digit experiments.

Larger Modulus (Figure 3 right, middle). For m = 218, we trained a 4-layer Transformer for
50k steps (batch size 512) with context length 512 on two NVIDIA A100 GPUs (4 hours). The
curriculum began with sequences from m=216 mixed into m=218 at α=0.01 and decayed expo-
nentially to zero over the first 40k steps. Training continued for the remaining 10k steps entirely
on m=218. Training sets for each modulus were generated with na=nc=1024. Using learning rate
0.0005 and weight decay 1.0, the model achieved a test accuracy on m=218 of 0.9907 at position
512. Figure 10 shows the curriculum, learning rate and learning curve. For m = 220, we trained a
4-layer Transformer for 75k steps (batch size 512) with context length 640 on two NVIDIA A100
GPUs, totaling roughly 10 hours of compute. Training sets for each modulus were generated with
na=nc=2048. The model was initialized from the above checkpoint trained on m=218 for 50k
steps. The curriculum began with sequences from m=218 mixed into m=220 with sampling possi-
bility α=0.01, then exponentially decayed this proportion to zero over the first 50k steps. The final
25k steps were trained entirely on m=220. Using learning rate 0.0003 and weight decay 0.1, the
model achieved a test accuracy on m=220 of 0.9697 at position 640. Figure 11 summarizes the cur-
riculum experiment using pretrained initialization, transferring from m=218 to m=220. Figure 12
shows the same curriculum schedule but starting from random initialization.

For m = 222, we trained a 4-layer Transformer for 100k steps (batch size 512) with context length
1279 on two NVIDIA A100 GPUs, totaling roughly 12 hours of compute. The model was initialized
from the previously trained checkpoint on m=220. Training sets for each modulus were generated
with na=nc=2048. The curriculum began with sequences from m=218, m=220, and m=222 mixed
at initial proportions α=0.01, 0.01, 0.98 and decayed to α=0.0, 0.0, 1.0 over the first 75k steps. The
final 25k steps were trained exclusively on m=222. Using learning rate 0.0005 and weight decay
0.1, the model achieved a test accuracy on m=222 of 0.9257 at position 1279. Figure 13 shows the
curriculum and learning curves.

C SCALING WITH GENERATOR MODULUS

C.1 ACCURACY THRESHOLD

In the main text, we fixed the accuracy threshold at 90% to study how the required context length
scales with m. Here, we extend this analysis to additional criteria: (1) performance exceeding ran-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 12: Curriculum training with random initialization from m=218 to m=220. (a) Training
and test loss over steps. (b) Evolution of mixing ratio α. (c) Accuracy at the final prediction position.
(d) Learning rate schedule.

Figure 13: Curriculum training with pre-trained initialization from m=220 to m=222. (a)
Training and test loss over steps. (b) Evolution of mixing ratio α. (c) Last-token accuracy over time
for both moduli. (d) Learning rate schedule during training.

dom guessing by a margin ϵ, and (2) a multiplicative threshold γ× random-guess accuracy. Random
guessing corresponds to an accuracy of 1/

√
m for our task. As shown in Figure 14, for the additive

threshold criterion (ϵ above random guessing), the fitted exponents are near 0.5, while for the multi-
plicative threshold criterion (γ× random guessing), the exponents cluster are around 0.33, indicating
a slower scaling requirement under the multiplicative rule.

(a) First index where accuracy exceeds ϵ+1/
√
m for

different ϵ.
(b) First index where accuracy exceeds γ/

√
m for

different γ.

Figure 14: Scaling of required context length with m under alternative accuracy thresholds.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 COMPUTE SCALING

Per-sequence Inference FLOPs. Given L (sequence length), dmodel (embedding dimension), nlayer
(number of layers), and |V | (vocabulary size), the total inference FLOPs can be decomposed as:

FLOPsattn =
(
4Ld2model + 2L2 dmodel

)
nlayer,

FLOPsMLP = 8Ld2model nlayer (MLP ratio = 4),

FLOPsLayerNorm = 2Ldmodel nlayer (two norms per layer),

FLOPsLM head = Ldmodel |V |,

FLOPsEmbed = 0 (input embedding lookup only; memory fetch).

So the total per-sequence inference cost is:

FLOPsinfer = FLOPsattn + FLOPsMLP + FLOPsLayerNorm + FLOPsLM head + FLOPsEmbed, (17)

=
(
12Ld2model + 2L2dmodel + 2Ldmodel

)
nlayer + Ldmodel|V |. (18)

Total Training FLOPs. Following the standard approximation that backward = 2× forward, the
total training FLOPs are:

FLOPstrain ≈ 3× BatchSize × TrainingSteps × FLOPsinfer,

where the factor of 3 accounts for forward pass, backward pass.

Brute Force Baseline We estimate a computational baseline for brute-forcing the XSLRR gen-
erator when the multiplier a, increment c, and seed s0 are all unknown. The compute required for
XSLRR recurrence can be estimated as: each step of the LCG recurrence requires roughly two inte-
ger operations (multiply and add), while bitwise shifts, XORs, and rotations in XSLRR are at least
four operations per output. Modulo reduction is assumed free for powers of two. Thus, each output
costs at least six integer operations in total.

Because there are m/4 a values and m/2 c values valid under the Hull–Dobell conditions and be-
cause XSLRR state space size is m while the output space size is

√
m, the total unknown information

is
log2(m/4) + log2(m/2) + log2(

√
m) bits. (19)

Given that each observed output reveals log2
√
m bits, the minimum number of outputs required by

the information lower bound is
log2(m/4) + log2(m/2) + log2(

√
m)

log2
√
m

≈ 5. (20)

Multiplying by the per-output operation cost and the size of search space yields the total operation
baseline:

OPsbrute ≈
m

4
× m

2
×

√
m× 5× 6, (21)

≈ 3.75m2.5 (22)

We assume that each integer operation has the same cost as one FLOP. Under this assumption, we
compare our brute-force baseline to the measured inference and training costs of our Transformer
models in Figure 15. The inference compute is dominated by the 12 d2modelL term in Equation (18)
because in our experiments L ≤ dmodel. As L increases, the quadratic term 2L2dmodel will eventually
dominate, and the compute will scale proportionally with m.

D DATASET SIZE

We systematically varied the number of multipliers (na) and increments (nc) to evaluate training-set
effects. As shown in Figure 16, performance depends only on the total scale of (na, nc): increasing

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 15: FLOPs scaling with modulus. Inference compute per sequence for models trained on
PCGs with moduli m = 214–222 (context lengths required reach 90% accuracy listed in legend),
compared to the brute-force baseline (dashed line). Inference cost grows far more slowly than the
brute-force bound, showing the compute efficiency of Transformer-based prediction relative to direct
state-space search.

Figure 16: Training (left) and test (right) loss as a function of na (number of multipliers a) and nc

(number of increments c) for XSLRR-16/8 with 3 control bits.

na produces the same gains as increasing nc. Moderate values (na×nc = 512×1024) already yield
low training and test loss, with little improvement beyond this point. All models are trained for 50k
steps with a batch size of 512. The number of epochs ranges from about 390 for the smallest dataset
(na=nc=256) to about 6 for the largest dataset (na=nc=2048). As shown in Figure 17, when
trained directly on m=218 without curriculum, the model shows no signs of overfitting except at the
smallest setting (na=nc=512)—training and test losses remain closely matched across all (na, nc)
configurations. However, unlike the smoother patterns observed for XSLRR-16/8, the heatmap here
is less regular, reflecting the greater training instability at the larger modulus.

E MODEL SIZE

E.1 SEPARATE (XSLRR)

Minimal Depth Figure 18 shows the training curve and final performance of a one-layer Trans-
former trained on XSLRR 14/7. The model rapidly converges and achieves 98.6% test accuracy at
the 512th token, showing that depth = 1 can suffice for small-modulus PCG variants.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 17: Training (left) and test (right) loss for XSLRR-18/9 with m=218 and 3 control bits, as a
function of the number of multipliers na and increments nc.

Figure 18: 1-layer, 8-head Transformer trained on XSLRR 14/7. Left: Learning curve. Right: Final
performance.

Scaling In the main text we reported token-accuracy heatmaps for the 128th and 256th positions.
Figure 19 complements this with earlier (64th) and later (512th) prediction positions. The results
show that even a 1-layer model achieves above-random(44.2%) test accuracy by the 512th token,
while a 6-layer model can surpass random guessing and reach 22.8% test accuracy by the 64th token.
This illustrates how additional depth accelerates the emergence of useful recurrence representations
at earlier positions. Figure 19 (right) plots test loss versus model size for different depth–width
configurations. We observe a sharp decrease in loss as the number of parameters increases, followed
by diminishing returns once the model exceeds roughly 40–70M parameters. At similar parameter
counts, deeper models achieve much lower loss than simply adding heads. For example, a shallow
wide model (e.g., h8d1) has far higher loss than a moderately deep one with fewer params (e.g.,
h4d4).

E.2 COMBINED

Figure 20 shows the learning dynamics and final test performance of a 2-layer Transformer trained
on the combined dataset. TLCG converges fastest, followed by XSHRR with 2 control bits, while
PCG variants with more control bits converge more slowly and reach higher loss. The results high-
light that with limited model depth the Transformer prioritizes learning simpler generators first.

F CURRICULA

Let the target modulus be mtarget. The training set contains sequences from mtarget as well as from
auxiliary moduli mcur,0,mcur,1, Curriculum training is defined by a sampling distribution over
these moduli. Each αi gives the probability of sampling a sequence from mcur,i and the probability
of sampling from mtarget is (1−α1−α2− . . .). We vary αi over training (e.g., exponential decay to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Test accuracy at the 64th predic-
tion position.

(b) Test accuracy at the 512th pre-
diction position.

(c) Test loss as a function of model
size. Each point corresponds to
(h = nheads, d = nlayers) heads and
depth.

Figure 19: Effect of model depth/width and size on test accuracy. Left and Middle: Token
accuracy heatmaps at the 64th and 512th positions. The y-axis (Depth d) indicates the number of
Transformer layers nlayer, and the x-axis shows model size in terms of attention heads and embedding
dimension (nheads, dmodel). Right: Test loss versus model size (number of parameters)

(a) Test loss v.s Training steps (b) Test accuracy of the 512th to-
ken v.s Training steps

(c) Test Accuracy v.s Token In-
dex

Figure 20: Learning curves and final test performance of a 2-layer model trained on the combined
dataset

zero) to implement different curriculum schedules. As described in Section 5, we compared fixed-
α curricula with exponentially decaying-α schedules. Here, we extend this analysis by presenting
results with alternative decay functions to evaluate different schedules. We evaluate four curriculum
schedules—cosine decay, exponential decay, linear decay, and step decay—using the XSLRR task
with target modulus m2=218 and auxiliary modulus m1=216. Using a 4-layer, 6-head Transformer
with dmodel = 768 (batch size=256, context length=512), training begins with sampling weight
α=1.0 from m1 and decays to zero over 100k steps following each schedule. The top row of
Figure 22 shows the sampling probability α over training, and the bottom row reports training and
test accuracy averaged over all token positions in the sequences. Across all schedules, exponential
decay produced the best performance.

G PRETRAINED INITIALIZATION

To visualize how pretraining affects the evolution of token embeddings, we project the embeddings
at Step 0 and at the end of fine-tuning (Step 100,000) onto their first two principal components. The
model is initialized from weights trained on XSLRR-16/8 (m=216); since the output vocabulary
doubles at XSLRR-18/9 (m=218), the first 256 token embeddings are transferred while the remain-
ing tokens are randomly initialized. Figure 23(a) shows the PCA of the transferred embeddings at
pre-trained initialization and end of training, while Figure 23(b) shows the PCA of the randomly ini-
tialized embeddings. These plots reveal how pretraining provides a head start: the transferred half
begins in an organized configuration and changes slightly during fine-tuning, whereas the randomly
initialized half begins unstructured and gradually aligns with the learned embedding space.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Test loss v.s Training steps (b) Test accuracy of the 512th to-
ken v.s Training steps

(c) Test Accuracy v.s Token In-
dex

Figure 21: Learning curves and final test performance of a 3-layer model trained on the combined
dataset

(a) Cosine α (b) Exponential α (c) Linear α (d) Step α

(e) Cosine Acc. (f) Exponential Acc. (g) Linear Acc. (h) Step Acc.

Figure 22: Comparison of curriculum schedules. Top row: probability α of sampling from the
smaller-modulus dataset over training steps. Bottom row: training and test accuracy on m1=216

and m2=218 under each schedule, averaged over all token positions in the sequences.

H INTERPRETABILITY OF LEARNED REPRESENTATIONS

H.1 TOKEN EMBEDDINGS

H.1.1 XSLRR: TOKEN CLUSTERS

Table 1 presents the detailed token clusters for XSLRR-16/8, listing each cluster’s canonical bi-
nary pattern, its rotationally equivalent variants, and the corresponding tokens assigned to each
group. Figure 24 shows XSLRR token-embedding clusters at larger moduli (m). The same rotation-
invariant structure observed at m=216 persists as m increases, with clusters aligning to identical
zero-run patterns.

H.1.2 COMBINED

Figure 25 shows the token embeddings of a model trained on combined datasets, projected onto
the first two principal components. Unlike models trained on XSLRR, this model develops a more
general, permutation-agnostic grouping of tokens. The embeddings form two broad bands corre-
sponding to even and odd tokens. Along PC2, tokens are roughly ordered from top to bottom by
increasing numbers of 1-bits.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Pretrained initialization: embeddings begin closer
to their final configuration.

(b) Random initialization: embeddings start in a un-
structured state

Figure 23: PCA of token embeddings at the start (purple) and after fine-tuning (yellow) for a model
trained on XSLRR-18/9 m=218. Lines connect the same token across training steps. Pretrained
initialization yields embeddings that are already organized.

Cluster Pattern Rotational Equivalent Tokens
1 Z() all bits are 1 11111111 255
2 Z(*) all bits are 0 00000000 0
3 Z(1) only 1 bit is 0 01111111 127, 191, 223, 239, 247, 251, 253, 254
4 Z(2) 2 consecutive 0 00111111 63, 126, 159, 207, 231, 243, 249, 252
5 Z(3) 00011111 31, 62, 124, 143, 199, 227, 241, 248
6 Z(4) 00001111 15, 30, 60, 120, 135, 195, 225, 240
7 Z(5) 00000111 7, 14, 28, 56, 112, 131, 193, 224
8 Z(6) 00000011 3, 6, 12, 24, 48, 96, 129, 192
9 Z(7) 00000001 1, 2, 4, 8, 16, 32, 64, 128

10 Z(1,1) 2 separated 0
01011111 95, 125, 175, 190, 215, 235, 245, 250
01101111 111, 123, 183, 189, 219, 222, 237, 246
01110111 119, 187, 221, 238

11 Z(2,1) 2 consecutive 0 and 1 separated 0

00101111 47, 94, 121, 151, 188, 203, 229, 242
00110111 55, 110, 115, 155, 185, 205, 220, 230
00111011 59, 103, 118, 157, 179, 206, 217, 236
00111101 61, 79, 122, 158, 167, 211, 233, 244

12 Z(3,1) or Z(2,2)

00010111 23, 46, 92, 113, 139, 184, 197, 226
00011011 27, 54, 99, 108, 141, 177, 198, 216
00011101 29, 58, 71, 116, 142, 163, 209, 232
00100111 39, 57, 78, 114, 147, 156, 201, 228
00110011 51, 102, 153, 204

13 Z(4,1) or Z(3,2)

00001011 11, 22, 44, 88, 97, 133, 176, 194
00001101 13, 26, 52, 67, 104, 134, 161, 208
00010011 19, 38, 49, 76, 98, 137, 152, 196
00011001 25, 35, 50, 70, 100, 140, 145, 200

14 Z(5,1) or Z(4,2) or Z(3,3)
00000101 5, 10, 20, 40, 65, 80, 130, 160
00001001 9, 18, 33, 36, 66, 72, 132, 144
00010001 17, 34, 68, 136

15 Z(1,1,1) 01010111 87, 93, 117, 171, 174, 186, 213, 234
01011011 91, 107, 109, 173, 181, 182, 214, 218

16 Z(2,1,1)
00101011 43, 86, 89, 101, 149, 172, 178, 202
00101101 45, 75, 90, 105, 150, 165, 180, 210
00110101 53, 77, 83, 106, 154, 166, 169, 212

17 Z(3,1,1) or Z(2,2,1) 00010101 21, 42, 69, 81, 84, 138, 162, 168
00100101 37, 41, 73, 74, 82, 146, 148, 164

18 Z(1,1,1,1) 01010101 85, 170

Table 1: XSLRR-16/8 Model Token Clusters with Rotation-Based Structures

H.2 ATTENTION PATTERN

To analyze how attention spans evolve across the network, Figure 26 shows the distribution of token
distances for the top-8 most-attended keys per query, averaged over all positions and heads in each
layer (Distances of q − k = 0 are excluded because self-attention peaks there and would dominate
the scale). In the first layer, attention is dominated by long-range periodic connections, with strong

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) XSLRR-18/9 Model Token Clusters (b) XSLRR-20/10 Model Token Clusters.

Figure 24: PCA analysis of token embeddings. The same rotation-invariant grouping structure
persists across moduli, with clusters consistently aligned to zero-run patterns.

Figure 25: When trained on combined datasets, the model develops a more general grouping of to-
kens. The visualization shows token embeddings projected onto the first two principal components.

peaks at powers of two (64, 128, 256), revealing that the model has discovered the underlying bit-
periodicity of the generators. By the later layers, attention shifts toward shorter token distances,
indicating that prediction increasingly relies on local context once the global recurrence has been
inferred.

H.3 HEAD SPECIALIZATION ABLATION

To test whether individual attention heads specialize on particular aspects of the prediction task, we
performed a single-head ablation study.We zeroed out the V slice of each specified head, effectively
removing that head’s contribution while leaving the rest of the network unchanged. We evaluated
every head in every layer and measured the resulting accuracy drop at the 512-th token relative to
the unablated baseline. As shown in Figure 27, head specialization emerges clearly in the last three
layers: for example, at the last layer, Heads 0 and 6 minimally affects XSLRR but substantially
reduces accuracy on truncated LCG, whereas Heads 3 and 5 strongly affect XSLRR but not truncated
LCG. These results indicate that late-layer attention heads develop task-specific roles, with some
focusing on full-state PCGs and others adapting to truncated outputs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

Figure 26: Token-distance distribution of the top-8 attended keys at each Transformer layer for a
model trained on the combined dataset.

(a) XSLRR PCG at position 512. (b) Truncated LCG at position 512. (c) XSHRR PCG at position 512.

Figure 27: Single-head ablation. Accuracy drop at the 512th token when zeroing the V-slice of
each attention head. Darker colors indicate a larger decrease in accuracy relative to the baseline.
The last two or three layers exhibit stronger head specialization, with some heads (e.g., Head 6)
affecting truncated LCG but not XSLRR, and others (e.g., Heads 3 and 5) affecting XSLRR but not
truncated LCG.

I USE OF LARGE LANGUAGE MODELS

Portions of the text were refined with the assistance of Large Language Models to improve grammar.

23

	Introduction
	Experimental Settings
	PCG Variants
	Datasets
	Model and Training Setup

	Transformers can in-context learn PCGs
	What Limits Prediction Performance?
	Effect of Truncations
	Scaling Studies

	Curriculum Learning
	Data Mixing Strategies: Fixed ratio vs. Curriculum
	Pretrained Initialization: Leveraging Smaller-Modulus Models
	Pretraining as a Shortcut to Stable Representations

	Interpretability of Model Representations
	Token Embeddings
	Generator Separation

	Related Work
	Reproducibility Statement
	Permuted Congruential Generators
	Hull–Dobell Theorem.
	Period of Low-Order Bits in LCGs
	PRNG Variants.

	Training Details
	Scaling with Generator Modulus
	Accuracy Threshold
	Compute Scaling

	Dataset Size
	Model Size
	Separate (XSLRR)
	Combined

	Curricula
	Pretrained Initialization
	Interpretability of Learned Representations
	Token Embeddings
	XSLRR: token clusters
	Combined

	Attention Pattern
	Head Specialization Ablation

	Use of Large Language Models

