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Abstract

Properties of interest for crystals and molecules,
such as band gap, elasticity, and solubility, are
generally related to each other: they are gov-
erned by the same underlying laws of physics.
However, when state-of-the-art graph neural net-
works attempt to predict multiple properties simul-
taneously (the multi-task learning (MTL) setting),
they frequently underperform a suite of single
property predictors. This suggests graph networks
may not be fully leveraging these underlying sim-
ilarities. Here we investigate a potential expla-
nation for this phenomenon – the curvature of
each property’s loss surface significantly varies,
leading to inefficient learning. This difference in
curvature can be assessed by looking at spectral
properties of the Hessians of each property’s loss
function, which is done in a matrix-free manner
via randomized numerical linear algebra. We eval-
uate our hypothesis on two benchmark datasets
(Materials Project (MP) and QM8) and consider
how these findings can inform the training of
novel multi-task learning models.

1. Introduction
Graph networks (GNs) (Battaglia et al., 2018) are consid-
ered state-of-the-art machine learning (ML) methods for
many scientific problems, including property prediction of
both inorganic crystalline materials (Xie & Grossman, 2018;
Park & Wolverton, 2020) (hereafter “crystals”, e.g., Fig-
ure 1) and small organic molecules (Gilmer et al., 2017;
Gasteiger et al., 2020) (hereafter “molecules”, e.g., Fig-
ure 2); the same GN architectures have shown success in
both domains (e.g., (Chen et al., 2019), who suggest the
“crystal” vs. “molecule” terminology and use “material” to
refer to both). A common use case might involve training
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a model from materials with known properties and then
screening a separate dataset lacking those properties to ob-
tain potential candidates to further investigate. Typically,
property-prediction tasks are formulated as single-target
regression problems, where the goal is to predict a scalar
property like band gap, formation stability, elasticity, or
solubility. However, practical materials design requires op-
timizing multiple properties of interest. For example, when
designing a cell phone screen, a material with both high
optical transparency and hardness would be desired.

Predicting a single property can be posed as a single task for
an ML model; using a single ML model to predict multiple
properties is thus a type of multi-task learning (MTL). The
most common family of MTL approaches is hard parameter
sharing, in which a single representation space is shared
across multiple tasks of interest, and task-specific networks
map from that space to output predictions (Caruana, 1997).

However, the latest research in novel MTL techniques
largely has been focused on classification problems in
the natural language processing (NLP) and computer vi-
sion (CV) domains – for example, the MultiMNIST prob-
lem (Sener & Koltun, 2018), where a model must identify
two separate digits in the same picture. With some recent
exceptions – e.g., (Yang et al., 2021; Tan et al., 2021; Kong
et al., 2021) – there has been little work exploring the appli-
cation of MTL to multi-property GN regression problems.

Some existing papers have used hard parameter sharing for
material property prediction, in which a single model pre-
dicts a set of properties. However, results suggest that this
approach has degraded performance compared to a set of
single-property models – see, e.g., (Gasteiger et al., 2020),
which predicts twelve quantum mechanical properties of
molecules and finds that a single multi-output model per-
forms worse than a set of single-output models.

Works have explored reasons for this: (Yu et al., 2020)
identifies a “tragic triad” of reasons that MTL models might
perform worse compared to single-task ones, one of which
is that multi-task loss functions can have high curvature, as
characterized by the Hessian of the loss. However, (Yu et al.,
2020) rely on first-order approximations to curvature and
do not directly incorporate second-order information.
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Figure 1. Example of converting a periodic crystal lattice struc-
ture (Ba Ti O3) to a multigraph
(a): Crystal lattice structure, created using ase2.
(b): The corresponding multigraph representation of the crystal
that is ingested by a graph network.

Figure 2. Example of converting a 2D molecule structure
(C4 H6 F3 N) to a graph
(a) Molecular structure as represented by rdkit
(b) The corresponding graph

Concurrently, several works have applied techniques from
randomized numerical linear algebra to directly probe the
Hessians of large ML models (Sagun et al., 2017; Alain
et al., 2019; Yao et al., 2019; Ghorbani et al., 2019; Pa-
pyan, 2020). These rely (1) on the fact that the product
of a model’s Hessian and another vector (a Hessian-vector
product) may be efficiently obtained, without explicitly cal-
culating the full Hessian, and (2) that given a matrix-free
Hessian-vector product function, several key spectral prop-
erties of the Hessian, including its eigenvalues and trace,
may be estimated. However, these papers focus only on
standard image classification problems, and do not consider
the MTL setting, GNs, or regression problems.

In this paper, we formulate the application of curvature-
informed techniques to MTL models (Section 2.1), describe
the application of graph networks to the problem of multi-
property prediction in the domains of materials science and
chemistry (Section 2.2 and Section 2.3), and analyze train-
ing dynamics of multi-property prediction models using
methods based on assessing local curvature of loss func-
tion surfaces (Section 3). Our results suggest how novel
multi-property prediction models might inherently account
for differences in curvature to enhance learning efficiency.

2. Approach
Let G be a space of directed multigraphs corresponding
to crystal or molecule structures. A directed graph g =
(V, E) consists of a set of nodes V = {v} and edges E =
{(v, v′, k)}. Each node v has a node embedding xv ∈ RV ,
and each edge (v, v′, k) has an edge embedding ev,v′,k ∈
RE . A pair of nodes v and v′ may have multiple edges
connecting them, and these multi-edges are indexed by k =
1, . . . ,Kv,v′ . Furthermore, a graph g has T properties y =
(y1, . . . , yT ) ∈ Y , here assumed to all be scalars.

We require a model that can predict all targets y for a given g.
This entails minimizing a loss with respect to a set of neural
network weights {θsh, θ1, . . . , θT }, where θt is used only in
predicting property t, and θsh is shared across predictions.
The form of this problem and its neural network is discussed
in Section 2.2. First we consider the loss’s curvature.

2.1. Curvature assessment techniques

We view the shared parameters θsh of a graph network as
a flattened vector in RP ; let Lt : RP → R be a property-
specific loss function of θsh, where the property-specific
parameters θ1, . . . , θT are held constant. Typically, machine
learning models consider only first-order derivative informa-
tion of Lt when training neural networks. However, second-
order information is also useful in optimization problems –
consider how a quasi-Newton method like limited-memory
L-BFGS (Liu & Nocedal, 1989) is more efficient than a
first order method like gradient descent. This suggests that
additional insight into the training problems of ML models
can be found in using second-order information.

The curvature of a function Lt is characterized by its Hes-
sian Ht = ∇2

θsh
Lt ∈ RP×P for a weight vector θsh ∈ RP .

For typical deep neural networks, P ≈ 106, and calculating
H directly is computationally infeasible due to storage con-
traints (Ht will have 1012 entries). However, the product
of Ht with a vector v is computable in approximately the
same time-complexity as calculating the gradient of Lt with
respect to θ (Pearlmutter, 1994).3 This enables calculation
of properties of Ht that can be obtained from observing
its action on a chosen vector v (Yao et al., 2019; Ghorbani
et al., 2019). In particular, the trace of Ht, and an approxi-
mate probability density function of its eigenvalues can be
efficiently estimated.

The trace of Ht is both the sum of its eigenvalues and Lt’s
Laplacian (i.e., trHt =

∑
p ∂θsh,pθsh,p

Lt(θ)). Thus, the
trace of Ht can be viewed as a measurement for the com-
plexity of its curvature (Yao et al., 2019). The sign of the
trace also indicates the sign of Lt’s local curvature. The

3In jax, this is implemented by composing a forward-mode
Jacobian-vector product jvp function with a reverse-mode gradi-
ent function grad.
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trace of Ht may be estimated with the expectation

trHt = Ev∼PR
[vTHt(θ)v],

where PR is the distribution of random variables in RP with
iid Rademacher components (Avron & Toledo, 2011).

Having access to all of Ht’s eigenvalues gives us a full
picture of Lt’s curvature. These eigenvalues are often repre-
sented as a function ψ called the spectral density or density
of states that is given by ψ(t) = 1

P

∑
p δ(t − λp), where

λ1 ≤ · · · ≤ λP are the eigenvalues ofHt, and δ is the Dirac
distribution (Lin et al., 2016). However, the weight vector
θsh is too high-dimensional for all of Ht’s eigenvalues to be
directly calculated in practice. Methods like power iteration
can be used to estimate the large-magnitude eigenvalues of
a Hessian (Yao et al., 2019), but they scale poorly as its
dimensionality increases.

A solution is to first use the Lanczos algorithm to estimate
P ′ � P eigenvalues of Ht and then smooth these esti-
mated values into a continuous approximation to the dis-
crete density ψ by convolving the values with a Gaussian
kernel (Golub & Welsch, 1969; Ghorbani et al., 2019).4

This yields a continuous function ψ̂(t) that approximates
ψ. See Appendix E for an example of estimating ψ̂ for a
simplified loss function.

Interpreting estimated spectral densities remains a challeng-
ing task: (Ghorbani et al., 2019) and (Yao et al., 2019)
claim that a spectral density should be “smooth” (i.e., con-
centrated within a dense region) and consider the effect
of different network architectures on density smoothness.
(Alain et al., 2019) argues that having a large concentration
of negative eigenvalues can lead to inefficient training, be-
cause most optimizers fail to leverage this local negative
curvature. (Papyan, 2020) relate the outlier structure of a
Hessian’s eigenvalues to the number of classes in a dataset.

Compared to CV problems, graph-structured datasets have a
number of interesting attributes. For example, a graph input
has a variable number of node and edge features, which
complicates the GN learning problem. Furthermore, in
contrast to the use of very deep networks in CV problems,
increasing depth in graph networks has often not been found
to be effective (see, e.g., discussion in (Godwin et al., 2022)).
Hessian-based information has the potential to inform some
of these comparisons.

Note that the estimations of both the trace and the spectral
densities are based on random quantities. For trace, multiple
vectors v must be sampled and the quantity vTHt(θ)v com-
puted, and then convergence in mean can be assessed. In

4The Lanczos algorithm accurately estimates the Hessian’s
most positive and most negative eigenvalues, and the convolu-
tion approximates the distribution of eigenvalues between these
extrema.

practice, we find that approximately 500 samples are suffi-
cient. For spectral density, each Lanczos iterate is initialized
as a random Gaussian vector. We adapt an implementation
of the Lanczos algorithm and smoothing process developed
by (Ghorbani et al., 2019), in which we reorthogonalize the
Lanczos iterates during each step of estimation to promote
numerical stability. We follow (Yao et al., 2019) and use
P ′ = 100, which is more than the P ′ = 90 that (Ghorbani
et al., 2019) validate by comparing to an exact calculation
of every eigenvalue of a smaller network.

2.2. Graph networks for property prediction

Let ŷ : G → Y be a neural network parameterized by θ. We
follow (Sener & Koltun, 2018) in splitting θ into a set of
shared weights θsh, and a set of property-specific weights
θ1, . . . , θT . Then the predicted tth property is

ŷt(g; θsh, θt) = ft(z(g; θsh); θt),

where z : G → RD is a task-independent GN (Battaglia
et al., 2018), and each ft : RD → R is a task-specific
feedforward network.

We briefly outline the functionality of our graph network
z, which maps an input graph g to a graph-level represen-
tation vector uM . First, the multigraph g is given a global
feature u0 ∈ RU that is initialized as a vector of ones, and,
similarly to (Chen et al., 2019), the node features xv and
edge features ev,v′,k are linearly projected: x0v = WV xv
and e0v,v′,k = WE ev,v′,k, where WV and WE are matri-
ces learned during training. Then information is propa-
gated across the multigraph during m = 1, . . . ,M message-
passing steps.

The mth message-passing step proceeds as follows: First,
the edge features are updated:

emv,v′,k = φE(cat(em−1v,v′,k, x
m−1
v , xm−1v′ , um−1)) + em−1v,v′,k,

where φE is a feed-forward neural network, and cat is the
concatenation operator. Then node updates are collected.
For every node v, first edge updates are calculated:

hmv,out =
∑

(v′,k):(v,v′,k)∈E

emv,v′,k

hmv,in =
∑

(v′,k):(v′,v,k)∈E

emv′,v,k,

where the first summation is over the tuples (v′, k) such
that (v, v′, k) is an edge for g, and the second summation is
defined similarly. With these updates, the new node repre-
sentation for v is given by

xmv = φV (cat(hmv,out, h
m
v,in, x

m−1
v , um−1)) + xm−1v ,
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where φV is a feed-forward neural network. Finally, the
global feature is updated:

um = φU

cat

 ∑
v,v′,k

emv,v′,k,
∑
v

xmv , u
m−1

+um−1,

where φU is a feed-forward neural network, and each feature
vector xmv , e

m
v,v′,k, u

m is processed with a layer normaliza-
tion (Ba et al., 2016) layer. After M steps, the final global
state uM is fed into each property-specific network ft.

Our graph networks are implemented in the jraph5 frame-
work that is built on jax6. We use flax7 to implement
component neural networks φV , φE , and φU . Because we
seek to evaluate second-order derivative information, we
ensure that our neural networks φV , φE , φU are smooth
functions with respect to their weights by using tanh activa-
tion functions. Further details on specific hyperparameters
used to instantiate models are given in Appendix A.

We impose on each property a loss function Lt (here as-
sumed to be mean squared loss for all t), and we col-
lect a training dataset of multigraph data points D =
{(gn, yn)}Nn=1. Then we solve the minimization problem

min
θ
L(θ) =

∑
t

Lt(θsh, θt),

where

Lt(θsh, θt) =
∑
n

|ŷn(gn; θsh, θt)− ynt |2

are task-specific losses and θ = {θsh, θ1, . . . , θT }.

We solve this minimization with stochastic gradient descent
using the optax8 implementation of AdamW (Loshchilov
& Hutter, 2019) to choose stepsizes; we handle the potential
difference in scales across properties by normalizing all tar-
gets prior to training and set µt = 1 for all t. Further details
on the specifics of model training are given in Appendix B.

2.3. Data sources

We evaluate our graph network curvature assessment tech-
niques on datasets from two scientific domains: materials
science (crystals) and chemistry (molecules). For crystals,
our data featurization follows (Park & Wolverton, 2020); for
molecules, it follows (Gilmer et al., 2017). To reduce the
complexity of our considered problem space, we choose to
use simple featurizations (one-hot encoding of atom-types
as node featurizations), but our methods are compatible with

5https://github.com/deepmind/jraph
6https://github.com/google/jax
7https://github.com/google/flax
8https://github.com/deepmind/optax

other featurizations (e.g., hand-crafted node descriptors like
those provided by rdkit). Further details about the data
used are available in Appendix C.

For materials science, we collect data from Materials Project
(MP) (Jain et al., 2013), which contains results of density
functional theory (DFT) calculations for different crystals.
crystal records contain compositional and structural infor-
mation, as well as some related properties. Each crystal’s
structure information is captured in a Crystallographic In-
formation File (CIF), which we convert into a multigraph
using the VoronoiNN function from pymatgen9, follow-
ing the approach of (Park & Wolverton, 2020). As crystals
are periodic structures, this process yields multiple edges
between many given pairs of nodes (Xie & Grossman, 2018;
Park & Wolverton, 2020; Sanyal et al., 2018) (e.g., Figure 1).
As targets, we use several assessments of a crystal’s elastic
properties: the Voigt-Reuss-Hill (Hill, 1952) calculation for
shear (GV RH ) and bulk (KV RH ) modulus, both measured
in units of GPa, as well as the isotropic Poisson ratio µ, a
dimensionless quantity.

These properties are inherently coupled – µ can be calcu-
lated as a function of GV RH and KV RH . Thus, an ML
model that predicts all three serves as a test for how well
it can learn underlying physical relationships. A one-hot
encoding of atom-type is used to obtain initial node fea-
tures xv, and four bond-related properties calculated by
pymatgen are used as edge features, resulting in a dataset
of 10,500 crystal structures with known elastic properties.

For chemistry, we use the QM8 (Ramakrishnan et al., 2015)
dataset of organic molecules. We use the rdkit package10

to convert SMILES strings (Weininger, 1988) into molecu-
lar structure graphs (see, e.g., Figure 2). As targets, we use
the first and second transition energies, E1 and E2, and the
first and second oscillator strengths f1 and f2. QM8 con-
tains several versions of transition energies and oscillator
strengths that have been calculated via different levels of
DFT. We use the predictions of the approximate coupled-
cluster (CC2) (Hättig & Weigend, 2000) method as our
targets, as these are treated as the “ground truth” in (Ra-
makrishnan et al., 2015). A one-hot encoding of atom-type
is used to obtain initial node features xv, and a one-hot en-
coding of bond-type is used to obtain initial edge features
ev,v′,k.

Note that, in Section 2.2, we describe our input data points g
as directed multigraphs. However, for our actual data points,
the edges are not inherently directed – bonds are symmetric.
Thus, we duplicate each edge feature (i.e., ev,v′,k = ev′,v,k
for all edges) during data preprocessing.

9https://pymatgen.org
10https://github.com/rdkit/rdkit

https://github.com/deepmind/jraph
https://github.com/google/jax
https://github.com/google/flax
https://github.com/deepmind/optax
https://pymatgen.org
https://github.com/rdkit/rdkit
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3. Results
We demonstrate the application of our curvature-assessment
techniques (Section 2.1) on trained GNs (Section 2.2) in
two application domains: materials science and chemistry
(Section 2.3). Although here we focus on GNs (Battaglia
et al., 2018), our assessment techniques are applicable to
the broad family of graph neural networks used in property
prediction tasks.

Figure 3 shows training and test set errors for each dataset.
These results do not necessarily align with domain intu-
ition, suggesting that the models do not leverage scientific
knowledge in their learned representations. For example,
for MP, the test set error for Poisson ratio is higher than that
of GV RH or KV RH , despite the fact that Poisson ratio can
be calculated as a function of GV RH and KV RH . This is
interesting and suggests that the GNs are not fully leverag-
ing known scientific knowledge. For QM8, the oscillator
strengths f1 and f2 have the lowest and highest, respectively,
test set errors.

Next we summarize the curvature of the loss functions us-
ing the trace of each task’s loss’s Hessian. In Figure 4, we
show that, despite the general decreasing training error, the
curvature of each property’s loss surface, as measured by
the trace of its Hessian, is highly variable. In particular,
both datasets show high heterogeneity across properties and
across training epochs in their estimated traces. Our obser-
vations here do not align with prior work that has analyzed
Hessian traces for CV problems (Yao et al., 2019). In those
works, traces increased monotonically during training and
were consistently positive. Here, our estimated traces often
flip between being positive and negative.

The Hessian trace is a high-level summary of the curva-
ture of a loss surface; for a more granular examination, we
estimate the spectral densities of each property’s Hessian.
In Figure 6a in D, we show that the spectral densities are
similarly variable and often feature the presence of outliers
that briefly occur during training. These outliers vary across
properties. For the QM8 dataset, we zoom in on the range
of eigenvalues where most density is concentrated in Fig-
ure 5. Similar to (Yao et al., 2019; Ghorbani et al., 2019), we
see that most density is concentrated near 0. This suggests
that there is a great deal of redundancy in the latent spaces
learned by these models, and their true dimensionality is
likely significantly less than the full P parameters of the θsh
weight vector. Unlike these works, the spectral densities are
more symmetric around 0. This matches Figure 4, since the
Hessian trace (sum of all its eigenvalues) varies between
being very positive and very negative. The exact spectral
densities vary across properties, even at the end of training.

Figure 3. Standardized MAE values for each property across train
and test splits, for the MP and QM8 prediction tasks. Despite the
high variability in curvature across training (Figure 4), training
error reduces relatively smoothly, with occasional regressions in
performance for MP. Although the training error for each property
converges to rough equality, significant inter-property variety is
observed for test set error.
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(a) MP

(b) QM8

Figure 4. We track property-specific Hessian traces trHt while training GNs for the MP and QM8 prediction problems. The loss surface
of the MTL problem for GNs appears to be complicated and varying across properties. Trace signs (indicating the sign of the curvature)
and trace magnitudes vary across training and across properties, the latter by orders of magnitude. In prior work that looked at traces of
Hessians (Yao et al., 2019) in CV tasks, traces were found to be less variable.

Figure 5. Snapshots of the spectral densities of property-specific Hessian losses for the QM8 dataset. All properties start with comparable
densities closely concentrated near 0; but, as training finishes, the densities spread out as the loss surface increases in complexity. Each
property has a different spread of eigenvalues, suggesting that the loss surfaces do vary in curvature by property. Note that this plot trims
the range of the x-axis to remove outlier eigenvalues. The full spectra are displayed in Figure 6 in Appendix D. For these plots, the x-axis
gives the range of eigenvalues for the loss function, and the y-axis gives the density ψ̂(t) of eigenvalues concentrated at that point t (as
described in 2.1).
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4. Discussion
In this work, we have posited that the performance of multi-
task GNs for property prediction may be stymied by under-
lying variation in property-specific loss-surface curvatures.
Some existing work considers this question (Yu et al., 2020)
in a simplified theoretical setting, but, to the best of our
knowledge, no one has empirically investigated the Hessian
properties of multi-task GNs. In two domains – chemistry
and materials science – our results suggest that loss surface
curvature varies across each modeled property.

In order to assess curvature without calculating the full Hes-
sian, we build on recent work that uses matrix-free methods
to estimate Hessian properties (Alain et al., 2019; Yao et al.,
2019; Ghorbani et al., 2019; Papyan, 2020). We extend their
results by considering a novel type of learning problem –
multi-output scalar regression – and a novel class of neural
network – graph networks. Our results echo some previous
results – the majority of a Hessian’s spectral density is con-
centrated near 0 – and diverges in other respects – Hessian
properties appear far noisier and more variable for GNs than
for CV tasks. We leave further investigation of this question
to future work. Potential explanations include the differ-
ence in loss functions for regression vs. classification tasks,
a higher level of noise in the datasets we examined, and
some special characteristic of GN vs. other neural network
architectures.

We have here focused on a specific but representative sub-
set of GN prediction problems, but considerable potential
variation exists. For example, many recent GN architectures
incorporate a notion of equivariance (Satorras et al., 2021;
Gasteiger et al., 2020) into their feature-extraction models,
and this might impact their curvature in different ways. In
addition, we have not evaluated how the choice of optimizer
(e.g., stochastic gradient descent vs. Adam (Kingma & Ba,
2014) vs. AdamW) impacts the curvature properties of a
learned loss surface.

Our curvature assessment enable several future research
directions. First, our analysis here was primarily empiri-
cal. The phenomena we identify here (a diversity of curva-
tures across multi-task loss functions) and the previously-
observed degradation of performance for multi-task mod-
els (Gasteiger et al., 2020) could be connected by a theoreti-
cal justification. Similarly, we find that curvature properties
of GNs appear to be much noisier and more variable than the
properties of other network architectures, and we currently
lack a theoretical justification of why. Intermediate steps
might entail investigating the curvature properties of MTL
methods that, in other domains, do out-perform single-task
models (e.g., (Sener & Koltun, 2018)). Existing work in
analyzing curvature for computational geometry (e.g. (Gold-
man, 2005)) might provide techniques to build upon.
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A. Model specifics
We use M = 5 message-passing steps. Node, edge, and global features are projected into a 64-dimensional feature space.
φV and φE have two layers with 256 units and a skip connection, followed by an output layer of 64 units. φU has two layers
with 192 units and a skip connection, followed by an output layer of 64 units. All networks use tanh activations.

B. Training specifics
Models are trained for 512 epochs using the AdamW (Loshchilov & Hutter, 2019) optimizer and the default hyperparameters
used in the optax implementation. The initial rate is set as 10−3, with an exponential decay rate of 0.997 applied every
epoch after the first 256 epochs.

C. Data
We summarize our datasets in Table 1.

We scraped Materials Project for crystal records present in it as of October 2020 using the MPRester class from the
pymatgen package. The Supplemental Information contains a table of MP IDs used in this study. The raw entries of
GV RH , KV RH , and Poisson ratio µ contained several anomalously small and large values, so we removed entries with
values less than the 5th percentile or greater than the 95th percentile of obtained elastic properties. This left us with a total
dataset of 10,500 crystals. Summary statistics for the targets used are given in Table 2. Furthermore, GV RH and KV RH

were log-transformed to create a more normal distribution. Roughly 70% of the dataset (7,400 crystals) was used as training
data, and all targets were standardized prior to training.

As initial node features, we used a one-hot encoding of atom type. For initial edge features, we used four features calculated
by pymatgen: area, face dist, solid angle, and volume. Following similar work in applying graph neural
networks to crystals (Xie & Grossman, 2018), we discretize these four features based on deciles.

We use the version of QM8 hosted by MoleculeNet (Wu et al., 2018), except that we drop molecules with negative oscillator
energies. Summary statistics for the targets are given in Table 3. As initial node features, we use one-hot encodings of atom
type. As initial edge features, we use one-hot encodings of bond type. Roughly 70% of the dataset (15,300 molecules) was
used as training data, and all targets were standardized prior to training.

Table 1. Summary statistics of datasets
Dataset # Data Points # Targets # Node Features # Edge Features

MP 10,500 3 112 40
QM8 21,725 4 9 4

Table 2. Summary statistics of MP targets
logGV RH (log(GPa)) logKV RH (log(GPa)) µ

mean 3.55068348 4.3697952 0.30674381
std 0.73963662 0.67564539 0.06501633
min 0.0 2.63905733 0.18
max 4.82028157 5.45103845 0.5

Table 3. Summary statistics of QM8 targets
E1 E2 f1 f2

mean 0.22010506 0.24894142 0.02289806 0.04326408
std 0.04382473 0.0345149 0.05336499 0.07312536
min 0.06956711 0.10063996 0.0 0.0
max 0.51383669 0.51384601 0.61611219 0.56561272
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D. Supplemental figures

(a) MP

(b) QM8

Figure 6. We visualize snapshots of property-specific estimated spectral densities during selected training points. For both MP and QM8
models, most of the spectral density is concentrated near 0, especially after random initialization. Occasionally, very high-magnitude
eigenvalues, both positive and negative, spike up for a short period. Our results here elaborate on Figure 4 – the high and varying curvature
of property-specific losses is driven by singularly large eigenvalues that vary across properties. For these plots, the x-axis gives the range
of eigenvalues for the loss function, and the y-axis gives the density ψ̂(t) of eigenvalues concentrated at that point t (as described in 2.1).
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E. Example spectrum estimation

We consider a loss function defined by L(x) =
1

2
xTAx, where A =

1

2
(B +BT ), for a matrix B with entries sampled iid

from a standard normal distribution. In this case, the Hessian is given by A and so its estimated eigenvalues can be compared
to its true eigenvalues. In Figure 7, we plot the results of a sample calculation, for a 1, 000× 1, 000 matrix. We show that
the estimated density has reasonable similarity to the true distribution, and the estimated trace also matches the true trace.

Figure 7. An example showing the use of the Lanczos algorithm to estimate the spectral density of a Hessian. The left figure is the
distribution of the true eigenvalues, and the right is the estimated spectral density. The estimated values accurately characterize the
maximal and minimal eigenvalues, and the interior shows qualitative agreement with the known distribution.


