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Abstract001

Large Vision-Language Models (VLMs) rely002
on effective multimodal alignment between pre-003
trained vision encoders and Large Language004
Models (LLMs) to integrate visual and tex-005
tual information. This paper presents a com-006
prehensive analysis of attention patterns in ef-007
ficient VLMs, revealing that concatenation-008
based architectures frequently fail to distin-009
guish between semantically matching and non-010
matching image-text pairs. This is a key011
factor for object hallucination in these mod-012
els. To address this, we introduce Attention-013
Guided Efficient Vision-Language Models014
(AGE-VLM)—a novel framework that en-015
hances visual grounding through interleaved016
cross-attention layers to instill vision capa-017
bilities in pretrained small language models.018
This enforces in VLM the ability "look" at019
the correct image regions by leveraging spa-020
tial knowledge distilled from the Segment Any-021
thing Model (SAM), significantly reducing hal-022
lucination. We validate our approach across023
different vision-centric benchmarks where our024
method is better or comparable to prior work025
on efficient VLMs. Our findings provide valu-026
able insights for future research for enhanced027
visual and linguistic understanding in VLMs.028

1 Introduction029

Large Vision-Language Models (VLMs) (Alayrac030

et al., 2022; Liu et al., 2023; Radford et al., 2021;031

Tong et al., 2024a; Wang et al., 2024; Zhu et al.,032

2023) leverage the capabilities of pre-existing033

Large Language Models (LLMs) (Achiam et al.,034

2023; Chowdhery et al., 2023; Grattafiori et al.,035

2024) to address complex tasks. Although LLMs036

excel in text-only domains such as natural language037

understanding (Grattafiori et al., 2024), mathemat-038

ics (Cobbe et al., 2021), and coding (Le et al., 2022)039

by following task-specific instructions, VLMs ex-040

tend these abilities to the multimodal realm. This041

enables them to perform tasks like image under- 042

standing, captioning, object localization, and multi- 043

turn visual question answering. Architecturally, 044

VLMs typically consist of three key components: 045

a vision encoder to process visual input, an adapter 046

to map visual representations into the language 047

model’s token space, and a decoder-only LLM that 048

processes these combined representations. The fu- 049

sion of visual and textual information is commonly 050

achieved either by concatenating visual tokens with 051

text tokens for processing by self-attention layers or 052

by interleaving visual tokens using dedicated cross- 053

attention layers within the LLM (Alayrac et al., 054

2022; Grattafiori et al., 2024). 055

Recent research (Rahmanzadehgervi et al., 2024; 056

Tong et al., 2024a,b) has shown a significant 057

challenge in VLMs: a tendency to ignore visual 058

modality representations when performing vision- 059

language tasks. These models may produce an- 060

swers, whether correct or incorrect, relying solely 061

on textual instructions and associated questions, 062

thereby ignoring crucial visual information. Tong 063

et al. (Tong et al., 2024a) observe that the perfor- 064

mance gap with and without visual information is 065

less than a 5% on multiple benchmarks including 066

MMMU (Yue et al., 2024), MathVista (Lu et al., 067

2023), and AI2D (Hiippala et al., 2021). To miti- 068

gate this, various efforts have focused on enhanc- 069

ing visual capabilities, including curating vision- 070

centric datasets (Tong et al., 2024a) and improv- 071

ing vision-text alignment through auxiliary mecha- 072

nisms such as specialized projection mechanisms 073

(Masry et al., 2025). However, these limitations 074

often persist even in efficient frameworks designed 075

for smaller-scale models with fewer parameters. 076

Despite this, many multimodal approaches still 077

struggle with effective visual information process- 078

ing, frequently exhibiting issues like object halluci- 079

nation (Guan et al., 2024) (as illustrated in Fig. 1). 080

Many efficient VLMs (Ge et al., 2024; Vasu 081

et al., 2024) employ convolutional vision encoders 082
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Prompt: Considering the relative positions of the wall (annotated by the red box) and the 
fireplace in the image provided, where is the wall (annotated by the red box) located with 
respect to the fireplace? Select from the following choices. (A) left (B) right 

Groundtruth: (A) 

MobileVLM-V2: The image shows a living room with a fireplace, a couch, and a chair. 
The wall (annotated by the red box) is located to the left of the fireplace. The fireplace is 
in the middle of the room. The couch is to the right of the fireplace. The chair is to the left 
of the couch. The relative positions of the objects are as described. The answer is B. 

Ours: The wall (annotated by the red box) is located to the left of the fireplace.

Prompt: How many cats are in the image? Select from the following choices. (A) 2 (B) 1 (C) 4 
(D) 3 (E) 0 

Groundtruth: (B) 

MobileVLM-V2: 3 

Ours: The correct answer is (B) 1. The image shows only one cat, which is the orange and 
white cat looking at its reflection in the glass. There are no other cats present in the image.

Figure 1: Object hallucination and mitgation in efficient vision language models. We show that prior work
on efficient VLMs fails to localize (top) and correctly count the number of objects (cat) in images. Our attention
guided efficient VLMs approach equipped with the knowledge distillation from Segment Anything Model in the
cross-attention weights can effectively generate correct responses with explanation grounded in the visual domain.

like ConvNeXt (Liu et al., 2022). To enable vision-083

language capabilities, ConvNeXt is trained con-084

trastively with CLIP (Ge et al., 2024). However,085

this approach leads to lack of fine-grained spa-086

tial grounding in the visual features. During stan-087

dard VLM training, given the LLM’s strong lan-088

guage prior and the use of next-token prediction089

with cross-entropy loss, the model fails to recover090

the fine-grained visual information. While larger091

models (Lin et al., 2023; Wang et al., 2024) can092

integrate features from multiple encoders (e.g.,093

DINO (Oquab et al., 2024) , ViT(Dosovitskiy et al.,094

2021)) to improve grounding, this is unfeasible for095

resource-constrained VLMs.096

To endow the efficient models with spatial097

grounding of the vision features and to mitigate098

object hallucination, we propose a novel frame-099

work called Attention-Guided Efficient VLM (AGE-100

VLM). Our approach modifies a standard LLM by101

interleaving cross-attention layers with its existing102

self-attention layers. The core idea is to distill spa-103

tial knowledge from the Segment Anything Model104

(SAM) (Kirillov et al., 2023) directly into these105

cross-attention mechanisms. This is achieved by106

optimizing the cross-attention weights to align with107

segmentation masks generated by SAM for rele-108

vant text queries. Consequently, the VLM learns109

to "look" at the correct regions of interest when110

processing multimodal inputs. A key advantage is111

the data efficiency of this distillation process, en-112

abling enhanced grounding with limited training113

examples. We make following contributions:114

• We analyze the vision and text features in effi-115

cient VLMs and uncover their limitations in116

disambiguating the semantics between simi-117

lar and dissimilar image-text pairs to uncover118

limitations in vision-centric tasks including119

object hallucination.120

• To endow relatively small LLMs (1B parame-121

ter models) with vision capabilities in an effi- 122

cient manner, we propose a new efficient mul- 123

timodal framework with cross-attention layers 124

which leverage attention-guidance from seg- 125

mentation model (SAM). 126

• To distill knowledge from the SAM model, 127

we introduce a four stage training paradigm 128

which seamlessly integrates the vision fea- 129

tures with the pretrained LLM without effect- 130

ing the language capability of the underlying 131

model. Our efficient AGE-VLM with guid- 132

ance loss only during pretraining stage outper- 133

forms prior art across vision-centric tasks. 134

2 Related Work 135

Efficient VLMs. Vision–language models (VLMs) 136

combine a visual encoder with a large language 137

model to support multi-modal reasoning. Re- 138

cent research has explored making VLMs more 139

efficient and compact without sacrificing per- 140

formance by using compressed image embed- 141

ding and a smaller-sized language model. Con- 142

vLLaVA (Ge et al., 2024) swaps the standard 143

ViT(Dosovitskiy et al., 2021) for a ConvNeXt(Liu 144

et al., 2022) encoder, cutting the number of 145

visual-token for high-resolution images. FastVLM 146

(Vasu et al., 2024) introduces a hybrid vision en- 147

coder that yields far fewer tokens and achieves 148

a better speed-accuracy trade-off. MobileVLM 149

(Wu et al., 2024) reaches real-time speed on 150

edge devices through extensive ablation of de- 151

sign choices. VL-Mamba (Qiao et al., 2024) re- 152

places the Transformer with linear-time state-space 153

(SSM) layers, delivering near-linear scaling in se- 154

quence length while retaining competitive accuracy. 155

Mini-Gemini(Li et al., 2024) adopts a dual-encoder 156

scheme (low-res ViT plus high-res ConvNeXt); the 157

visual-token budget stays fixed, and high-resolution 158

details are injected only when needed. Finally, 159
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(a) Similarity for ConvLLaVA (Ge et al., 2024) (b) Similarity for MobileVLM-v2 (Wu et al., 2024).

Figure 2: Similarity analysis. Cosine similarly between the hidden states of the images and text tokens of the last
self-attention layer in existing efficient architectures. The similarities overlap for non-matching pairs indicating a
gap in the alignment of visual signal with text.

TinyLLaVA (Zhou et al., 2024), AppVLM (Pa-160

poudakis et al., 2025), and VILA (Lin et al., 2024)161

report further gains from better training recipes,162

thorough dataset curation, and deep understanding163

of pre-training.164

Attention in VLMs. Most modern VLMs fuse165

vision and language information through carefully166

designed attention layers for comprehensive rea-167

soning (Bhattacharyya et al., 2024; Cobbe et al.,168

2021). Flamingo(Alayrac et al., 2022) encodes169

images with a Perceiver module and feeds them170

into the language model via gated cross-attention.171

BLIP-2(Li et al., 2023a) uses a Q-Former that172

queries image features and hands a compact to-173

ken set to the LLM, injecting visual clues at mul-174

tiple points to the language model with relatively175

few new parameters. Recent studies also highlight176

limitations in existing attention patterns and pro-177

pose remedies. Zhang et al. (Zhang et al., 2025)178

shows that performance falls sharply when the tar-179

get object is small; a training-free, attention-guided180

cropping strategy recovers most of the lost accu-181

racy. LRR(Bhattacharyya et al., 2024) interleaves182

top-down cross-attention blocks amid the LLM’s183

self-attention, grounding generation in fine-grained184

video frames. Kang et al. (Kang et al., 2025) ob-185

serves biased attention toward irrelevant visual to-186

kens and introduces visual-attention-sink suppres-187

sion to redistribute focus and boost accuracy.188

Hallucination in VLMs. Hallucination is well-189

known chronic problem in LVM. Misalignment190

between visual evidence and textual generation,191

especially in cluttered scenes, often drives such er-192

rors. Several benchmarks reveal that some VLMs193

perform similarly with or without visual input, im-194

plying that the language model may ignore image 195

cues(Goyal et al., 2017; Kumar et al., 2024; Li 196

et al., 2023c; Orr Zohar and Xia, 2024; Zhang et al., 197

2024) To enhanced alignment, EMMA(Ghazanfari 198

et al., 2024) balances structural and hierarchical 199

representations, reducing hallucinated objects and 200

sharpening visual grounding. Modular attribution 201

studies find that multi-head attention poses higher 202

hallucination risk than MLP blocks; disabling “hal- 203

lucination heads” yields simple yet effective miti- 204

gation (Yang et al.). New evaluation suites now in- 205

clude explicit hallucination tests (Guan et al., 2024; 206

Li et al., 2023b; Tong et al., 2024a). For instance, 207

the Multi-Object Hallucination (Chen et al., 2024) 208

dataset probes scenarios where models overlook 209

vivid visual clues; its carefully curated corner cases 210

trace errors to language bias and skewed object 211

distributions. 212

3 Vision in Vision-Language Models 213

In this section, we will first investigate the under- 214

lying cause of object hallucination and limitations 215

in processing the visual information in efficient 216

VLMs. Based on our findings, we then propose a 217

framework to mitigate this. 218

3.1 Attention analysis in VLMs 219

To understand the underlying causes of object hal- 220

lucination and the tendency of VLMs–which are 221

built on existing LLM backbones–to underutilize 222

visual features, we analyze the semantic alignment 223

between hidden states derived from their image 224

and text modalities. Specifically, we compute the 225

cosine similarity between the final hidden states of 226

image tokens (or their projected representations) 227
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and text tokens, as visualized in Fig. 2. Our analysis228

considers two distinct concatenation-based models:229

ConvLLaVA, which pairs a convolutional vision230

backbone with a LLaMA-7B language model, and231

MobileVLM-v2, which utilizes a CLIP ViT-L/14232

vision encoder with a LLaMA-1.4B model.233

For both ConvLLaVA and MobileVLM-v2, a234

critical observation is the significant overlap in235

similarity score distributions between matching236

(ground-truth image-text pairs) and non-matching237

(randomly paired images and texts from the238

batch/dataset) examples. This suggests these ar-239

chitectures systematically struggle to distinguish240

semantically coherent visual-textual pairs from in-241

coherent ones using their hidden representations.242

For ConvLLaVA (Fig. 2a), although the simi-243

larity scores for non-matching pairs are appropri-244

ately skewed towards lower values (∼ 0.2− 0.3)–245

demonstrating some discriminative ability–the dis-246

tribution for matching pairs is disappointingly cen-247

tered around a modest ∼ 0.5. Ideally, correctly248

matched pairs should exhibit a distribution strongly249

skewed towards higher scores (e.g., > 0.8), sig-250

nifying robust alignment between visual concepts251

and textual descriptions. This current observation252

implies that even when an image and text are se-253

mantically related, their respective hidden states254

are not achieving the desired close alignment in the255

shared embedding space.256

MobileVLM-V2 (Fig. 2b) exhibits indiscrimi-257

nately high similarity scores for both matching and258

non-matching pairs, with both distributions peak-259

ing at very high values (e.g., ∼ 0.96− 0.98). This260

consistent high similarity, irrespective of actual261

image-text semantic relevance, suggests a critical262

limitation in its ability to capture meaningful un-263

derlying multimodal semantic information.264

This behavior is a strong indicator for object265

hallucination in VLMs and the dependence of the266

generation process on the strong language priors.267

Indeed, if non-matching pairs consistently achieve268

high similarity scores, it implies that visual features269

are failing to sufficiently constrain the LLM. Con-270

sequently, generation becomes unanchored from271

the visual input, driven instead by the LLM’s inter-272

nal biases or textual context, which leads to both273

object hallucination and a tendency to disregard274

specific visual details.275

To mitigate object hallucination in efficient276

VLMs, our work introduces cross-attention layers277

whose attention weights are distilled from the Seg-278

mentation Anything Model (SAM), thereby better279

grounding the pretrained LLM in visual informa- 280

tion. 281

3.2 Attention guided Efficient VLM Approach 282

We present AGE-VLM, an efficient multimodal 283

model that seamlessly integrates visual features 284

with a language model architecture. AGE-VLM 285

employs a ConvNext vision encoder and the 286

LLaMA-1B decoder-only language model. The vi- 287

sion features are modulated by text tokens through 288

cross-attention layers which are explicilty guided 289

by distilling knowledge from SAM as illustrated in 290

Fig. 3. 291

3.2.1 Efficient Vision-Language Architecture 292

Efficient vision backbone. Similar to prior 293

VLMs employing convolutional backbones, we uti- 294

lize a ConvNeXT to extract visual features. Convo- 295

lutional networks advantageously process higher- 296

resolution images with fewer visual tokens com- 297

pared to ViTs. Given an input image I of spatial 298

resolution H ×W , the ConvNeXT backbone pro- 299

cesses it through multiple convolutional stages1. 300

We extract the spatial feature map I ′ from the out- 301

put of the fourth stage, which retains spatial infor- 302

mation crucial for detailed visual understanding. 303

This map I ′ is then flattened and projected by two 304

linear layers into a sequence of h × w visual to- 305

kens, each with dimension d to match our language 306

model’s embedding dimension. 307

Efficient LLaMA-1B backbone. We employ 308

LLaMA-1B as our language backbone, selected 309

for its relatively small size, making it suitable for 310

resource-constrained scenarios. The model pro- 311

cesses tokenized text sequences. During training, 312

most of LLaMA’s parameters–specifically its self- 313

attention and feed-forward network (FFN) weights– 314

are kept frozen to preserve its powerful language 315

priors and reduce training costs. 316

Interleaved cross-attention layers. To directly 317

integrate visual information into the language 318

model, we introduce cross-attention mechanisms 319

within the LLaMA architecture. Instead of a sim- 320

ple prefix or concatenation approach, we interleave 321

lightweight cross-attention modules into specific 322

LLaMA decoder blocks. For LLaMA-1B, which 323

has 16 decoder layers, these cross-attention mod- 324

ules are strategically inserted. A standard LLaMA 325

decoder layer i typically processes input hidden 326

1Not to be confused with VLM training stages.
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Figure 3: Overall architecture of our attention-guided efficient vision language model. During training, given
the input image and the associated instruction, we perform knowledge distillation from SAM by explicitly aligning
the language-conditioned masks with the cross-attention weights of our modified LLaMA-1B backbone.

states Hi−1 as follows:327

Hi = SELFATTENTION(LAYERNORM(Hi−1)),328

Hi = Hi +Hi−1,329

Hi = Hi + MLP(LAYERNORM(Hi)). (1)330

We modify select layers–specifically those in-331

dexed 2, 7, 12, and 17 in LLaMA-1B–by inserting332

a cross-attention module after the standard self-333

attention sub-layer. This inserted cross-attention334

module takes the output of the self-attention sub-335

layer, Hi, and the visual features I ′ (extracted by336

the ConvNeXT encoder and transformed by an337

adapter to match the LLM’s hidden state dimen-338

sion) as input. Within this cross-attention module,339

the hidden states from the self-attention sub-layer340

serve as queries Q = Wq(Hi), while the trans-341

formed visual features serve as keys K = Wk(I
′)342

and values V = Wv(I
′). The operation is then:343

HCA = CROSSATTENTION(Q,K, V ),344

HCA = Hi +HCA,345

HCA = HCA + MLP(LAYERNORM(HCA)).
(2)

346

This interleaved structure allows the model to347

dynamically ground textual concepts in visual348

features at multiple semantic levels within the349

LLM. The weights Wq,Wk,Wv and the parameters350

within the CrossAttention blocks with multi-head351

attention are trainable.352

3.2.2 Grounding Distillation with SAM353

To account for the lack of spatial localization in354

VLMs optimized with the cross-entropy loss for355

next token prediction, we perform knowledge dis-356

tillation from the Segment Anything Model in the357

cross-attention layers our model. For this, during 358

pretraining stage, we take the 77K image-caption 359

pairs corresponding to ∼ 10 percent of the pretrain- 360

ing data of Cambrian 2.5M. Analogously, during 361

fine-tuning, we take the 150K image-instruction or 362

image-question pairs from the Cambrian 10M. Us- 363

ing these language queries, we obtain the language- 364

grounded masks for the images using SAM. 365

Given the image I of spatial resolution H ×W , 366

and the text prompt query tq (ignoring the special 367

tokens) we obtain the mask M ∈ {0, 1}H×W . The 368

mask is then downsampled to match the vision fea- 369

ture encoder’s spatial resolution h × w yielding 370

M ′ ∈ {0, 1}h×w. Given the attention weights Al, 371

output of softmax in cross-attention layer corre- 372

sponding to layer l, where l ∈ l1, . . . , ln and n 373

is the number of cross-attention layers, the atten- 374

tion weights for the query token tq are averaged 375

across all the heads in the attention layer and are 376

reshaped to h × w yielding Aq
l . Consider an ex- 377

ample of a text prompt with 10 tokens and 576 378

image tokens, the cross-attention layers with 32 379

heads would ouput the attention weights Al of size 380

32× 10× 576. These weights are averaged along 381

the first two dimensions providing 576 dimensional 382

Aq
l . These attention weights are then normalized to 383

obtain a attention distribution P q
l , We perform dis- 384

tillation using the dice loss to localize the attention 385

maps on the region represented by the mask, 386

Lg = − log

[
2.⟨vec(M ′).vec(P q

l )⟩∑
i,j M

′
i,j +

∑
i,j P

q
l

]
(3) 387

Here, vec(.) flattens the input to a 1-d representa- 388

tion. The advantage of dice loss is that it directly 389

optimizes for the overlap between predicted and 390

ground truth masks accounting for sparse regions 391
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of interest which are otherwise difficult to optimize392

using binary cross-entropy loss. This loss is ap-393

plied to all the cross-attention layers to modulate394

the visual features with text tokens.395

The overall training objective is the sum of the396

standard LLM – the causal language modeling loss397

computed using standard cross-entropy on the en-398

tire dataset and Lg–the loss of distillation calcu-399

lated on the subset with the SAM grounding masks.400

The two loss are trained with equal weights.401

3.2.3 Training Stages402

Our model training, detailed in Table 1, pro-403

ceeds through four distinct stages. The first404

three stages comprise a comprehensive pre-training405

phase aimed at effectively aligning visual features406

with the textual representations of our lightweight407

1B parameter LLM. A primary objective of this408

pre-training is to instill the LLM with visual capa-409

bilities while preserving its language proficiency.410

Stage1: Initial Vision-Language Alignment.411

The first stage establishes a foundational mapping412

between modalities by aligning visual features (pro-413

cessed through an adapter) with the LLM’s textual414

representations. We achieve this alignment using415

newly integrated cross-attention layers, with train-416

ing guided exclusively by the LLM’s language mod-417

eling objective (e.g., next-token prediction). This418

provides strong initial weights for the adapter and419

cross-attention modules, teaching them to map vi-420

sual information into the LLM’s embedding space.421

This methodology, utilizing image-caption pairs422

from the Cambrian 2.5M dataset, is analogous to423

the initial pre-training phase of standard VLMs.424

Stage 2: Vision Encoder Adaptation. In the sec-425

ond stage, we unfreeze and fine-tune the final block426

of the ConvNeXT vision encoder, training it jointly427

with the adapter and cross-attention layers. This428

approach is motivated by prior work demonstrating429

that adapting pre-trained ConvNeXt models from430

their original resolution (e.g., 384×384) to higher431

resolutions (e.g., 768×768) enhances detailed vi-432

sual understanding. Operating at this higher res-433

olution, our ConvNeXT yields 576 visual tokens,434

comparable to a Vision Transformer (ViT) back-435

bone at a 336×336 resolution. This highlights436

ConvNeXT’s greater token efficiency compared437

to common ViT-based VLMs. The Cambrian 2.5M438

dataset continues to provide image-caption pairs439

for the LLM loss in this stage.440

Stage 3: Spatial Grounding via Knowledge Dis- 441

tillation and Alignment. The third stage en- 442

hances visual grounding by incorporating knowl- 443

edge distillation from the Segment Anything Model 444

(SAM) to ensure generated responses are explic- 445

itly tied to relevant visual information. For ap- 446

proximately 10% of the Cambrian 2.5M image-text 447

pairs, SAM generates segmentation masks for key 448

entities or concepts relevant to the image-text con- 449

text. We then optimize our model’s cross-attention 450

weights to align with these SAM-generated masks 451

using the objective defined in Eq. 3. This encour- 452

ages the cross-attention mechanism to focus on 453

pertinent image regions during visual processing, 454

thereby improving spatial grounding. The LLM 455

loss is computed using the Cambrian 2.5M dataset. 456

Stage 4: Visually Grounded Instruction Fine- 457

tuning. The final stage consists of end-to-end in- 458

struction fine-tuning for the entire model. We con- 459

sider two variations for training. In the first setting, 460

we follow (Tong et al., 2024a) (AGE-VLM) and 461

finetune the model without the attention-grounding 462

loss. The key advantage of this is that the self- 463

attention layers of the LLM are kept intact, allow- 464

ing to efficiently integrate multimodal signal with 465

the model retains its language capacity. In the sec- 466

ond scenario (AGE-VLM-LM) visual grounding 467

is maintained by concurrently applying the distil- 468

lation loss (from Stage 3) and the primary LLM 469

loss (next-token prediction for instruction follow- 470

ing). For knowledge distillation, SAM is prompted 471

with the instruction (typically a question) and its 472

ground-truth answer. This guides SAM to generate 473

segmentation masks for image regions most per- 474

tinent to that specific instruction-answer pair, and 475

our model’s attention is then distilled towards these 476

masks. The LLM loss in this stage utilizes the 477

full Cambrian 10M instruction-following dataset, 478

while the grounding loss is applied to a 10% subset 479

thereof, reinforcing the model’s focus on relevant 480

visual evidence. 481

4 Experiments 482

To validate the effectiveness of our AGE-VLM in 483

encoding and utilizing visual features to mitigate 484

object hallucination, following (Tong et al., 2024a) 485

we perform extensive experiments on vision-centric 486

tasks for objection hallucination evaluation on 487

Visual Question Answering (VQA) with human 488

edited images on HallusionBench (Guan et al., 489

2024) and on the POPE (Li et al., 2023b) dataset. 490
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Model Training Loss

Training Stage Vision Encoder Adapter LLM(CA) LLM(SA) LM Loss Guidance Loss
Stage 1 � \ \ � ! %

Stage 2 \ \ \ � ! %

Stage 3 \ \ \ � ! !

Stage 4 (AGE-VLM) \ \ \ � ! %

Stage 4 (AGE-VLM-LM) \ \ \ \ ! !

Table 1: Training stages of our Attention-guided Efficient Vision Language Model.

Method HallusionBench OCRBench CV-Bench RWQA POPE

aAcc fAcc qAcc Scene Centric Key Info. 2D 3D

CA-Baseline 40.38 13.87 11.21 148.00 51.00 0.62 0.50 0.47 85.11
ConvLLaVA 24.71 8.96 4.84 117.00 26.00 0.59 0.57 0.51 77.76
mobile-vlm-v2 44.37 14.45 11.65 101.00 2.00 0.31 0.40 0.28 84.30

AGE-VLM 43.85 15.32 11.21 149.00 59.00 0.61 0.52 0.48 87.34
AGE-VLM-LM 39.22 11.56 7.91 126.00 33.00 0.66 0.46 0.51 85.18

Table 2: Quantitative evaluation. Comparison of AGE-VLM with efficient VLMs on vision-centric benchmarks.

Additionally,we include OCRBench (Liu et al.,491

2024) for scene-centric text-VQA and for key infor-492

mation extraction from the receipt images. We eval-493

uate on CV-Bench and RealWorldQA (x.ai, 2024)494

to uncover multimodal capabilities in 2D tasks, i.e.,495

spatial relationships or object count and for 3D496

tasks such as depth and relative distances.497

As discussed in Sec. 3, we perform the four498

stage training of the model. We use for pretrain-499

ing (stages 1, 2 & 3)Cambrian2.5M dataset and for500

instruction finetuning (stage 4) the Cambrian10M501

dataset. We train on 8 Nvidia A100 GPUs with a502

batchsize of 16 per GPU.503

Evaluation Metrics. We evaluate our models on504

diverse benchmarks with each having a different505

metric to assess model performance. Hallusion-506

Bench considers aAcc: the overall accuracy of507

all atomic questions, qAcc: the mean accuracy of508

unique questions as one question can be asked mul-509

tiple times with different figures. A VLM correctly510

solved a unique question only if it succeeds in all511

<question, figure> pairs for this unique question.512

fAcc: the mean accuracy of all figures. One figure513

is associated with multiple questions, a VLM is-514

correct on a figure only if it succeeds to solve all515

questions of this figure. CV-Bench consists of mul-516

tiple choice questions, the models however, some-517

times do not output the option even though they518

generate the correct answer. To account for this,519

we evaluate the accuracy by employing Qwen-L520

for evaluation. For OCRBench and RealWorldQA,521

we report the accuracy on the Scene-centric and the522

key information extraction tasks.523

Prior-art and Baseline. We compare our ap- 524

proach against ConvLLaVA, MobileVLM-v2 and 525

CA-baseline. ConvLLaVA also extracts vision fea- 526

tures from ConvNeXt which are input to Vicuna- 527

7B. MobileVLM-v2 with 1.7B parameters is based 528

on CLIP-ViT with their MobileLLaMA, a down- 529

sized version of LLaMA. Both the models concate- 530

nate the vision tokens to the language tokens which 531

are input to their respective LLMs optimized with 532

the LM loss. We also include CA-baseline, which 533

has all the elements of our approach except for 534

spatial distillation with attention guidance. That 535

is in this variant the cross-attention and the self- 536

attention layers are trained using only the LM loss. 537

Quantitative Results. In Tab. 3 we compare our 538

approach to the prior-art and the baselines on effi- 539

cient VLMs on different vision-centric benchmarks. 540

We observe that on challenging datasets such as 541

CV-bench our model outperforms prior work by 542

a large margin. Similar improvements are demon- 543

strated on the OCRbench and the RealWorldQA 544

datasets. This highlights the enhanced vision pro- 545

cessing ability of our approach. Furthermore, we 546

note that while our approach on HallusionBench 547

yields better performance than ConvLLaVA, it is 548

comparable to that of MobileVLM-v2. This can be 549

attributed to fact that the attention signal from SAM 550

cannot text information in mathematical charts or 551

figures. Notably, our AGE-VLM variant trained in 552

an efficient manner consistently outperforms prior 553

art with seamless integration of visual information 554

with just 1.2B parameters. 555
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Prompt Is there a laptop in the image?
Please answer yes or no.

Is there an apple in the image?
Please answer yes or no.

Is there a cup in the image? Please
answer yes or no.

Groundtruth yes yes yes

Conv-LLaVA 0 0 no

MobileVLM-v2 No, there is no laptop in the im-
age. The image features a person
typing on a keyboard.

No, there is no apple in the image.
The image features a shelf with
various items, books, a teddy bear,
and a Christmas ornament.

No, there is no cup in the image.
The image only shows a plate of
food, a salad and a bowl of soup.

AGE-VLM Yes, there is a laptop in the im-
age. It is partially visible in the
background, partially obscured by
the hands of the person typing on
the keyboard. The laptop is po-
sitioned to the left side of the im-
age, and it appears to be a standard
model with a white exterior.

Yes, there is an apple in the image.
It is located on the top shelf, to the
left of the teddy bear. The apple
is red with a yellow stem and is
placed among other items.

Yes, there is a cup in the image.
It is located on the right side of
the plate, partially obscured by the
bread. The cup appears to be a
clear glass, and it is filled with a
transparent liquid, which could be
water or another clear beverage.

Table 3: Qualitative comparison of our approach againt Conv-LLaVA and MobileVLM-v2 on vision-centric task.

Image Conv-LLaVA CA-baseline Ours

How many handrails are in the image?

Table 4: Attention visualization. Our method looks at the right regions given the input image and the input text.

Qualitative Results. In Tab. 3 we present the556

qualitative comparison of our AGE-VLM approach557

against Conv-LLaVA and MobileVLM-v2. Even558

though Conv-LLaVA answers incorrectly, it ad-559

heres to the instruction, answering with 0 or no.560

The responses generated by MobileVLM-v2 are561

not well grounded in the image as is evident from562

the explanation that follows the answer. For exam-563

ple,in column 3, MobileVLM-v2 incorrectly gen-564

erates “soup” as the item in the image. In contrast,565

our approach not only follows the instruction but566

can also generate the response grounded in the567

image information. In column 2, our approach cor-568

rectly localizes the location of apple in terms of the569

spatial relationship with other objects in the image570

and provides the correct response. We demonstrate571

the localization capabilities of our approach in Tab.572

4. We visualize the attention weights of the first573

self-attention layer for Conv-LLaVA and the first574

cross-attention layer for the CA-baseline without575

attention guidance and our approach with attention 576

guidance. As shown, given the image and the asso- 577

ciated prompt, the Conv-LLaVA approach does not 578

have any implicit grounding in the self-attention 579

layer. The CA-baseline does have implicit ground- 580

ing capacity but it incorrectly localizes the target 581

visual concepts from the prompt. Our approach 582

localizes the correct regions (handrails). 583

5 Conclusion 584

We introduced AGE-VLM, an efficient VLM de- 585

signed to mitigate object hallucination. Our find- 586

ings demonstrate that distilling knowledge from the 587

SAM to guide attention mechanisms significantly 588

enhances the visual grounding of VLMs. Exten- 589

sive experiments show AGE-VLM achieves perfor- 590

mance that is markedly improved or comparable to 591

existing efficient VLMs on various vision-centric 592

benchmarks. 593
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Limitations594

While this paper has focused on the training recipe595

for distilling knowledge from SAM into vision-596

language models, our approach does not explore597

scaling of the distillation data or consider distilling598

optical flow or object tracking into the hidden states599

of VLMs. While our work addresses hallucination,600

it is far from perfect and can produce biased or601

factually incorrect content. With efficient VLMs602

as proposed in this work gaining traction, they will603

be widely accessable and should therefore be used604

with caution as their incorrect responses can cause605

physical harm such when using self-diagnosis with606

consulting medical experts.607
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Appendix877

We provide details on data collection for align-878

ment guidance, additional details for training AGE-879

VLM, provide insights on further improvements880

with respect to the image data processing and in-881

clude additional details on the evaluation bench-882

marks considered in the main paper.883

A Licensing Information884

We use LLaMA-3.2-1B and ConvNeXt as the base885

for our efficient architecture. The LLaMA mod-886

els follow the “LLAMA 3.2 COMMUNITY LI-887

CENSE AGREEMENT” and the ConvNeXt model888

is released under MIT License. Our models will be889

released pending legal review.890

B Data for Alignment Guidance891

We leverage Grounded Segment Anything Model892

(Ren et al., 2024) to obtain the masks of the target893

concepts to be focused on in the cross-attention894

layers. For text-based segmetation (referring ex-895

pression segmentation) Grounded-SAM combines896

Florence-2 (Xiao et al., 2024) and SAM (Kirillov897

et al., 2023) to obtain the masks for the given text.898

Florence-2 takes a task instruction as input and899

generates results in the text form. Specifically900

for the referring expression segmentation, instruc-901

tion “Ground the object which is most related to902

the text input” is provided. The segmentations903

are generated as polygons, with location tokens904

(x0, y0, . . . , xn, yn) representing the vertices of the905

polygon in clockwise order. The tokens and the906

image are provided to the SAM model to gener-907

ate the target mask. With this pipeline, during the908

pre-training stages (1–3) we generate the target909

masks for 77K images and their associated cap-910

tions in the Cambrian 2.5M dataset. Importantly,911

during fine-tuning, since the model takes image912

and a question prompt as input to generate the an-913

swer, we adhere to this framework and generate the914

segments based on the question for the given image.915

This instills in the model the ability to look at the916

right regions based on the question about the given917

image. For this phase, we utilize approximately 1%918

(150K samples) of the Cambrian10M instruction919

fine-tuning dataset.920

C Implementation Details921

Our approach follows a 4 stage training strategy as922

outlined in 3. For any stage, we use the learning923

rate of 1e−5 for all the modules including Con- 924

vNeXt, the projector, the cross-attention layers and 925

the language model. We use Adam optimizer with 926

the weight decay of 0.1, the warmup ratio of 0.03, 927

β2 is set to 0.95. Additionally, we train of each 928

stage of a single epoch consistent with prior work 929

on large vision-language models (Ge et al., 2024). 930

D Image Processing and Attention 931

The input image to ConvNeXt is of size 768× 768 932

yielding 576 tokens. We make an important obser- 933

vation the prior work (Ge et al., 2024; Liu et al., 934

2023) zero-pad the images to resize them to target 935

resolution. In our analysis we observe that for prior 936

work without our attention guidance, the attention 937

is focused on these padded regions. This might 938

be an additional bottleneck for the vision-language 939

models as they can easily ignore the vision features 940

due to this inconsistency in the data. The impact 941

of image-preprocessing techniques in large mod- 942

els needs further investigation and is an important 943

direction for future work. 944

E Evaluation Benchmarks 945

We specifically evaluate on vision-centric bench- 946

marks which take into account the visual infor- 947

mation for visual question answering, suitable for 948

detecting hallucination in multimodal setting. 949

HallusionBench (Guan et al., 2024). The bench- 950

mark comprises 346 images paired with 1129 ques- 951

tions. The questions are framed in the yes/no for- 952

mat. The questions also ask about objects which 953

are not present in the image. This allows for tar- 954

geted evaluation for our goal of attention guidance 955

to integrate visual information emphasizing that 956

the model “looks" at the image to perform the task. 957

OCRBench (Liu et al., 2024). It evaluates the 958

ability of VLMs to accurately detect and read text 959

in the images. In our model evaluation we focus 960

on 475 images for the scene text centric VQA and 961

key information extraction where images with text 962

such as addresses, receipts, signs etc. are presented 963

to the LMM and questions about the OCR content 964

are asked. 965

CV-Bench (Tong et al., 2024a). This is a 966

larger vision-centric benchmark containing 2638 967

manually-inspected examples. This contains 968

image-question pairs to evaluate 2D (spatial rela- 969

tionships, counting) and 3D (depth order, relative 970

distances) understanding of the VLM. For this it 971
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uses, ADE20k, COCO and OMNI3D dataset bench-972

marks.973

RealWorldQA (x.ai, 2024). This benchmark974

consists of 765 images, with a question and easily975

verifiable answer for each image. This dataset also976

contains questions about spatial understanding in977

images.978

POPE (Li et al., 2023c). Similar to Hallusion-979

Bench, POPE is also inspired to evaluate VLMs for980

object hallucination. This also contains yes/no for-981

mat of the questions about the absence or presence982

of objects in the image.983

F Additional Qualitative Examples984

In Tab. 5 and 6, we present additional qualitative985

examples to show the performance of our model986

with attention guidance. Our model consistently987

performs better than Mobile-VLM V2 showing the988

advantages of our model in grounding its answers989

in the visual information. We support our results by990

visualzing the attention weights in Tab. 4 where991

our model is clearly able to look at the relevant992

regions for a given question.993
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Prompt Is there a cup in the image? Please
answer yes or no.

Is there a chair in the image?
Please answer yes or no.

Is there a person in the image?
Please answer yes or no.

Groundtruth No No No

MobileVLM-v2 Yes, there is a cup in the image. Yes, there is a chair in the image. Yes, there is a person in the image.

AGE-VLM No, there is no cup in the image.
The image primarily features fresh
produce and does not include any
cups or containers that could be
used for drinking. The focus is
on the display of fruits and vegeta-
bles, which are typically used for
consumption rather than for drink-
ing.

No, there is no chair in the image.
The image is focused on the pizza
and the person’s hands, with no
chairs or furniture visible in the
frame.

No, there is no person in the im-
age. The image solely features
food items on a plate, which are
the main subjects. There are no
people present in the frame.

Prompt Is there a bicycle in the image?
Please answer yes or no.

Is there a person in the image?
Please answer yes or no.

Is there a person in the image?
Please answer yes or no.

Groundtruth no no no

MobileVLM-v2 Yes, there is a bicycle in the im-
age.

Yes, there is a person in the image. Yes, there is a person in the image.

AGE-VLM No, there is no bicycle in the im-
age. The image is a natural scene
with animals and vegetation, and
it does not contain any man-made
objects such as a bicycle.

No, there is no person in the im-
age. The image solely features
wildlife, specifically giraffes and
zebras, in a natural setting. There
are no human figures or indica-
tions of human presence in the
scene.

There is no person visible in the
image.

Prompt Is there a backpack in the image?
Please answer yes or no.

Is there a chair in the image?
Please answer yes or no.

Is there a bowl in the image?
Please answer yes or no.

Groundtruth yes no no

MobileVLM-v2 No, there is no backpack in the
image. The image features a black
cat standing next to a bottle of
wine.

Yes, there is a chair in the image. Yes, there is a bowl in the image.

AGE-VLM Yes, there is a backpack in the im-
age. It is hanging on the wall to
the right of the cat.

No, there is no chair in the image.
The image shows a table with a
pizza and a drink, and there is no
chair visible in the frame.

No, there is no bowl in the image.
The food is presented on a plate,
which is a shallow dish typically
used for serving food rather than
a bowl.

Table 5: Qualitative comparison of our approach against MobileVLM-v2 on vision-centric task.
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Image Conv-LLaVA CA-baseline Ours

Considering the relative positions of the rocks (annotated by the red box) and the trees in the image provided,
where is the rocks (annotated by the red box) located with respect to the trees?

Considering the relative positions of the river water and the stone in the image provided, where is the river water located with
respect to the stone?

How many windows are in the image?

Table 6: Attention visualization. Our method looks at the right regions given the input image and the input text.
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