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Abstract

Large Vision-Language Models (VLMs) rely
on effective multimodal alignment between pre-
trained vision encoders and Large Language
Models (LLMs) to integrate visual and tex-
tual information. This paper presents a com-
prehensive analysis of attention patterns in ef-
ficient VLMs, revealing that concatenation-
based architectures frequently fail to distin-
guish between semantically matching and non-
matching image-text pairs. This is a key
factor for object hallucination in these mod-
els. To address this, we introduce Attention-
Guided Efficient Vision-Language Models
(AGE-VLM)—a novel framework that en-
hances visual grounding through interleaved
cross-attention layers to instill vision capa-
bilities in pretrained small language models.
This enforces in VLM the ability "look" at
the correct image regions by leveraging spa-
tial knowledge distilled from the Segment Any-
thing Model (SAM), significantly reducing hal-
lucination. We validate our approach across
different vision-centric benchmarks where our
method is better or comparable to prior work
on efficient VLMs. Our findings provide valu-
able insights for future research for enhanced
visual and linguistic understanding in VLMs.

1 Introduction

Large Vision-Language Models (VLMs) (Alayrac
et al., 2022; Liu et al., 2023; Radford et al., 2021;
Tong et al., 2024a; Wang et al., 2024; Zhu et al.,
2023) leverage the capabilities of pre-existing
Large Language Models (LLMs) (Achiam et al.,
2023; Chowdhery et al., 2023; Grattafiori et al.,
2024) to address complex tasks. Although LLMs
excel in text-only domains such as natural language
understanding (Grattafiori et al., 2024), mathemat-
ics (Cobbe et al., 2021), and coding (Le et al., 2022)
by following task-specific instructions, VLMs ex-
tend these abilities to the multimodal realm. This

enables them to perform tasks like image under-
standing, captioning, object localization, and multi-
turn visual question answering. Architecturally,
VLMs typically consist of three key components:
a vision encoder to process visual input, an adapter
to map visual representations into the language
model’s token space, and a decoder-only LLM that
processes these combined representations. The fu-
sion of visual and textual information is commonly
achieved either by concatenating visual tokens with
text tokens for processing by self-attention layers or
by interleaving visual tokens using dedicated cross-
attention layers within the LLM (Alayrac et al.,
2022; Grattafiori et al., 2024).

Recent research (Rahmanzadehgervi et al., 2024;
Tong et al., 2024a,b) has shown a significant
challenge in VLMs: a tendency to ignore visual
modality representations when performing vision-
language tasks. These models may produce an-
swers, whether correct or incorrect, relying solely
on textual instructions and associated questions,
thereby ignoring crucial visual information. Tong
etal. (Tong et al., 2024a) observe that the perfor-
mance gap with and without visual information is
less than a 5% on multiple benchmarks including
MMMU (Yue et al., 2024), MathVista (Lu et al.,
2023), and AI2D (Hiippala et al., 2021). To miti-
gate this, various efforts have focused on enhanc-
ing visual capabilities, including curating vision-
centric datasets (Tong et al., 2024a) and improv-
ing vision-text alignment through auxiliary mecha-
nisms such as specialized projection mechanisms
(Masry et al., 2025). However, these limitations
often persist even in efficient frameworks designed
for smaller-scale models with fewer parameters.
Despite this, many multimodal approaches still
struggle with effective visual information process-
ing, frequently exhibiting issues like object halluci-
nation (Guan et al., 2024) (as illustrated in Fig. 1).

Many efficient VLMs (Ge et al., 2024; Vasu
et al., 2024) employ convolutional vision encoders
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Prompt: How many cats are in the image? Select from the following choices. (A) 2 (B) 1 (C) 4

',_ " [ Ours: The correct answer is (B) 1. The image shows only one cat, which is the orange and
. white cat looking at its reflection in the glass. There are no other cats present in the image.

Figure 1: Object hallucination and mitgation in efficient vision language models. We show that prior work
on efficient VLMs fails to localize (top) and correctly count the number of objects (cat) in images. Our attention
guided efficient VLMs approach equipped with the knowledge distillation from Segment Anything Model in the
cross-attention weights can effectively generate correct responses with explanation grounded in the visual domain.

like ConvNeXt (Liu et al., 2022). To enable vision-
language capabilities, ConvNeXt is trained con-
trastively with CLIP (Ge et al., 2024). However,
this approach leads to lack of fine-grained spa-
tial grounding in the visual features. During stan-
dard VLM training, given the LLM’s strong lan-
guage prior and the use of next-token prediction
with cross-entropy loss, the model fails to recover
the fine-grained visual information. While larger
models (Lin et al., 2023; Wang et al., 2024) can
integrate features from multiple encoders (e.g.,
DINO (Oquab et al., 2024) , ViT(Dosovitskiy et al.,
2021)) to improve grounding, this is unfeasible for
resource-constrained VLMs.

To endow the efficient models with spatial
grounding of the vision features and to mitigate
object hallucination, we propose a novel frame-
work called Attention-Guided Efficient VLM (AGE-
VLM). Our approach modifies a standard LLM by
interleaving cross-attention layers with its existing
self-attention layers. The core idea is to distill spa-
tial knowledge from the Segment Anything Model
(SAM) (Kirillov et al., 2023) directly into these
cross-attention mechanisms. This is achieved by
optimizing the cross-attention weights to align with
segmentation masks generated by SAM for rele-
vant text queries. Consequently, the VLM learns
to "look" at the correct regions of interest when
processing multimodal inputs. A key advantage is
the data efficiency of this distillation process, en-
abling enhanced grounding with limited training
examples. We make following contributions:

* We analyze the vision and text features in effi-
cient VLMs and uncover their limitations in
disambiguating the semantics between simi-
lar and dissimilar image-text pairs to uncover
limitations in vision-centric tasks including
object hallucination.

* To endow relatively small LLMs (1B parame-

ter models) with vision capabilities in an effi-
cient manner, we propose a new efficient mul-
timodal framework with cross-attention layers
which leverage attention-guidance from seg-
mentation model (SAM).

* To distill knowledge from the SAM model,
we introduce a four stage training paradigm
which seamlessly integrates the vision fea-
tures with the pretrained LLM without effect-
ing the language capability of the underlying
model. Our efficient AGE-VLM with guid-
ance loss only during pretraining stage outper-
forms prior art across vision-centric tasks.

2 Related Work

Efficient VLMs. Vision-language models (VLMs)
combine a visual encoder with a large language
model to support multi-modal reasoning. Re-
cent research has explored making VLMs more
efficient and compact without sacrificing per-
formance by using compressed image embed-
ding and a smaller-sized language model. Con-
vLLaVA (Ge et al.,, 2024) swaps the standard
ViT(Dosovitskiy et al., 2021) for a ConvNeXt(Liu
et al., 2022) encoder, cutting the number of
visual-token for high-resolution images. FastVLM
(Vasu et al., 2024) introduces a hybrid vision en-
coder that yields far fewer tokens and achieves
a better speed-accuracy trade-off. MobileVLM
(Wu et al.,, 2024) reaches real-time speed on
edge devices through extensive ablation of de-
sign choices. VL-Mamba (Qiao et al., 2024) re-
places the Transformer with linear-time state-space
(SSM) layers, delivering near-linear scaling in se-
quence length while retaining competitive accuracy.
Mini-Gemini(Li et al., 2024) adopts a dual-encoder
scheme (low-res ViT plus high-res ConvNeXt); the
visual-token budget stays fixed, and high-resolution
details are injected only when needed. Finally,
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Figure 2: Similarity analysis. Cosine similarly between the hidden states of the images and text tokens of the last
self-attention layer in existing efficient architectures. The similarities overlap for non-matching pairs indicating a

gap in the alignment of visual signal with text.

TinyLLaVA (Zhou et al., 2024), AppVLM (Pa-
poudakis et al., 2025), and VILA (Lin et al., 2024)
report further gains from better training recipes,
thorough dataset curation, and deep understanding
of pre-training.

Attention in VLMs. Most modern VLMs fuse
vision and language information through carefully
designed attention layers for comprehensive rea-
soning (Bhattacharyya et al., 2024; Cobbe et al.,
2021). Flamingo(Alayrac et al., 2022) encodes
images with a Perceiver module and feeds them
into the language model via gated cross-attention.
BLIP-2(Li et al., 2023a) uses a Q-Former that
queries image features and hands a compact to-
ken set to the LLM, injecting visual clues at mul-
tiple points to the language model with relatively
few new parameters. Recent studies also highlight
limitations in existing attention patterns and pro-
pose remedies. Zhang et al. (Zhang et al., 2025)
shows that performance falls sharply when the tar-
get object is small; a training-free, attention-guided
cropping strategy recovers most of the lost accu-
racy. LRR(Bhattacharyya et al., 2024) interleaves
top-down cross-attention blocks amid the LLM’s
self-attention, grounding generation in fine-grained
video frames. Kang et al. (Kang et al., 2025) ob-
serves biased attention toward irrelevant visual to-
kens and introduces visual-attention-sink suppres-
sion to redistribute focus and boost accuracy.

Hallucination in VLMs. Hallucination is well-
known chronic problem in LVM. Misalignment
between visual evidence and textual generation,
especially in cluttered scenes, often drives such er-
rors. Several benchmarks reveal that some VLMs
perform similarly with or without visual input, im-

plying that the language model may ignore image
cues(Goyal et al., 2017; Kumar et al., 2024; Li
et al., 2023c; Orr Zohar and Xia, 2024; Zhang et al.,
2024) To enhanced alignment, EMMA (Ghazanfari
et al., 2024) balances structural and hierarchical
representations, reducing hallucinated objects and
sharpening visual grounding. Modular attribution
studies find that multi-head attention poses higher
hallucination risk than MLP blocks; disabling “hal-
lucination heads” yields simple yet effective miti-
gation (Yang et al.). New evaluation suites now in-
clude explicit hallucination tests (Guan et al., 2024;
Li et al., 2023b; Tong et al., 2024a). For instance,
the Multi-Object Hallucination (Chen et al., 2024)
dataset probes scenarios where models overlook
vivid visual clues; its carefully curated corner cases
trace errors to language bias and skewed object
distributions.

3 Vision in Vision-Language Models

In this section, we will first investigate the under-
lying cause of object hallucination and limitations
in processing the visual information in efficient
VLMs. Based on our findings, we then propose a
framework to mitigate this.

3.1 Attention analysis in VLMs

To understand the underlying causes of object hal-
lucination and the tendency of VLMs—which are
built on existing LLLM backbones—to underutilize
visual features, we analyze the semantic alignment
between hidden states derived from their image
and text modalities. Specifically, we compute the
cosine similarity between the final hidden states of
image tokens (or their projected representations)



and text tokens, as visualized in Fig. 2. Our analysis
considers two distinct concatenation-based models:
ConvLLaVA, which pairs a convolutional vision
backbone with a LLaMA-7B language model, and
MobileVLM-v2, which utilizes a CLIP ViT-L/14
vision encoder with a LLaMA-1.4B model.

For both ConvLLaVA and MobileVLM-v2, a
critical observation is the significant overlap in
similarity score distributions between matching
(ground-truth image-text pairs) and non-matching
(randomly paired images and texts from the
batch/dataset) examples. This suggests these ar-
chitectures systematically struggle to distinguish
semantically coherent visual-textual pairs from in-
coherent ones using their hidden representations.

For ConvLLaVA (Fig. 2a), although the simi-
larity scores for non-matching pairs are appropri-
ately skewed towards lower values (~ 0.2 — 0.3)—
demonstrating some discriminative ability—the dis-
tribution for matching pairs is disappointingly cen-
tered around a modest ~ 0.5. Ideally, correctly
matched pairs should exhibit a distribution strongly
skewed towards higher scores (e.g., > 0.8), sig-
nifying robust alignment between visual concepts
and textual descriptions. This current observation
implies that even when an image and text are se-
mantically related, their respective hidden states
are not achieving the desired close alignment in the
shared embedding space.

MobileVLM-V2 (Fig. 2b) exhibits indiscrimi-
nately high similarity scores for both matching and
non-matching pairs, with both distributions peak-
ing at very high values (e.g., ~ 0.96 — 0.98). This
consistent high similarity, irrespective of actual
image-text semantic relevance, suggests a critical
limitation in its ability to capture meaningful un-
derlying multimodal semantic information.

This behavior is a strong indicator for object
hallucination in VLMs and the dependence of the
generation process on the strong language priors.
Indeed, if non-matching pairs consistently achieve
high similarity scores, it implies that visual features
are failing to sufficiently constrain the LLM. Con-
sequently, generation becomes unanchored from
the visual input, driven instead by the LLM’s inter-
nal biases or textual context, which leads to both
object hallucination and a tendency to disregard
specific visual details.

To mitigate object hallucination in efficient
VLMs, our work introduces cross-attention layers
whose attention weights are distilled from the Seg-
mentation Anything Model (SAM), thereby better

grounding the pretrained LLLM in visual informa-
tion.

3.2 Attention guided Efficient VLM Approach

We present AGE-VLM, an efficient multimodal
model that seamlessly integrates visual features
with a language model architecture. AGE-VLM
employs a ConvNext vision encoder and the
LLaMA-1B decoder-only language model. The vi-
sion features are modulated by text tokens through
cross-attention layers which are explicilty guided
by distilling knowledge from SAM as illustrated in
Fig. 3.

3.2.1 Efficient Vision-Language Architecture

Efficient vision backbone. Similar to prior
VLMs employing convolutional backbones, we uti-
lize a ConvNeXT to extract visual features. Convo-
lutional networks advantageously process higher-
resolution images with fewer visual tokens com-
pared to ViTs. Given an input image I of spatial
resolution H x W, the ConvNeXT backbone pro-
cesses it through multiple convolutional stages'.
We extract the spatial feature map I’ from the out-
put of the fourth stage, which retains spatial infor-
mation crucial for detailed visual understanding.
This map I’ is then flattened and projected by two
linear layers into a sequence of A X w visual to-
kens, each with dimension d to match our language
model’s embedding dimension.

Efficient LLaMA-1B backbone. We employ
LLaMA-1B as our language backbone, selected
for its relatively small size, making it suitable for
resource-constrained scenarios. The model pro-
cesses tokenized text sequences. During training,
most of LLaMA’s parameters—specifically its self-
attention and feed-forward network (FFN) weights—
are kept frozen to preserve its powerful language
priors and reduce training costs.

Interleaved cross-attention layers. To directly
integrate visual information into the language
model, we introduce cross-attention mechanisms
within the LLaMA architecture. Instead of a sim-
ple prefix or concatenation approach, we interleave
lightweight cross-attention modules into specific
LLaMA decoder blocks. For LLaMA-1B, which
has 16 decoder layers, these cross-attention mod-
ules are strategically inserted. A standard LLaMA
decoder layer i typically processes input hidden

"Not to be confused with VLM training stages.
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Figure 3: Overall architecture of our attention-guided efficient vision language model. During training, given
the input image and the associated instruction, we perform knowledge distillation from SAM by explicitly aligning
the language-conditioned masks with the cross-attention weights of our modified LLaMA-1B backbone.

states H;_1 as follows:

H; = SELFATTENTION(LAYERNORM(H;_1)),
H; = Hi+ H;1,
H; = H; + MLP(LAYERNORM(H;)). (D

We modify select layers—specifically those in-
dexed 2, 7, 12, and 17 in LLaMA-1B-by inserting
a cross-attention module after the standard self-
attention sub-layer. This inserted cross-attention
module takes the output of the self-attention sub-
layer, H;, and the visual features I’ (extracted by
the ConvNeXT encoder and transformed by an
adapter to match the LLM’s hidden state dimen-
sion) as input. Within this cross-attention module,
the hidden states from the self-attention sub-layer
serve as queries () = W,(H;), while the trans-
formed visual features serve as keys K = Wy (I')
and values V' = W, (I"). The operation is then:

Hca = CROSSATTENTION(Q, K, V),

Hca = H; + Hea,

Hca = Hea + MLP(LAYERNORM(Hcp)).
()

This interleaved structure allows the model to
dynamically ground textual concepts in visual
features at multiple semantic levels within the
LLM. The weights W, W},, W, and the parameters
within the CrossAttention blocks with multi-head
attention are trainable.

3.2.2 Grounding Distillation with SAM

To account for the lack of spatial localization in
VLMs optimized with the cross-entropy loss for
next token prediction, we perform knowledge dis-
tillation from the Segment Anything Model in the

cross-attention layers our model. For this, during
pretraining stage, we take the 77K image-caption
pairs corresponding to ~ 10 percent of the pretrain-
ing data of Cambrian 2.5M. Analogously, during
fine-tuning, we take the 150K image-instruction or
image-question pairs from the Cambrian 10M. Us-
ing these language queries, we obtain the language-
grounded masks for the images using SAM.
Given the image I of spatial resolution H x W,
and the text prompt query ¢, (ignoring the special
tokens) we obtain the mask M € {0, 1}7/>*W, The
mask is then downsampled to match the vision fea-
ture encoder’s spatial resolution h x w yielding
M’ € {0,1}"*%_ Given the attention weights A,
output of softmax in cross-attention layer corre-
sponding to layer [, where [ € [1,...,l, and n
is the number of cross-attention layers, the atten-
tion weights for the query token ¢, are averaged
across all the heads in the attention layer and are
reshaped to h x w yielding A? . Consider an ex-
ample of a text prompt with 10 tokens and 576
image tokens, the cross-attention layers with 32
heads would ouput the attention weights A; of size
32 x 10 x 576. These weights are averaged along
the first two dimensions providing 576 dimensional
Alq. These attention weights are then normalized to
obtain a attention distribution qu, We perform dis-
tillation using the dice loss to localize the attention
maps on the region represented by the mask,

2.(vec(M").vec(Pf))
i M+

Here, vec(.) flattens the input to a 1-d representa-
tion. The advantage of dice loss is that it directly
optimizes for the overlap between predicted and
ground truth masks accounting for sparse regions

3)

Eg:—log[



of interest which are otherwise difficult to optimize
using binary cross-entropy loss. This loss is ap-
plied to all the cross-attention layers to modulate
the visual features with text tokens.

The overall training objective is the sum of the
standard L1 s — the causal language modeling loss
computed using standard cross-entropy on the en-
tire dataset and L,—the loss of distillation calcu-
lated on the subset with the SAM grounding masks.
The two loss are trained with equal weights.

3.2.3 Training Stages

Our model training, detailed in Table 1, pro-
ceeds through four distinct stages. The first
three stages comprise a comprehensive pre-training
phase aimed at effectively aligning visual features
with the textual representations of our lightweight
1B parameter LLM. A primary objective of this
pre-training is to instill the LLM with visual capa-
bilities while preserving its language proficiency.

Stagel: Initial Vision-Language Alignment.
The first stage establishes a foundational mapping
between modalities by aligning visual features (pro-
cessed through an adapter) with the LLM’s textual
representations. We achieve this alignment using
newly integrated cross-attention layers, with train-
ing guided exclusively by the LLM’s language mod-
eling objective (e.g., next-token prediction). This
provides strong initial weights for the adapter and
cross-attention modules, teaching them to map vi-
sual information into the LLM’s embedding space.
This methodology, utilizing image-caption pairs
from the Cambrian 2.5M dataset, is analogous to
the initial pre-training phase of standard VLMs.

Stage 2: Vision Encoder Adaptation. In the sec-
ond stage, we unfreeze and fine-tune the final block
of the ConvNeXT vision encoder, training it jointly
with the adapter and cross-attention layers. This
approach is motivated by prior work demonstrating
that adapting pre-trained ConvNeXt models from
their original resolution (e.g., 384 x384) to higher
resolutions (e.g., 768 x768) enhances detailed vi-
sual understanding. Operating at this higher res-
olution, our ConvNeXT yields 576 visual tokens,
comparable to a Vision Transformer (ViT) back-
bone at a 336x336 resolution. This highlights
ConvNeXT’s greater token efficiency compared
to common ViT-based VLMs. The Cambrian 2.5M
dataset continues to provide image-caption pairs
for the LLM loss in this stage.

Stage 3: Spatial Grounding via Knowledge Dis-
tillation and Alignment. The third stage en-
hances visual grounding by incorporating knowl-
edge distillation from the Segment Anything Model
(SAM) to ensure generated responses are explic-
itly tied to relevant visual information. For ap-
proximately 10% of the Cambrian 2.5M image-text
pairs, SAM generates segmentation masks for key
entities or concepts relevant to the image-text con-
text. We then optimize our model’s cross-attention
weights to align with these SAM-generated masks
using the objective defined in Eq. 3. This encour-
ages the cross-attention mechanism to focus on
pertinent image regions during visual processing,
thereby improving spatial grounding. The LLM
loss is computed using the Cambrian 2.5M dataset.

Stage 4: Visually Grounded Instruction Fine-
tuning. The final stage consists of end-to-end in-
struction fine-tuning for the entire model. We con-
sider two variations for training. In the first setting,
we follow (Tong et al., 2024a) (AGE-VLM) and
finetune the model without the attention-grounding
loss. The key advantage of this is that the self-
attention layers of the LLM are kept intact, allow-
ing to efficiently integrate multimodal signal with
the model retains its language capacity. In the sec-
ond scenario (AGE-VLM-LM) visual grounding
is maintained by concurrently applying the distil-
lation loss (from Stage 3) and the primary LLM
loss (next-token prediction for instruction follow-
ing). For knowledge distillation, SAM is prompted
with the instruction (typically a question) and its
ground-truth answer. This guides SAM to generate
segmentation masks for image regions most per-
tinent to that specific instruction-answer pair, and
our model’s attention is then distilled towards these
masks. The LLM loss in this stage utilizes the
full Cambrian 10M instruction-following dataset,
while the grounding loss is applied to a 10% subset
thereof, reinforcing the model’s focus on relevant
visual evidence.

4 Experiments

To validate the effectiveness of our AGE-VLM in
encoding and utilizing visual features to mitigate
object hallucination, following (Tong et al., 2024a)
we perform extensive experiments on vision-centric
tasks for objection hallucination evaluation on
Visual Question Answering (VQA) with human
edited images on HallusionBench (Guan et al.,
2024) and on the POPE (Li et al., 2023b) dataset.



Model Training Loss

Training Stage Vision Encoder  Adapter LLM(CA) LLM(SA) LM Loss Guidance Loss
Stage 1 [\ 9 v X
Stage 2 ) Y VY \/ X
Stage 3 Y Y o v v
Stage 4 (AGE-VLM) 9 9 9 v X
Stage 4 (AGE-VLM-LM) o o o o v v
Table 1: Training stages of our Attention-guided Efficient Vision Language Model.
Method HallusionBench OCRBench CV-Bench RWQA POPE
aAcc fAcc qAcc  Scene Centric KeyInfo. 2D 3D

CA-Baseline 40.38 13.87 11.21 148.00 51.00 0.62 0.50 0.47 85.11
ConvLLaVA 2471 896  4.84 117.00 26.00 0.59 0.57 0.51 77.76
mobile-vim-v2 44.37 1445 11.65 101.00 2.00 0.31 040 0.28 84.30
AGE-VLM 4385 1532 11.21 149.00 59.00 0.61 0.52 0.48 87.34
AGE-VLM-LM 39.22 1156 7091 126.00 33.00 0.66 0.46 0.51 85.18

Table 2: Quantitative evaluation. Comparison of AGE-VLM with efficient VLMs on vision-centric benchmarks.

Additionally,we include OCRBench (Liu et al.,
2024) for scene-centric text-VQA and for key infor-
mation extraction from the receipt images. We eval-
uate on CV-Bench and RealWorldQA (x.ai, 2024)
to uncover multimodal capabilities in 2D tasks, i.e.,
spatial relationships or object count and for 3D
tasks such as depth and relative distances.

As discussed in Sec. 3, we perform the four
stage training of the model. We use for pretrain-
ing (stages 1, 2 & 3)Cambrian2.5M dataset and for
instruction finetuning (stage 4) the Cambrian10M
dataset. We train on 8 Nvidia A100 GPUs with a
batchsize of 16 per GPU.

Evaluation Metrics. We evaluate our models on
diverse benchmarks with each having a different
metric to assess model performance. Hallusion-
Bench considers aAcc: the overall accuracy of
all atomic questions, gAcc: the mean accuracy of
unique questions as one question can be asked mul-
tiple times with different figures. A VLM correctly
solved a unique question only if it succeeds in all
<question, figure> pairs for this unique question.
JfAcc: the mean accuracy of all figures. One figure
is associated with multiple questions, a VLM is-
correct on a figure only if it succeeds to solve all
questions of this figure. CV-Bench consists of mul-
tiple choice questions, the models however, some-
times do not output the option even though they
generate the correct answer. To account for this,
we evaluate the accuracy by employing Qwen-L
for evaluation. For OCRBench and RealWorldQA,
we report the accuracy on the Scene-centric and the
key information extraction tasks.

Prior-art and Baseline. We compare our ap-
proach against ConvLLaVA, MobileVLM-v2 and
CA-baseline. ConvLLaVA also extracts vision fea-
tures from ConvNeXt which are input to Vicuna-
7B. MobileVLM-v2 with 1.7B parameters is based
on CLIP-ViT with their MobileLLaMA, a down-
sized version of LLaMA. Both the models concate-
nate the vision tokens to the language tokens which
are input to their respective LLMs optimized with
the LM loss. We also include CA-baseline, which
has all the elements of our approach except for
spatial distillation with attention guidance. That
is in this variant the cross-attention and the self-
attention layers are trained using only the LM loss.

Quantitative Results. In Tab. 3 we compare our
approach to the prior-art and the baselines on effi-
cient VLMs on different vision-centric benchmarks.
We observe that on challenging datasets such as
CV-bench our model outperforms prior work by
a large margin. Similar improvements are demon-
strated on the OCRbench and the RealWorldQA
datasets. This highlights the enhanced vision pro-
cessing ability of our approach. Furthermore, we
note that while our approach on HallusionBench
yields better performance than ConvLLaVA, it is
comparable to that of MobileVLM-v2. This can be
attributed to fact that the attention signal from SAM
cannot text information in mathematical charts or
figures. Notably, our AGE-VLM variant trained in
an efficient manner consistently outperforms prior
art with seamless integration of visual information
with just 1.2B parameters.
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Prompt Is there a laptop in the image? Is there an apple in the image? Isthere a cup in the image? Please
Please answer yes or no. Please answer yes or no. answer yes or no.

Groundtruth yes yes yes

Conv-LLaVA 0 0 no

MobileVLM-v2

No, there is no laptop in the im-
age. The image features a person
typing on a keyboard.

No, there is no apple in the image.
The image features a shelf with
various items, books, a teddy bear,
and a Christmas ornament.

No, there is no cup in the image.
The image only shows a plate of
food, a salad and a bowl of soup.

AGE-VLM

Yes, there is a laptop in the im-
age. It is partially visible in the
background, partially obscured by
the hands of the person typing on
the keyboard. The laptop is po-

Yes, there is an apple in the image.
It is located on the top shelf, to the
left of the teddy bear. The apple
is red with a yellow stem and is
placed among other items.

Yes, there is a cup in the image.
It is located on the right side of
the plate, partially obscured by the
bread. The cup appears to be a
clear glass, and it is filled with a

sitioned to the left side of the im-
age, and it appears to be a standard
model with a white exterior.

transparent liquid, which could be
water or another clear beverage.

Table 3: Qualitative comparison of our approach againt Conv-LLaVA and MobileVLM-v2 on vision-centric task.

Image Conv-LLaVA

CA-baseline

Ours

-
How many handrails are in the image?

Table 4: Attention visualization. Our method looks at the right regions given the input image and the input text.

Qualitative Results. In Tab. 3 we present the
qualitative comparison of our AGE-VLM approach
against Conv-LLaVA and MobileVLM-v2. Even
though Conv-LLaVA answers incorrectly, it ad-
heres to the instruction, answering with O or no.
The responses generated by MobileVLM-v2 are
not well grounded in the image as is evident from
the explanation that follows the answer. For exam-
ple,in column 3, MobileVLM-v2 incorrectly gen-
erates “soup” as the item in the image. In contrast,
our approach not only follows the instruction but
can also generate the response grounded in the
image information. In column 2, our approach cor-
rectly localizes the location of apple in terms of the
spatial relationship with other objects in the image
and provides the correct response. We demonstrate
the localization capabilities of our approach in Tab.
4. We visualize the attention weights of the first
self-attention layer for Conv-LLaVA and the first
cross-attention layer for the CA-baseline without

attention guidance and our approach with attention
guidance. As shown, given the image and the asso-
ciated prompt, the Conv-LLaVA approach does not
have any implicit grounding in the self-attention
layer. The CA-baseline does have implicit ground-
ing capacity but it incorrectly localizes the target
visual concepts from the prompt. Our approach
localizes the correct regions (handrails).

5 Conclusion

We introduced AGE-VLM, an efficient VLM de-
signed to mitigate object hallucination. Our find-
ings demonstrate that distilling knowledge from the
SAM to guide attention mechanisms significantly
enhances the visual grounding of VLMs. Exten-
sive experiments show AGE-VLM achieves perfor-
mance that is markedly improved or comparable to
existing efficient VLMs on various vision-centric
benchmarks.



Limitations

While this paper has focused on the training recipe
for distilling knowledge from SAM into vision-
language models, our approach does not explore
scaling of the distillation data or consider distilling
optical flow or object tracking into the hidden states
of VLMs. While our work addresses hallucination,
it is far from perfect and can produce biased or
factually incorrect content. With efficient VLMs
as proposed in this work gaining traction, they will
be widely accessable and should therefore be used
with caution as their incorrect responses can cause
physical harm such when using self-diagnosis with
consulting medical experts.
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Appendix

We provide details on data collection for align-
ment guidance, additional details for training AGE-
VLM, provide insights on further improvements
with respect to the image data processing and in-
clude additional details on the evaluation bench-
marks considered in the main paper.

A Licensing Information

We use LLaMA-3.2-1B and ConvNeXct as the base
for our efficient architecture. The LLaMA mod-
els follow the “LLAMA 3.2 COMMUNITY LI-
CENSE AGREEMENT” and the ConvNeXt model
is released under MIT License. Our models will be
released pending legal review.

B Data for Alignment Guidance

We leverage Grounded Segment Anything Model
(Ren et al., 2024) to obtain the masks of the target
concepts to be focused on in the cross-attention
layers. For text-based segmetation (referring ex-
pression segmentation) Grounded-SAM combines
Florence-2 (Xiao et al., 2024) and SAM (Kirillov
et al., 2023) to obtain the masks for the given text.
Florence-2 takes a task instruction as input and
generates results in the text form. Specifically
for the referring expression segmentation, instruc-
tion “Ground the object which is most related to
the text input” is provided. The segmentations
are generated as polygons, with location tokens
(o, Yo, - - -, Tn, Yn) representing the vertices of the
polygon in clockwise order. The tokens and the
image are provided to the SAM model to gener-
ate the target mask. With this pipeline, during the
pre-training stages (1-3) we generate the target
masks for 77K images and their associated cap-
tions in the Cambrian 2.5M dataset. Importantly,
during fine-tuning, since the model takes image
and a question prompt as input to generate the an-
swer, we adhere to this framework and generate the
segments based on the question for the given image.
This instills in the model the ability to look at the
right regions based on the question about the given
image. For this phase, we utilize approximately 1%
(150K samples) of the Cambrian10M instruction
fine-tuning dataset.

C Implementation Details

Our approach follows a 4 stage training strategy as
outlined in 3. For any stage, we use the learning
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rate of le—>5 for all the modules including Con-
vNeXt, the projector, the cross-attention layers and
the language model. We use Adam optimizer with
the weight decay of 0.1, the warmup ratio of 0.03,
B2 is set to 0.95. Additionally, we train of each
stage of a single epoch consistent with prior work
on large vision-language models (Ge et al., 2024).

D Image Processing and Attention

The input image to ConvNeXt is of size 768 x 768
yielding 576 tokens. We make an important obser-
vation the prior work (Ge et al., 2024; Liu et al.,
2023) zero-pad the images to resize them to target
resolution. In our analysis we observe that for prior
work without our attention guidance, the attention
is focused on these padded regions. This might
be an additional bottleneck for the vision-language
models as they can easily ignore the vision features
due to this inconsistency in the data. The impact
of image-preprocessing techniques in large mod-
els needs further investigation and is an important
direction for future work.

E Evaluation Benchmarks

We specifically evaluate on vision-centric bench-
marks which take into account the visual infor-
mation for visual question answering, suitable for
detecting hallucination in multimodal setting.

HallusionBench (Guan et al., 2024). The bench-
mark comprises 346 images paired with 1129 ques-
tions. The questions are framed in the yes/no for-
mat. The questions also ask about objects which
are not present in the image. This allows for tar-
geted evaluation for our goal of attention guidance
to integrate visual information emphasizing that
the model “looks" at the image to perform the task.

OCRBench (Liu et al., 2024). It evaluates the
ability of VLMs to accurately detect and read text
in the images. In our model evaluation we focus
on 475 images for the scene text centric VQA and
key information extraction where images with text
such as addresses, receipts, signs etc. are presented
to the LMM and questions about the OCR content
are asked.

CV-Bench (Tong et al., 2024a). This is a
larger vision-centric benchmark containing 2638
manually-inspected examples. This contains
image-question pairs to evaluate 2D (spatial rela-
tionships, counting) and 3D (depth order, relative
distances) understanding of the VLM. For this it



uses, ADE20k, COCO and OMNI3D dataset bench-
marks.

RealWorldQA (x.ai, 2024). This benchmark
consists of 765 images, with a question and easily
verifiable answer for each image. This dataset also
contains questions about spatial understanding in
images.

POPE (Li et al., 2023c). Similar to Hallusion-
Bench, POPE is also inspired to evaluate VLMs for
object hallucination. This also contains yes/no for-
mat of the questions about the absence or presence
of objects in the image.

F Additional Qualitative Examples

In Tab. 5 and 6, we present additional qualitative
examples to show the performance of our model
with attention guidance. Our model consistently
performs better than Mobile-VLM V2 showing the
advantages of our model in grounding its answers
in the visual information. We support our results by
visualzing the attention weights in Tab. 4 where
our model is clearly able to look at the relevant
regions for a given question.
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Prompt

Groundtruth

Is there a cup in the image? Please
answer yes or no.
No

Is there a chair in the image?
Please answer yes or no.
No

Is there a person in the image?
Please answer yes or no.
No

MobileVLM-v2

Yes, there is a cup in the image.

Yes, there is a chair in the image.

Yes, there is a person in the image.

AGE-VLM

No, there is no cup in the image.
The image primarily features fresh
produce and does not include any
cups or containers that could be
used for drinking. The focus is
on the display of fruits and vegeta-
bles, which are typically used for
consumption rather than for drink-
ing.

No, there is no chair in the image.
The image is focused on the pizza
and the person’s hands, with no
chairs or furniture visible in the
frame.

No, there is no person in the im-
age. The image solely features
food items on a plate, which are
the main subjects. There are no
people present in the frame.

Prompt

Groundtruth

Is there a bicycle in the image?
Please answer yes or no.
no

Please answer yes or no.
no

Is there a person in the image?
Please answer yes or no.
no

MobileVLM-v2

Yes, there is a bicycle in the im-
age.

Yes, there is a person in the image.

Yes, there is a person in the image.

AGE-VLM

No, there is no bicycle in the im-
age. The image is a natural scene
with animals and vegetation, and
it does not contain any man-made
objects such as a bicycle.

No, there is no person in the im-
age. The image solely features
wildlife, specifically giraffes and
zebras, in a natural setting. There
are no human figures or indica-
tions of human presence in the
scene.

There is no person visible in the
image.

Prompt

Groundtruth

Is there a backpack in the image?
Please answer yes or no.

yes

5 -
Is there a chair in the image?
Please answer yes or no.
no

Is there a bowl in the image?
Please answer yes or no.
no

MobileVLM-v2

No, there is no backpack in the
image. The image features a black
cat standing next to a bottle of
wine.

Yes, there is a chair in the image.

Yes, there is a bowl in the image.

AGE-VLM

Yes, there is a backpack in the im-
age. It is hanging on the wall to
the right of the cat.

No, there is no chair in the image.
The image shows a table with a
pizza and a drink, and there is no
chair visible in the frame.

No, there is no bowl in the image.
The food is presented on a plate,
which is a shallow dish typically
used for serving food rather than
a bowl.

Table 5: Qualitative comparison of our approach against MobileVLM-v2 on vision-centric task.
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Image Conv-LLaVA CA-baseline Ours

Considering the relative positions of the rocks (annotated by the red box) and the trees in the image provided,
where is the rocks (annotated by the red box) located with respect to the trees?

~fe
Considering the relative positions of the river water and the stone in the image provided, where is the river water located with
respect to the stone?

How many windows are in the image?

Table 6: Attention visualization. Our method looks at the right regions given the input image and the input text.
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