
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMISTIC TASK INFERENCE FOR BEHAVIOR
FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Behavior Foundation Models (BFMs) are capable of retrieving high-performing
policy for any reward function specified directly at test-time, commonly referred to
as zero-shot reinforcement learning (RL). While this is a very efficient process in
terms of compute, it can be less so in terms of data: as a standard assumption, BFMs
require computing rewards over a non-negligible inference dataset, assuming either
access to a functional form of rewards, or significant labeling efforts. To alleviate
these limitations, we tackle the problem of task inference purely through interaction
with the environment at test-time. We propose OpTI-BFM, an optimistic decision
criterion that directly models uncertainty over reward functions and guides BFMs
in data collection for task inference. Formally, we provide a regret bound for well-
trained BFMs through a direct connection to upper-confidence algorithms for linear
bandits. Empirically, we evaluate OpTI-BFM on established zero-shot benchmarks,
and observe that it enables successor-features-based BFMs to identify and optimize
an unseen reward function in a handful of episodes with minimal compute overhead.

1 INTRODUCTION

Zero-shot reinforcement learning (Touati et al., 2023) has gradually gained relevance as a powerful
generalization of standard, single-reward RL (Sutton & Barto, 2018; Silver et al., 2021). Zero-shot
agents are designed to distill optimal policies for a set of reward functions from unlabeled, offline
data (Touati & Ollivier, 2021; Agarwal et al., 2024; Park et al., 2024b; Jajoo et al., 2025). As these
methods scale to more complex and broader environments, they are often referred to as Behavior
Foundation Models (BFMs) (Park et al., 2024b; Tirinzoni et al., 2025). At their core, the majority of
BFMs rely on Universal Successor Features (Ma et al. (2020), USFs). These methods build upon
explicit representations of states (features): given a set of policies, the expected discounted sum
of features along each policy’s trajectory may be estimated completely offline (e.g., through TD
learning) (Dayan, 1993; Barreto et al., 2017). As long as a reward function lies within the span of
features, zero-shot policy evaluation can be performed through a simple scalar product, which in turn
enables zero-shot policy improvement, i.e., each policy is implicitly paired with a reward function
and updated towards optimality (Touati & Ollivier, 2021).

Once this unsupervised pre-training phase is complete, USFs yield a set of learned policies. Given
a reward function that is linear in the features, its optimal policy is by construction indexed by the
linear weights describing the reward function in the basis of features, which can in turn be interpreted
as task embeddings. The process of finding the optimal policy, which we refer to as task inference,
thus corresponds to solving a linear regression problem. While this process is remarkably efficient
in terms of compute, it retains strict requirements in terms of data: a dataset of labeled (state, reward)
pairs needs to be provided. In simple settings, this necessity is not particularly problematic: BFMs
have been largely trained in simulations (Touati et al., 2023; Park et al., 2024b; Tirinzoni et al., 2025),
which makes generating reward labels for the pre-training dataset, or additional data, particularly
convenient. Realistically, however, (i) the pre-training dataset might be unavailable or proprietary
and, most importantly, (ii) labeling states with rewards might incur significant costs. For instance,
when BFMs are pre-trained directly from pixels, evaluating success from a single image is not a
straightforward or cheap operation.

In order to alleviate these issues, we explore an alternative framework for task inference, which
instead aims to collect a small amount of data directly during deployment (see Figure 1). This

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

OpTI-BFMupdate

infer once

Figure 1: In contrast to the standard offline task inference pipeline for BFMs, we explore an alternative
online framework: instead of producing a point-estimate of the task embedding from an existing
dataset, we actively collect data to build a belief over task embeddings, which results in milder
labeling requirements and fast retrieval of a near-optimal policy.

removes the need to access the pre-training dataset (i) and may require fewer labels (ii), as the data
can be collected actively. To navigate this setting, we propose OpTI-BFM, a decision criterion that
curates a sequence of task embeddings. Starting from an uninformed prior, OpTI-BFM leverages the
linear relationship between features and rewards to update its belief over the space of rewards. A
BFM conditioned on meaningfully chosen task embeddings can then interact with the environment
for a few steps: labeling the states that are visited allows accurate task estimation with minimal
labeling efforts. Crucially, if the underlying BFM is well-trained, we show that control reduces to a
bandit problem over tasks. Under this assumption, we can provide regret guarantees for OpTI-BFM.
When considering established zero-shot benchmarks in the Deepmind Control Suite (DMC) (Tassa
et al., 2018), we find that OpTI-BFM requires only a handful of episodes to correctly identify the
task, eventually matching or surpassing the performance that the standard offline reward inference
pipeline achieves with significantly more data.

2 PRELIMINARIES

Notation We model the environment as a reward-free Markov Decision Process (MDP) M =
(S,A, P, µ, γ) where S and A are state and action spaces, respectively, P (ds′|s, a) is a proba-
bility measure describing the likelihood of transitions, µ(ds) is a measure describing the initial
state distribution, and γ is a discount factor. Given a policy π : S → ∆(A) and a state-action
pair (s0, a0) ∈ S × A we use E [· | s0, a0, π] to denote expectations w.r.t. state-action sequences
((st, at))t≥0 defined by sampling at ∼ π(st) and st+1 ∼ P (st, at). For a given reward function
r : S → R, we define the policy’s state-action value function as the discounted sum of future rewards
Qπr (s0, a0) =

∑
t≥0 γ

tE [r(st) | s0, a0, π].

Successor Features and Behavior Foundation Models For a specific feature map ϕ : S → Rd,
Successor Features (Barreto et al. (2017), SFs) generalize state-action value functions by modeling
the expected discounted sum of features under a policy π:

ψπ(s0, a0) =
∑
t≥0

γt E [ϕ(st) | s0, a0, π] . (1)

SFs allow zero-shot policy evaluation for any reward that lies in the span of the features: if r(s) =
z⊤ϕ(s) for some z ∈ Rd, the Q-function is a linear function of SFs:

Qπr (s0, a0) =
∑
t≥0

γt E [r(st) | s0, a0, π] =
∑
t≥0

γt E
[
z⊤ϕ(st)

∣∣ s0, a0, π] = z⊤ψπ(s0, a0) (2)

A similar structure also holds for value functions: V πr (s) = z⊤ψπ(s), when defining ψπ(s) =
Ea∼π(·|s)ψπ(s, a). Behavior Foundation Models (BFMs) generally1 capitalize on the opportunity of
evaluating policies for multiple reward functions, by additionally learning a family of parameterized
policies (πz)z∈Z with respect to all rewards in the span of features ϕ (Borsa et al., 2018; Touati

1There are BFMs that are not based on USFs. We refer the reader to Agarwal et al. (2025a) for a comprehen-
sive overview.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

& Ollivier, 2021; Park et al., 2024b; Agarwal et al., 2025b). Concretely, BFMs train a family of
parameterized policies so that each policy πz is optimal for the reward function r(s) = ϕ(s)⊤z:

πz(a|s) ∈ argmaxa ψ
πz (s, a)⊤z for each z ∈ Z. (3)

In practice, the set of policies, their SFs, and features ϕ may be represented through function
approximation: πz(a|s) ≈ πξ(a|s, z), ψπz (s, a) ≈ ψ(s, a, z), and ϕ(s) ≈ ϕ(s). Z is a low-
dimensional space, whose elements can be seen as task embeddings, as they represent reward
functions in the feature basis. The low dimensionality of task embeddings is a key component
enabling efficient task inference in this work.

Given a reward function r at inference, the task embedding zr parameterizing the optimal learned
policy πzr is found by minimizing the residual between r(s) and ϕ(s)⊤z (i.e., projecting r onto the
span of ϕ). Given a task inference dataset D = (si)

N
i=1 this may be solved in closed form:

zr = argminz Es∼D[(r(s)− z⊤ϕ(s))2] = CovD(ϕ)
−1 Es∼D[ϕ(s)r(s)]. (4)

where CovD(ϕ)
−1 = Es,s′∼D[ϕ(s)ϕ(s

′)⊤]. This process of mapping from a reward function r to
an (approximately) optimal policy πzr is what makes BFM based on USFs capable of zero-shot
RL (Touati et al., 2023), i.e., they can produce an optimal policy for a previously unseen reward
function. When the expectation over D is computed exactly, and r lies in the span of ϕ, then πzr is
guaranteed to be the optimal policy (Touati & Ollivier, 2021). However, in practice, the expectation
is approximated through sampling, which requires (i) the availability of the task inference dataset D
(potentially a subset of the pre-training data) and (ii) providing reward labels for each state s ∈ D.
As this can be an expensive operation, potentially requiring human supervision, we will propose an
alternative online framework for retrieving zr.

3 OPTIMISTIC TASK INFERENCE FOR BEHAVIOR FOUNDATION MODELS

3.1 SETTING: TASK INFERENCE AT TEST-TIME

We consider an alternative framework for task inference in BFMs, designed to remove the necessity
for storing pre-training data and, principally, to decrease the required number of reward labels. We
focus on an online setting, in which the agent can update the task embedding z during deployment,
and directly control the collection of the data used to estimate z. While the choice of z will be
uninformed at the beginning, it will ideally be possible to rapidly identify the correct task, and thus
select the z that retrieves the optimal policy, i.e., that coincides with the true task embedding.

More formally, we start from a pre-trained USF-based BFM, providing a set of parameterized policies
(πz)z∈Z , as well as SF estimates ψπz of features ϕ. While we will now consider finite-horizon
SF estimates ψπz (s0) =

∑H−1
t=0 γt E [ϕ(st) | s0, πz] to streamline the presentation and analysis, we

remark that the algorithm can be easily instantiated in infinite-horizon settings, as is done in our
empirical evaluation. The agent interacts with the environment in an episodic setting with horizon H
and initial state distribution µ0; instead of directly selecting actions, it will select a task embedding zt
at each step t, and execute an action sampled from the respective policy at ∼ πzt(·|st). This action
will result in observing a new state st+1, as well as the reward rt of this transition, which constitutes
the only source of information about the task2.

We define the discounted return of the k-th episode as

Ĝk =
∑H−1
t=0 γ

tr(skH+t). (5)

where skH ∼ µ0, at ∼ πzt(·|st) and st+1 ∼ P (·|st, at). The goal of the agent is now simply to
minimize the expected regret over n episodes

Rn = E
[∑n−1

k=0 Ĝ
⋆
k − Ĝk

]
(6)

where Ĝ⋆k denotes the discounted return choosing zr in each step, and the expectation is w.r.t. µ0,
the MDP dynamics, the action distributions, and the choices of the task embeddings. Intuitively, the

2We assume that each environment interaction provides a reward label; if the agent can additionally control
when to request a reward label, more efficient schemes are possible, see Appendix B.2

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

agent needs to follow a decision rule that maps the observed history of states and rewards to a task
embedding: (s0, r0, . . . st, rt) → zt+1 ∈ Z . The selected task embeddings should induce informative
trajectories with respect to the reward function, while largely avoiding suboptimal behavior. This
setting is reminiscent of well-developed research directions, namely exploration in the space of
behavioral priors (Singh et al., 2020) and fast adaptation (Sikchi et al., 2025); however, existing
methods ignore the underlying structure connecting rewards and task embeddings, which we will
show may be leveraged to efficiently achieve near-optimal performance.

3.2 METHOD: OPTI-BFM

Our method leverages a core feature of BFMs: for well-trained USFs, the expectation of the return
of the k-th episode (Eq. (5)) from an initial state s0 is approximately linear w.r.t. the successor
features of the policy conditioned on the k-th task embedding zk: ψ(s0, zk)⊤zr ≈ E[Ĝk|s0, πzk],
where zr is the optimal task embedding, and initially unknown. This simple property has significant
implication: Policy search reduces to online optimization of a linear function, which has been
extensively studied in the bandit literature (Dani et al., 2008; Abbasi-Yadkori et al., 2011). Building
upon these fundamental results, we propose Optimistic Task Inference for BFMs (OpTI-BFM) in
order to efficiently explore the space of behaviors while controlling suboptimality.

Interestingly, the same approximately linear relationship that connects SFs and returns, also exists
between features and rewards: ϕ(s)⊤zr ≈ r(s). Following the latter property, OpTI-BFM keeps
track of a least-squares estimate of zr given the previously observed transitions

ẑt = argmin
z∈Z

t∑
i=0

(
ri − ϕ(si)

⊤z
)2

+ λ ∥z∥22 =

(
λId +

t∑
i=0

ϕ(si)ϕ(si)
⊤

)−1 t∑
i=0

ϕ(si) ri (7)

using l2-regularization to ensure the inverse exists. Rewriting this as

ẑt = V −1
t

∑t
i=0ϕ(si) ri, where Vt = λId +

∑t
i=0ϕ(si)ϕ(si)

⊤ (8)

allows OpTI-BFM to not only track the mean estimate ẑt, but also a confidence ellipsoid Ct around
ẑt that contains the true task embedding zr with high probability:

Ct =
{
z ∈ Rd :

∥∥z − ẑt−1

∥∥
Vt−1

≤ βt

}
, (9)

where βt controls the Mahalanobis distance. The estimation of confidence sets allows optimistic
behavior in each step by choosing the task embedding zt which is believed to attain the largest return
among those in the confidence set:

zt ∈ argmax
z∈Z

max
w∈Ct

w⊤ψ(st, z). (10)

Intuitively, this procedure conditions the BFM on the most "promising" task embedding among those
that are compatible with rewards observed so far. Note that this algorithm has one crucial difference
to Upper Confidence Bound (UCB)-based algorithms for linear contextual bandits (Abbasi-Yadkori
et al., 2011; Dani et al., 2008), as two different contexts are involved: the features ϕ, which are used
for online regression and for estimating the confidence interval, and the successor features ψ, which
are instead used in the acquisition function in Eq. (10). We will discuss that using ϕ for regression
results in tighter estimates in Appendix A.2.

Algorithm 1 instantiates OpTI-BFM for online task inference. We will establish guarantees for
OpTI-BFM in the next section, and then describe how Eq. 10 may be optimized in practice, or
avoided altogether with a Thompson Sampling (TS) variant, among others.

3.3 GUARANTEES

Leveraging a direct connection to principled algorithms for linear bandits (Dani et al., 2008; Abbasi-
Yadkori et al., 2011), we provide regret guarantees for OpTI-BFM. We note that this is a crucial
property for online task inference, which could otherwise fail to gather informative data, and converge
to suboptimal solutions. For simplicity, we study a variant of OpTI-BFM that only updates its decision

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 One episode of online task inference with OpTI-BFM

Require: BFM with ψπz (s, a), ϕ(s), and πz(a|s), starting state s0 ∼ µ0, online Least Squares
estimator (ẑn−1, Vn−1) (potentially initialized with past experience)
for t = 0, . . . ,H − 1 do

Find zt ∈ argmaxz∈Z maxw∈Cn+t
w⊤ψ(st, z) ▷ Optimism w.r.t. cumulative reward.

Execute action at ∼ πzt(·|st)
Observe reward rt, next state st+1

Update (ẑn+t−1, Vn+t−1) with (ϕ(st), rt) through Eq. 8 ▷ Update based on reward-feedback.

rule at the beginning of each episode, i.e., we have zt = zt−1 for t /∈ {kH}∞k=0
3. This additional

constraint allows us to leverage results from linear contextual bandit literature.

We can show that OpTI-BFM approaches the performance of the optimal policy πzr (Eq. (4)) under
the following assumptions:

(A1) Perfect USF for our setting: for every (s, a, z) ∈ S ×A×Z we have ψ(s0, a0, z) =∑H−1
t=0 γtE [ϕ(st) | πz, s0, a0] and πz(a|s) > 0 =⇒ a ∈ argmaxa∈A ψ(s, a, z)

⊤z.
(A2) Linear Reward: r is in the span of features ϕ up to i.i.d. mean-zero σ-subgaussian noise ηt,

i.e. r(st) = ϕ(st)
⊤zr + ηt

(A3) Optimization Oracle: the OpTI-BFM objective, Eq. (10), can be computed exactly.
(A4) Bounded norms: ∥zr∥2 ≤ S and ∥ϕ(·)∥2 ≤ L for some S > 0 and L > 0.

Assumptions (A1) and (A2) are instrumental to recovering theoretical guarantees, but we found
OpTI-BFM to perform well even when they are violated (see Section 5). Note that for a sufficiently
large horizon H the mismatch between the finite discounted sum of features we assume here and the
infinite one we have in practice is negligible: the l2-error is by LγH/(1− γ). Assumption (A3) may
be empirically motivated by the efficiency of finding a good approximate solution (see Section 4).
In this setting, we can show that OpTI-BFM has sublinear regret.
Proposition 1. (informal) Under assumptions A1-A4, in an episodic discounted MDP, if OpTI-
BFM (Algorithm 1) only updates zt at the start of each episode, it incurs an expected regret of
Rn ≤ Õ (d

√
n).

Proof. We prove a formal version, Proposition 5, in Appendix A. The proof is similar to the standard
regret bounds for LinUCB/OFUL (Dani et al., 2008; Abbasi-Yadkori et al., 2011) except that the
confidence interval is updated H-times per step with features that differ from the context features
of the bandit.

4 PRACTICAL ALGORITHM

Having introduced and analyzed OpTI-BFM, we now discuss a practical implementation, and present
some additional variants 4.

The main challenge for a practical implementation of OpTI-BFM lies in optimizing the decision
criterion in Eq. (10), involving two continuous spaces Z and Ct, and a highly non-linear map
z 7→ ψ(·, z). Fortunately, BFMs are pre-trained such that that w ≈ argmaxz∈Z w

⊤ψ(st, z), i.e. the
optimal policy for a task described by w is the one conditioned on w itself. In practice, as training is
not perfect, we do not strictly rely on this property, and still search z over Ct instead of Z: 5

zt ∈ argmaxz∈Ct
maxw∈Ct w

⊤ψ(st, z) (11)

We note that, as Ct shrinks, so does the decision space, and with it the complexity of the optimization
problem. Finally, as commonly done for linear UCB (Remark 1), we can reformulate the objective as

argmax
z∈Ct

max
w∈Ct

w⊤ψ(st, z) = argmax
z∈Ct

ψ(st, z)
⊤ẑt−1 + βt ∥ψ(st, z)∥V −1

t−1
(12)

3We provide an empirical comparison to this variant in Section 5.3.
4One additional variant is presented in Appendix B.2
5We additionally consider a radius of 2βt instead of βt for this confidence set.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which allows us to optimize over just one variable. In practice, we found a simple sampling approach
to be sufficient to find an approximate solution. We optimize the final objective through random shoot-
ing with a budget of n = 128 candidates, each of which is evaluated through a forward pass of the suc-
cessor feature network ψ in the BFM. Sampling from the ellipsoid Ct may be done efficiently by apply-
ing the push-forward ξ 7→ ẑt−1+V

−1/2
t−1 βtξ to uniform samples from the unit ball (Barthe et al., 2005).

A practical implementation may also benefit from efficient updates to the key parameters: ẑt−1,
V

−1/2
t−1 , and V −1

t−1. We do so by keeping track of the information vector
∑t
s=1ϕtrt and the Cholesky

factor of Vt, i.e. Vt = R⊤
t Rt. This enables updates and/or recomputation of all components in O(d2)

(Gill et al., 1974; Seeger, 2004) making OpTI-BFM very cheap (see Appendix B.1).

Thompson Sampling Variant The connection between least squares confidence sets and Bayesian
linear regression is well established in contextual linear bandit literature (Kaufmann et al., 2012;
Agrawal & Goyal, 2013). Concretely, we may interpret OpTI-BFM’s internal components at time-step
t as a Gaussian posterior N (ẑt−1, V

−1
t−1) over task embeddings that stem from a Bayesian linear

regression with prior N (0, 1
λId) on the data {(ϕi/σ, ri/σ)}t−1

i=0 (where σ is a hyper-parameter in
practice). Intuitively, this can be thought of as starting from a prior on behaviors and then refining
it over time until it converges to a single behavior. Given this Bayesian interpretation, it is then
natural to consider a Thompson Sampling (TS) approach, where we simply sample a behavior from
the posterior, i.e. task embedding zt ∼ N (ẑt, V

−1
t), which foregoes the optimization of the UCB

version. We evaluate this variant extensively in Section 5.

Non-stationary Rewards Variant Because of its online nature, OpTI-BFM can potentially adapt
to reward functions that change over time. To this end, we consider a variant leveraging a simple
idea from non-stationary bandit literature: weighing old data points less than new ones in the least
squares estimator (Russac et al., 2020). Concretely, we introduce a new hyper-parameter 0 < ρ ≤ 1
and weight data from past time-step s at time-step t with weight ρt−s. We evaluate OpTI-BFM in a
setting with non-stationary rewards in Section 5.4.

5 EXPERIMENTS

The empirical evaluation is divided in several subsections, each of which will address a specific
question, as their titles suggest. In the following, we first detail some evaluation choices.

Environments To evaluate performance of various adaptation/inference algorithms we consider
the environments Walker, Cheetah, and Quadruped from the established ExORL (Yarats et al., 2022)
benchmark, with four different tasks (i.e. reward functions) each. We describe full experimental
protocols in Appendix E. In all figures, error-bars and shaded regions represent min-max-intervals
over 3 training seeds.

Methods We choose Forward-Backward (FB) framework (Touati & Ollivier, 2021) as a state-of-
the-art BFM. We adhere to the standard training and evaluation protocol for FB (Touati et al., 2023),
and described it in detail in Appendix D6. We apply OpTI-BFM on top of this BFM, as well as a
Thompson-Sampling variant, OpTI-BFM-TS. We further consider LoLA (Sikchi et al., 2025), an
approach based on policy search that was originally introduced for fast adaptation. In compliance
with our online task inference setting, we initialize LoLA with an uninformed choice of z, and
estimate on-policy returns in the standard episodic fashion, without privileged resets. Besides these
three learning algorithms, we evaluate “Random” and “Oracle” baselines that serve as a lower and
an upper bound on possible performance respectively. The former executes a random embedding in
each step, i.e. zt ∼ Unif(Z), whereas the latter executes the optimal policy πzr , where zr is attained
by solving the linear regression problem in Eq. (4), assuming privileged access to labeled data or the
reward function. We follow standard practice and approximate zr with a large budget of 50k labeled
samples from the pre-training dataset in practice (Touati et al., 2023; Agarwal et al., 2025b). If not
indicated otherwise, “relative performance” is relative to the Oracle performance.

6Our code is available on the anonymous website sites.google.com/view/opti-bfm.

6

sites.google.com/view/opti-bfm

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Episode

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce

cheetah

2 4 6 8 10
Episode

0.0

0.5

1.0

quadruped

2 4 6 8 10
Episode

0.2

0.4

0.6

0.8

1.0

walker

Random LoLA OpTI-BFM-TS (ours) OpTI-BFM (ours)
Figure 2: Mean relative performance over 10 episodes of interaction in DMC. OpTI-BFM recovers
Oracle performance in 5 episodes. We report per-task absolute performance in Fig. 14 in Appendix C.

102 103 104

n

0.2

0.4

0.6

0.8

Re
la

tiv
e

Pe
rfo

rm
an

ce

cheetah

102 103 104

n

0.6

0.8

1.0

quadruped

102 103 104

n

0.4

0.6

0.8

1.0

walker

RND Random OpTI-BFM-TS (ours) OpTI-BFM (ours)
Figure 3: Relative performance after different # of environment interactions. OpTI-BFM is consis-
tently among the top performers for all environments and time-steps. We show per task performance
in Fig. 15 in Appendix C.

5.1 HOW DOES OPTI-BFM COMPARE TO OTHER ONLINE TASK INFERENCE METHODS?

We first evaluate all methods in the online task inference setting described in Section 3.1, and report
episodic returns (Eq. (5)) in Fig. 2. We find that OpTI-BFM recovers Oracle performance on all
tasks within 5 episodes (5k environment steps) of interaction. We observe a significant gap between
the optimistic strategy of OpTI-BFM and its TS variant in Cheetah. Nevertheless, TS remains a
promising approach, as it avoids any optimization problem, and simply samples task embeddings
from its current belief. Finally, we find that LoLA, which ignores the linear structure of the problem
and performs blackbox policy search, makes slower progress which is better visible over 50 episodes
in Fig. 16 in Appendix C. This result is consistent with existing ablations initializing LoLA to a
random task embedding (see Sikchi et al. (2025), Figure 5), as is the case in our setting.

5.2 IS THE DATA COLLECTED ACTIVELY BY OPTI-BFM INFORMATIVE?

While the previous evaluations focus on episodic returns, or equivalently regret minimization, we
now evaluate the quality of the inferred task embeddings, e.g., in the case of OpTI-BFM, how well
does πẑn perform? In practice, to ablate away any bias in l2-regularized estimators, we compute the
task embedding zn by minimizing the squared error in Eq. (4) over the dataset of the first n observed
transitions of each method, and evaluate the corresponding policy πzn in the same environment and
task. We compare with two baseline data sources: (i) random trajectories from RND (Burda et al.,
2018), which represents a task-agnostic exploration approach, and (ii) the first n samples from our
Random baseline, which rolls out a random policy learned by the BFM. Figure 3 shows the average
relative performance of πzn in each environment. We find that the data from an actively exploring
source, i.e. OpTI-BFM and RND, outperforms the passive Random approach. Furthermore, we can
see that OpTI-BFM and its TS variant tend to be more data-efficient than RND, which can be traced
back to task-awareness.

5.3 ARE FREQUENT UPDATES IMPORTANT?

The regret bound provided in Section 3.3 assumes a version of OpTI-BFM that only updates the
task embedding it executes at the start of each episode. In this section we aim to experimentally
quantify this gap in theory and practice by evaluating this episodic version of OpTI-BFM. Fig. 4
shows that changing the latent on an episode-level leads to slower improvement than changing
every step. The episodic versions do reach equal performance eventually as shown in Fig. 16 in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Episode

0.25

0.50

0.75

1.00

Re
la

tiv
e

Pe
rfo

rm
an

ce

cheetah

2 4 6 8 10
Episode

0.25

0.50

0.75

1.00

quadruped

2 4 6 8 10
Episode

0.25

0.50

0.75

1.00

walker

OpTI-BFM-TS (ours) OpTI-BFM-TS-EP (ours) OpTI-BFM (ours) OpTI-BFM-EP (ours)

Figure 4: Relative performance of our methods, and their variants that keep task embeddings fixed
for each episode (-EP). Updating the task embedding during the episode leads to faster convergence.
For longer episode evaluations see Fig. 16 in Appendix C.

0 10000 20000 30000
Step

0

2

4

6

8

Ho
riz

on
ta

l V
el

oc
ity

speedup

0 10000 20000 30000
Step

0.0

2.5

5.0

7.5

Ho
riz

on
ta

l V
el

oc
ity

slowdown

= 0.99 = 0.999 = 1.0 Reference

(a) OpTI-BFM

0 10000 20000 30000
Step

0

2

4

6

Ho
riz

on
ta

l V
el

oc
ity

speedup

0 10000 20000 30000
Step

0

2

4

6

Ho
riz

on
ta

l V
el

oc
ity

slowdown

= 0.99 = 0.999 = 1.0 Reference

(b) OpTI-BFM-TS

Figure 5: Horizontal velocity of OpTI-BFM in our custom velocity tracking tasks in DMC Walker
for different decay rates ρ. OpTI-BFM can adapt to non-stationary reward functions when decaying
the weight of old observations.

Appendix C. Intuitively, this faster improvement may be explained by the fact that the default version
of OpTI-BFM can adjust faster to new information.

5.4 CAN OPTI-BFM ADAPT TO NON-STATIONARY REWARDS?

It is conceivable that OpTI-BFM can adapt to reward functions that are changing over time because
of its online nature. To investigate whether this is possible, we introduce two new tasks for the
Walker environment that closely resemble the walk and run tasks but change the velocity target
over time: speedup and slowdown increase and decrease the velocity target respectively after an
initial “burn-in” phase. We evaluate OpTI-BFM in a single, 30k-step, episode in Figure 5, which
shows that a direct application of OpTI-BFM (ρ = 1.0) struggles to adapt to the changing reward
function after converging to a fixed one in the first 10k steps. As soon as ρ is reduced, OpTI-BFM
tracks the velocity target more accurately. Moreover, we observe that, if ρ is too small, the uncertainty
is not reduced quickly enough, and the agent can converge to suboptimal behavior.

5.5 CAN OPTI-BFM WARM-START FROM LABELED DATA?

In settings that provide a small amount of labeled data D = {(si, ri)}ni=1 from the beginning (Sikchi
et al., 2025), OpTI-BFM may be warm-started by updating the least squares estimator n-times with
the given data. As shown in Fig. 6, when doing so on high-quality i.i.d. data from the training dataset,
the performance of OpTI-BFM quickly improves, showing that OpTI-BFM can additionally be seen
an extension of the traditional task inference of BFMs.

6 RELATED WORK

Behavior Foundation Models This work builds upon USFs (Dayan, 1993; Barreto et al., 2017;
Ma et al., 2020), and specifically on BFMs that utilize SFs to train a parameterized policy and
the corresponding parameterized SFs. A common approach for learning SF-based BFMs is to
approximate of successor measures (Blier et al., 2021; Touati & Ollivier, 2021; Agarwal et al., 2025b),
but other options spanning from spectral decomposition of random visitations (Wu et al., 2018) to
implicit value learning (Park et al., 2024b) also exist. In this regard, we refer the reader to Agarwal

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 2 3 4 5
Episode

600

800
Re

tu
rn

walk

1 2 3 4 5
Episode

100

150

200

250

300

Re
tu

rn

run

1 2 3 4 5
Episode

200

400

600

800

Re
tu

rn

walk_backward

1 2 3 4 5
Episode

50

100

150

200

Re
tu

rn

run_backward

Oracle n = 0 n = 10 n = 25 n = 50 n = 100

Figure 6: Return of OpTI-BFM in DMC Cheetah when warm-starting with n i.i.d. labeled states
from the training dataset. Initial performance increases quickly as n grows. We report full results in
Fig. 17 in Appendix C.

.
et al. (2025a) for a broader overview of BFMs and unsupervised RL. Among these approaches, the
Forward Backward (FB) framework (Touati & Ollivier, 2021) has risen to prominence, as it achieves
state-of-the-art performance in standard continuous control tasks (Touati et al., 2023), while being
scalable to humanoid control (Tirinzoni et al., 2025). Recent work has explored various applications
of FB’s zero-shot capabilities, such as imitation learning (Pirotta et al., 2023), epistemic exploration
(Urpí et al., 2025), and constrained RL (Hugessen et al., 2025). Among related works, our method is
most closely related to Sikchi et al. (2025), which however focuses on a different problem: fine-tuning
a zero-shot policy, which is already initialized through standard offline task inference. On the other
hand, our goal is to find a strong policy purely through environment interaction, without relying on
preexisting labeled data. The two approaches might nevertheless be combined.

Reward Learning The task inference goal of OpTI-BFM is fundamentally connected to the reward
learning problem in RL. Among the many instantiations, rewards may be inferred from scalar
evaluations (Knox & Stone, 2009; MacGlashan et al., 2017), preferences (Fürnkranz et al., 2012;
Christiano et al., 2017), or from other types of feedback (Jeon et al., 2020). A powerful extension to
reward learning explores active strategies for query selection, largely adopting a Bayesian perspective
(Bıyık et al., 2020; Wilde et al., 2020). While none of these works are aimed at BFMs, several are
close in spirit: for instance, Lindner et al. (2021) propose an information-directed method to achieve
a similar goal to ours: inferring the task in a way which does not necessarily reduce the model error,
but quickly produces an optimal policy.

Linear Bandits Linear Contextual Bandits are a well-studied problem in bandit literature (Abe &
Long, 1999; Dani et al., 2008; Abbasi-Yadkori et al., 2011; Kaufmann et al., 2012; Agrawal & Goyal,
2013). This is influential to this work in two ways. First, OpTI-BFM is inspired by UCB methods in
this setting (Dani et al., 2008; Abbasi-Yadkori et al., 2011). Second, we utilize guarantees and ideas
from this literature (Lattimore & Szepesvári, 2020) to produce a regret bound for OpTI-BFM in an
episodic setting.

7 CONCLUSION

By drawing a connection between practical work in scalable Behavior Foundation Models and
rigorous algorithms for linear optimization, we proposed an algorithm that may efficiently infer the
task at hand and retrieve a well-performing policy in high-dimensional, complex environments. By
minimizing the number of reward evaluations necessary for task inference, this algorithm can enable
BFM to be applied beyond domains in which rewards are readily available, for instance when learning
directly from pixels.

OpTI-BFM is designed to perform task inference in a minimal number of episodes: this is mainly pos-
sible as the search space is minimal. While updating the task embedding alone enables great sample
efficiency, fine-tuning additional components of the BFM may provide even better performance in the
long run (Sikchi et al., 2025). Moreover, our theoretical guarantees only cover slower, episode-level
updates: extending these results to (empirically stronger) per-step represents an important direction
for future formal works.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

While OpTI-BFM builds upon linearity between features and rewards, it does not make any significant
assumption on the structure of the feature space Z: understanding the properties of its elements both
formally and practically constitutes an important avenue for future work. BFMs have demonstrated
scalability up to complex domains, while maintaining structured properties (linearity!) in an em-
bedding space: we believe that this is a ripe field for application of more theoretically principled
approaches, which may in turn be impactful beyond regular domains.

REFERENCES

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved Algorithms for Linear Stochastic Bandits.
In Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

Abe, N. and Long, P. Associative reinforcement learning using linear probabilistic concepts. 06 1999.

Agarwal, S., Sikchi, H., Stone, P., and Zhang, A. Proto Successor Measure: Representing the Space
of All Possible Solutions of Reinforcement Learning, November 2024.

Agarwal, S., Chuck, C., Sikchi, H., Hu, J., Rudolph, M., Niekum, S., Stone, P., and Zhang, A.
A Unified Framework for Unsupervised Reinforcement Learning Algorithms. In Workshop on
Reinforcement Learning Beyond Rewards @ Reinforcement Learning Conference 2025, July 2025a.

Agarwal, S., Sikchi, H., Stone, P., and Zhang, A. Proto Successor Measure: Representing the
Behavior Space of an RL Agent, March 2025b.

Agrawal, S. and Goyal, N. Thompson Sampling for Contextual Bandits with Linear Payoffs. In
Proceedings of the 30th International Conference on Machine Learning, pp. 127–135. PMLR,
May 2013.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., and Silver, D. Successor
Features for Transfer in Reinforcement Learning. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Barthe, F., Guedon, O., Mendelson, S., and Naor, A. A probabilistic approach to the geometry
of the \ell_p^n-ball. The Annals of Probability, 33(2), March 2005. ISSN 0091-1798. doi:
10.1214/009117904000000874.

Bıyık, E., Huynh, N., Kochenderfer, M. J., and Sadigh, D. Active preference-based gaussian process
regression for reward learning. arXiv preprint arXiv:2005.02575, 2020.

Blier, L., Tallec, C., and Ollivier, Y. Learning Successor States and Goal-Dependent Values: A
Mathematical Viewpoint, January 2021.

Bogunovic, I. and Krause, A. Misspecified gaussian process bandit optimization, 2021.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D., Munos, R., van Hasselt, H., Silver, D., and Schaul,
T. Universal Successor Features Approximators, December 2018.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Exploration by Random Network Distillation,
October 2018.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30, 2017.

Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic Linear Optimization under Bandit Feedback.
21st Annual Conference on Learning Theory, 2008.

Dayan, P. Improving Generalization for Temporal Difference Learning: The Successor Representation.
Neural Computation, 5(4):613–624, July 1993. ISSN 0899-7667. doi: 10.1162/neco.1993.5.4.613.

Fürnkranz, J., Hüllermeier, E., Cheng, W., and Park, S.-H. Preference-based reinforcement learning:
a formal framework and a policy iteration algorithm. Machine learning, 89(1):123–156, 2012.

Ghosh, A., Chowdhury, S. R., and Gopalan, A. Misspecified linear bandits, 2017.

10

https://arxiv.org/abs/2111.05008
https://arxiv.org/abs/1704.06880

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gill, P. E., Golub, G. H., Murray, W., and Saunders, M. A. Methods for modifying ma-
trix factorizations. In Mathematics of Computation, volume 28, pp. 505–535, 1974. doi:
10.1090/S0025-5718-1974-0343558-6.

Hugessen, A., Wiltzer, H., Neary, C., Zhang, A., and Berseth, G. Zero-Shot Constraint Satisfaction
with Forward- Backward Representations. In Workshop on Reinforcement Learning Beyond
Rewards @ Reinforcement Learning Conference 2025, July 2025.

Jajoo, P., Sikchi, H., Agarwal, S., Zhang, A., Niekum, S., and White, M. Regularized Latent
Dynamics Prediction is a Strong Baseline For Behavioral Foundation Models. In Workshop on
Reinforcement Learning Beyond Rewards @ Reinforcement Learning Conference 2025, July 2025.

Jeon, H. J., Milli, S., and Dragan, A. Reward-rational (implicit) choice: A unifying formalism for
reward learning. Advances in Neural Information Processing Systems, 33:4415–4426, 2020.

Kaufmann, E., Cappe, O., and Garivier, A. On Bayesian Upper Confidence Bounds for Bandit
Problems. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and
Statistics, pp. 592–600. PMLR, March 2012.

Kiefer, J. and Wolfowitz, J. The equivalence of two extremum problems. Canadian Journal of
Mathematics, 12:363 – 366, 1960.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization, 2017.

Knox, W. B. and Stone, P. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pp. 9–16,
2009.

Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cambridge University Press, 1 edition, July
2020. ISBN 978-1-108-57140-1 978-1-108-48682-8. doi: 10.1017/9781108571401.

Lindner, D., Turchetta, M., Tschiatschek, S., Ciosek, K., and Krause, A. Information directed reward
learning for reinforcement learning. Advances in Neural Information Processing Systems, 34:
3850–3862, 2021.

Ma, C., Ashley, D. R., Wen, J., and Bengio, Y. Universal Successor Features for Transfer Reinforce-
ment Learning, January 2020.

MacGlashan, J., Ho, M. K., Loftin, R., Peng, B., Wang, G., Roberts, D. L., Taylor, M. E., and Littman,
M. L. Interactive learning from policy-dependent human feedback. In International conference on
machine learning, pp. 2285–2294. PMLR, 2017.

Park, S., Frans, K., Eysenbach, B., and Levine, S. OGBench: Benchmarking Offline Goal-Conditioned
RL, October 2024a.

Park, S., Kreiman, T., and Levine, S. Foundation Policies with Hilbert Representations, May 2024b.

Pirotta, M., Tirinzoni, A., Touati, A., Lazaric, A., and Ollivier, Y. Fast Imitation via Behavior
Foundation Models. In The Twelfth International Conference on Learning Representations,
October 2023.

Russac, Y., Vernade, C., and Cappé, O. Weighted Linear Bandits for Non-Stationary Environments,
March 2020.

Seeger, M. Low Rank Updates for the Cholesky Decomposition. 2004.

Sikchi, H., Tirinzoni, A., Touati, A., Xu, Y., Kanervisto, A., Niekum, S., Zhang, A., Lazaric, A., and
Pirotta, M. Fast Adaptation with Behavioral Foundation Models, April 2025.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. Reward is enough. Artificial Intelligence, 299:
103535, October 2021. ISSN 0004-3702. doi: 10.1016/j.artint.2021.103535.

Singh, A., Liu, H., Zhou, G., Yu, A., Rhinehart, N., and Levine, S. Parrot: Data-driven behavioral
priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020.

11

https://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., Lillicrap, T., and Riedmiller, M. DeepMind Control Suite, January 2018.

Tirinzoni, A., Touati, A., Farebrother, J., Guzek, M., Kanervisto, A., Xu, Y., Lazaric, A., and Pirotta,
M. Zero-Shot Whole-Body Humanoid Control via Behavioral Foundation Models, April 2025.

Touati, A. and Ollivier, Y. Learning One Representation to Optimize All Rewards, October 2021.

Touati, A., Rapin, J., and Ollivier, Y. Does Zero-Shot Reinforcement Learning Exist?, March 2023.

Tucker, A. D., Biddulph, C., Wang, C., and Joachims, T. Bandits with costly reward observations. In
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, pp. 2147–
2156. PMLR, July 2023.

Urpí, N. A., Vlastelica, M., Martius, G., and Coros, S. Epistemically-guided forward-backward
exploration, July 2025.

Wilde, N., Kulić, D., and Smith, S. L. Active preference learning using maximum regret. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10952–10959.
IEEE, 2020.

Wu, Y., Tucker, G., and Nachum, O. The laplacian in rl: Learning representations with efficient
approximations. arXiv preprint arXiv:1810.04586, 2018.

Yarats, D., Brandfonbrener, D., Liu, H., Laskin, M., Abbeel, P., Lazaric, A., and Pinto, L. Don’t
Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning,
April 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOFS

This section describes the proof for Proposition 1. It closely follows Chapters 19 and 20 from
Lattimore & Szepesvári (2020). We proceed as follows:

• We reintroduce the setting with some more convenient notation in Appendix A.1.

• We show that running linear regression on feature-reward pairs is at least as efficient as
running linear regression on SF-return pairs (Appendix A.2)

• We cite a result that grants the optimal choice of βs in Appendix A.3.

• We proceed with the standard linear contextual bandit regret bound proof with confidence
sets based on feature-reward pairs (Appendix A.4).

A.1 SETTING

Throughout this section we will use the double subscript k, t to denote the t-th time-step in the k
episode. Since we will analyze a version of OpTI-BFM that only switches task embedding at the
start of each episode, and since we know that the best task embedding is always zr (Eq. 4), we define
z1, . . . , zn be the chosen task embeddings for n episodes. Let ϕk,t = ϕ(sk,t) be the feature observed
in step t of episode k. Note that this quantity is a random variable; throughout this section we use a
simple expectation E[·] to indicate the expectation over initial states, action distributions of policies,
MDP dynamics, and decisions of the algorithm. We will still use E [· | π, s] to denote the expectation
over rolling out policy π from state s.

A.1.1 ASSUMPTIONS

For convenience, we repeat our assumptions here with the new notation

(A1) Perfect USF for our setting: for every (s, a, z) ∈ S ×A×Z we have

ψ(s0, a0, z) =

H−1∑
t=0

γtE [ϕ(st) | πz, s0, a0] (13)

and

πz(a|s) > 0 =⇒ a ∈ argmax
a∈A

ψ(s, a, z)⊤z. (14)

(A2) Linear Reward: r is in the span of features ϕ up to i.i.d. mean-zero σ-subgaussian noise ηk,t,
i.e.

rk,t = ϕ(sk,t)
⊤zr + ηk,t (15)

(A3) Optimization Oracle: the OpTI-BFM objective in Eq. (10) can be computed exactly.

(A4) Bounded norms: ∥zr∥2 ≤ S and ∥ϕ(·)∥2 ≤ L for some S > 0 and L > 0.

A.1.2 REGRET

We also repeat the definitions of discounted return of the k-th episode (Eq. (5)) and expected regret
(Eq. (6)) for consistent notation.

Ĝk =
∑H−1
t=0 γ

trk,t (16)

Rn = E
[∑n

k=1Ĝ
⋆
k − Ĝk

]
, (17)

where Ĝ⋆k is the discounted return achieved by πzr which is optimal for the the reward r(·) = ϕ(·)⊤zr
under A1. We now also define the expected discounted return of episode k for task embedding z as

Gk,z = E
[
Ĝk

∣∣∣ πz, sk,0] . (18)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Notice that this implies that E[Ĝ⋆k] = Gk,zr and that Rn = E[
∑n
k=1Gk,z⋆ − Gk,zk], the latter of

which is the term we want to bound at the end of this section. We may now show that the expected
discounted return is linear in the SFs:

Gk,z = E
[
Ĝk

∣∣∣ πz, sk,0] (19)

= E
[∑H−1

t=0 γ
trk,t

∣∣∣ πz, sk,0] (20)

= E
[∑H−1

t=0 γ
t⟨zr, ϕ(sk,t)⟩

∣∣∣ πz, sk,0] (21)

=
〈
zr,E

[∑H−1
t=0 γ

tϕ(sk,t)
∣∣∣ πz, sk,0]〉 (22)

A1
= ⟨zr, ψ(sk,0, z)⟩ (23)

Thus, our setting resembles a contextual bandit with context s0 ∼ µ0, action space Z and an expected
payoff that is linear in ψ(s0, z), with the one notable difference being that more information is
available on the pay-off feedback: it is not available in terms of return Ĝk alone, but additionally as a
sequence of features-reward pairs (ϕk,t, rk,t)H−1

t=0 .

A.1.3 OPTI-BFM

Let us finally reintroduce the least squares estimator with the double subscript notation:

ẑn = V −1
n

n∑
k=1

H−1∑
t=0

ϕk,trk,t where Vn = λI +

n∑
k=1

H−1∑
t=0

ϕk,tϕ
⊤
k,t. (24)

From this we then redefine the confidence sets at the start of episode k as

Ck = {z ∈ Rd : ∥z − ẑk−1∥Vk−1
≤ βk}. (25)

Defining the UCB operator as
UCBk(z) = max

w∈Ck

⟨ψ(sk,0, z), w⟩, (26)

then OpTI-BFM picks zk = argmaxZ UCBk(z) for the k-th episode, which we assume can be
attained exactly in A3.

A.2 RETURN-LEVEL VS. REWARD-LEVEL FEEDBACK

In this section we show a few properties conveying the intuitive fact that, if zr is estimated from richer,
reward-level feedback (ϕk,t, rk,t), confidence sets may be tigher than those produced by return-level
feedback (

∑H−1
t=0 γ

tϕk,t,
∑H−1
t=0 γ

trk,t), which can be though of as an aggregation of H datapoints
of the former (up to expectation over dynamics).

For this analysis we define the empirical SF of episode k as

ψ̃k =

H−1∑
t=0

γtϕk,t and Wn = λI +

n∑
k=1

ψ̃kψ̃
⊤
k . (27)

Note that we have E
[
ψ̃k

∣∣∣ πzk , sk,0] = ψ(sk,0, zk). We further define

Ak =

H−1∑
t=0

ϕk,tϕ
⊤
k,t, (28)

so that we have Vn = λI +
∑n
k=1Ak. Finally, the following constant 7 will become useful later:

cH =

H−1∑
t=0

γ2t =
1− γ2H

1− γ2
. (29)

We now show that the precision matrices obtained through reward-level feedback (Vn) grow at least
as fast as those obtained through return-level feedback (Wn) over the course of one episode.

7Note that cH ≥ 1 for H > 0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proposition 2. We have, in Loewner order,

ψ̃kψ̃
⊤
k ≼ cHAk. (30)

Proof. This is a direct application of a Cauchy-Schwarz inequality: for any x,

x⊤ψ̃kψ̃
⊤
k x = (x⊤ψ̃k)

2 =

(
H−1∑
t=0

γtx⊤ϕk,t

)2

≤

(
H−1∑
t=0

γ2t

)(
H−1∑
t=0

(x⊤ϕk,t)
2

)
= cHx

⊤Akx

From this, it immediately follows Vn grows at least as fast as Wn over all episodes.
Proposition 3. We have, in Loewner order,

Vn ≽
1

cH
Wn (31)

Proof. Using Proposition 2, we know that

Ak ≽
1

cH
ψ̃kψ̃

⊤
k . (32)

Summing over episodes on both sides, we get
n∑
k=1

Ak ≽
1

cH

n∑
k=1

ψ̃kψ̃
⊤
k . (33)

By adding λI on both sides, we can write

λI +

n∑
k=1

Ak ≽ λI +
1

cH

n∑
k=1

ψ̃kψ̃
⊤
k . (34)

On the left, we recognize

λI +

n∑
k=1

Ak = Vn, (35)

while on the right we have

λI +
1

cH

n∑
k=1

ψ̃kψ̃
⊤
k =

1

cH

(
λI +

n∑
k=1

ψ̃kψ̃
⊤
k

)
+

(
1− 1

cH

)
λI =

1

cH
Wn +

(
1− 1

cH

)
λI,

which in turn yields

Vn ≽
1

cH
Wn +

(
1− 1

cH

)
λI ≽

1

cH
Wn, (36)

where the last step follows from the fact that cH ≥ 1.

We now derive a useful property from this result, that will later help us to apply the well-known
elliptical potential Lemma. Intuitively it shows that reward-level feedback leads to confidence
ellipsoids at least as tight as those of return-level feedback.
Proposition 4. We have for any x ∈ Rd

∥x∥V −1
n

≤
√
cH ∥x∥W−1

n
(37)

Proof. By Proposition 3,

Vn ≽
1

cH
Wn, (38)

where both matrices are positive definite by construction. As the inverse thus reverses order,
V −1
n ≼ cHW

−1
n . (39)

As a consequence, one can show that, for any x,

∥x∥V −1
n

=
√
x⊤V −1

n x ≤
√
cHx⊤W

−1
n x =

√
cH ∥x∥W−1

n
. (40)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 CONFIDENCE ELLIPSOIDS

We will now take take the chance to cite a standard result for optimal choices of radii βk which
guarantee that the true parameter zr is contained in confidence sets (Eq. (9))in each time-step with
high probability.
Theorem 1. (Adapted from Abbasi-Yadkori et al. (2011) Theorem 2)
Given confidence sets Ck as defined in Eq. (25), and if rewards are in the span of ϕ up to σ-subgaussian
zero-mean noise (A2), then for any δ ∈ (0, 1) the following holds: Pr[∃k ∈ N+|zr /∈ Ck] ≤ δ with

βk =
√
λS + σ

√
log

(
detVk−1

λd

)
+ 2 log

(
1

δ

)
(41)

This is the classic uniform-in-time self-normalized bound based on supermartingales. Notice that the
theorem makes no assumptions about the action selection process nor the process that controls the
state-changes, except that they are measurable in the natural filtration of the corresponding time-step,
which is the case for our decision rule (OpTI-BFM) and our episodic MDP setting. We remark that,
since by definition Vt ≽ Vs for all t ≥ s, we have that βt ≥ βs as well.

A.4 REGRET BOUND

We can now prove a formal version of Proposition 1.
Proposition 5. Under assumptions A1-A4, with choices for βk as in Theorem 1, if OpTI-BFM is
applied at the beginning of each episode and selects the task embedding zk = argmaxZ UCBk(z)
for the k-th episode, it incurs an expected regret of Õ(d

√
n).

Proof. We start off by investigating the event E that zr ∈ Ck ∀k ∈ {1, . . . , n}, i.e., zr is in all
confidence sets, which occurs with probability at least 1− δ according to Theorem 1.

Since we will refer to both empirical and "expected" SFs (ψ̃ and ψ, respectively), we introduce
the natural filtration Fk−1 generated by the history up to the start of episode k, in particular,
sk,0, zk, Vk−1,Wk−1 are Fk−1-measurable. Intuitively, conditioning on Fk−1 allows us to limit
randomness to within the current episode. Crucial for us will be,

ψ(sk,0, zk) = E
[
ψ̃k

∣∣∣ Fk−1

]
(42)

We will proceed as in the standard regret bound for linear contextual bandits (Lattimore & Szepesvári,
2020) Let z̃k = argmaxw∈Ck

⟨ψ(sk,0, zk), w⟩ be the task embedding that maximizes the UCB. We
then have that

⟨ψ(sk,0, zr), zr⟩ ≤ UCBk(zr) ≤ UCBk(zk) = ⟨ψ(sk,0, zk), z̃k⟩. (43)

We can therefore bound the instantaneous regret ek by

ek = Gk,zr −Gk,zk (44)
= ⟨ψ(sk,0, zr), zr⟩ − ⟨ψ(sk,0, zk), zr⟩ (45)
≤ ⟨ψ(sk,0, zk), z̃k⟩ − ⟨ψ(sk,0, zk), zr⟩ (46)
= ⟨ψ(sk,0, zk), z̃k − zr⟩. (47)

Conditioning on previous events (Fk−1), and applying the Cauchy-Schwarz inequality pointwise, we
have

E [ek | Fk−1] ≤ E [⟨ψ(sk,0, zk), z̃k − zr⟩ | Fk−1] (48)

= E
[
⟨ψ̃k, z̃k − zr⟩

∣∣∣ Fk−1

]
(49)

≤ E
[∥∥∥ψ̃k∥∥∥

V −1
k−1

∥z̃k − zr∥Vk−1

∣∣∣∣ Fk−1

]
. (50)

Since we are in event E we have zr ∈ Ck, furthermore, z̃k ∈ Ck by definition. So, using the definition
of the confidence set Eq. (25), we have

∥z̃k − zr∥Vk−1
≤ 2βk ≤ 2βn. (51)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This is where this proof diverges from the standard regret bound: note that Vk−1 is a sum of features
ϕ and not empirical SFs ψ̃, making immediate application of the elliptical potential lemma non-
trivial. We can however recall the comparison of least square estimation with reward-feedback and
return-feedback from Appendix A.2. In particular, one can apply Proposition 4 to upper-bound the
V -norm with the W -norm that depends on the empirical SFs:∥∥∥ψ̃k∥∥∥

V −1
k−1

≤
√
cH

∥∥∥ψ̃k∥∥∥
W−1

k−1

. (52)

Combining these two bounds results in

E [ek | Fk−1] ≤ E
[
2βn

√
cH

∥∥∥ψ̃k∥∥∥
W−1

k−1

∣∣∣∣ Fk−1

]
. (53)

Recalling that, by assumption A4,
∥∥∥ψ̃k∥∥∥

2
≤ L(1−γH)

1−γ and

Vk−1 = λI +
k∑
i=1

H−1∑
t=0

ϕi,tϕ
⊤
i,t ≽ λI (54)

so ∥u∥ ≤ λ−1/2 ∥u∥Vk−1
, we can write that, pointwise for all k,∣∣∣〈ψ̃k, z̃k − zr

〉∣∣∣ ≤ min

{
2βn√
λ

∥∥∥ψ̃k∥∥∥ , 2βn√cH ∥∥∥ψ̃k∥∥∥
W−1

k−1

}
(55)

≤ 2βnmin


L(1− γH)√
λ(1− γ)︸ ︷︷ ︸
=:B

,
√
cH

∥∥∥ψ̃k∥∥∥
W−1

k−1

 . (56)

Combining the two bounds inside the expectation (as they hold pointwise), we obtain

E [ek | Fk−1] ≤ E
[
2βnmin

{
B,

√
cH

∥∥∥ψ̃k∥∥∥
W−1

k−1

} ∣∣∣∣ Fk−1

]
. (57)

Using the fact that min{a, bx} ≤ max{a, b}min{1, x} for a, b > 0, we can then take some constants
out of the expectation:

E [ek | Fk−1] ≤ max{B,
√
cH}︸ ︷︷ ︸

=:α

E
[
2βnmin

{
1,
∥∥∥ψ̃k∥∥∥

W−1
k−1

} ∣∣∣∣ Fk−1

]
. (58)

We now sum over episodes. To do this, we use the tower rule on ek, i.e., E[ek] = E[E [ek | Fk−1]].

Rn = E

[
n∑
k=1

ek

]
=

n∑
k=1

E [ek] =

n∑
k=1

E
[
E [ek | Fk−1]

]
(59)

Applying our (pointwise) bound on E [ek | Fk−1] and the tower rule again, we get.

Rn =

n∑
k=1

E
[
E [ek | Fk−1]

]
≤ 2α

n∑
k=1

E
[
E
[
βnmin

{
1,
∥∥∥ψ̃k∥∥∥

W−1
k−1

} ∣∣∣∣ Fk−1

]]
(60)

= 2α

n∑
k=1

E
[
βnmin

{
1,
∥∥∥ψ̃k∥∥∥

W−1
k−1

}]
. (61)

Using linearity of expectation and then applying the Cauchy-Schwarz inequality over episodes
(pointwise), we can prepare the sum to the application of the elliptical potential Lemma on (ψ̃k)

n
k=1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and (Wk)
n
k=1 (pathwise):

Rn ≤ 2αE

[
βn

n∑
k=1

min

{
1,
∥∥∥ψ̃k∥∥∥

W−1
k−1

}]
(62)

≤ 2αE

βn
√√√√n ·

n∑
k=1

min

{
1,
∥∥∥ψ̃k∥∥∥2

W−1
k−1

} (63)

≤ 2αE

[
βn

√
2n · log

(
detWn

λd

)]
. Lemma 1 (64)

Inserting our choice for βn we obtain

Rn ≤ 2αE

[(
√
λS + σ

(√
log

(
detVn−1

λd

)
+ 2 log(1/δ)

))√
2n · log

(
detWn

λd

)]
(65)

We recall that, so far, we investigated the expected regret conditional on the event E that zr ∈ Ck ∀k ∈
{1, . . . , n}, which occurs with probability at least 1− δ according to Theorem 1. We now choose
δ = 1/n. Using Proposition 6 to upper-bound the determinants (pointwise), and recalling the fact
that

∥∥∥ψ̃k∥∥∥
2
≤ L(1−γH)

1−γ (by A4), we obtain

Rn ≤ 2α

(
√
λS + σ

(√
d log

(
dλ+ nHL2

dλ

)
+ 2 log n

))√√√√√2nd log

dλ+ nL
2(1−γH)2

(1−γ)2

dλ


≤ Õ

(
d
√
n
)
. (66)

We finally investigate the complementary event EC . We remark that the discounted return in each
episode can be bounded by constants using the Cauchy-Schwarz inequality:

|Gk,z| =

∣∣∣∣∣E
[
H−1∑
t=0

γtϕ⊤k,tzr

∣∣∣∣∣ πzk , sk,0
]∣∣∣∣∣ ≤ LS

H−1∑
t=0

γt ≤ LS

1− γ
. (67)

It thus holds that Rn ≤ n · 2LS
1−γ under EC .

To combine the analysis for both events, let R̂n =
∑n
k=1 ek be the empirical regret. By the law of

total probability, we have that

Rn = E[R̂n] = Pr[E] · E
[
R̂n

∣∣∣ E]+ Pr[EC] · E
[
R̂n

∣∣∣ EC] (68)

≤ 1 · Õ
(
d
√
n
)
+

1

n
· n · 2LS

1− γ
(69)

≤ Õ
(
d
√
n
)
, (70)

which concludes the proof.

A.5 REGRET BOUND UNDER WEAKER ASSUMPTIONS

Our empirical evaluations are performed in a setting which violates two assumptions described in
A.1.1: perfect USF estimation (A1) and linearity of rewards (A2). This section provides a study of the
algorithm’s behavior under these violations taking some ideas from existing theory of misspecified
bandits (Ghosh et al., 2017; Bogunovic & Krause, 2021; Lattimore & Szepesvári, 2020).

We start by replacing A1 and A2 by weaker assumptions that quantify the mismatch between ϕ and
ψ and between r and its projection z⊤r ψ respectively:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(A1’) For every (s, a, z) ∈ S ×A×Z we have

∥∥∥ψ(s, a, z)−∑H−1
t=0 γ

tE [ϕ(st) | πz, s, a]
∥∥∥
2
≤ ξ (71)

and

πz(a|s) > 0 =⇒ a ∈ argmax
a∈A

ψ(s, a, z)⊤z. (72)

(A2’) For reward r we have for each state sk,t

E[∥r(sk,t)− ϕ(sk,t)
⊤zr∥] ≤ ζ (73)

where the expectation is over i.i.d. mean-zero σ-subgaussian noise ηk,t.

We may thus write ψ as a biased version of the true ψ⋆

ψ(s, a, z) + ∆ψ(s, a, z) = ψ∗(s, a, z), (74)

and, similarly, rewrite rewards as

rk,t = ϕ(sk,t)
⊤zr +∆r(sk,t) + ηk,t. (75)

We can then establish a uniform-in-time bound as in Theorem 1 by inflating β to account for the
newly introduced bias in the reward. Considering the distance between the current mean estimate
ẑt−1 and zr, we can decompose this into

∥zr − ẑt−1∥Vt−1
=

∥∥∥∥∥zr −
t−1∑
i=1

ϕiϕ
⊤
i zr − V −1

t−1

t−1∑
i=1

ϕiηi − V −1
t−1

t−1∑
i=1

ϕi∆r(si)

∥∥∥∥∥
Vt−1

(76)

=

∥∥∥∥∥zr − Vt−1zr + λzr − V −1
t−1

t−1∑
i=1

ϕiηi − V −1
t−1

t−1∑
i=1

ϕi∆r(si)

∥∥∥∥∥
Vt−1

(77)

=

∥∥∥∥∥zr − zr − V −1
t−1

(
λzr +

t−1∑
i=1

ϕiηi +

t−1∑
i=1

ϕi∆r(si)

)∥∥∥∥∥
Vt−1

(78)

=

∥∥∥∥∥λzr +
t−1∑
i=1

ϕiηi +

t−1∑
i=1

ϕi∆r(si)

∥∥∥∥∥
V −1
t−1

(79)

≤

∥∥∥∥∥λzr +
t−1∑
i=1

ϕiηi

∥∥∥∥∥
V −1
t−1

+

∥∥∥∥∥
t−1∑
i=1

ϕi∆r(si)

∥∥∥∥∥
V −1
t−1

(80)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The first term is covered by Theorem 1, while the new bias term can be bounded through similar
techniques to those used in the main proof:

∥∥∥∥∥
t−1∑
i=1

ϕi∆r(si)

∥∥∥∥∥
V −1
t−1

≤
t−1∑
i=1

|∆r(si)| ∥ϕi∥V −1
t−1

∥·∥V −1
t−1

properties (81)

≤ ζ

t−1∑
i=1

∥ϕi∥V −1
t−1

A2’ (82)

≤ ζ

t−1∑
i=1

∥ϕi∥V −1
i−1

Vi−1 ≼ Vt−1 (83)

≤ ζ

√√√√t

t−1∑
i=1

∥ϕi∥2V −1
i−1

Cauchy-Schwarz (84)

≤ ζ

√√√√t

t−1∑
i=1

min{L
2

λ , ∥ϕi∥
2
V −1
i−1

} (85)

≤ Lζ√
λ

√√√√t

t−1∑
i=1

min{1, ∥ϕi∥2V −1
i−1

} (86)

≤
√
2Lζ√
λ

√
t log

(
detVt
detV0

)
Lemma 1 (87)

As a result, we can establish a uniform-in-time guarantee if β is inflated as

β′
t = βt +

√
2Lζ√
λ

√
t log

(
detVt
detV0

)
. (88)

Continuing to build the regret bound, we first notice that the mismatch also impacts the discounted
return:

Gk,z = E
[
Ĝk

∣∣∣ πz, sk,0] (89)

= E
[∑H−1

t=0 γ
trk,t

∣∣∣ πz, sk,0] (90)

A2′
= E

[∑H−1
t=0 γ

t⟨zr, ϕ(sk,t)⟩+∆r(sk,t)
∣∣∣ πz, sk,0] (91)

=
〈
zr,E

[∑H−1
t=0 γ

tϕ(sk,t)
∣∣∣ πz, sk,0]〉+ E

[∑H−1
t=0 γ

t∆r(sk,t)
∣∣∣ πz, sk,0] (92)

= ⟨zr, ψ∗(sk,0, z)⟩+ E
[∑H−1

t=0 γ
t∆r(sk,t)

∣∣∣ πz, sk,0] (93)

A2′

≤ ⟨zr, ψ∗(sk,0, z)⟩+ ζ
1−γ (94)

We can then proceed along the main proof in Appendix A.4 as normal, substituting β′ for β throughout.
Given the suboptimal ψ Eq. (43) now becomes

⟨ψ⋆(sk,0, zr), zr⟩ ≤ UCBk(zr) ≤ UCBk(zk) = ⟨ψ⋆(sk,0, zk), z̃k⟩. (95)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Then, in the bound on the instantaneous regret (Eq. (44)), we get an added term.

ek = Gk,zr −Gk,zk (96)

≤ ⟨ψ⋆(sk,0, zr), zr⟩ − ⟨ψ⋆(sk,0, zk), zr⟩+ 2ζ
1−γ (97)

≤ ⟨ψ⋆(sk,0, zk), z̃k⟩ − ⟨ψ⋆(sk,0, zk), zr⟩+ 2ζ
1−γ (98)

= ⟨ψ⋆(sk,0, zk), z̃k − zr⟩+ 2ζ
1−γ (99)

A2′
= ⟨ψ(sk,0, zk), z̃k − zr⟩+ ⟨∆ψ(sk,0, zk), z̃k − zr⟩+ 2ζ

1−γ (100)

≤ ⟨ψ(sk,0, zk), z̃k − zr⟩+ ∥∆ψ(sk,0, zk)∥V −1
k−1

∥z̃k − zr∥Vk−1
+ 2ζ

1−γ Cauchy-Schwarz

≤ ⟨ψ(sk,0, zk), z̃k − zr⟩+ ξ√
λ
· 2β′

k +
2ζ
1−γ . (101)

Where we used

∥x∥V −1
k−1

=
√
x⊤V −1

k−1x ≤
√
λmax(V

−1
k−1)x

⊤x ≤ 1√
λ
∥x∥2 (102)

in the last step.8

We can treat the added term 2β′
k
ξ√
λ
+ 2ζ

1−γ separately throughout, bounding it by

2β′
nn

ξ√
λ
+ nζ

1−γ (103)

after summing over the episodes. As a result, inserting our new β′
n in the regret bound, we obtain

Rn ≤ 2α

√
λS + σ

√
d log

(
dλ+ nHL2

dλ

)
+ 2 log n+

√
2Lζ√
λ

√
ndH log

(
dλ+ nHL2

dλ

)
︸ ︷︷ ︸

new



×


√√√√√2nd log

dλ+ nL
2(1−γH)2

(1−γ)2

dλ

+ 2ξn√
λ︸︷︷︸

new


+ nζ

1−γ︸︷︷︸
new

(104)

Because of the new term appearing in β′ and the final constant term, the regret bound is no longer
sublinear, but instead

Rn ≤ Õ(d
√
n) + ζÕ(nd) + ξÕ(n

√
dn) (105)

which is also the final regret when incorporating the event EC . This bound indicates that, while the
confidence set may shrink initially, the two mismatches may introduce an irreducible uncertainty in
the size of the respective missmatches that cannot be resolved. Crucially, the suboptimality incurred
is directly connected to the degree of mismatch considered in assumptions (A1’) and (A2’).

A.6 USEFUL PROPERTIES

A.6.1 DETERMINANTS

We list a few useful properties that are used in the proofs above
Proposition 6. Let ϕ1, . . . , ϕn be a sequence of vectors with ∥ϕt∥ ≤ L for all t = 1, . . . , n, and
Vt = λI +

∑t
s=1 ϕsϕ

⊤
s .

log

(
detVn
λd

)
≤ d log

(
dλ+ nL2

dλ

)
(106)

8This approximation of λmax(V
−1
k−1) ≤ 1/λ is rather crude and could be improved by investigating how the

eigenvalues of Vk evolve over time.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. First, note that

det(λI) = λd and Tr(λI) = dλ (107)

For Vn we have, using the AM-GM inequality,

detVn =
∏
i

λi ≤
(
1

d
TrVn

)d
≤
(
TrλI + nL2

d

)d
(108)

because ∥ϕ∥ ≤ L. Thus we have

log

(
detVn
λd

)
≤ d log

(
dλ+ nL2

dλ

)
(109)

A.6.2 ELLIPTICAL POTENTIAL LEMMA

We here state a standard result, commonly referred to as the elliptical potential lemma, for complete-
ness.

Lemma 1. Assume V0 ≻ 0 be positive definite and let ϕ1, . . . , ϕn be a sequence of vectors with
∥ϕt∥ ≤ L for all t = 1, . . . , n, and Vt = V0 +

∑t
s=1 ϕsϕ

⊤
s .

n∑
t=1

min{1, ∥ϕi∥2V −1
t−1

} ≤ 2 log

(
detVn
detV0

)
(110)

Proof. First, note that we have for u ≥ 0

min{1, u} ≤ 2 log(1 + u) (111)

and use it to get

n∑
t=1

min{1, ∥ϕt∥2V −1
t−1

} ≤ 2

n∑
t=1

log
(
1 + ∥ϕt∥2V −1

t−1

)
(112)

Then, notice that for t ≥ 1 we have

Vt = Vt−1 + ϕtϕ
⊤
t = V

1/2
t−1

(
I + V

−1/2
t−1 ϕtϕ

⊤
t V

−1/2
t−1

)
V

1/2
t−1 (113)

so, taking the determinant on both sides we get

detVt = detVt−1 · det
(
I + V

−1/2
t−1 ϕtϕ

⊤
t V

−1/2
t−1

)
= detVt−1

(
1 + ∥ϕt∥2V −1

t−1

)
(114)

where we used det(A+B) = detA ·detB and det(I+uu⊤) = 1+∥u∥2. Telescoping the previous
result, we get

detVn = detV0 ·
n∏
t=1

(
1 + ∥ϕt∥2V −1

t−1

)
(115)

which implies

n∑
t=1

log
(
1 + ∥ϕt∥2V −1

t−1

)
= log

(
detVn
detV0

)
(116)

which proves the claim.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.6.3 UCB OPTIMISATION

We here state the derivation of a well-known property of LinUCB for completeness.
Remark 1. We want to show that

argmax
z∈Ct

max
w∈Ct

w⊤ψ(st, z) = argmax
z∈Ct

ψ(st, z)
⊤ẑt−1 + βt ∥ψ(st, z)∥V −1

t−1
(117)

Focusing on the inner max term, we have

max
w∈Ct

w⊤ψ(st, z) = max
∥w−ẑt∥Vt−1

≤βt

w⊤ψ(st, z) (118)

= ẑt−1
⊤ψ(st, z) + max

∥u∥Vt−1
≤βt

u⊤ψ(st, z) (119)

≤ ẑt−1
⊤ψ(st, z) + max

∥u∥Vt−1
≤βt

∥u∥Vt−1
∥ψ(st, z)∥V −1

t−1
(120)

= ẑt−1
⊤ψ(st, z) + βt ∥ψ(st, z)∥V −1

t−1
(121)

where the equality is attained by

u⋆ = βt
V −1
t−1ψ(st, z)

∥ψ(st, z)∥V −1
t−1

(122)

B ADDITIONAL EXPERIMENTS

B.1 HOW MUCH COMPUTE DOES OPTI-BFM NEED?

To estimate the compute cost of OpTI-BFM, we measure the time for the action selection and update
steps on an Nvidia RTX 4090, skipping the first few calls to avoid measuring JIT compilation time.
Table 1 shows that OpTI-BFM and OpTI-BFM-TS are about 5x and 4x slower than running just the
policy (Oracle) respectively.

Table 1: Computational cost of OpTI-BFM compared to running just the policy on an Nvidia RTX
4090 GPU. OpTI-BFM is about 5x and OpTI-BFM-TS about 4x slower.

Oracle (πzr) OpTI-BFM OpTI-BFM-TS

Time per Step 0.772 ms 3.567 ms 2.756 ms
Frequency 1386 Hz 280 Hz 363 Hz

B.2 REQUESTING REWARD LABELS EXPLICITLY

We have so far assumed that each environment interaction provides a reward label, and is thus
synonymous with the labeling cost. One could also consider a setting where the agent can decide
whether it wants to observe the reward label in each transition. A very simple approach in this setting
is to threshold the D-gap (Kiefer & Wolfowitz, 1960; Lattimore & Szepesvári, 2020), which describes
how much the confidence ellipsoid shrinks for a new ϕt.

∆(ϕt) = log det(Vt−1 + ϕtϕ
⊤
t)− log detVt−1 = log

(
1 + ∥ϕt∥2V −1

t−1

)
(123)

This approach can be directly applied to OpTI-BFM by introducing a hyper-parameter κ and only
requesting rt if ∆(ϕt) ≥ κ. We evaluate labeling efficiency for this variant: for each labeling budget
n (# Samples), we measure average rewards at the time step t in which the budget is exhausted,
i.e. 1

t

∑t
i=1 rt. This is presented in Fig. 7 (see also Fig. 19 and Fig. 20 for per-task results). We

observe that κ trades-off environment interaction and labeling cost: for higher κ, good performance
is achieved with fewer labels, but more episodes are required to request the same number of labels.
Given a specific cost for labels, a slightly more involved thresholding scheme (Tucker et al., 2023)
could potentially be used to decide the threshold apriori. Surprisingly, this variant of OpTI-BFM
can maintain the performance of the main algorithm, especially in easier tasks, while reducing the
amount of labeled data by one order of magnitude.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

101 102 103 104

#Samples

0.00

0.25

0.50

0.75
Av

er
ag

e
Re

wa
rd

walk

101 102 103 104

#Samples

0.0

0.1

0.2

Av
er

ag
e

Re
wa

rd

run

101 102 103 104

#Samples

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

walk_backward

101 102 103 104

#Samples

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

Re
wa

rd

run_backward

OpTI-BFM-TS (= 0.0)
OpTI-BFM (= 0.0)

= 0.03
= 0.03

= 0.1
= 0.1

= 0.3
= 0.3

Figure 7: Average reward in Cheetah at different numbers of requested reward labels (# Samples) of
our main methods for different information thresholds κ. We stop interaction after 30k environment
steps. κ trades-off interaction cost with labeling cost. More than one order of magnitude less reward
labels can still result in the same performance in easier tasks! We report per method results of all
environments in Fig. 20 and Fig. 19

2 4 6 8 10
Episode

0.6

0.8

1.0

1.2

Re
la

tiv
e

Pe
rfo

rm
an

ce

cheetah

2 4 6 8 10
Episode

0.4

0.6

0.8

1.0

1.2
quadruped

2 4 6 8 10
Episode

0.6

0.8

1.0

walker

OpTI-BFM (ours) OpTI-BFM+grad. (ours)

Figure 8: Relative performance after different # of environment interactions of OpTI-BFM and
OpTI-BFM +grad; the latter is a variant that optimizes the USB objective through 8 gradient steps.
Performances are similar; we report per-task results in Fig. 18 in Appendix C.

B.3 FIRST-ORDER OPTIMIZATION OF THE UCB OBJECTIVE

This section introduces a variant of OpTI-BFM which uses gradient ascent to optimize the UCB
objective:

argmax
z∈Z

ψ(st, z)
⊤ẑt−1 + βt ∥ψ(st, z)∥V −1

t−1
, (124)

as opposed to the random shooting approach we describe in Section 4. We validate this variant
empirically on walker tasks, relying on the Adam (Kingma & Ba, 2017) optimizer with a learning
rate of 0.1 to perform 2, 4, 8, or 16 gradient steps in each step, and maintaining the optimizer state
throughout. At each step, we utilize ẑt−1 to warm-start the optimization procedure. We report
overall return curves in Fig. 8, and an ablation of compute costs in Fig. 9. We observe that, given
a sufficient number of gradient steps, this variant approaches the main instantiation of our method
in performance. However, compute requirements for gradient ascent scale linearly with the number
of gradient steps, and surpass those of random shooting. Considering that state embeddings are, for
most BFMs, relatively low-dimensional (e.g. d = 50), we conclude that random shooting approach
should be preferred, as it is also less prone to fall into local optima. For very high-dimensional task
spaces, first-order optimization remains however a promising option.

B.4 OPTI-BFM FOR LOCO-NAVIGATION

To evaluate effectiveness beyond the locomotion experiments presented in the main text, we eval-
uate OpTI-BFM in antmaze-medium-navigate-v0, from the OGBench (Park et al., 2024a)
benchmark. By default, this environment defines an indicator function reward that is 1 if the piloted
quadruped reaches a certain goal position, at which point the episode terminates immediately. To
make this environment consistent with our theory, we change the task to “holding” the goal position:
the episode does not terminate until 1000 steps are accumulated. Furthermore, we slightly increase
the radius of the sparse reward to cover the maze cell containing the goal, as seen in Fig. 10b in green,
as reaching the goal exactly is otherwise challenging during online learning. As is common in this

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Episode

400

600

800
Re

tu
rn

stand

2 4 6 8 10
Episode

400

600

800

Re
tu

rn

walk

2 4 6 8 10
Episode

100

200

300

400

Re
tu

rn

run

2 4 6 8 10
Episode

200

400

600

Re
tu

rn

flip

16 samples
32 samples

64 samples
128 samples

2 grad. steps
4 grad. steps

8 grad. steps
16 grad. steps

(a) Absolute performance for different # of samples or gradient steps.

2 4 8 16
grad. steps

200

225

250

275

300

325

Hz
 [s

1]

16 32 64 128
samples

OpTI-BFM+grad. OpTI-BFM

(b) Inference speed in Hz for different # of samples or gradient steps.

Figure 9: Performance and inference speed of OpTI-BFM, and a gradient-based variant (OpTI-BFM
+grad). The performance gap is moderate, but the computational cost of the gradient-based variant is
generally higher.

10 20 30
Episode

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

task1

10 20 30
Episode

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

task2

10 20 30
Episode

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

task3

10 20 30
Episode

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

task4

10 20 30
Episode

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

task5

Oracle OpTI-BFM (ours)

(a) Success Rate over 30 episodes.

Or
ac

le
Op

TI
-B

FM

(b) The first 9 trajectories (left-to-right) of Oracle and OpTI-BFM in Task 2. The initial state is in the top left
(red) and the goal is to reach and stay in the cell in the bottom right (green), which assigns a reward of 1 at
each step. OpTI-BFM explores the whole maze before finally exploiting the reward it has seen in the green cell.
We attribute any perceived exploration behavior of the Oracle to the high behavior cloning coefficient that is
necessary to train policies that perform well in this setting.

Figure 10: OpTI-BFM can infer a goal-reaching task in the OGBench (Park et al., 2024a) loconaviga-
tion environent antmaze-medium-navigate-v0.

benchmark (Park et al., 2024a), we introduce a behavior cloning coefficient of 0.01 to the actor loss
in pre-training, as the pre-training data contains near-expert navigation behavior as opposed to the
high-coverage exploration data in ExORL. Results shown in Fig. 10 are consistent with our main
evaluation: OpTI-BFM can reach near-Oracle performance within a handful of episodes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Episode

400

600

800
Re

tu
rn

walk

2 4 6 8 10
Episode

100

200

300

Re
tu

rn

run

2 4 6 8 10
Episode

0

250

500

750

Re
tu

rn

walk_backward

2 4 6 8 10
Episode

0

50

100

150

200

Re
tu

rn

run_backward

Oracle Random =0.0 =100.0 =300.0 =1000.0

Figure 11: Performance of OpTI-BFM over 10 episodes in the Cheetah environment with a mismatch
between ψ and ϕ (see Eq. (125)) of magnitude α. Performance deteriorates as α increases.

B.5 OPTI-BFM WITH INACCURATE SUCCESSOR FEATURES

To investigate how robust OpTI-BFM is to violations of assuption A1, we evaluate its performance
when introducing a systematic mismatch between the discounted sum of ϕ and ψ. Concretely, we let
OpTI-BFM use

ψ′(st, z) = ψ(st, z) + α · MLP(z; θ) (125)

where MLP is a two layer network with ReLU activation and L2-normalized outputs, and θ are
randomly sampled weights, which we resample at the start of task inference. This additional
MLP introduces a systematic, z-dependent bias, whose magnitude may be controlled through the
hyperparameter α. To avoid confounding factors as much as possible, we adopt an optimization
procedure that samples z from the whole Z to optimize the UCB objective, increasing the number
of samples to n = 512. As expected, Fig. 11 shows that performance deteriorates as we increase
α; very large values of α (≈ 1000) are necessary to render OpTI-BFM completely uninformative,
and approach performance of the random baseline. As the norm of ψ is generally bounded by
1

1−γ

√
d ≈ 350, these constitute significant perturbations.

B.6 OPTI-BFM WITH NON-LINEAR REWARDS

This section investigates how a violation of assumption A2, i.e. linearity of rewards in the features ϕ,
impacts performance of OpTI-BFM. In order to isolate this effect as much as possible from other
factors (e.g., how hard the task specified by a reward function is), we consider a family of reward
functions with increasingly larger orthogonal components to the feature space. Starting from an
existing reward function r(s), we project it to the feature space, obtaining zr, and then extract its
orthogonal component e(s) = r(s) − ϕ(s)⊤zr by training a small network. We can then control
linearity of rewards and investigate performance under the reward function

rα(s) = z⊤r ϕ(s) + α · e(s). (126)

Note that r0(s) = z⊤r ϕ(s) which has 0 projection error, and r1(s) recovers r(s). While this technique
can approximately disentangle reward components, for α > 1 the reward function might increase
in scale: episodic performance might thus actually grow with projection error. Furthermore, the
function approximation of e might be inaccurate, meaning that α does not allow directly tuning the
projection error. We can nonetheless compare the return of OpTI-BFM (upon convergence, i.e. at
its 10th episode) with that of the Oracle, over a range of mean absolute projection errors, as Fig. 12.
While the results are increasingly noisy, as the error increases far beyond ranges encountered for
existing rewards, OpTI-BFM seems to suffer slightly more in specific tasks—generally achieving
worse performance compared to the Oracle for similarly misaligned reward functions. This may be
explained by the fact that OpTI-BFM relies on linearity for both data collection and task inference,
while the Oracle relies on independently collected data.

B.7 CAN OPTI-BFM LEARN FROM NOISY REWARDS?

In this section we evaluate the performance of OpTI-BFM under noisy reward feedback. To this end,
we add zero-mean Gaussian noise to the observed rewards with different standard deviations σ. As
predicted by Eq. (66), we see in Fig. 13 that convergence is slower for higher standard deviations.
Adjusting the hyper-parameter β = 10 for σ = 10 did improve performance slightly, but with a noise
level that is 10x higher than the reward of the environment rt ∈ [−1, 1] convergence remains slow.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
|r zr|

0

1000

2000

3000

Re
tu

rn
 o

f 1
0t

h
ep

iso
de

walk

0.0 0.5 1.0 1.5 2.0
|r zr|

500

0

500

1000
run

0.0 0.5 1.0 1.5 2.0
|r zr|

0

1000

2000

walk_backward

0.0 0.5 1.0 1.5 2.0
|r zr|

500

0

500

1000

run_backward

Oracle OpTI-BFM Original r = r1

Figure 12: Return of the 10th episode of Oracle and OpTI-BFM in the Cheetah environment when
artificially increasing or decreasing the projection error of the reward function onto ϕ through a
learned network.

5 10 15 20
Episode

200

400

600

800

1000

Re
tu

rn

walk

5 10 15 20
Episode

0

200

Re
tu

rn

run

5 10 15 20
Episode

0

250

500

750

1000

Re
tu

rn

walk_backward

5 10 15 20
Episode

0

200
Re

tu
rn

run_backward

=0.0 =0.1 =1.0 =10.0 Oracle

Figure 13: Performance of OpTI-BFM over 10 episodes in the Cheetah environment when adding
Gaussian noise with different standard deviations to the rewards it observes. Convergence slows
down as the noise is increased.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C FULL EXPERIMENTAL RESULTS

2 4 6 8 10
Episode

400

600

800

Re
tu

rn
stand

2 4 6 8 10
Episode

200

400

600

800

Re
tu

rn

walk

2 4 6 8 10
Episode

100

200

300

400

Re
tu

rn

run

2 4 6 8 10
Episode

200

400

600

Re
tu

rn

flip

Oracle Random LoLA OpTI-BFM-TS (ours) OpTI-BFM (ours)

(a) DMC Walker

2 4 6 8 10
Episode

200

400

600

800

Re
tu

rn

walk

2 4 6 8 10
Episode

100

200

300

Re
tu

rn
run

2 4 6 8 10
Episode

0

250

500

750

Re
tu

rn

walk_backward

2 4 6 8 10
Episode

0

50

100

150

200

Re
tu

rn

run_backward

Oracle Random LoLA OpTI-BFM-TS (ours) OpTI-BFM (ours)

(b) DMC Cheetah

2 4 6 8 10
Episode

200

400

600

800

Re
tu

rn

stand

2 4 6 8 10
Episode

200

400

600

Re
tu

rn

jump

2 4 6 8 10
Episode

200

400

600

Re
tu

rn

walk

2 4 6 8 10
Episode

100

200

300

400

500

Re
tu

rn

run

Oracle Random LoLA OpTI-BFM-TS (ours) OpTI-BFM (ours)

(c) DMC Quadruped

Figure 14: Episode Return over 10 episodes (10k steps) of interaction in DMC.

D TRAINING PROTOCOL

D.1 FORWARD BACKWARD FRAMEWORK

We use the forward backward (FB) framework (Touati & Ollivier, 2021) as the base BFM throught
our experiments. To fully explain FB, we quickly introduce the successor measure (Dayan, 1993;
Blier et al., 2021) Mπ; it is defined as

Mπ(s0, a0, X) =
∑
t≥0

γt Pr[st ∈ X|s0, a0, π]. (127)

and can be thought of as the discounted state occupancy of a policy π when starting in s0, a0. FB
then learns the low-rank decomposition of the successor measure density w.r.t. the empirical dataset
measure Dtrain(ds):

Mπz (s, a, ds+) = F (s, a, z)⊤B(s+)Dtrain(ds
+). (128)

where the policy should satisfy

πz(a|s) > 0 =⇒ a ∈ argmax
a

F (s, a, z)⊤z. (129)

The successor measure and successor features are closely related, since we have that

ψπ(s, a) =

∫
Mπ(s, a, ds+)ϕ(s+). (130)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

102 103 104

n

400

600

800

Re
tu

rn

stand

102 103 104

n

200

400

600

800

Re
tu

rn

walk

102 103 104

n

100

200

300

400

Re
tu

rn

run

102 103 104

n

200

400

600

Re
tu

rn

flip

RND Random OpTI-BFM-TS (ours) OpTI-BFM (ours) 50k i.i.d. Samples

(a) DMC Walker

102 103 104

n

200

400

600

800

Re
tu

rn

walk

102 103 104

n

100

200

Re
tu

rn
run

102 103 104

n

200

400

600

800

Re
tu

rn

walk_backward

102 103 104

n

0

50

100

150

200

Re
tu

rn

run_backward

RND Random OpTI-BFM-TS (ours) OpTI-BFM (ours) 50k i.i.d. Samples

(b) DMC Cheetah

102 103 104

n

500

600

700

800

900

Re
tu

rn

stand

102 103 104

n

400

500

600

700

Re
tu

rn

jump

102 103 104

n

200

400

600

Re
tu

rn

walk

102 103 104

n

200

300

400

500

Re
tu

rn

run

RND Random OpTI-BFM-TS (ours) OpTI-BFM (ours) 50k i.i.d. Samples

(c) DMC Quadruped

Figure 15: Per task results of Fig. 3. We show absolute performance here and include the Oracle
performance (gray line).

Following Touati & Ollivier (2021) (Theorem 13), we thus have for FB∫
B(s+)Mπ

z (s, a, ds
+) =

∫
B(s+)B(s+)⊤Dtrain(ds

+)F (s, a, z) (131)

= Es∼Dtrain [B(s+)B(s+)⊤]F (s, a, z) (132)
= (CovDtrainB)F (s, a, z) (133)

so F (s, a, z) are SFs of features ϕ(s) = (CovDtrainB)−1B(s). Task inference for FB with labeled
dataset D then effectively becomes

zr = (CovDϕ)
−1E[ϕ(s)r(s)] (134)

=
(
CovD

(
(CovDtrainB)−1B

))−1
(CovDtrainB)−1E[B(s)r(s)] (135)

= (CovDtrainB)(CovDB)−1(CovDtrainB)(CovDtrainB)−1E[B(s)r(s)] (136)

= (CovDtrainB)(CovDB)−1E[B(s)r(s)] (137)

which is consistent with Touati & Ollivier (2021) (Proposition 15). In practice we pre-compute
(CovDtrainB) with 50k samples from Dtrain after training.

D.2 PRE-TRAINING

As is the standard in zero-shot RL benchmarks (Touati et al., 2023; Agarwal et al., 2025b), we train
our FB model using an offline dataset collected with RND (Burda et al., 2018; Yarats et al., 2022)
consisting of 10M transitions.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

10 20 30 40 50
Episode

200

400

600

800

Re
tu

rn

stand

10 20 30 40 50
Episode

0

200

400

600

800

Re
tu

rn

walk

10 20 30 40 50
Episode

100

200

300

400

Re
tu

rn

run

10 20 30 40 50
Episode

200

400

600

Re
tu

rn

flip

Oracle Random LoLA OpTI-BFM-TS (ours) OpTI-BFM (ours)

(a) DMC Walker

10 20 30 40 50
Episode

200

400

600

800

Re
tu

rn

walk

10 20 30 40 50
Episode

100

200

300
Re

tu
rn

run

10 20 30 40 50
Episode

0

250

500

750

1000

Re
tu

rn

walk_backward

10 20 30 40 50
Episode

0

100

200

Re
tu

rn

run_backward

Oracle Random LoLA OpTI-BFM-TS (ours) OpTI-BFM (ours)

(b) DMC Cheetah

10 20 30 40 50
Episode

200

400

600

800

Re
tu

rn

stand

10 20 30 40 50
Episode

200

400

600

Re
tu

rn

jump

10 20 30 40 50
Episode

200

400

600

Re
tu

rn
walk

10 20 30 40 50
Episode

100

200

300

400

500

Re
tu

rn

run

Oracle Random LoLA OpTI-BFM-TS (ours) OpTI-BFM (ours)

(c) DMC Quadruped

Figure 16: Episode Return over 50 episodes (50k steps) of interaction in DMC when only allowing
switching of the task embedding at the start of episodes. Note that LoLA resamples its task embedding
every 50-250 steps (hyper-parameter).

FB is trained using 3 losses. Firstly, the successor measure loss (Blier et al., 2021)

LFB(z) = Es,a,s′∼Dtrain
a′∼πz(·|s′)

Es+∼Dtrain

[
− 2F (s, a, z)⊤B(s′) (138)

+
(
F (s, a, z)⊤B(s+)− γF (s′, a′, z)⊤B(s+)

)2]
, (139)

where F ,B are target networks, secondly, an orthogonality regularizing loss on B

Lortho = E s∼Dtrain
s′∼Dtrain

[
−2 ∥B(s)∥22 +B(s)⊤B(s′)

]
, (140)

and thirdly a DDPG-style loss for π:

Lπ(z) = Es∼DtrainEa∼πz(·|s)
[
−F (s, a, z)⊤z

]
, (141)

using the reparameterization trick for Gaussian policies.

D.3 ARCHITECTURE AND HYPER-PARAMETERS

We choose to follow the implementation details of the most recent work on FB (Tirinzoni et al., 2025),
specifically their implementation for DMC in the released code-base. The B-network is a 3-layer
MLP. The F is an ensemble of size 2 with each two 2-layer MLPs to encode the arguments (s, a)
and (s, z) that are then concatenated and fed into another 2-layer MLP. π uses two 2-layer MLPs to

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Episode

400

600

800
Re

tu
rn

stand

2 4 6 8 10
Episode

500

600

700

800

900

Re
tu

rn

walk

2 4 6 8 10
Episode

200

300

400

Re
tu

rn

run

2 4 6 8 10
Episode

300

400

500

600

Re
tu

rn

flip

Oracle n = 0 n = 10 n = 25 n = 50 n = 100

(a) DMC Walker

2 4 6 8 10
Episode

600

800

Re
tu

rn

walk

2 4 6 8 10
Episode

100

200

300
Re

tu
rn

run

2 4 6 8 10
Episode

200

400

600

800

Re
tu

rn

walk_backward

2 4 6 8 10
Episode

50

100

150

200

Re
tu

rn

run_backward

Oracle n = 0 n = 10 n = 25 n = 50 n = 100

(b) DMC Cheetah

2 4 6 8 10
Episode

400

600

800

1000

Re
tu

rn

stand

2 4 6 8 10
Episode

400

500

600

700

Re
tu

rn

jump

2 4 6 8 10
Episode

400

600

Re
tu

rn
walk

2 4 6 8 10
Episode

200

300

400

500

Re
tu

rn

run

Oracle n = 0 n = 10 n = 25 n = 50 n = 100

(c) DMC Quadruped

Figure 17: Return of OpTI-BFM when warm-starting with n i.i.d. labeled states from the pre-training
dataset.

encode the arguments s and (s, z) and then also another 2-layer MLP to map from the concatenated
layers to a mean µ. The policy is then a truncated Gaussian with fixed standard deviation of σ = 0.2
that truncates at 1.5σ. The rest of the pre-training hyper-parameters are listed in Table 2 below. The
task embedding space of FB is the d-dimensional hyper-sphere since the optimal policy πz is invariant
to the scale of the reward function. Note that OpTI-BFM cannot make this simplification because it
tries to estimate the hidden parameter of the reward function and not the latent that is plugged into
the policy. We can recover the latter easily with an L2 normalization.

E EXPERIMENT PROTOCOL

We evaluate our methods on a common zero-shot RL benchmark (Touati et al., 2023; Agarwal et al.,
2025b). The benchmark consists of the Walker, Cheetah, and Quadruped environments from DMC
(Tassa et al., 2018) with four tasks (reward functions) each. Note that each task has randomized
initial states, so when evaluating single episode performance, e.g. Fig. 15, we report the mean over 20
episodes. And when evaluating task inference performance over multiple episode, e.g., Figs. 2 and 16,
we report the mean over 10 trials. All error-bars and shaded regions denote min-max-intervals over
three training seeds around mean performance.

E.1 CUSTOM WALKER VELOCITY TASKS

The custom tasks we implement for DMC Walker Fig. 5 consist of only the velocity tracking
components of the stand, walk, and run tasks. Further note that, by default, higher velocity is
always allowed: a running policy will also perform rather well in standing. For this reason, we modify

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Episode

400

600

800

Re
tu

rn

stand

2 4 6 8 10
Episode

600

800

Re
tu

rn

walk

2 4 6 8 10
Episode

200

300

400

Re
tu

rn

run

2 4 6 8 10
Episode

300

400

500

600

Re
tu

rn

flip

Oracle OpTI-BFM (ours) OpTI-BFM+grad. (ours)

(a) DMC Walker

2 4 6 8 10
Episode

600

700

800

900

Re
tu

rn

walk

2 4 6 8 10
Episode

100

150

200

250

300
Re

tu
rn

run

2 4 6 8 10
Episode

200

400

600

800

Re
tu

rn

walk_backward

2 4 6 8 10
Episode

50

100

150

200

Re
tu

rn

run_backward

Oracle OpTI-BFM (ours) OpTI-BFM+grad. (ours)

(b) DMC Cheetah

2 4 6 8 10
Episode

400

600

800

1000

Re
tu

rn

stand

2 4 6 8 10
Episode

200

400

600

Re
tu

rn

jump

2 4 6 8 10
Episode

400

600

Re
tu

rn
walk

2 4 6 8 10
Episode

100

200

300

400

500

Re
tu

rn

run

Oracle OpTI-BFM (ours) OpTI-BFM+grad. (ours)

(c) DMC Quadruped

Figure 18: Return of OpTI-BFM and OpTI-BFM +grad. that use random-shooting and gradient
ascent respectively to optimize the UCB objective. The two variants perform very similarly.

the velocity reward bonus so that it is 1 if the velocity matches the target exactly, and then linearly
tapers to 0.5 when off by 2. From there, the reward then directly drops to 0.

F INFERENCE HYPER-PARAMETERS

For each experiment and method we perform a grid-search over hyper-parameters. We then choose
the hyper-parameters with highest overall cumulative return per environment for each method to
report performance.

F.1 OPTI-BFM

We found both OpTI-BFM and OpTI-BFM-TS to be very robust to the hyper-parameters we tested.
For each method we consider a single hyper-parameter with three values each: For UCB, we test a
fixed βt = β ∈ {1.0, 0.1, 0.001}. For TS, we test σ ∈ {0.1, 0.001, 0.0001}. This means all other
parameters where held constant. Specifically, ρ = 1 and λ = 1 if not reported otherwise (Fig. 5). The
number of samples for the UCB optimization was n = 128 throughout if not specified otherwise.

F.2 LOLA

For LoLA we consider a range of hyper-parameters to trade-off exploration, update frequency, update
step-size, and variance in the gradient. We search all combinations of:

• horizon length and task embedding update rate {50, 100, 250} as in (Sikchi et al., 2025);

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

101 102 103 104

#Samples

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

stand

101 102 103 104

#Samples

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

walk

101 102 103 104

#Samples

0.1

0.2

0.3

Av
er

ag
e

Re
wa

rd

run

101 102 103 104

#Samples

0.2

0.4

0.6

Av
er

ag
e

Re
wa

rd

flip

OpTI-BFM (= 0.0) = 0.03 = 0.1 = 0.3

(a) DMC Walker

101 102 103 104

#Samples

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

walk

101 102 103 104

#Samples

0.0

0.1

0.2
Av

er
ag

e
Re

wa
rd

run

101 102 103 104

#Samples

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

walk_backward

101 102 103 104

#Samples

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

Re
wa

rd

run_backward

OpTI-BFM (= 0.0) = 0.03 = 0.1 = 0.3

(b) DMC Cheetah

101 102 103 104

#Samples

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

stand

101 102 103 104

#Samples

0.2

0.4

0.6

Av
er

ag
e

Re
wa

rd

jump

101 102 103 104

#Samples

0.2

0.4

0.6

Av
er

ag
e

Re
wa

rd
walk

101 102 103 104

#Samples

0.1

0.2

0.3

0.4

Av
er

ag
e

Re
wa

rd

run

OpTI-BFM (= 0.0) = 0.03 = 0.1 = 0.3

(c) DMC Quadruped

Figure 19: Average reward of OpTI-BFM at different numbers of requested reward labels (# Samples)
for different information thresholds κ. We stop interaction after 30k environment steps. κ trades-off
interaction cost with labeling cost. More than one order of magnitude less reward labels can still
result in the same performance in easier tasks.

• learning rate {0.1, 0.05} as in (Sikchi et al., 2025);
• standard deviation of the Gaussian on the task embedding {0.05, 0.1, 0.2}.
• The batch size reported in Sikchi et al. (2025) is 5-10: we thus consider a replay buffer of

1000, which results in an effective batch size of 20, 10, and 4 for the respective update rates.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

101 102 103 104

#Samples

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

stand

101 102 103 104

#Samples

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

walk

101 102 103 104

#Samples

0.1

0.2

0.3

0.4

Av
er

ag
e

Re
wa

rd

run

101 102 103 104

#Samples

0.2

0.4

0.6

Av
er

ag
e

Re
wa

rd

flip

OpTI-BFM-TS (= 0.0) = 0.03 = 0.1 = 0.3

(a) DMC Walker

101 102 103 104

#Samples

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

walk

101 102 103 104

#Samples

0.0

0.1

0.2
Av

er
ag

e
Re

wa
rd

run

101 102 103 104

#Samples

0.0

0.2

0.4

Av
er

ag
e

Re
wa

rd

walk_backward

101 102 103 104

#Samples

0.00

0.05

0.10

Av
er

ag
e

Re
wa

rd

run_backward

OpTI-BFM-TS (= 0.0) = 0.03 = 0.1 = 0.3

(b) DMC Cheetah

101 102 103 104

#Samples

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

stand

101 102 103 104

#Samples

0.4

0.6

Av
er

ag
e

Re
wa

rd

jump

101 102 103 104

#Samples

0.2

0.4

0.6

Av
er

ag
e

Re
wa

rd
walk

101 102 103 104

#Samples

0.1

0.2

0.3

0.4

Av
er

ag
e

Re
wa

rd

run

OpTI-BFM-TS (= 0.0) = 0.03 = 0.1 = 0.3

(c) DMC Quadruped

Figure 20: Average reward of OpTI-BFM-TS at different numbers of requested reward labels (#
Samples) for different information thresholds κ.

Table 2: FB Hyper-Parameters.

Name Value

discount γ 0.98
batch size 1024
training steps 2M

optimizer adam
learning rate 1e-4
target network update factor 0.01

weight of Lortho 1.0
Q-value penalty 0.5

fixed actor standard deviation 0.2
actor sample noise clipping 0.3
z sampling 50% Dtrain and 50% Random

dimension d 50
B network final activation L2 normalization
B network hidden dimension 256
F network hidden dimension 1024
π network hidden dimension 1024
all networks first activation Layernorm + Tanh
all other activations relu

34

	Introduction
	Preliminaries
	Optimistic Task Inference for Behavior Foundation Models
	Setting: Task inference at Test-time
	Method: OpTI-BFM
	Guarantees

	Practical Algorithm
	Experiments
	How does OpTI-BFM compare to other online task inference methods?
	Is the data collected actively by OpTI-BFM informative?
	Are frequent updates important?
	Can OpTI-BFM adapt to non-stationary rewards?
	Can OpTI-BFM warm-start from labeled data?

	Related Work
	Conclusion
	Proofs
	Setting
	Assumptions
	Regret
	OpTI-BFM

	Return-level vs. Reward-level feedback
	Confidence Ellipsoids
	Regret Bound
	Regret Bound under Weaker Assumptions
	Useful Properties
	Determinants
	Elliptical Potential Lemma
	UCB Optimisation

	Additional Experiments
	How much compute does OpTI-BFM need?
	Requesting Reward Labels Explicitly
	First-order Optimization of the UCB Objective
	OpTI-BFM for Loco-navigation
	OpTI-BFM with Inaccurate Successor Features
	OpTI-BFM with Non-linear Rewards
	Can OpTI-BFM learn from noisy rewards?

	Full Experimental Results
	Training Protocol
	Forward Backward Framework
	Pre-training
	Architecture and Hyper-parameters

	Experiment Protocol
	Custom Walker Velocity Tasks

	Inference Hyper-Parameters
	OpTI-BFM
	LoLA

