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Abstract

Tubular-like system shape analysis is quite difficult in geometry and topology, while
it is widely used in plants and organs analysis in practice. However, traditional
discrete representations such as voxels and point clouds often require substantial
storage and may lead to the loss of fine-grained geometric and topological details.
To address these challenges, we propose SE(3)-BBSCformerGCN, a novel frame-
work for learning shape-aware representations from continuous tubular topological
manifolds with equivariance to rotations and translations. Our approach leverages
Ball B-Spline Curve (BBSC) to define tubular manifolds and its functional space.
We provide a formal mathematical definition and analysis of the resulting mani-
folds and the BBSC functional space, and incorporate an equivariant mapping that
preserves geometric and topological stability. Compared to the point cloud and
voxel based representations, our manifold-based formulation significantly reduces
data complexity while preserving geometric attributes together with topological
features. We validate our method on the branch classification task for Circle of
Willis (CoW) on the TopCoW 2024 dataset and the clinical dataset. Our method
consistently outperforms voxel and point cloud based baselines in terms of classifi-
cation performance, generalization ability, convergence speed, and robustness to
overfitting.

1 Introduction

Tubular structures play a vital role in a wide range of tasks across computer vision, computer graphics,
and interdisciplinary domains, including vascular segmentation [1], classification [2], and traffic
network planning [3, 4]. However, the analysis of tubular-like models is quite difficult in both
geometry and topology. From a geometric perspective, the branch morphology within tubular-like
models varies significantly, with marked differences in tortuosity among individuals for branches
of the same designation. From a topological perspective, the morphology and connectivity of the
branches are not unique. Certain branches are prone to stenosis, absence, or duplication, and tubular-
like model structures frequently exhibit fusion or crossover. Meanwhile, both the geometric structure
and topological configuration of tubular-like models, such as vascular networks, may vary across
different subjects or even between different scans of the same subject.

The B-Spline model [5, 6, 7], along with its extensions such as Ball B-Spline Curves (BBSC) [8],
serves as an industry-standard tool widely adopted in computer graphics and computer-aided design
(CAD). In this work, we propose a compact and differentiable representation for tubular structures
based on BBSC, using a small set of control points, radii, and knot vectors. Compared to existing
voxel-based methods [9] and point cloud-based methods [10], our model not only reduces storage
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overhead, but also enables accurate and interpretable geometric encoding. To enhance interpretability,
we further define a smooth manifold structure over BBSC. To mitigate the sensitivity of geometric
feature extraction to rigid transformations, we adopt a group-equivariant approach [11] and propose
SE(3)-BBSCformer, a model that operates directly on the BBSC manifold and is equivariant under
rotations and translations. By incorporating SE(3)-equivariance[12], our method ensures consistent
feature extraction under arbitrary rotations and translations, leading to improved stability, accuracy,
and generalization in tubular structure analysis.

To model the inter-branch topological connectivity, we use Graph Convolutional Networks (GCNs)
[13] as the predominant approach for learning topological features. Building on this foundation, we
innovatively propose a tubular manifold representation based on BBSC and construct a topology-
aware SE(3)-equivariant network SE(3)-BBSCformerGCN on this manifold. Our main contributions
are as follows: 1) We define a compact and interpretable tubular manifold based on BBSC, construct
its associated functional space M, and propose a metric on M. An SE(3)-equivariant mapping,
which enhances geometric consistency and symmetry preservation, is constructed from M to a
higher-dimensional functional space S , forming the architecture of SE(3)-BBSCformer. 2) We define
a topologically glued structure composed of multiple BBSC manifolds and design a corresponding
GCN to model the topological relationships between manifolds, which plays a critical role in handling
structures with significant topological heterogeneity. 3) We conduct experiments on a multi-class
classification task of the Circle of Willis (CoW) [14, 15]. Our proposed SE(3)-BBSCformerGCN
demonstrates superior performance against voxel and point cloud state-of-the-art (SOTA) base-
lines—in terms of accuracy, computational efficiency, and generalization ability—on both a public
dataset and a clinical dataset collected in collaboration with a medical institution.

2 Related Work

Tubular structure extraction. Deep learning has been widely applied to tubular structure analysis
[16] . DSCNet [17] captures local vessel tortuosity via dynamic snake convolution, while DUNet
[18] integrates deformable convolutions into UNet [19] for retinal vessel segmentation. DDT [20]
employs a distance transform to enable geometry-aware voxel segmentation. Topological constraints
have also been proven essential. GraphMorph [21] and TopoLab [22] explicitly model topological
connections to improve performance on complex tubular structures. Meanwhile, TaG-Net [23]
combines PointNet [24] with GNN [25] to extract both geometric and topological features for more
accurate classification. The shape graph [26] models curves as edges and their intersections as nodes,
enabling mathematical analysis of graph shape variations. Moreover, it introduces a multi-scale
representation to simplify the expression of complex graphs. However, all these methods rely on
discrete representations—pixels, voxels, or point clouds. In contrast, we propose a differentiable
and compact representation using BBSC, enabling tubular structures to be modeled as manifolds
with faithful geometric and topological expressiveness. Specifically, we represent tubular branches
as BBSC-based nodes, while the connections between branches are treated as edges. This design
avoids the complex process of defining edge weights and instead focuses on capturing the geometric
characteristics of individual branches.

Group equivariant network. Group-equivariant models [11, 12] have become central in geometric
deep learning [27] due to their robustness and interpretability. Group-equivariant Convolutional
Networks (G-CNNs) [28] first introduced group symmetry into CNNs, showing strong performance
on symmetry-rich imaging tasks. This idea has since been extended to 3D shape feature extraction,
where models like Tensor Field Networks (TFN) [29], SE(3)-Transformer [30] incorporate SE(3)-
equivariance into point cloud processing, significantly boosting both performance and stability.
EquiTrack [31] achieves equivariance via steerable CNNs to process temporal sequences. SpaER
[32] propose the construction of equivariant spatial means using steerable CNN filters and introduced
an innovative use of self-attention mechanisms to process temporal sequences. MPerformer [33]
employs an SE(3)-Transformer for molecular perception. However, the potential of applying group-
equivariant models for geometric feature extraction in tubular structures has not been widely explored.
To the best of our knowledge, we are the first to construct a topology-aware and group-equivariant
network on manifolds and apply it to the shape analysis and feature extraction of tubular structures.
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3 Preliminaries

Ball B-Spline Curves (BBSCs). BBSC is an extension of B-Spline curves to spheres, with
each sphere defined by a control radius. This formulation provides a smooth representation for
tubular objects with varying thickness. Given a set of control points {P1, P2, . . . , Pn}, control
radii {r1, r2, . . . , rn}, and a set of basis functions N(t) which are computed by a knot vector
{t1, t2, . . . , tn+p+1}, a BBSC of degree p is defined as follows:

BBSC(t) =
n∑

i=0

Ni,p(t)Ci =

n∑
i=0

Ni,p(t) (Pi ; ri) =

(
n∑

i=0

Ni,p(t)Pi ;

n∑
i=0

Ni,p(t)ri

)
. (1)

The basis function of degree 0 is initialized as Ni,0 =

{
1, if ti ≤ t < ti+1,

0, otherwise.
, and the higher degree

basis function Ni,p(t) can be calculated by iteratively interpolating the knot vector ti, . . . , ti+p+1

and Ni,p−1(t), Ni+1,p−1(t) as follows:

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Ni+1,p−1(t). (2)

A BBSC consists of two parts: the center B-Spline curve γ(t) =
∑n

i=0Ni,p(t)Pi and the radius
function σ(t) =

∑n
i=0Ni,p(t)ri. Because γ(t) and σ(t) are calculated using the same basis function

(Equation (1) and Figure 1), they inherently inherit the mathematical properties of B-Spline curves,
including differentiability, local control, the convex hull property, and favorable topological char-
acteristics. More importantly, compared to voxels and point clouds, the BBSC representation can
continuously and differentiably represent a tubular object with a compact set of parameters, which
not only reduces storage and computational complexity, but also enhances theoretical interpretability
and enables accurate geometric and analytical modeling.

BA C

Figure 1: An example of BBSC. A. The 3D B-Spline curve is represented as a linear combination of
control points (red balls) and their associated basis functions. B. The tubular surface is formed by
sweeping balls (yellow balls) parameterized by control radii along the B-Spline curve. C. The BBSC
providing a smooth and flexible curve representation in 3D Euclidean space.

Group Representation. Group [34] is a concept from abstract algebra [35] used to describe
symmetries and related properties. A group G consists of a set equipped with a binary operation
◦ and satisfies the following properties: closure, associativity and the existence of an identity
element and an inverse element. The representation of a group G is a homomorphic mapping [36] ρ:
G 7→ GL(V),V ⊆ RD, which satisfies ∀g1, g2 ∈ G, ρ(g1 ◦ g2) = ρ(g1) ρ(g2). GL(V) denotes the
set of all invertible linear transformations on V and ρ(g) corresponds to the matrix representation
of group element g. The abstract group operation can be realized as the corresponding matrix
multiplication.

Group Equivariance. A function φ : X → Y is called G-equivariant if ∀g ∈ G, given a set of
transformation ρX (g) : X → X , ∃ a transformation ρY(g) : Y → Y , such that

φ(ρX (g)x) = ρY(g)φ(x), x ∈ X . (3)

Equation (3) can be simplified as φ(ρX (g)x) = φ(x) when the matrix representation of ρY(g) is an
identity matrix I . In this case, φ is called invariant. If the function φ is defined in a 3D Euclidean
space R3 and it is equivariant under both rotation and translation transformations in this space, the
function is referred to as 3D roto-translation equivariant (SE(3)-equivariant), the group is thus denoted
as SE(3).
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SE(3)-Transformer. The SE(3)-Transformer [30] is a deep learning-based method that applies
group-equivariance to auxiliary geometric features on 3D point clouds. It constructs a set of SE(3)-
equivariant basis kernels W coci ∈ R(2co+1)×(2ci+1) using spherical harmonics [37], corresponding
Clebsch-Gordan coefficients [38], and a learnable radial function. These are then integrated with an
attention mechanism [39] to form a group-equivariant network (see details in Appendix B.2). Given
an input f ciin with ci channels, the output f coout with co channels is obtained as follows:

f coout,i =W coco
V f coin,i +

∑
k

∑
j∈Ni

αi,jW
coci
V (xi − xj)f

ci
in,j , (4)

where the attention matrix is computed as follows:

q⃗i =
⊕
co

∑
ci

W coci
Q f ciin,i, k⃗i,j =

⊕
co

∑
ci

W coci
K (xi − xj)f

ci
in,j , αij =

exp(q⃗ T
i k⃗i,j)∑

j′∈Ni
exp(q⃗ T

i k⃗i,j)
. (5)

The direct sum
⊕

represents the concatenation of vectors. The attention mechanism is proven to
be SE(3)-equivariant [30], as it relies on the inner product of αij and W coci

V (xi − xj), which is an
SE(3)-equivariant operation.

4 Method and Analysis

Our method consists of two main components. First, we construct smooth BBSCs from discrete 3D
data and, from a manifold perspective, define and analyze both their properties and the space they
form. Second, we extend the SE(3)-Transformer to this manifold, yielding the SE(3)-BBSCformer
for learning on continuous structures. We further employ a GCN to capture topological relations
and design a pipeline (Figure 2) for branch classification in the CoW, a tubular arterial network with
specific topological connections.

4.1 BBSC Functional Space and SE(3) Equivariant Mapping

Definition 1. We define the p-degree BBSC functional space Mp with given P , r, τ from their
respective vector spaces as follows:

Mp = {β(P, r, τ) | (P, r, τ) ∈ Θ}, Θ = {P ∈ R3×n, r ∈ R>0, τ ∈ T}. (6)

where T = {ti ∈ [0, 1]|t1 ≤ t2 ≤ · · · ≤ tn+p+1} ∈ [0, 1]n+p+1, and β(P, r, τ) is the total structure
of BBSC (see Equation (1)), which is a two-dimensional manifold. In order to further stabilize BBSC,
we impose certain constraints on T = {ti ∈ [0, 1]|tp+1 < tp+2 < · · · < tn, t1 = · · · = tp+1 =
0, tn = · · · = tn+p+1 = 1}. The first and last p + 1 entries of the knot vector are set to 0 and 1,
respectively, to ensure that the two endpoints of the curve coincide with the first and last control points.
The parameter t in Equation (1) specifies positions along the curve but does not affect the overall
BBSC shape, serving only as an internal parameter independent of β ∈ Mp. Because β(P, r, τ) is a
linear combination of P and r, it has infinitely many continuous partial derivatives. By excluding the
first and last p+1 entries of τ , i.e., in the open subset of Mp that omits two boundary points, Ni,p(t)
becomes a recursive fractional linear function of τ , and is differentiable with respect to τ of arbitrary
order. Moreover, under the constraint that the middle entries of τ are strictly monotonically increasing,
β(P, r, τ) possesses infinitely many continuous partial derivatives. According to Equation (1), P , r,
and τ are in a separable product form. Consequently, their higher-order mixed partial derivatives can
be expressed as products of higher-order partial derivatives, which remain continuous. Therefore,
Mp can be regarded as C∞(Θ,Mp). The complete proof is provided in Appendix C.

The metric on Mp can be simply defined as a weighted sum of the L2 norms of the parameters as
follows:

g = ∥P − P̃∥2 + α∥r − r̃∥2 + η∥τ − τ̃∥2. (7)

Although the metric based on L2 norms provides a simple way to measure parameter variations, it
ignores the perturbations on Mp. Moreover, γ(t) and σ(t), which determine the BBSC shape, are
independent (hence P and r are independent), whereas τ simultaneously influences both. Thus, the
coupling between τ and P , r should be considered when defining the metric. To address this, we
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propose a metric that accounts for perturbations on Mp and parameter coupling. Concretely, we first
characterize perturbations in the tangent space of Mp as δγ and δσ as follows:

δγ =

n∑
i=1

Ni,p(t)δPi +

n∑
i=1

Pi
∂Ni,p(t)

∂τ
δτ, δσ =

n∑
i=1

Ni,p(t)δri +

n∑
i=1

ri
∂Ni,p(t)

∂τ
δτ. (8)

Given geometric perturbations δβ = (δγ, δσ) and δ̃β = (δ̃γ, δ̃σ) in the tangent space of Mp, we
define the following inner product as follows:

⟨δβ, δ̃β⟩Mp =

∫ 1

0

(
⟨δγ, δ̃γ⟩+ ηγ⟨

∂δγ

∂t
,
∂δ̃γ

∂t
⟩+ αδσδ̃σ + αησ

∂δσ

∂t

∂δ̃σ

∂t

)
ω(t)dt, (9)

where α ≥ 0, ηγ , ησ ≥ 0, and ω(t) denotes a weighting function. One may simply set ω(t) = 1 to
perform unweighted integration. However, we recommend using ω(t) = ∥γ′(t)∥, which corresponds
to arc-length weighting, thereby mitigating the effect of reparameterization and enhancing geometric
interpretability. The proposed inner product is inspired by the Sobolev H1 inner product [40, 41],
which incorporates not only the Euclidean inner product of (δγ, δσ) and (δ̃γ, δ̃σ) themselves, but
also their first-order derivatives. Because ⟨·, ·⟩ denotes the Euclidean inner product, it inherently
possesses rotation and translation invariance. Consequently, ⟨·, ·⟩Mp inherits these desirable geomet-
ric properties. Moreover, this inner product preserves the separability of parameters P and r, while
simultaneously coupling them with τ through Equation (8). Let θ = (P, r, τ) and δθ = (δP, δr, δτ).
Denote the Jacobian of β by Dβ(θ) = ∂β

∂θ . Then, the pullback metric can be finally written as
follows:

g = ⟨δθ, δ̃θ⟩Θ = ⟨δβ, δ̃β⟩Mp
= ⟨Dβ(θ)δθ,Dβ(θ)δ̃θ⟩Mp

(10)

Similarly, we can define the entire BBSC functional space M as follows.

Definition 2. M is called a BBSC functional space if it contains all existing Mp, as denoted as
M =

⋃
p≥0 Mp.

Definition 3. A mapping φ : Mp → S is deemed SE(3)-equivariant on Mp, if ∀β(P, r, τ) ∈ Mp

and ∀ transformations g ∈ SE(3), the following equation holds:

φ(β(ρMp(g)P, r, τ)) = ρS(g)φ(β(P, r, τ)). (11)

If φ is infinitely differentiable with respect to P , r, and τ , φ is a C∞ mapping on Mp, meaning it is
smooth as well.

Definition 4. GM is a manifold with topological relations constructed from the direct sum of disjoint
BBSC manifolds β1, β2, . . . βk ∈ M, which is defined as follows:

GM =

(⊔
i∈I

βi

)
/ ∼, ∼⊆

⊔
i∈I

βi ×
⊔
i∈I

βi. (12)

Specifically, GM is a topological manifold composed of multiple M with certain topological
relationships between them. GM can be viewed as a manifold with a gluing structure [42, 43, 44].

4.2 BBSC Manifold Construction

We follow [45] and adopt a similar BBSC fitting algorithm. Given a set of points V ∈ RN×3 from
tubular objects, we apply DiffusionNet [46] (details in Appendix B.1) to embed them and output a
BBSC, represented by control points P = {P1, P2, . . . , Pn}, control radii r = {r1, r2, . . . , rn}, and
a knot vector τ = {t1, t2, . . . , tn}. To ensure tp+2 < tp+3 < · · · < tn−1 and t1 = · · · = tp+1 =
0, tn = · · · = tn+p+1 = 1, we predict the differences of the inner knot vector ∇τ using a softmax
function, and then obtain the full knot vector by applying a cumulative sum and concatenating the
boundary zeros and ones. Considering all possible control parameter sets P ∈ R3×n and r ∈ Rn,
together with constrained knot vectors τ , we construct the functional space Mp endowed with a
smooth mapping β ∈ C∞(Θ,Mp).

We introduce an additional template spline β to constrain the shape of the BBSC centerline. We
minimize a loss function composed of two terms, the Hausdorff distance DH [47] between sampled
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points on the constructed BBSC β and the raw surface points, and the metric between β and β.
Note that the Hausdorff distance can be replaced by the Chamfer distance [48], and a regularization
term

∫ 1

0
κ2(t) dt, which can be used to enforce the global smoothness of the BBSC centerline and

can also be incorporated into the loss function. Based on these, we further incorporate topological
relationships among the β to construct the topological manifold GM.

4.3 SE(3)-BBSCformer and Graph Convolutional Networks
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Figure 2: The SE(3)-BBSCformerGCN takes vascular centerlines and surface point clouds as inputs.
A fitting module is first employed to construct BBSC. These spline-based manifold representations
are then mapped into a high-dimensional manifold space via the SE(3)-BBSCformer. Finally, a GCN
is utilized to process the topological relationships among the manifolds.

SE(3)-Transformer can be viewed as a mapping operating in a discrete space represented by a point
cloud. In contrast, the BBSC model is a smooth and continuous representation. To integrate the
advantages of both, we reconstruct the model and term it SE(3)-BBSCformer, which can be interpreted
as an SE(3) mapping defined on M. First, we compute the centroid of the control points P =

∑n
i=1 Pi

n
to serve as the virtual anchoring point, acting as a central hub for transmitting information between
the control points and generating the unit vector Pi−P

∥Pi−P∥ needed by SE(3)-BBSCformer. We initialize

the ci0 channel feature f ci0in as a combination of vectors generated from r and τ as follows:

f
ci0
in = (MLP(r), MLP(τ̃)) , τ̃ = ((t1, . . . , tp+1), . . . , (tn, . . . tn+p+1) ∈ Rn×(p+1).

Then we view each control point Pi as being connected with P and replace the xi and xj with Pi and
P in Equation (4) and (5). The resulting SE(3)-BBSCformer is defined as follows:

f coout,i =W coco
V f coin,i +

∑
k

αi,jW
coci
V (Pi − P )f ciin,j , (13)

where the attention matrix is computed as follows:

q⃗i =
⊕
co

∑
ci

W coci
Q f ciin,i, k⃗j =

⊕
co

∑
ci

W coci
K (Pj − P )f ciin,j , αij =

exp(q⃗ T
i k⃗j)∑n

j=1 exp(q⃗
T
i k⃗j)

. (14)

For convenience, we abbreviate SE(3)-BBSCformer as the mapping φ : Mp → S , where S denotes
the high-dimensional functional space. Variable φ(β) can be interpreted as the high-dimensional
representation of BBSC in S. If an object is a manifold with topological relationships, composed
of multiple β components as described in Definition 4, then GCN can be applied to capture the
topological relationships. Each BBSC manifold β ∈ GM is treated as a node in the graph G and
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φ(β) serves as the initial node feature v. For simplicity, we initialize the edge attribute e as the
difference between features of the connected node features. Then, the GCN is formulated as follows:

ei,j = MLP([vi, vj , ei,j ]), vi = MLP

vi, 1

∥j∥
∑
j∈Nj

MLP([vj , ei,j ])

 . (15)

Taking the CoW as an input example, we propose the SE(3)-BBSCformerGCN. The pipeline of our
model is shown in Figure 2.

4.4 Theoretical Analysis and Discussion of Advantages

The BBSC mainfold representation β is highly compact, allowing complex tubular shapes to be
described using only a small number of control parameters and knot vector, thereby substantially
reducing storage and computational costs. Moreover, the BBSC manifold exhibits strong control-
lability because its shape can be easily adjusted by modifying the control parameters and the knot
vector. Due to the smoothness of β, geometric and differential quantities such as normals, curvature,
and torsion can be accurately calculated at any position in the object, without relying on numerical
approximations that are prone to errors when estimated from discrete data [49, 50]. This property
endows the representation with stronger expressive power and improved theoretical interpretability.
Moreover, β can be shown to admit continuous higher-order partial and mixed derivatives for all
parameters, i.e., β ∈ C∞. This ensures that M forms a continuous and infinitely differentiable
functional space. Benefiting from these properties, the BBSC manifold representation is particularly
well-suited for modeling complex geometric tubular structures.

The SE(3)-equivariant mapping φ : M → S can be shown to be a C∞ mapping. Spherical
harmonics are also C∞ [51], so the differentiability of φ primarily depends on that of the MLP. In
turn, the MLP’s differentiability is determined by the choice of activation function. In this work, all
MLPs are constructed using GELU activations and linear layers, both of which are C∞ mappings.
Consequently, φ is a C∞ mapping from M to S that satisfies SE(3) equivariance. The group-
equivariant φ preserves the intrinsic symmetries of M when mapping to S , ensuring the stability of
its shape features. Moreover, the GCN designed to capture topological relationships maintains the
overall topological stability of the manifold space, thereby enhancing the model’s generalization and
robustness while remaining lightweight.

5 Experiments and Analysis

We evaluate the performance of our proposed model on the branch classification task for the CoW,
a critical arterial structure located at the base of the human brain. Experiments are conducted on
two datasets: the TopCoW dataset from the MICCAI 2024 Challenge [52], which contains 125
samples across 13 anatomical classes, and a clinical dataset collected from a collaborating medical
institution, comprising 1,182 samples across 22 classes. We focus on the CoW branch classification
task because it is a complex tubular structure characterized by both geometric and topological
properties, and necessitate efficient computational approaches. Moreover, CoW exhibits a highly
bilateral symmetry while simultaneously presenting complex topological heterogeneity, making
group equivariant networks and GCNs particularly well-suited for modeling such structures. (see
detailed descriptions of the CoW datasets, preprocess and training protocols in D)

5.1 Experiments on TopCoW 2024 MICCAI Challenge

We evaluate our model on the publicly available TopCoW dataset [52]. We include several SOTA
voxel-based and point cloud-based classification methods as baselines. In addition, we conduct
ablation studies to investigate the effects of incorporating SE(3)-equivariant BBSC mapping and the
use of GCN for modeling topological relationships. Given the small sample size of the TopCoW
2024 dataset, we employ 5-fold cross-validation to enhance training robustness. We calculate the
mean and standard deviation, highlighting the highest mean and lowest standard deviation in bold.
Our model achieves the highest mean and lowest variance across AUC-ROC, Recall, and F1 score,
while also demonstrating competitive performance in Accuracy and Precision (see results in Table 1).

We illustrates the class-wise prediction accuracy on the CoW dataset (see Figure 3). Across the major-
ity of labels, our model consistently outperforms baseline methods. Due to the highly heterogeneous
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Table 1: Performance comparison of different methods on the TopCoW 2024 dataset

Method Accuracy% AUC-ROC% Precision% Recall% F1 Score%
3D DenseNet [53] 97.02± 0.57 99.63± 1.94 95.86± 0.51 95.42± 0.41 97.47± 0.48
3D ResNet [54] 96.54± 0.54 99.61± 0.11 96.79± 0.76 96.44± 0.83 96.52± 0.80
PointNet [24] 94.10± 0.88 99.46± 0.20 94.81± 1.36 94.69± 0.92 94.57± 1.10
PointNet++ [55] 96.61± 0.53 99.61± 0.09 96.72± 0.49 96.52± 0.55 96.45± 0.60
CurveNet [56] 97.14± 1.16 99.72± 0.20 97.31± 1.16 97.07± 1.19 97.09± 1.22
RepSurf-U [57] 97.41± 0.68 99.86± 0.07 96.83± 0.52 96.61± 0.54 96.50± 0.55
PointMLP [58] 94.10± 2.27 99.03± 0.56 94.41± 2.35 94.05± 2.31 93.94± 2.40
SE(3)-Transformer [30] 61.35± 5.80 90.93± 1.31 62.36± 5.28 60.77± 5.70 60.58± 5.69

SE(3)-BBSCformer 87.91± 1.35 98.24± 0.31 88.97± 1.66 88.01± 1.32 87.98± 1.26
BBSCformerGCN 97.95 ± 1.22 99.89± 0.02 97.25± 0.79 98.34± 0.60 97.78± 0.70
SE(3)-BBSCformerGCN 97.53± 0.83 99.99 ± 0.01 97.36 ± 0.53 98.44 ± 0.31 97.87 ± 0.41

Figure 3: Per-class prediction accuracy of various models evaluated on TopCoW 2024 dataset.

anatomical structure of the CoW [59, 60, 61], the distribution of different branches label is notably
imbalanced. For example, in the TopCoW 2024dataset, only 5% of the 125 samples contain the
segment corresponding to Label 12 (see details in Appendix D.1). This extreme scarcity introduces a
high degree of randomness during testing. However, we observe that this issue is effectively mitigated
by increasing the total number of training samples, as further demonstrated in Section 5.2.

5.2 Experiments on Real-World Clinical Data

Table 2: Performance comparison of different methods on the clinical dataset

Method Accuracy% AUC-ROC% Precision% Recall% F1 Score%

PointNet [24] 69.20± 0.98 96.50± 0.24 70.02± 0.77 69.17± 0.96 68.90± 1.02
PointNet++ [55] 70.27± 0.16 96.60± 0.17 70.82± 0.43 70.28± 0.20 70.05± 0.14
CurveNet [56] 81.91± 0.14 93.80± 1.13 62.92± 3.14 60.13± 4.25 58.51± 4.58

RepSurf-U [57] 78.22± 0.17 98.40± 0.11 78.34± 0.28 77.99± 0.29 78.00± 0.25
PointMLP [58] 82.70± 0.10 98.66± 0.06 82.86± 0.14 82.70± 0.10 82.67± 0.14

SE(3)-Transformer [30] 61.96± 1.45 92.32± 0.96 61.05± 2.07 61.94± 1.47 60.77± 2.57

SE(3)-BBSCformer 71.06± 1.39 93.25± 0.60 70.25± 1.16 71.04± 1.39 70.45± 1.21
BBSCformerGCN 95.45± 1.09 99.34± 0.21 95.10± 1.48 95.38± 1.13 95.23± 1.29

SE(3)-BBSCformerGCN 96.11 ± 1.01 99.38 ± 0.19 96.11 ± 0.93 96.08 ± 0.97 96.02 ± 1.05

We further validate the generalization ability of our model on clinical data collected from the
collaborating medical institution. This dataset contains approximately ten times more number of
samples than the TopCoW 2024 MICCAI Challenge dataset. Although the inherent heterogeneity
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of CoW still leads to imbalanced class distributions, the substantially larger sample size helps
alleviate the randomness in predictions for underrepresented classes. The results presented in Table 2
demonstrate that our model exhibits stronger generalization ability compared to voxel-based and
point-based approaches. While other methods experience a performance drop of 10–20%, our
model maintains a consistently high level of evaluation metrics. Notably, SE(3)-BBSCformerGCN
outperforms BBSCformerGCN in both mean and standard deviation across all evaluation metrics,
further validating the stability and generalization advantages introduced by the SE(3)-equivariant
mapping. Additionally, the comparison between SE(3)-BBSCformerGCN and SE(3)-BBSCformer
highlights the critical role of topological information. Collectively, these findings suggest that both
geometric and topological stability are the key factors underpinning the generalization capability
of our model. Similarly, we provide the per-class prediction accuracy across all label categories
(Figure 4). As shown, our model consistently outperforms all baselines across all 22 classes.

Figure 4: Per-class prediction accuracy of various models evaluated on real-world clinical dataset.

5.3 Training Efficiency, Stability, and Computational Cost Analysis

We illustrates the training and testing accuracy curves on the clinical datasets (see Figure 5). Our
method consistently achieves faster convergence and greater stability across all methods. These
advantages are largely attributed to the compact input representation, which preserves fine-grained
geometric details without the need for aggressive downsampling. More critically, while other
models exhibit severe overfitting, both SE(3)-BBSCformer and the SE(3)-Transformer demonstrate
strong resistance to overfitting, highlighting the robustness and generalization power of equivariant
architectures. Moreover, leveraging BBSCs to capture complex geometric features and topological
structures of tubular systems further enhances our model’s performance over existing baselines.

Figure 5: Epoch-wise training and testing accuracy evaluated on the clinical dataset.

To validate the efficiency of BBSC for tubular object representation, we compared our model
against several baselines on evaluation time, FLOPs, and parameter count (see Table 3). SE(3)-
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BBSCformerGCN achieves superior generalization and classification performance while significantly
reducing inference time and memory usage. These results underscore the practical benefits of our
design, particularly for fast and cost-effective deployment in clinical settings.

Table 3: Parameters amount and computing cost comparison of different methods

Method Evaluation Time(ms) FLOPs(M) Parameters(M)

3D DenseNet [53] 8.03 9743.76 18.56
3D ResNet [54] 10.95 11463.08 85.23
PointNet [24] 0.88 450.38 3.46

PointNet++ [55] 1.54 4067.53 1.74
CurveNet [56] 81.95 269.56 2.13

RepSurf-U [57] 59.84 911.32 1.48
PointMLP [58] 38.39 15733.95 13.23

SE(3)-Transformer [30] 19.03 456.33 0.12

SE(3)-BBSCformer 1.92 1.72 0.35
BBSCformerGCN 1.14 88.98 3.60

SE(3)-BBSCformerGCN 3.02 59.01 2.70

6 Discussion and Future Work

We leverage an extension of B-spline curves to the spherical domain, which constructs the BBSC,
to model tubular structures. We formulate a mathematically well-defined smooth manifold based
on this representation, construct a functional space for tubular manifold, and discuss the associated
metric on this space. Furthermore, we propose a rotation and translation equivariant mapping, which
is applied to the anatomical classification of the CoW. While our experiments focus on this clinically
significant cerebrovascular structure, the proposed framework is readily applicable to a wide range
of other tubular structures. Additionally, the BBSC structure is naturally extensible. The control
vectors can be lifted into an n-dimensional space, where the B-spline basis functions can be reused to
construct smooth and high-dimensional manifolds. Notably, SplineCNN [62] has previously utilized
this insight to define smooth convolutional filters via B-Spline kernels. Lastly, our model maps
M defined by BBSC into a high-dimensional space S, preserving SE(3)-equivariance of the 3D
parameters P . However, a limitation of our current model is that the graph convolution operations
used to model topological relations on S are not equivariant, which could compromise the overall
stability and full equivariance of the model. It is worth investigating into the design of equivariant
mappings in high-dimensional topological manifold spaces as a line of future work.

7 Conclusion

We propose SE(3)-BBSCformerGCN, a novel deep learning architecture that achieves group equiv-
ariance on tubular manifolds. Our model takes as input a BBSC manifold, parameterized by a small
set of 4D control parameters and knot vectors. This representation not only enables more effective
extraction of complex geometric and topological features from tubular structures, but also reduces
computational complexity. This design offers strong mathematical interpretability and improved
computational efficiency. We validate our model on a clinically important yet computationally
underexplored task: classifying anatomical configurations of the CoW, and demonstrate its superior
performance in classification, generalization, and resistance to overfitting. Our code will be available
on https://github.com/niuyixuan/SE-3–BBSCformerGCN.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The proofs are in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The architecture of proposed model is described in Section 4.2 and 4.3, and
the pipeline is showed in Figure 2. The implementation details of the model are provided in
Appendix D.2. The code and TopCoW 2024 dataset with its BBSC format will be released
after the review period, but we cannot release the clinical dataset because we have signed a
confidentiality agreement with hospital to protect patient privacy.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The Non-privacy dataset and our implementation(model, train and test, visual-
ization) will be released publicly soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The train and test details are provided in Appendix D.2 and D.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the experiments presented in Table 1 and Table 2 of Section 5.1 and 5.2, we
conduct 5-fold cross-validation and calculate the mean and standard deviation. The data
distributions for each class are summarized in Appendix D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This part is provided in Section 5.3 and Appendix D.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Research conducted in this paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We highlight the clinical value of our model in Appendix A.2 and Section 5,
including its potential to aid CoW diagnosis and reduce medical workload. Abstract and
Section 1 shows its benefits for tubular structure analysis and manifold learning tasks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We will not release the clinical dataset involving privacy issues, so no part of
this paper is with high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets, used in the paper, are all properly
credited. The license and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The non-privacy dataset and the code in our work will be released after
reviewing.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Usage of LLMs do not impact the core methodology, scientific rigorousness,
or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Background

A.1 Geometric Deep Learning and Continuous Function Learning

Geometric deep learning [27] is a branch of deep learning that leverages deep neural networks to
model and extract intrinsic geometric features of structured data. To date, geometric deep learning
has yielded impressive results in a range of fields, notably physics, biology, and computer graphics.
In physiscs, GNS [63] and MESHGRAPHNET [64] investigate the application of geometric deep
learning in the simulation of fluid and cloth, aiming to capture their intricate physical dynamics. In
biology, DeepDock [65] and its enhanced version, caDeepDock [66], predict the binding conformation
by learning the distributions based on Euclidean distance. In computer graphics, PointNet [24] and
PointNet++ [55] represent major breakthroughs in point cloud processing by effectively capturing
geometric features directly from raw point clouds. Most geometric deep learning methods operate
on discrete data in Euclidean space, such as point clouds, by constructing geometric graphs[67, 68]
or defining local point neighborhoods. These approaches typically assign geometric attributes (e.g.,
spatial coordinates) to the nodes of the graph and the points, enabling the extraction of meaningful
geometric features.

A topological manifold [69] is a special type of geometric space, formally defined as a topological
space that is locally Euclidean. Compared to modeling discrete data such as point cloud in 3D Eu-
clidean space, modeling directly on continuous manifold domains can avoid the errors introduced by
numerical estimation or implicit representations learned via neural networks. This approach enables
models to achieve greater expressiveness, interpretability, and generalization capability. Function
learning models [70, 71], with the goal of constructing high-dimensional mappings from functions to
functions, preserve the analytical properties of the functions themselves, such as smoothness, and has
found increasing application [70, 71] . Inspired by the aforementioned approaches, we construct a
3D rotation and translation equivariant mapping on smooth surface manifolds represented by Ball
B-Spline Curve(BBSC) [8]. Owing to its compactness, local modifiability, smoothness, convex hull
property, the BBSC provides an efficient and accurate representation of tubular geometric structures.

A.2 Circle of Willis

CoW is a ring-shaped arterial structure located at the base of the brain in birds, reptiles, and mammals
[72]. It supplies blood to the brain and surrounding structures by connecting the bilateral internal
carotid artery (ICA) systems with the vertebrobasilar system. In cases of stenosis or occlusion of a
major artery (e.g., the ICA), the CoW provides collateral circulation to maintain perfusion in ischemic
regions, serving a compensatory function. Additionally, the CoW plays a critical role in balancing
and regulating intracranial arterial pressure and in protecting against acute cerebrovascular events
[73]. Notably, the CoW is also a frequent site for cerebral aneurysms, which, when ruptured, can lead
to stroke and potentially fatal outcomes. In its idealized form, the standard CoW consists of several
key arteries: the anterior cerebral arteries (left and right), the anterior communicating artery, the
distal termini of the internal carotid arteries (left and right), the P1 segments of the posterior cerebral
arteries (left and right), and the posterior communicating arteries (left and right) [74]. Depending on
clinical needs, more detailed sub-regional definitions may be adopted. However, due to factors such
as genetic variation and developmental anomalies, the CoW often exhibits significant topological
heterogeneity in its anatomical structure. For example, incomplete CoWs may result from the absence
of one or more arterial segments; developmental variants may manifest as arteries that are duplicated,
abnormally narrow, or overly dilated. From a topological perspective, the CoW is generally classified
into three categories: complete circles, partially closed, and open configurations. Among them,
open CoWs are often associated with poor collateral capacity and are more prone to widespread
ischemia or infarction in the presence of arterial narrowing, occlusion, or aneurysm rupture. This high
degree of topological variability poses considerable challenges for clinical diagnosis and increases
the importance of automated and robust computational methods.

The segmentation and classification of the CoW are both critical and well-suited to computational
approaches. Accurate and efficient methods not only reduce the workload of medical professionals
but also enhance diagnostic precision, playing an essential role in the detection and early monitoring
of CoW-related cerebrovascular diseases. To the best of our knowledge, there are currently few
computational models specifically designed for CoW segmentation and classification. Although some
methods developed for general vascular analysis can be adapted, their performance on CoW remains
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unstable due to its inherent topological heterogeneity [59, 60, 61]. Therefore, designing effective
models for CoW-related tasks requires a joint analysis of both geometric and topological features.
Such models [75, 9, 76] are crucial for capturing the structural variations and delivering reliable
diagnostic support in real-world clinical scenarios.

B Preliminary Model Architecture

B.1 DiffusionNet

DiffusionNet [46] is an effective method to learn point cloud features using the principle of heat
diffusion. It mainly consists of two modules: diffusion range learning and gradient feature learning.

Learning diffusion. The diffusion learning can be interpreted as a filter that allows each point to
propagate information radially and the diffusion range Ht(u0) with initial state u0, mainly depends
on a learnable diffusion time t, is described by formula Ht(u0) = et∆u0. DiffusionNet effectively
discretizes and simulates the diffusion process using the implicit Euler time step method,

ht(u) = (M + tL)−1Mu (16)

where M and L represent mass matrix and weak Laplace matrix. To avoid the inconvenience of
solving a large linear system separately for each channel,DiffusionNet offers spectral acceleration
which leveages the precomputed basis of low frequency Laplacian eigenfunctions to represent the
diffusion approximately. Let Φ = [ϕi] ∈ RV×k represent the concatenated matrix of the eigenvectors
corresponding to the first k smallest eigenvalues λi where [ϕi] are solutions to Lϕi = λiMϕi. The
coefficients c of spectral basis can be obtained by c = ΦTMu and u can be recovered by u = Φc, and
the coefficients cti after t time diffusion can be calculated by formula cti = e−λic0i . Then diffusion
can be simplified as follows,

ht(u) = Φct = Φ(e−λ0t, e−λ1t, . . . , e−λkt)T · (ΦTMu) (17)

Learning gradient feature. In additional, DiffusionNet constructs a learning scaling gradient feature
for each point to enhance the feature learning ability of the filter. First, the gradient operator which
is assembled into a sparse matrix G. The matrix is independent of the vertex feature and can be
precomputed for each shape by computing the least-squares approximation of the function values
of each point and its neighbors on the tangent plane. Note that in order to conveniently represent
the tangent vector in the calculation of the gradient matrix, DiffusionNet uses a complex expression.
Multiply each channel feature u of vertex v by the gradient matrix G and stack them up to get the
gradient feature wv = [Gu]. Then a learned scaling gradient feature gv shown as follow:

gv = tanh(Real(⟨wv, Awv⟩)) = tanh

Real
 D∑

i=1

D∑
j=1

wv(i)Ai,jwv(j)

 , A ∈ RD×D (18)

where A is the learned real matrix which describe the scaling and D is the number of the feature
channel. Whether to choose a real or complex matrix A mainly depends on whether the point has a
normal. Because multiplying a complex scalar do both the scaling and rotationtransformations. The
real part of the scalar represents scaling, while the imaginary part represents rotation. Generally, the
direction of rotation deponds on the outward normal and orientation, so for points without normal, a
real matrix A is sufficient.

It is worth noting that even though only low-frequency basis is used in the diffusion spectral accelera-
tion part, DiffusionNet can still learn high-frequency features through gradient learning and MLPs
(Multi-Layer Perceptrons).

B.2 SE(3)-Transformer

The SE(3)-Transformer [30] integrates the principles of 3D rotation and translation equivariance by
embedding Tensor Field Network (TFN) [29] into the computation of the key, query, and value vectors
within the Transformer architecture. This design endows the Transformer with SE(3) equivariance in
the 3D Euclidean space, ensuring that its outputs are consistent under rigid transformations. First, the
SE(3)-Transformer leverages spherical harmonics [37] to map 3D point coordinates into a higher-
dimensional representation space. Spherical harmonics form a set of orthogonal Fourier bases defined
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on the unit sphere S2. Specifically, an l degree spherical harmonics Y l can map any 3D unit vector to a
2l+1-dimensional vector in R2l+1, expressed as Y l(x⃗) = {Y l

−l(x⃗), Y
l
−l+1(x⃗), . . . , Y

l
l−1(x⃗), Y

l
l (x⃗)}.

Then, the Wigner-D matrices [77], which are unitary and irreducible, are introduced to achieve
equivariance of high-dimensional vectors generated by spherical harmonics under rotations in SO(3):

Y l(Rgx⃗) =W l(g)Y l(x⃗), g ∈ SO(3), R ∈ R3×3,W l(g) ∈ R(2l+1)×(2l+1). (19)

Furthermore, Clebsch-Gordan tensor product [38] provides a mechanism to aggregate vectors from
spaces of different dimensions while preserving equivariance. For V⃗l1 ∈ R(2l1+1)×C1 and V⃗l2 ∈
R(2l2+1)×C2 , V⃗l = V⃗l1 ⊗l

cg V⃗
l2 can be expanded as:

V l
m,c =

C1,C2∑
c1=1,c2=1

wc1,c2,c

l1∑
m1=−l1

l2∑
m2=−l2

Q
(l,m)
(l1,m1)(l2,m2)

v(l1,c1)m1
v(l2,c2)m2

, (20)

where Q(l,m)
(l1,m1)(l2,m2)

are the Clebsch-Gordan coefficients.
SE(3)-Transformer constructs a set of learnable radial functions ψ : R≥0 → R and leveages the
Clebsch-Gordan coefficients to form the basis kernel W coci ∈ R(2co+1)×(2ci+1) which can transform
(2ci + 1) channels input feature to (2co + 1) channels output feature:

W coci(x⃗) =

ci+co∑
l=|ci−co|

ψcoci
l (∥x⃗∥)

l∑
m=−l

Y l
m(

x⃗

∥x⃗∥
)Qcoci

lm , (21)

where Y l
m is the mth element in Y l, Qcoci

lm ∈ R(2co+1)×(2ci+1). With the basis kernel W coci , ci
channels input feature f ciin of points x, SE(3)-Transformer can generate a co channels feature f coout, as
shown in Equation (4) and (5).

C Proof of Infinite Differentiability in BBSC Mapping

Proposition 1. Let U = {P ∈ R3×n, r ∈ R>0, τ ∈ T}, where T = {ti ∈ [0, 1]|tp+1 < tp+2 <
· · · < tn, t1 = · · · = tp+1 = 0, tn = · · · = tn+p+1 = 1}. Then, the mapping β : U → M, defined
according to Equation (1) and Equation (2), is a C∞ mapping.

Proof. The p-degree BBSC manifold can be written as:

β(P, r, τ) =

n∑
i=0

Ni,p(t) (Pi ; ri) =

(
n∑

i=0

Ni,p(t)Pi ;

n∑
i=0

Ni,p(t)ri

)
= (σ(t), σ(t)) , (22)

and the basis function is as follows:

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t)+

ti+p+1 − t

ti+p+1 − ti+1
Ni+1,p−1(t), Ni,0 =

{
1, if ti ≤ t < ti+1,

0, otherwise.
, (23)

where Pi ∈ R3, ri ∈ R, tp+1 < tp+2 < · · · < tn, t1 = · · · = tp+1 = 0, tn = · · · = tn+p+1 = 1.
We prove the smoothness of the manifold M by showing that β admits infinitely many continuous
partial derivatives with respect to P , r, and τ .
β is a linear combination of the control points Pi, and thus admits infinitely many continuous partial
derivatives with respect to each Pi, i.e., ∀Pi ∈ R3,

∂β

∂Pi
= Ni,p(t),

∂2β

∂P 2
i

= · · · = ∂∞β

∂P∞
i

= 0. (24)

Similarly, since β admits infinitely many continuous partial derivatives with respect to each control
radius ri.
For τ , to avoid the denominator being 0, we do not consider the endpoints of the BBSC which means
we only consider the differentiability of strictly increasing sequence tp+1, tp+2, . . . , tn. Now we
need to prove that the corresponding basis function Ni,p which contains ti has continuous infinite
partial derivatives. As observed in Equation (23), the basis function Ni,p is a recursively defined
composite function, and its differentiation can be handled via the chain rule. Since each knot value ti
appears in the basis function only through two types of expressions, simply denoted as f1 = t−ti

a−ti
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and f2 = t−b
ti−b (maybe the former needs to be added with a minus sign, but this does not affect the

derivative calculation), it is sufficient to verify whether both types possess infinitely many continuous
partial derivatives. Thus β admits infinitely many continuous partial derivatives with respect to knot
vector τ and can be calculated as follows:

dmf1
dtmi

= − m!

(a− ti)m+1
,

dmf2
dtmi

= (−1)m
m! · (t− b)

(ti − b)m+1
, a ̸= ti, b ̸= ti. (25)

By the chain rule, any higher-order derivative of Ni,p with respect to ti can be expressed as a
combination of products and sums of the derivatives of the f1 and f2.

For P and τ , the function β is separable with respect to these variables. Specifically, it can be written
as the product of G(P ) = P and N(τ) = Np(t):

β = N(τ)G(P )T . (26)

Its mixed partial derivatives are then expressed as

∂lβ

∂Pm∂τn
=
∂mβ

∂Pm

∂nβ

∂τn
=
dmG

dPm

dnN

dτn
, where m+ n = l. (27)

Since the partial derivatives of G(P ) and N(τ) exist for all orders and are continuous, the mixed
partial derivatives of β with respect to P and τ are also continuous for all orders.

Similarly, arbitrary-order continuous mixed partial derivatives with respect to r and τ can be obtained.
For P and r, we have

c(P ) = Np(t)P
T = Np(t)P

T · 1 = c(P )H(r), where H(r) = 1, (28)

which ensures that β also admits arbitrary-order continuous mixed partial derivatives with respect
to P and r. The same reasoning applies to r itself. Thus, it can be proven that ∀β ∈ M, β is a C∞

mapping.

D Details of the CoW Dataset and Training Procedure

D.1 Per-Class Distribution of Dataset

Figure 6: Per-class distribution of TopCoW 2024 and clinical dataset.

The CoW exhibits a highly heterogeneous anatomical structure, which arises not only from inter-ethnic
and inter-population variability[78] but also from genetic factors[79], embryonic development[80],
environmental influences[81], and hemodynamics-driven vascular remodeling[82]. This inherent
heterogeneity leads to significant class imbalance in data representations of the CoW. As illustrated
in Figure 6 we present an overview of the class distribution in both the TopCoW 2024 MICCAI
Challenge dataset and our internal clinical dataset. Notably, in the TopCoW dataset, category 12 is
severely underrepresented, with vessels labeled as class 12 comprising only 5% of all samples. Even
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when training the model with a uniformly stratified split between training and testing sets, the model’s
learning of class-12 vessels remains highly stochastic—e.g., in extreme cases, the test set might
contain only a single sample with class-12 branches. In contrast, as shown in Figure 4, our method
demonstrates robust performance on the clinical dataset, even for rare classes such as 20 and 21,
achieving accurate segmentation despite their limited presence in the data. While data augmentation
is a common strategy to address such imbalance, we currently do not employ it. This is primarily
due to the use of SE(3)-equivariant architectures, which are inherently invariant to translations and
rotations, rendering many conventional augmentations redundant in our context.

D.2 Preprocess of Clinical Data
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Figure 7: Clinical data preprocessing pipeline. A mesh is constructed from each MRI scan. The
denoise and clean operations are performed to remove noise. Then the branches of the CoW are
segmented. Surface point clouds and centerlines are computed from the segmented mesh, followed
by BBSC fitting.

Compared with the TopCoW2024 dataset, clinical CoW scans are more challenging due to imaging
artifacts and spurious small vessel components. Consequently, a series of preprocessing steps is
required before BBSC fitting and shown in Figure 7. First, when severe MRI artifacts such as motion
blur or metal-induced distortions degrade mesh quality, denoising methods can be applied [83].
Vascular meshes are then reconstructed from MRI either using geometric methods [84, 85] or the
VMTK package [86]. The reconstructed meshes often contain noise from small vessel components
and exhibit disconnected fragments. These are removed through cleaning [87] and repaired using
mesh fix algorithms [88]. Branch segmentation [89, 90] and ground truth labeling follow, with manual
verification and correction by domain experts to ensure accuracy. The majority of preprocessing
operations can be implemented with open-source packages such as VMTK or medical CAD tools
[91, 92]. Finally, surface point clouds and centerlines are extracted from the cleaned meshes for
BBSC fitting. It is worth noting that, in our pipeline, the mesh is first reconstructed and then subjected
to cleaning, denoising, and segmentation. Alternatively, these preprocessing operations can also be
applied directly to the MRI images prior to mesh reconstruction.

D.3 Training Detail

BBSC construction. For each branch of the CoW, we individually construct a BBSC representation.
These are then processed using DiffusionNet to obtain the three key components of the BBSC: control
points, control radius, and the knot vector. For notational convenience, we denote the concatenation
of control points and radius as the control parameters, represented as 4D vectors. In general, the
length of the control parameters is either proportional to the branch’s arc length or determined by a
threshold-based allocation strategy. However, in our experiments, we observed that assigning a fixed
control parameter length of 13 for all branches significantly simplified and accelerated the BBSC
construction process, while having negligible impact on downstream classification performance.
When constructing BBSCs, we consistently set the spline degree to 3. For the TopCoW 2024 dataset,
we assign all branches a control parameter length of 13. For the clinical dataset from hospital,
we adopt a length allocation scheme based on arc length thresholds, assigning control parameter
lengths of 13, 10, and 5, respectively. Additionally, during the BBSC fitting process, we adopt the
computationally efficient and easy-to-implement L2 norm metric (Equation (7)). The term ∥P − P̃∥2
in this metric can also be replaced with ⟨P, P̃ ⟩, yielding a comparable fitting performance. The
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weighting parameters α and η are set to 1. During training, all control parameters are padded to a
fixed length of 13 to ensure consistency across samples. It is important to note that we pad with zeros.
To distinguish between padded zeros and the zero entries in the knot vector, we apply a value shift of
+1 to all elements in the knot vector.

SE(3)-BBSCformerGCN. Due to the local support property of the p-degree B-Spline, where the
influence of the i-th control parameter is restricted to [ti, . . . , ti+p+1], we first construct an n×(p+1)
matrix τ̃ , where the i-th row corresponds to [ti, . . . , ti+p+1] (p = 3). We then apply several MLP
jointly to τ̃ and the control radius to produce a (2l + 1)-dimensional vector, where l = 0, 1, . . . , ci0
(ci0 = 3). The direct sum of ci0 vectors constitutes the rotation and translation equivariant input f ci0in
of SE(3)-BBSCformer defined in Section 4.3. The degree of spherical harmonics is also ci0 . The
architecture of our graph convolutional network (GCN) follows a hybrid of the GCN and Res-GCN
design used in DeepDock, as illustrated in Figure 8 (we set H1 = 3 and H2 = 10).

GCN Residual GCN

Figure 8: Architecture of GCN in SE(3)-BBSCformerGCN.

Train and test detail. We train and evaluate all models presented in this paper on a single NVIDIA
3090Ti GPU. For the SE(3)-BBSCformerGCN, we set the number of SE(3)-BBSCformer layers to 1.
During training, we used the Adam optimizer with a fixed learning rate of 0.001 and a weight decay
of 0.01. The number or workers is 1. The loss function is set to cross-entropy for all models, and the
number of training epochs is fixed at 200. For the TopCoW 2024 dataset, lightweight models such as
SE(3)-BBSCformer, BBSCformerGCN, and SE(3)-BBSCformerGCN are trained and tested using a
5-fold cross-validation protocol, and their mean and standard deviation is computed and showed in
Figure 3. During training, we split the TopCoW 2024 dataset into 100 samples for training and 20 for
testing. Similarly, the clinical dataset is partitioned into training and test sets with a 4:1 split.

E Per-Class AUC-ROC

Figure 9: Per-class AUC-ROC of various models evaluated on the TopCoW 2024 Circle of Willis
dataset.

We further present the AUC-ROC scores of different models across various label categories on
both the TopCoW 2024 dataset and a clinical dataset, aiming to assess the per-class classification
performance in more detail. As shown in Figure 10 and Figure 4, the y-axis is restricted to the
range of 0.75 to 1.0 for improved visual clarity, allowing for more effective comparison between
models in high-performance regimes. SE(3)-BBSCformerGCN consistently achieves the highest
AUC-ROC scores across all anatomical label categories, clearly outperforming baseline methods
such as voxel-based and point-based networks. This consistent superiority is observed not only on the
relatively small-scale TopCoW 2024 dataset, but also on the large-scale real-world clinical dataset,
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Figure 10: Per-class AUC-ROC of various models evaluated on the Circle of Willis dataset collected
from clinical imaging at hospital.

highlighting the model’s strong generalization ability. The results further demonstrate the advantages
of our BBSC representation and the SE(3)-equivariant architecture, which together enable precise
modeling of complex geometric and topological structures while maintaining robustness across
domains. Importantly, even for challenging categories with high anatomical variability, our model
maintains high AUC-ROC scores, indicating its effectiveness in capturing fine-grained structural
differences and mitigating overfitting.

F Case Study of Clinical Data

We conduct a case study on Circle of Willis (CoW) clinical data collected from a collaborating
medical institution, focusing on samples where SE(3)-BBSCformerGCN makes prediction errors
and which exhibit certain topological heterogeneity. As shown in Figure 11, the first row presents a
complete CoW structure, a configuration that only accounts for about 20%–25% of real-world cases.
In the remaining samples with topological variations, most commonly observed is the absence of the
bilateral posterior communicating arteries (PcoA-L and PcoA-R), which connect the upper and lower
parts of the CoW. In the fourth row, a more severe case of unilateral absence is observed.

Beyond topology, geometric heterogeneity within the same type of branch also poses challenges.
For instance, the MCA-L2 branch highlighted in green in the third row is noticeably longer than
its counterparts in other samples, while the ICA-R1 branch in the fourth row, marked in ochre, is
significantly thicker than in the other cases. Such variations in both topology and geometry contribute
to the clinical difficulty of accurately classifying CoW branches.
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Ground Turth Prediction Ground Turth Prediction

Figure 11: Clinical CoW samples with topological heterogeneity and the corresponding mispredicted
structures by SE(3)-BBSCformerGCN. The first two columns show the complete CoW structures,
while the last two columns highlight the misclassified branches.
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