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ABSTRACT

We propose UniVis, a universal learning framework to tam a wide range of com-
puter vision tasks, including visual understanding (e.g., semantic segmentation),
low-level image processing (e.g., denoising), and conditional image generation
(e.g., edge-to-image synthesis). Built on a large-scale pre-trained text-to-image
diffusion model, UniVis unifies various vision tasks through a general frame-
work using instruction tuning, where its unifying ability comes from the genera-
tive and reasoning power of the pre-trained model. Specifically, UniVis defines a
general image completion task wherein the input consists of a pair of input-output
images corresponding to the target task and a query image, and the aim is to gen-
erate the “missing” data paired to the query. The paired images play the role of
image instruction defining the task, e.g., semantic segmentation is represented by
an RGB image and its segmentation mask. Our rationale is that each computer
vision task can be characterized by its unique input-output pair, which informs
our UniVis model about the expected output for the given query. Furthermore, a
task-level or instance-level prompt can be optionally added to provide text instruc-
tion. By unifying various visual tasks, UniVis has the advantage of minimizing
the inductive bias inherent in designing models for individual tasks, and it also
suggests that the understanding of different visual tasks can be achieved through a
shared generative model. In experiments, UniVis showcases impressive perfor-
mance on a bunch of standard computer vision benchmarks including ten tasks in
total. The source code will be made publicly available.

1 INTRODUCTION

The natural language processing (NLP) community has witnessed a great success of large language
models (LLMs) (Devlin et al., 2019; Radford et al., 2019; Raffel et al., 2020; Brown et al., 2020;
Chowdhery et al., 2022) in recent years. A compelling advancement is that LLMs can serve as
a generalist to handle a wide range of downstream tasks with a single general framework (Brown
et al., 2020). This can be attributed to 1) emerging abilities brought by large-scale training (Wei
et al., 2022a), 2) a unified task formulation (e.g., a variety of NLP tasks can be consistently framed
as text completion (Brown et al., 2020)), and 3) in-context learning techniques that can help the
model readily adapt to downstream tasks (Brown et al., 2020; Liu et al., 2021; Min et al., 2022;
Rubin et al., 2021; Wei et al., 2021; Alayrac et al., 2022).

In the computer vision (CV) community, a unified framework for different tasks is also a long-
standing aspiration. This is appealing because it side-steps task-specific designs, therefore minimiz-
ing the inductive bias inherent in devising models for individual tasks. However, the progress of such
unification in CV lags behind NLP. There are three main Challenges. C1: Vision tasks encompass
highly heterogeneous signals (e.g., RGB images, segmentation maps, and keypoints), impeding the
unification of expert models for different tasks. C2: LLMs that undergo simple pre-training (e.g.,
masked language modeling and next-word prediction) exhibit superior linguistic understanding due
to the semantic-dense nature of language created by humans. In contrast, most vision backbones
trained via contrastive learning (Chen et al., 2020; He et al., 2020; Grill et al., 2020), masked image
modeling (He et al., 2022; Xie et al., 2022), or generative modeling (Van Den Oord et al., 2017;
Karras et al., 2019; Ho et al., 2020) still fall short of tackling various tasks within a unified model
C3: It is convenient to incorporate in-context learning for NLP tasks (e.g., simply prepending a
question-answer text for the mathematical reasoning task (Wei et al., 2022b)). It is, however, non-
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Figure 1: Illustration of the unifying capability of the proposed UniVis. UniVis can cope with
different kinds of computer vision tasks within a universal framework, with each task instructed by
an input-output image pair (and optionally a text prompt).

trivial to apply similar ideas directly in vision tasks. Therefore, how to cope with different vision
tasks within a unified learning framework is still an open problem.

In this paper, we tackle the problem from the perspective of generative modeling, and introduce a
universal learning framework called UniVis. UniVis unifies the learning processes of various
vision tasks, including visual understanding (e.g., semantic segmentation), low-level image pro-
cessing (e.g., denoising), and conditional image generation (e.g., edge-to-image synthesis), and can
yield a unified vision model when jointly trained on these tasks. Specifically, to solve C1, UniVis
copes with the heterogeneity in visual signals by formulating the input and output of different vision
tasks as RGB images and defining a general image completion framework. The input of UniVis
is a spatial concatenation of a query image and an input-output pair from the target task. The goal
of UniVis is to generate the “missing” data paired to the query image in that task. Anticipating
UniVis to yield promising results for various vision tasks in RGB image format, we favor vi-
sion backbones trained with generative modeling over commonly adopted pre-trained models like
ViT (Dosovitskiy et al., 2021)-based MAE (He et al., 2022) or VQGAN (Esser et al., 2021) model,
owning to the established excellence of generative models in generating high-quality RGB images.
Among available generative models, a text-to-image diffusion model, Stable Diffusion (SD) (Rom-
bach et al., 2022), is one of the very few trained on web-scale data LAION-5B (Schuhmann et al.,
2022), which could provide us with a robust prior that incorporates a rich understanding of both
visual and linguistic signals. We thus use SD as the backbone and fix its encoder and decoder when
plugged into UniVis (which solves C2).

UniVis empowers SD to handle different vision tasks by devising an instruction tuning method (to
solve C3), inspired by in-context learning in NLP. To achieve this, we introduce two key designs.
First, similar to demonstration examples given to prompt the NLP task, we establish an input-output
pair as the image instruction to characterize each vision task. For instance, semantic segmentation
is represented by an RGB image and its segmentation masks. This instruction informs the model
about what task it should execute for the query image. Moreover, we can optionally assign a task-
level or instance-level prompt to provide text instruction and enjoy more flexible control over the
results in the conditional image generation regime. Second, strong reasoning power is thought to
be the reason why some LLMs are able to perform in-context inference on novel tasks (Wei et al.,
2022a). In UniVis, we introduce an image completion framework that leverages the full potential
of SD’s reasoning abilities (Li et al., 2023a; Krojer et al., 2023), manifesting them in the form of
image generation. Specifically, given an example input-output pair alongside a query image, the
SD is designed to generate the corresponding “missing” data for the query, aligning with the task
exemplified by the given pair.

Built on the above designs, UniVis serves as a unified framework for visual task learning, as
shown in Figure 1, including but not limited to visual understanding, low-level image processing,
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and conditional image generation. In practice, it can be employed to produce three types of models,
based on the number and categories of given tasks. 1) When training on joint data in different cate-
gories of tasks (such as image generation, denoising, and semantic segmentation), a compact model
can be derived, and it inherently possesses the capability to generate outputs for every given task.
2) When data from visual tasks of a specific category are aggregated for training, a single-category
task model can be derived. For instance, consolidating data from both mask-to-image and depth-
to-image results in a multifunctional generative model. 3) When data is from an individual task,
it produces a dedicated model for that task. We highlight that while these three types of UniVis
trained in different regimes are based on different training datasets and hence yield distinct model
parameters, the training approach remains exactly the same, underscoring the “universal” essence
of our UniVis. For evaluation, we showcase extensive results of these three types of models by
conducting experiments on ten vision tasks in total. Intriguingly, we find that UniVis exhibits
impressive performance on various vision tasks (including prediction and generation which are typ-
ically studied exclusively). This implies a potential of generative modeling in CV to embark on a
similar trajectory as in NLP.

Our contribution is thus three-fold: 1) a universal learning framework that can cope with a wide
range of computer vision tasks; 2) a new instruction tuning method that can be applied to the SD
model, allowing its pre-trained knowledge to be adaptable to different kinds of downstream vision
tasks; and 3) extensive experiments on a total of ten vision tasks and for three types of model training,
by which we hope to spur more interesting research on how to induce a profound understanding of
vision tasks through a shared scheme of generative modeling.

2 RELATED WORKS

Unified Vision Models. Encouraged by the success of language generalist models (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al., 2023), seeking a generalist model for unifying dif-
ferent computer vision tasks has attracted significant interest in recent years. Some attempts (Wang
et al., 2022a; Chen et al., 2022a; Kolesnikov et al., 2022; Chen et al., 2022b; Lu et al., 2023a) map
the input image into discrete representations and implement prompt learning in the discrete space to
deal with different tasks. A representative work, Unified IO (Lu et al., 2023a), homogenizes various
vision data modalities into a sequence of discrete vocabulary tokens and utilizes VQGAN (Esser
et al., 2021) to support dense prediction tasks. However, the discretization process causes lossy data
compression, which is suboptimal for vision tasks. Uni-Perceiver series (Zhu et al., 2022b;a; Li
et al., 2023c) introduce a unified maximum likelihood estimation pipeline for different modalities
but they have not been verified in image generation tasks.

Another track of studies (Bar et al., 2022; Wang et al., 2022b; 2023b; Geng et al., 2023) uti-
lizes the image as a general interface to unify vision tasks. MAE-VQGAN (Bar et al., 2022) and
Painter (Wang et al., 2022b) use a masked image modeling solution, where the input image and an
example pair are stitched together and the model only needs to predict the masked region. However,
they demonstrate their validity in only image prediction tasks and have not been verified in other
computer vision tasks like image generation. Concurrent with our work, InstructDiffusion (Geng
et al., 2023) proposes a generalist model by casting different vision tasks as text-guided image edit-
ing. Despite the competitive performance, InstructDiffusion heavily relies on delicate training data
construction and it does not support some of the vision tasks that are almost impossible to instruct
by using human language (e.g., depth estimation). Another closely related method, PromptDif-
fusion (Wang et al., 2023b), incorporates in-context learning into a pre-trained diffusion model,
enabling the integration of various vision-language tasks. PromptDiffusion sums up the features of
context and query to perform the in-context modeling. However, context and query are not spatially
aligned. The operation of feature addition would bring interference to the output, which may lead to
suboptimal performance. In contrast, the proposed UniVis defines an image completion pipeline,
which integrates context and query in a more reasonable way—spatial-wise concatenation where
alignment is no longer required between context and query.

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020a;b; Song & Ermon, 2020) have recently become the primary choices for generative modeling
of data. Following the definition in Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,
2020), a diffusion model consists of a forward diffusion process that gradually adds noise to data
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and a reverse denoising process that reconstructs desired data from the noise. Recent methods based
on diffusion models achieve state-of-the-art results in many vision tasks, including image/video
generation (Dhariwal & Nichol, 2021; Luo et al., 2023), image editing (Meng et al., 2021; Brooks
et al., 2023), low-level image processing (Saharia et al., 2022b; Wang et al., 2023a), etc. Notably,
large-scale text-to-image diffusion models show compelling ability (Nichol et al., 2021; Saharia
et al., 2022a; Rombach et al., 2022; Balaji et al., 2022) to generate high-fidelity visual content.
These pre-trained models are broadly utilized in applications such as concept customization (Gal
et al., 2022; Ruiz et al., 2023) and image composition (Lu et al., 2023b). Some recent works (Li
et al., 2023a; Clark & Jaini, 2023; Zhao et al., 2023; Xu et al., 2023; Tian et al., 2023) further reveal
the potential of applying pre-trained diffusion models to discriminative tasks, which encourages us
to build a universal framework that unifies generative and discriminative model training.

Instruction Tuning. GPT-3 (Brown et al., 2020) has demonstrated the ability of LLMs to perform
various NLP tasks via language instructions. After that, there have been efforts in exploring the
ability of instruction tuning (Mishra et al., 2021; Wei et al., 2021; Sanh et al., 2021). By fine-tuning
language models on a collection of datasets described via instructions (e.g., task prompt, demon-
stration examples, and constraints), the model’s generalization on unseen tasks obtains significant
improvement (Wang et al., 2022c; Ouyang et al., 2022; Chung et al., 2022; Wu et al., 2023). In-
struction tuning has recently been introduced to vision-language tasks, as well (Alayrac et al., 2022;
Liu et al., 2023; Gao et al., 2023; Li et al., 2023b). A representative work, Flamingo (Alayrac
et al., 2022), bridges pre-trained vision and language models by fine-tuning them on text-image
instruction-following data and showcases impressive few-shot results in a variety of tasks such as
image captioning and visual question-answering. By comparison, UniVis exploits a new approach
of instruction tuning, which is based on the use of an image-label pair as well as an optional text for
both image- and text-level instructions.

3 PROPOSED APPROACH

We propose UniVis, a universal framework that can solve various computer vision tasks. The aim
of UniVis is to learn a mapping function f that resembles instruction-following inference as:

f(Ein, Eout, y, Iquery) = Igt, (1)

where (Ein, Eout) represents an example pair that serves as the image instruction to characterize a
vision task (Ein is the input and Eout is the expected output, if learning a conventional model for
that task). Taking semantic segmentation as an example, Ein and Eout represent an RGB image and
its corresponding segmentation map, respectively. y is a textual input acting as the text instruction
to prompt the task and/or provide instance-level information (which is optional in practice). Iquery
is the query image, and Igt is the corresponding ground truth in the task defined by the instruction.

To learn this function, we first construct instruction-based data for training, where the aim is to
unify the input-output data formats for different vision tasks (Section 3.1). Then, on the top of a
large-scale pre-trained diffusion model SD (Rombach et al., 2022), we devise an instruction tuning
framework on which each time we can train with a batch of instruction data from different vision
tasks (Section 3.2).

3.1 DATA CONSTRUCTION

We divide vision tasks into three categories: visual understanding, low-level image processing, and
conditional image generation. In the following, we will introduce the specific tasks we focus on and
elaborate on how to construct the instruction-based data using their conventional datasets. The main
idea for construction is transforming all data formats into RGB images, by which we can implement
spatial-wise concatenation of any input, out, and query samples (i.e., stitching all the images together
into a grid as illustrated in Figure 2).

Visual Understanding. We conduct experiments on three representative prediction tasks, including
semantic segmentation, depth estimation, and keypoint detection. Semantic segmentation is a dense
classification task wherein the output is per-pixel semantic labels. We follow Painter (Wang et al.,
2022b) to transfer these outputs to RGB images by assigning a color to each pixel according to a
predefined semantic-color codebook, ensuring that each semantic class has its unique RGB value.
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Figure 2: An overview of the proposed framework. It utilizes a pre-trained SD to perform image
completion via instruction tuning. The ground truth is established as a grid image where each row
is an input-output pair from the same task. The first row composed by Ein and Eout serves as
the image instruction, and the model is trained to predict Igt paired to the query image Iquery. At
inference time, we crop out the lower right region of the infilled output as the final result Iout.

During inference, we obtain the predicted semantic class of each pixel by finding its “nearest” color
in the codebook. Depth estimation is a dense regression task that needs to predict the depth value
of each pixel of the input image. To convert the output (i.e., one-channel depth map) into an RGB
image, we linearly scale the range of pixel values to [0, 255] and replicate it three times to yield
a three-channel result. Keypoint detection aims to locate key object components within the input
image. We formulate the output as RGB images by drawing squares whose center is the location of
keypoints and render each square with a unique color associated with the semantic class. 1

To exploit the pre-trained knowledge of SD in understanding linguistic signals, we use textual
prompts as text instructions. This prompt could be either task-level (e.g., “semantic segmentation
map”) or instance-level (e.g., “semantic segmentation map of a man sitting on a swing in a room”).
In practice, the latter is obtained through an off-the-shelf image captioning tool (Li et al., 2022a).

Low-level Image Processing. We consider three typical tasks: image denoising, image deraining,
and low-light image enhancement. The input and output of these tasks are RGB images, so we leave
them unchanged to construct image instructions. Similar to visual understanding tasks, we devise
two kinds of text instructions: 1) task-level prompt (e.g., “a sharp image without noise”), and 2)
instance-level prompt (e.g., “a sharp image of a bathroom with a toilet, sink, and bathtub”).

Conditional Image Generation. This line of tasks requires generating realistic images from con-
ditions with sparse semantics, greatly differing from visual understanding and low-level image pro-
cessing tasks. We consider four popular generation tasks in this paper, including mask-to-image,
depth-to-image, pose-to-image, and edge-to-image. Inputs from the first three tasks can be con-
verted to RGB format in the same way as used in visual understanding tasks. For the edge-to-image
task, we adopt the edge detection model provided by ControlNet (Zhang et al., 2023) to generate
HED edge maps (Xie & Tu, 2015) as the input. The captions of output images (e.g., “a cat sleeping
on top of a pair of shoes”) are used as text instructions.

3.2 INSTRUCTION TUNING FRAMEWORK

We implement UniVis as an instruction tuning framework on top of SD. SD is a text-to-image
model that incorporates a diffusion process in the latent space of a pre-trained autoencoder. Specif-
ically, a denoising U-Net is trained to fit the distribution of latent codes, which models the reverse
diffusion process. Taking the noisy latent and the time step as input, this U-Net is further condi-
tioned on the textual embeddings extracted through a text encoder CLIP (Radford et al., 2021) via
cross-attention to produce the output at the current time step. During inference, SD performs it-
erative reverse diffusion on a randomly sampled noise to generate an image that faithfully adheres

1Due to space limits, the hyperparameters for drawing squares, rendering, etc., are given in the Appendix.
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Table 1: Comparison results on visual understanding. ∗: Specialized methods for each task. ‡:
Officially trained Painter model using 32× the computing power of UniVis. †: Retrained using
official code under the same computing resources as UniVis. Bold: Best. Underline: Second best.
We ignore specialized models when ranking best and second best and this applies to all tables. The
results of UniVis are reported as the average scores and standard deviations across three trials.

Method
Segmentation Depth estimation

mIoU↑ RMSE↓ REL↓ δ1↑

OneFormer∗ (Jain et al., 2023) 58.8 - - -
Mask2Former∗ (Cheng et al., 2022) 57.7 - - -

ZoeDepth∗ (Bhat et al., 2023) - 0.270 0.075 0.955
BinsFormer∗ (Li et al., 2022b) - 0.330 0.094 0.925
Painter‡ (Wang et al., 2022b) 49.9 0.288 0.080 0.950
Painter† (Wang et al., 2022b) 32.2 0.316 0.087 0.935

PromptDiffusion (Wang et al., 2023b) 18.2 0.746 0.171 0.799
UniVis-st 33.4 ± 0.4 0.420 ± 0.005 0.135 ± 0.004 0.857 ± 0.006

to the input text. To fulfill Eq. 1 when dealing with various tasks, we build an image completion
pipeline and fine-tune the pre-trained SD using our prepared instruction-based data.

As shown in Figure 2, the image instruction (an example pair from a vision task, Ein and Eout) is
concatenated with another pair from the same task (Iquery and Igt) to compose a grid image as the
actual ground truth. During training, the input to the denoising U-Net comprises 3 components: 1)
the noisy latent embedding of ground truth, 2) the latent embedding of a masked image m similar
to the ground truth but with Igt masked out, and 3) the binary mask b indicating the masked region.
The latter two serve as conditions to provide the model with context around the masked region
and the location of the specific area to be infilled. Text instruction is sent to the text encoder and
the extracted textual embeddings are injected into the denoising U-Net. With these instructions,
the model is tuned to perform image completion, i.e., to generate the masked region. The training
objective is the standard denoising loss of diffusion modeling:

L(θ) = Ez,m,b,y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, E(m), b, cϕ(y))∥22

]
, (2)

where z is the latent code extracted from the ground truth, y is the input text, ϵ is a noise term, t is
the time step, ϵθ is the denoising U-Net, zt is the noisy version of z at time t, E is the VAE encoder,
and cϕ is the text encoder. We fine-tune the denoising U-Net while keeping the text encoder and the
autoencoder of SD frozen.

Note that prior inpainting-based unified models (Bar et al., 2022; Wang et al., 2022b) apply masking
to a portion of image patches. However, we argue that such patch-level inpainting that resembles
word completion training schemes in NLP is not adequate for a holistic and profound understanding
of vision tasks due to the fact that the correlation between pixels is much stronger than that between
words (e.g., this redundancy presented in images makes the model readily inpaint a patch with
neighboring patches). To mitigate this, we mask the whole desired output image and force the model
to predict it during training. We will show later that this new strategy fosters a better connection
between visual features and semantics. This finding is in line with that witnessed in MAE (He
et al., 2022) where masking a very high portion of random patches facilitates more meaningful
representation learning. It also implies an inherent difference between our generative modeling and
the masked image modeling used by previous methods (Bar et al., 2022; Wang et al., 2022b).

4 EXPERIMENTS

Datasets. We conduct experiments on six datasets for ten vision tasks, including ADE20K (Zhou
et al., 2017), NYUv2 (Silberman et al., 2012), COCO (Lin et al., 2014), Merged 5 datasets (Zamir
et al., 2021), SIDD (Abdelhamed et al., 2018), and LoL (Wei et al., 2018). We adopt the same train-
ing/testing split as Wang et al. (2022b). Please refer to Table 6 for a detailed dataset configuration.

Methods. We evaluate UniVis with its two direct competitors, Painter (Wang et al., 2022b) and
PromptDiffusion (Wang et al., 2023b), both designed to handle multiple tasks using a unified frame-
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Table 2: Comparison results on low-level image processing. ∗: Specialized methods for each task. ‡:
Officially trained Painter model using 32× the computing power of UniVis. †: Retrained using of-
ficial code under the same computing resources as UniVis. ⊎: Following InstructDiffusion (Geng
et al., 2023), it directly reconstructs the ground truth via the autoencoder of pre-trained SD, and the
corresponding results indicate the upper bound of UniVis. Bold: Best. Underline: Second best.

Method
Deraining Denoising Enhancement

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Restormer∗ (Zamir et al., 2022a) 33.96 0.935 0.074 40.02 0.960 0.198 - - -
MIRNet-v2∗ (Zamir et al., 2022b) - - - 39.84 0.959 0.203 24.74 0.851 0.116

Painter‡ (Wang et al., 2022b) 29.42 0.867 0.164 38.58 0.954 0.220 22.34 0.806 0.205
Painter† (Wang et al., 2022b) 25.84 0.840 0.191 32.84 0.933 0.224 20.18 0.733 0.354

PromptDiffusion (Wang et al., 2023b) 21.29 0.568 0.364 32.33 0.870 0.120 20.00 0.640 0.326
UniVis-st 22.62 0.598 0.302 34.55 0.907 0.095 20.63 0.681 0.256
UniVis-sc 22.64 0.599 0.301 34.80 0.910 0.092 19.91 0.665 0.286
UniVis⊎ 24.53 0.650 0.249 36.56 0.934 0.054 25.20 0.729 0.218

Table 3: Comparison results on conditional image generation. ∗: Specialized methods for each task.
†: Trained using official code under the same computing resources as UniVis. Note that there is
no officially trained Painter model for generation. Bold: Best. Underline: Second best.

Method
Mask-to-image Depth-to-image Pose-to-image Edge-to-image

FID↓ FID↓ FID↓ FID↓

ControlNet∗ (Zhang et al., 2023) 35.4 43.9 43.0 12.9
Painter† (Wang et al., 2022b) 75.7 89.3 200.1 233.1

PromptDiffusion (Wang et al., 2023b) 31.0 52.5 40.6 13.8
UniVis-st 29.9 ± 0.3 44.0 ± 0.7 34.7 ± 0.3 13.6 ± 0.2
UniVis-sc 27.8 ± 0.6 44.2 ± 0.8 34.3 ± 0.5 13.5 ± 0.4

work, as state-of-the-art methods. We also report the results of other competing methods, which are
specially trained on single tasks and do not use a general framework, for reference purposes. Due
to limited computing resources, we cannot jointly train UniVis on data from all tasks to achieve
convergence in an affordable time. Therefore, we mainly report the results of single-task models
(UniVis-st) that are separately trained for each task, and single-category models (UniVis-sc)
that are jointly trained on data from multiple tasks of the same category. Nevertheless, we train a
multi-category model (UniVis-mc) on data from three tasks belonging to distinct categories to
demonstrate our UniVis’s validity in tackling various tasks using a single set of model parameters.

Implementation Details. We utilize the same training settings of SD to optimize UniVis. We
accumulate gradients every 16 batches with a batch size of 64. The learning rate is fixed to 6.4 ×
10−5. All training images are resized to 256× 256 and we train UniVis on 4 RTX 3090 GPUs.

Visual Understanding Results. We assess the proposed UniVis on three visual understanding
tasks described in Section 3.1. Standard metrics are adopted for evaluation: (1) mean Intersection-
over-Union (mIoU) for semantic segmentation; (2) root mean squared error (RMSE), absolute rel-
ative error (REL), and the accuracy under the threshold (δ1 < 1.25) for depth estimation. Quan-
titative comparison results are presented in Table 1 and we make the following Observations. O1:
UniVis outperforms PromptDiffusion by a large margin, despite both adopting the pre-trained SD,
albeit with significantly different frameworks. We attribute UniVis’s superior performance to our
more favorable image completion framework that integrates instructions spatially on the image-level
rather than mixing them up on the feature-level. O2: The official results of Painter are better than
ours, but Painter requires training on a considerable number of machines, i.e., around 128 RTX
3090 GPUs. Hence, we retrain Painter following its official code to compare with UniVis more
fairly under the same compute. In this case, our UniVis are highly comparable with Painter. O3:
UniVis as well as Painter and PromptDiffusion still fall behind most specialized methods, but the
primary focus of this paper is to reveal the potential of generative modeling in building a universal
solver for vision tasks, with achieving state-of-the-art performance being of our lower priority.

We also show some qualitative results of our method in Figure 3. UniVis succeeds in perceiv-
ing various scenes regarding semantics, depth, and salient object components, and subsequently
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Figure 3: Visual results produced by our framework. Here we omit the instructions for simplicity.
More visualizations are given in the Appendix due to space limits.

Table 4: Joint training results. We select three representative tasks from different categories.

Method
Depth estimation Denoising Mask-to-image

RMSE↓ REL↓ δ1↑ PSNR↑ SSIM↑ LPIPS↓ FID↓

UniVis-st 0.420 0.135 0.857 34.55 0.907 0.095 29.9
UniVis-mc 0.421 0.131 0.863 34.58 0.909 0.095 30.4

produces accurate predictions in RGB format. It is worth noting that UniVis performs well in
keypoint detection (see Figure 3 and Figure 8 in the Appendix). Nevertheless, generating heatmaps
to calculate metrics such as average precision (AP) is difficult to accomplish with the autoencoder
of pre-trained SD as it introduces lossy compression. Limited by this, we do not report quantita-
tive results. This issue can be alleviated by resorting to better pre-trained models in the future or
employing an extra model to transfer the output to heatmaps as done in Geng et al. (2023).

Low-level Image Processing Results. We exploit the ability of UniVis to perform low-level image
processing on three image restoration tasks. Standard metrics PSNR, SSIM, and LPIPS (Zhang
et al., 2018) are used for evaluation. Table 2 presents the quantitative results of different methods.
Similar to the observations in visual understanding, here UniVis attains competitive performance
compared to Painter (retrained version) and surpasses PromptDiffusion in all metrics. In addition,
there is an upper bound for UniVis because the autoencoder of pre-trained SD brings information
loss (as pointed out in Geng et al. (2023)). We apply the autoencoder to reconstruct the ground truth
and calculate the metrics as our upper bound. Visual results illustrated in Figure 3 also demonstrate
the efficacy of UniVis in handling low-level image processing tasks.

Conditional Image Generation Results. We evaluate the conditional image generation perfor-
mance of UniVis given various conditions, including segmentation mask, depth map, keypoint,
and HED edge. The commonly used Fréchet Inception Distance (FID) (Heusel et al., 2017) is
adopted to assess the realism of the generated images. The comparison results are reported in
Table 3. Observations are elaborated in the following. O1: The proposed UniVis achieves
exceptional performance on all tasks and even surpasses the specialized method (ControlNet) on
mask/depth/pose-to-image, indicating that UniVis fully unleashes the generative power of pre-
trained SD. O2: Painter, which is built on top of pre-trained MAE, falls short of synthesizing real-
istic images from conditions with sparse semantics, resulting in poor FID values. Visual results of
Painter shown in Figure 12, 13, 14, and 15 (Appendix) further verify this. O3: UniVis-sc attains
a comparable performance to UniVis-st. This showcases the effectiveness of UniVis-sc in
translating flexible control signals into high-fidelity images using a single model. As presented in
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Table 5: Ablation study results for semantic segmentation on ADE20K.

Method
Maskig strategy Type of text instruction

region-wise whole image no prompt task-level instance-level

mIoU↑ 17.4 33.4 31.0 31.1 33.4

"a nice-looking shoe"

Instruction Query UniVis

"a sharp image
without noise"

Instruction Query UniVis

"semantic
segmentation map"

Instruction Query UniVis

(a) Generation from unseen conditions (b) Denoising on in-the-wild images (c) Segmentation on images from new domains

Figure 4: Example results from our UniVis in performing out-of-distribution inference.

Figure 3, given different conditions, UniVis-sc manages to recognize the underlying task and
synthesize photorealistic images while spatially conforming to the control signals.

At last, we collect data from depth estimation, denoising, and mask-to-image to jointly train a multi-
category model UniVis-mc. As shown in Table 4, UniVis-mc achieves a competitive perfor-
mance very close to UniVis-st, confirming the proposed framework’s ability to automatically
identify the specific task through the given instructions and produce the corresponding desired out-
put. It is encouraging to see the results of UniVis-mc trained for these tasks involving disparate
visual signals and data domains, and we believe that unifying discrimination and generation will be
made possible if the proposed UniVis can be trained with sufficient computational resources.

Ablation study. We perform ablations on two key ingredients of UniVis: the masking strategy
and the design of text instruction. Instead of masking the whole image Igt during training, we ran-
domly mask out a portion of Igt to train UniVis for the semantic segmentation task. As reported
in Table 5, this region-wise masking results in a significant performance drop, highlighting the im-
portance of our masking strategy in unleashing the unifying ability of pre-trained SD. We also study
the effect of text instruction by training UniVis with three types of textual prompts, including no
prompt (an empty string), task-level prompt, and instance-level prompt. We can find in Table 5 that
instance-level prompt yields the best performance, which implies that detailed semantic information
can facilitate the visual understanding ability of our model. Obtaining captions is convenient for
visual understanding (using captioning tools) but manual construction is needed for other tasks. In
practice, one needs to strike a balance between high-end performance and extra human efforts.

Generalization capability. We explore UniVis’s generalization capability by applying it to unseen
tasks/data. As demonstrated in Figure 4, UniVis is capable of (1) generating realistic images from
the normal map that is unseen during training, (2) denoising on in-the-wild images that have different
data distribution compared to the training dataset, and (3) performing segmentation on images from
new domains (e.g., Van Gogh’s paintings in Figure 4(c)). These promising results indicate that
UniVis learns the underlying “structure” of various visual signals and generalizes well to new
scenarios by leveraging the pre-trained knowledge to conduct instruction-following inference.

5 CONCLUSION

In this paper, we explore the trajectory of LLMs to design a unified framework for computer vision
tasks, identifying three essential components: 1) a general data interface for various tasks, 2) a
powerful backbone with generative and reasoning ability, and 3) a visual instruction tuning method
for efficient adaptation to various tasks. To this end, the proposed UniVis achieves the unification
through a universal learning framework by 1) framing heterogeneous visual signals as RGB images,
2) leveraging the large-scale pre-trained Stable Diffusion (SD) as the backbone, and 3) introducing a
new instruction tuning method based on image completion to adapt SD to different tasks. UniVis’s
competitive performance across three categories of vision tasks verifies our design’s potential of
generative modeling in perceiving and processing visual signals in a general manner. Compared to
the evaluated existing general frameworks, UniVis shows notable efficacy in handling at least one
additional significant category of vision tasks, encouraging further research in this direction.
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A DETAILED INFORMATION ON DATASETS

We adopt six widely employed datasets to evaluate the performance of different methods on ten
computer vision tasks. A summary of dataset configuration is provided in Table 6. We give some
further details in the following.

• ADE20K (Zhou et al., 2017) is a semantic segmentation dataset that has 20,210 images
for training and 2,000 for validation, including 150 semantic classes. We conduct semantic
segmentation and mask-to-image generation on this dataset.

• NYUv2 (Silberman et al., 2012) is a widely-used depth estimation dataset collected from
indoor scenes. We adopt the dataset processed by Painter (Wang et al., 2022b), which
contains 36,396 training images and 654 testing images. We conduct depth estimation and
depth-to-image generation on NYUv2.
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Table 6: Dataset configuration.

Dataset Task Training images Testing images

ADE20K
(Zhou et al., 2017)

Segmentation 20,210 2,000

Mask-to-image 20,210 2,000

NYUv2
(Silberman et al., 2012)

Depth estimation 36,396 654

Depth-to-image 36,396 654

COCO
(Lin et al., 2014)

Keypoint detection 149,781 6,352

Pose-to-image 149,781 6,352

Edge-to-image 118,287 5,000

Merged 5 datasets
(Zamir et al., 2021) Deraining 13,712 4,300

SIDD
(Abdelhamed et al., 2018) Denoising 96,000 1,280

LoL
(Wei et al., 2018) Enhancement 485 15

• COCO (Lin et al., 2014) is a classical vision dataset which provides rich annotations of im-
ages such as segmentation masks, keypoints, and captions. We conduct keypoint detection
and pose-to-image generation on COCO. Each human image is labeled with 17 keypoints.
We also extract HED edge maps from images in COCO and perform edge-to-image gener-
ation task on those image-edge pairs.

• We conduct deraining, denoising, and low-light image enhancement on three benchmark
datasets, namely Merged 5 datasets (Zamir et al., 2021), SIDD (Abdelhamed et al., 2018),
and LoL (Wei et al., 2018). respectively.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 INSTRUCTIONS FOR EACH TASK

In the following, we provide details into how we construct image and text instructions for each task.

Semantic Segmentation. In this task, we transfer semantic labels to RGB images by binding
each pixel with a unique color determined by its semantic class. We utilize the protocol released
by Painter (Wang et al., 2022b) to define the semantic-color mapping. Instance-level prompt is
adopted as the text instruction for this task. We derive the prompt following the template “semantic
segmentation map of {caption}”, where the caption is obtained by applying BLIP (Li et al., 2022a)
to the query image.

Depth Estimation. The depth map from NYUv2 is a one-channel image with the pixel value
ranging from 0 to 10000. To obtain a RGB image, we scale the value of each pixel to [0, 255]
and then let R, G, B have the same re-scaled value. The text instruction for depth estimation is a
task-level prompt: “depth map”.

Keypoint Detection. To convert keypoints into RGB images, we draw colored squares at the loca-
tion of each keypoint. Each square occupies 9×9 pixels and its color is determined by the semantic
category of that keypoint, and we adopt the same mapping strategy used for semantic segmentation.
The text instruction for keypoint detection is a task-level prompt: “keypoint”.

Low-level Image Processing. We use the task-level prompt as the text instruction for three low-
level image processing tasks. “a clean image without rain”, “a sharp image without noise”, and “a
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bright image” are applied for image deraining, image denoising, and low-light image enhancement,
respectively.

Conditional Image Generation. We adopt the same method used in visual understanding tasks to
translate conditions to RGB images. Instance-level prompt, which is the caption of the output image
obtained through BLIP, is used as the text instruction for these conditional image generation tasks.

B.2 TRAINING AND INFERENCE DETAILS

We adopt a smooth L1 version of Eq. 2 to train our model. During training, we randomly drop
10% text-conditioning to improve classifier-free guidance sampling (Ho & Salimans, 2022). We
load pre-trained weights from Stable Diffusion-v1.5-inpainting for fine-tuning. We randomly sam-
ple an input-output pair as the image instruction during training and adopt a fixed pair from the
training dataset (same as Painter (Wang et al., 2022b)) as the image instruction at the inference time.
By setting the random noise in the reverse diffusion process to 0 (i.e., a deterministic sampling),
DDIM (Song et al., 2020a) manages to generate an image with fewer sampling steps compared to
DDPM. We adopt DDIM sampling with 50 steps for inference.

C ADDITIONAL RESULTS

Additional comparison results. Here we present additional comparison results on semantic seg-
mentation (Figure 6), depth estimation (Figure 7), keypoint detection (Figure 8), low-light im-
age enhancement (Figure 9), image deraining (Figure 10), image denoising (Figure 11), mask-
to-image generation (Figure 12), depth-to-image generation (Figure 13), pose-to-image generation
(Figure 14), and edge-to-image generation (Figure 15). These results further demonstrate the capa-
bility of UniVis to perform a large variety of computer vision tasks.

Text-conditional image generation results. We also explore an additional task: text-conditional
image generation. This task can be fulfilled by directly applying UniVis-sc trained on four
conditional image generation tasks where the query is set to a black image. We achieve a FID of
27.47 on the COCO validation set. This could be further improved by training a UniVis-st on this
task. We also present some text-to-image generation results obtained from our method in Figure 16.

Additional generalization results. Here we showcase more generalization results from UniVis
in Figure 17. UniVis exhibits promising performance when being applied to images from new
domains/in-the-wild images and novel tasks with unseen conditions. This strong generalization
capability, which is analogous to LLMs, again validates our design of building a universal solver
for vision tasks. Gathering more diverse data for training UniVis could be promising to enhance
generalizability and we plan to investigate this in future work.

D OVERALL PERFORMANCE COMPARISON

For a more comprehensive performance comparison between Painter (Wang et al., 2022b), Prompt-
Diffusion (Wang et al., 2023b), and UniVis, we include some discussions below. First, both Painter
and PromptDiffusion experience a clear collapse or near breakdown on one of the three categories of
vision tasks. For instance, on the conditional image generation tasks, Painter completely collapses
while UniVis exhibits SOTA performance (see Table 3 and Figures 12, 13, 14, and 15). In other
words, UniVis could handle at least one more category of vision tasks compared to its competitors.
We conclude this in Table 7. For a more intuitive comparison, we draw a radar chart in Figure 5
to showcase the overall performance of different methods on three types of computer vision tasks.
UniVis achieves the most balanced and comprehensive performance.

E SCALING BEHAVIOR W.R.T. COMPUTING RESOURCES

Here we conduct an experiment where UniVis is trained using different amounts of computing
resources. We present the results in Table 8. UniVis shows impressive scaling behavior where the
performance improves with larger computing power.
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Table 7: Capability of the proposed UniVis and its two direct competitors (Painter and PromptD-
iffusion) in handling three categories of vision tasks.

Method Visual Understanding Low-level Image Processing Conditional Image Generation

Painter " " %

PromptDiffusion % " "

UniVis " " "

Visual Understanding

Low-level Image                      
Processing                     

                       Conditional 
                      Image Generation

0.5
1.0

1.5
2.0

2.5
3.0

Painter
PromptDiffusion
UniVis

Figure 5: Overall performance comparison between UniVis, Painter, and PromptDiffusion on three
categories of vision tasks. The score for each category is calculated based on the relative ranking
among the three methods (e.g., 3 points for ranking 1st and 1 point for ranking 3rd) and averaged
across tasks of each category.

F ABLATION STUDY FOR TASK PROMPTS

To further investigate the utility of task prompts, we perform two ablations for UniVis-mc and
UniVis-st respectively. Results are provided in Table 9 and Table 10. As can be seen, task
prompts are beneficial for some tasks (e.g., depth estimation and mask-to-image generation), but
the gain by applying task prompts is very marginal for other tasks (e.g., deraining and denoising).
Therefore, one can optionally apply task prompts during inference to strike a balance between better
performance and extra human efforts.

G FEW-SHOT IN-CONTEXT INFERENCE

Here we extend UniVis to perform few-shot in-context inference. This is fulfilled by establishing
the grid image with more input-output pairs. We report the results of UniVis under one-shot, two-
shot, and four-shot settings in Table 11. We observe that there is a slight gain by introducing more
visual instructions, and we think this could be further explored during training, which we leave to
future work.
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Table 8: Results of UniVis using different computing resources.

Computing resources
Depth estimation Denoising

RMSE↓ REL↓ δ1↑ PSNR↑ SSIM↑ LPIPS↓

one 3090 GPU 0.461 0.156 0.812 34.02 0.898 0.121
four 3090 GPUs 0.420 0.135 0.857 34.55 0.907 0.095

eight A100 GPUs 0.391 0.118 0.892 34.92 0.913 0.092

Table 9: Ablation study results of UniVis-mc regarding task prompts.

Method
Depth estimation Denoising Mask-to-image

RMSE↓ REL↓ δ1↑ PSNR↑ SSIM↑ LPIPS↓ FID↓

UniVis-mc w/ task prompts 0.421 0.131 0.863 34.58 0.909 0.095 30.4
UniVis-mc w/o task prompts 0.466 0.154 0.826 34.36 0.907 0.101 31.5

Table 10: Ablation study results of UniVis-st regarding task prompts.

Method
Deraining

PSNR↑ SSIM↑ LPIPS↓

UniVis-st w/ task prompts 22.62 0.598 0.302
UniVis-st w/o task prompts 22.60 0.595 0.306

Table 11: Results of UniVis using different shots of visual instructions.

# of shots during inference
Depth estimation Denoising

RMSE↓ REL↓ δ1↑ PSNR↑ SSIM↑ LPIPS↓

one-shot 0.420 0.135 0.857 34.55 0.907 0.095
two-shot 0.416 0.131 0.863 34.73 0.911 0.095
four-shot 0.413 0.130 0.863 34.75 0.911 0.095
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Query GT UniVisPainter PromptDiffusion

Figure 6: Visual comparison results on semantic segmentation.
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Query GT UniVisPainter PromptDiffusion

Figure 7: Visual comparison results on depth estimation.
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Query GT UniVisPainter PromptDiffusion Query GT UniVisPainter PromptDiffusion

Figure 8: Visual comparison results on keypoint detection.

Query GT UniVisPainter PromptDiffusion

Figure 9: Visual comparison results on low-light image enhancement.
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Query GT UniVisPainter PromptDiffusion

Figure 10: Visual comparison results on image deraining.
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Query GT UniVisPainter PromptDiffusion

Figure 11: Visual comparison results on image denoising.
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Query GT UniVisPainter PromptDiffusion

Figure 12: Visual comparison results on mask-to-image generation.
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Query GT UniVisPainter PromptDiffusion

Figure 13: Visual comparison results on depth-to-image generation.
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Query GT UniVisPainter PromptDiffusion

Figure 14: Visual comparison results on pose-to-image generation.
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Query GT UniVisPainter PromptDiffusion

Figure 15: Visual comparison results on edge-to-image generation.
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"A clear glass vase
holding some

vegetation inside"

"A couple of elephants
walking across a river"

"A bird is perched by a
leaf on a tree branch"

"A black leather sofa
in a large living room"

"A close up of a
sandwich and

vegetables on a plate"

"A convex mirror
hanging from the side

of a bus"

"A Christmas tree with
a bunch of presents

under it"

"A big bowl of teriyaki
chicken and broccoli"

"A blue and yellow
train, is stationary on

the tracks"

"A cow in a farm yard
in a gated enclosure"

Figure 16: Text-to-image generation results of UniVis.
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Instruction Query UniVis

"semantic segmentation map"

"depth map"

"depth map"

"keypoint"

"keypoint"

"a blue backpack on the beach"

"a hot air balloon"

"a sharp image without noise"

"a clean image without rain"

"a clean image without rain"

"a clean image without rain"

Images 
from new
domains

Images 
from new
domains

Novel task
with unseen
conditions

Novel task
with unseen
conditions

In-the-wild 
images

Images 
from new
domains

Images 
from new
domains

Images 
from new
domains

Images 
from new
domains

Images 
from new
domains

Images 
from new
domains

Figure 17: Additional generalization results from UniVis.
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