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ABSTRACT

We introduce a novel framework that generalizes f -divergences by incorporating
divergence-generating functions that exhibit non-convex behavior in a neighbor-
hood of the origin. Using this extension, we define a new class of pseudo f -
divergences, encompassing a wider range of distances between distributions that
traditional f -divergences cannot capture. Among these, we focus on a particular
pseudo divergence, obtained by considering the induced metric of Bayes Hilbert
spaces. Bayes Hilbert spaces are frequently used due to their inherent connection
to Bayes’s theorem as they allow sampling from potentially intractable posterior
densities, a challenging task until now. In the more general context, we prove
that pseudo f -divergences are well-defined and introduce a variational estimation
framework that can be used in a statistical learning context. By applying this vari-
ational estimation framework to f -GANs, we achieve improved FID scores over
existing f -GAN architectures and competitive results with the Wasserstein GAN,
highlighting its potential for both theoretical research and practical applications in
learning theory.

1 INTRODUCTION

A central challenge in learning theory is estimating statistical divergences between distributions
from finite samples to quantify their dissimilarity. f -divergences are a popular class of diver-
gences (Csiszár et al., 2004; Liese & Vajda, 2006) including the Kullback-Leibler (KL) and Pear-
son divergence. Their general form is given by Df (µ, ν) =

∫
f( dνdµ )dµ, where f is a convex

lower-semicontinuous function satisfying f(1) = 0. f -divergences and the subsequent estima-
tion have been extensively studied in Nguyen et al. (2010); Rubenstein et al. (2019); Nguyen et al.
(2009); Moon & Hero (2014); Keziou (2003). However, research on generalizing these divergences
(Gimenez & Zou, 2022; Birrell et al., 2022; Chen et al., 2024), particularly by relaxing the convexity
constraint, still needs to be explored.

We introduce a novel pseudo f -divergence framework that relaxes the convexity constraint on
divergence-generating functions, offering greater flexibility and applicability in various machine-
learning tasks. This flexibility is crucial in tasks like generative image modeling (Nowozin et al.,
2016), or topic modeling on large text data sets (Hoffman et al., 2013), where the underlying data
is diverse. Previously, the convexity requirement hindered connections between f -divergences and
other dissimilarity measures like the Bayes Hilbert space metric (Van den Boogaart et al., 2014), fre-
quently used in Bayesian statistics. In Bayesian statistics, inference typically requires sampling from
intractable densities (Kroese et al., 2013). Sampling from intractable densities using divergences in
a bayesian setting has been studied in Blei et al. (2017); Campbell & Broderick (2018); Campbell
& Beronov (2019). However, these methods have only been applied using the KL-divergence (Blei
et al., 2017; Campbell & Beronov, 2019) or lower dimensional synthetic data sets (Campbell &
Broderick, 2018).

To highlight the application of general f -divergences in a Bayesian statistics context, we therefore
explore a connection between f -divergences and Bayes Hilbert spaces, which provide an alterna-
tive structure for measuring distances between distributions. Bayes Hilbert spaces are distribution
spaces with a vector structure, intrinsically connected to Bayes’s theorem, where addition aligns with
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Bayesian updating (Van den Boogaart et al., 2014). Due to their Hilbert space structure, they are
equipped with an induced metric, providing a natural notion of distance between measures that can
be incorporated into the proposed pseudo f -divergence framework. Another advantage of estimating
the Bayes Hilbert space metric over traditional divergences arises from the Hilbert space structure.
The Hilbert space structure implies that every Cauchy sequence converges within the space, which
can be exploited in an optimization setting. By modeling the loss function as a sequence in a Bayes
Hilbert space and using gradient-based approaches, convergence to a solution near the optimum is
ensured, preventing instability near the optimum. However, defining a Hilbert space for probability
measures is not straightforward (Van den Boogaart et al., 2010). First, probability measures must
be identified as vectors before imposing a linear structure on them to obtain a linear space. This
linear space can then be endowed with an inner product to define a Hilbert space. The linear space
structure allows probability measures and their associated densities to be embedded in a subspace of
L2, enabling a clear understanding of the distances between distributions.

The connection between f -divergences and Bayes Hilbert spaces can be established using the clr
transformation for distributions, which is defined as clr(µ) = log(dµdλ )−

∫
log(dµdλ )dλ, where dµ

dλ is
the Radon-Nikodym derivative of µ with respect to some continuous base measure λ. The induced
metric of a Bayes Hilbert space, which involves the squared clr transformation, closely relates to
a pseudo f -divergence with the pseudo-divergence-generating function x 7→ x log(x)2. Since this
function encompasses a local non-convexity on the interval [0, exp(−1)], we apply our newly de-
veloped framework, which allows us to estimate the so-called BHS divergence and also exploit the
characteristics of Bayes Hilbert spaces to obtain a lower bound for the pseudo divergence that is
attained.

1.1 CONTRIBUTIONS

Our main contributions can be summarized as follows:

• We develop a novel theoretical framework bridging the gap between f -divergences and
Bayes Hilbert spaces.

• We generalize f -divergences by allowing for locally non-convex divergence-generating
functions.

• We present an efficient sampling algorithm for high dimensional distributions.

• We apply our extended pseudo-divergence estimation framework to f -GANs, outperform-
ing traditional f -GANs achieving lower FID scores.

1.2 RELATED WORK

f -divergences: Our work extends the existing body of research on f -divergences and their ap-
plication in learning theory, particularly in the context of sampling from unknown distributions. A
foundational approach to estimating f -divergences was developed by Nowozin et al. (2016); Nguyen
et al. (2010), where the authors developed and utilized a variational estimation framework to esti-
mate f -divergences with an application to GANs. Their framework allows for flexible divergence
estimation but remains constrained by the convexity of divergence-generating functions. Our ap-
proach addresses this limitation by relaxing the convexity constraint, allowing for a broader range
of pseudo f -divergences that can be tailored to specific tasks.

Besides f -divergences, Rényi divergences, which generalize the KL divergence by introducing a pa-
rameter α > 0, α ̸= 1 that corresponds to a weight controlling the sensitivity of divergence regarding
areas where the distributions are similar or dissimilar have been developed to provide greater flexi-
bility (Van Erven & Harremos, 2014). While Rényi divergences provide greater flexibility compared
to KL, they are still limited by the convexity constraint inherent in f -divergences.

A different approach to measure the dissimilarity between probability measures is offered by inte-
gral probability metric (IPM) such as the Wasserstein distance. The Wasserstein distance has gained
popularity in generative modeling due to its robustness in comparing distributions with different
supports (Sriperumbudur et al., 2012). However, as Yatracos (2022) has noted, the Wasserstein dis-
tance is unsuitable for estimating distributions with heavy tails, as it struggles to handle distributions
whose tails are not exponentially bounded. Recent work by Chen et al. (2024) addresses this issue by
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proposing a penalized version of the Wasserstein distance, which combines it with α-divergences to
estimate heavy-tailed distributions better. While promising, their method requires careful tuning of
the penalty terms and relies on the Wasserstein metric’s limitations, particularly in high-dimensional
spaces.

In contrast, Birrell et al. (2022) combines IPMs and f -divergences introducing (f,Γ)-divergences
that inherit the ability to compare distributions that are not absolutely continuous from IPMs, while
also retaining the property of f -divergences to control heavy-tailed distributions. Although this
hybrid approach broadens the applicability of divergence estimation, it still imposes the convexity
constraint on the divergence-generating function.

Bayes Hilbert Spaces: Bayes spaces, and their extension to Bayes Hilbert spaces (Van den Boogaart
et al., 2010; 2014; Egozcue et al., 2006) while still in their infancy, were introduced as a natural
generalization of the theory of compositional data, originally popularized by Aitchison in Aitchison
(1982; 1986); Van den Boogaart & Tolosana-Delgado (2013). These spaces address the challenge
of defining meaningful distances between probability measures for specific data analysis tasks. The
core idea is to introduce a vector space structure for measures, where the group operations align
with Bayes updating (Van den Boogaart et al., 2014), thus creating a framework in which Bayesian
reasoning can be incorporated directly into the space of measures.

Bayes Hilbert spaces are frequently used in functional regression, including Maier et al. (2021);
Arata (2017); Machalova et al. (2016); Machalová et al. (2021); Talská et al. (2018), where Radon-
Nikodym derivatives are modeled using spline functions within the Bayes Hilbert space.

However, one significant challenge with these approaches is their reliance on functional regression,
where the targets or features are typically density functions. Since these densities are not directly
observed in practice, the models must infer them from finite samples generated by the underlying
distributions. This creates a gap between the theoretical framework of Bayes Hilbert spaces and
practical learning scenarios.

Our work addresses this gap by incorporating a generative adversarial network (GAN) to approxi-
mate the underlying probability distribution while simultaneously minimizing the distance between
the learned and true density in the Bayes Hilbert space. This integration allows us to bridge the
functional models of Bayes spaces with finite-sample learning, offering a more practical and scal-
able solution to regression tasks involving density functions.

In parallel, Wynne (Wynne, 2023) explored the use of Bayes Hilbert spaces for Bayesian posterior
approximation, concluding that these spaces provide a natural and appropriate framework for ap-
proximating posterior distributions. Our approach builds on this insight by extending its application
to finite sample learning and divergence minimization in the Bayes Hilbert space.

1.3 OUTLINE

We begin by reviewing key properties of f -divergences and establish theoretical assumptions on
the underlying spaces. Next, we address challenges in quantifying dissimilarities between measures
using f -divergences. Since estimating f -divergences relies on a variational framework involving
Fenchel conjugates, we discuss how these conjugates are used in a dual representation of convex
divergence-generating functions to derive an estimable lower bound. We then outline the conditions
for realizing this bound and present its analytical form, which remains valid under milder assump-
tions.

In Section 3, we review Bayes Hilbert spaces as a framework for measuring distances between prob-
ability measures by embedding them into function spaces with a separable Hilbert space structure
defined through the clr. The induced metric corresponds to the log-variance, which connects to
f -divergences.

Finally, we apply this generalized divergence estimation framework to f -GANs, demonstrating that
the more flexible pseudo-divergence approach outperforms traditional f -divergences.

Proofs of our theoretical results are provided in the Appendix.
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2 f -DIVERGENCES

Statistical divergences measure the dissimilarity between probability distributions and are often used
to estimate parameters in statistical models, such as generative algorithms designed to sample from
unknown distributions. f -divergences are a widely used class of these measures defined as:

Df (µ, ν) =

∫
Ω

pν(x)f

(
pµ(x)

pν(x)

)
λ(dx).

where µ and ν are assumed to be two probability distributions on the same measure space (Ω,B, λ)
(B denoting the Borel σ-field over Ω) that are both absolutely continuous with respect to the σ-finite
base measure λ. pµ and pν denote the Radon-Nikodym densities of µ and ν with respect to λ.
Common choices for λ are the Lebesgue measure or counting measure. f is an arbitrary convex,
lower-semicontinuous function f : R+ → R, satisfying f(1) = 0 called divergence generating
function. By requiring that f(1) = 0, it is ensured that if µ = ν a.s., Df (µ, ν) = 0 and the
lower-semicontinuity of f ensures that limt↘1 f(t) = f(0). Note, that f -divergences generally do
not induce metrics as they are not symmetric in most cases, i.e., Df (µ, ν) ̸= Df (ν, µ). However,
they can still effectively be used for measuring dissimilarity or pseudo distances between measures.
Since the function f must be convex, which can be restrictive when defining new divergences, it
potentially limits the range of distributions a generative model can learn effectively. A challenge
with f -divergences is their difficulty in estimation from finite samples of µ and ν. To address this,
particularly in estimating likelihood ratios for multivariate distributions, convex optimization tech-
niques are employed (Nguyen et al., 2010). The optimization uses variational estimation involving
the Fenchel conjugate of a continuous convex function defined as:

f∗(y) := sup
x∈dom(f)

{xT y − f(x)}, y ∈ dom(f∗).

This implies the dual representation of f , known as the Fenchel or convex duality:
Theorem 2.1 (Rockafellar, 1970). Let f : Rn → R be a convex function. If f is lower semi-
continuous, then the duality f∗∗(x) = f(x) for all x ∈ Rn holds.

Leveraging the dual representation f(x) = f∗∗(x) = supy∈dom(f∗){xT y − f∗(y)} in the sense of
Theorem 2.1, a lower bound for the divergence of µ and ν can be derived (Nguyen et al., 2010):

Df (µ, ν) ≥ sup
T∈T

{
Eµ(T )− Eν(f

∗ ◦ T )
}
. (1)

Here, T denotes an arbitrary class of Borel measurable functions T : Ω → dom(f∗). By adding
the additional assumption that f is continuously differentiable on its entire domain, the bound in
equation 1 is tight and the supremum can be represented analytically as

T̃ (x) := f ′
(
pµ(x)

pν(x)

)
.

By adapting the definition of convex conjugates to allow concave functions instead of convex func-
tions, Theorem 2.1 can be adjusted to hold for upper-semicontinuous, concave functions as well.
The concave conjugate of a function f : Rn → R is defined as

f∗(y) := inf
x∈dom(f)

{xT y − f(x)}, y ∈ dom(f∗).

Fenchels duality in the concave case then states f∗∗(x) = f(x) for all x ∈ Rn (Rockafellar, 1970).

3 BAYES HILBERT SPACES

Another idea for quantifying distances between probability measures is the embedding into suitable
spaces of functions such as Hilbert spaces. The induced metric of these spaces can then be used
to measure the distance between those probability measures. This basic idea will be formulated
mathematically in the following paragraph which is based on Van den Boogaart et al. (2014; 2010).
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Denote by M the set of σ–finite measures on some Borel measurable space (Ω,B) that are equiv-
alent to a σ–finite base measure λ on B. Then, µ and ν are called B–equivalent, denoted by
µ =B(λ) ν, if there exists a constant c > 0 such that µ(A) = cν(A) for all A ∈ B with the
convention c · (+∞) = +∞. Define B(λ) as the set of =B–equivalent classes, i.e., the quotient
space M(λ)/ =B . The relation =B is an equivalence relation on M(λ). Since the considered mea-
sures are equivalent to each other, the Radon–Nikodym theorem ensures that the densities dµ/dν
exist for every µ, ν ∈ M(λ).

Given the equivalence class of =B–equivalent measures, addition and multiplication can be defined:
For R ∈ B define the perturbation of µ by ν, the powering of µ for a scalar α ∈ R, and the negative
perturbation in B(λ) as

(µ⊕ ν)(R) :=

∫
R

dµ

dλ

dν

dλ
dλ, (α⊙ µ)(R) :=

∫
R

(
dµ

dλ

)α

dλ, (µ⊖ ν)(R) :=

∫
R

dµ

dν
dλ.

In Bayes Hilbert space literature it is common to identify measures with their corresponding Radon–
Nikodym densities. This is coherent in the sense that by setting µ =B

dµ
dλ for every µ ∈ B(λ) it

holds that µ⊕ ν =B
dµ
dλ

dν
dλ .

(B(λ),⊕,⊙) is a real linear space called Bayes linear space with base measure λ. The additive
neutral element is given by 0B := λ and the additive inverse element ⊖µ := dλ

dµ . To derive a Hilbert
space based on this vector space, we now assume that the base measure λ is a probability measure.
The space Bp(λ), p ≥ 1 of λ–equivalent measures defined as

Bp(λ) :=

{
µ ∈ B(λ) :

∫ ∣∣∣∣log(dµ

dλ

)∣∣∣∣p dλ < +∞
}

is a vector subspace of B(λ). For details and more basic properties, see Van den Boogaart et al.
(2010).

Let µ ∈ B1(λ) with corresponding density dµ
dλ . Then, define the centered log-ratio transformation

clr of µ as

clr(µ) := log

(
dµ

dλ

)
−
∫

log

(
dµ

dλ

)
dλ.

The clr transformation has the desirable property of maintaining the relation of ⊕ with multiplica-
tion and ⊙ with exponentiation respectively which is enforced by the properties of the logarithm.
Furthermore, the map clr : B1(λ) → L1

0(λ) is linear.

Recall, that L1
0(λ) = {g ∈ L1(λ) :

∫
gdλ = 0}. Given the map clr, an inner product on B2 can be

defined which in turn induces a metric.

Let therefore pµ and pν be two Radon-Nikodym densities in B2(λ), i.e., for µ, ν ∈ B2(λ) define
pµ(x) :=

dµ
dλ (x) and pν(x) :=

dν
dλ (x) for all x ∈ Rn. Then, the inner product ⟨pµ(x), pν(x)⟩B2(λ)

is defined as:∫
Ω

(
log(pµ(x))−

∫
log(pµ(y)) λ(dy)

)(
log(pν(x))−

∫
log(pν(y)) λ(dy)

)
λ(dx).

B2(λ) is a separable Hilbert space and the map clr : B2(λ) → L2
0(λ) is an isometry of Hilbert

spaces.

The map dB2(λ) : B
2(λ)×B2(λ) → [0,∞), dB2(λ)(pµ, pν) :=

(
⟨pµ ⊖ pν , pµ ⊖ pν⟩B2(λ)

) 1
2 is an

induced metric and the pair (B2(λ), dB2(λ)) is a complete metric space.

If we want to construct an f -divergence that is closely related to the aforementioned metric, its
explicit form is of major interest. We can derive such an analytical expression of the Bayes Hilbert
space metric using the following Lemma.
Lemma 3.1. Let pµ and pν be two Radon–Nikodym densities in B2(λ). Then,

dB2(λ)(pµ, pν)
2 = Varλ(log(µ⊖ ν)).

Therefore the Bayes Hilbert space metric directly corresponds to the log-variance loss studied in e.g.
Richter et al. (2020); Nüsken & Richter (2021); Richter & Berner (2024), embedding those works
in the area of Bayes Hilbert space learning.
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4 BRIDGING THE GAP BETWEEN BAYES HILBERT SPACES AND
f -DIVERGENCES

In this section, we show how a pseudo f -divergence can be formulated to directly relate to the Bayes
Hilbert space metric dB2 , enabling sampling from a probability distribution within a well-defined
Bayes Hilbert space. This approach addresses a key challenge in Bayes Hilbert space learning, as
highlighted in Maier et al. (2021): estimating densities through direct sampling from the learned
distribution.

4.1 MIXED CONJUGATES

A key challenge is that f -divergences are only well-defined when f is lower semi-continuous and
convex. Thus to establish the desired connection, we must first extend the definition of f -divergences
to handle local subsets near the origin where f is not convex. Consider a continuous function
f : [0,∞) → R, which is concave on [0, a) for some a > 0 and convex on [a,∞). To account for
this local non-convexity, we define the mixed conjugate f∗

∗ of f as

f∗
∗ (t) := sup

x∈[a,∞)

{tx− f(x)}1{t∈M} + inf
x∈[0,a)

{tx− f(x)}1{t∈N}, (2)

where

M :=
{
t ∈ dom(f∗

∗ ) : argmax
x∈dom(f)

(tx− f(x)) ∈ [a,∞)
}
,

N :=
{
t ∈ dom(f∗

∗ ) : argmin
x∈dom(f)

(tx− f(x)) ∈ [0, a)
}
.

The set M (N ) ensures that we consider the convex (concave) conjugate on the domain of f∗
∗ where

f is convex (concave). Under mild conditions, this definition allows a disjoint characterization of the
subdomains M and N . The motivation behind this mixed conjugate is straightforward: it enables a
well-defined dual representation for locally non-convex functions.
Lemma 4.1. For any continuous function f : [0,∞) → R that is convex on [a,∞), a > 0, concave
on [0, a), and satisfies limx→∞ f(x) = +∞, the mixed conjugate satisfies:

1. M ∩N = ∅ and M ∪N = dom(f∗
∗ )

2. f∗∗
∗∗ = f for all t ∈ dom(f), where f∗∗

∗∗ denotes the biconjugate of f , i.e. f∗∗
∗∗ = (f∗

∗ )
∗
∗.

The unboundedness assumption on f is not only a theoretical necessity in the proof of the lemma
above but also carries significance in the context of divergence-generating functions. By assuming
that f is unbounded, we permit the dissimilarity between probability measures to grow arbitrarily
large.

At first glance, it is not clear why such pseudo-divergences are well-defined, however, the following
Lemma proves their coherence.
Lemma 4.2. Let f : [0,∞) → [0,∞) be concave on some interval [0, a), a > 0 and convex on
[a,∞). For any probability measures µ, ν ∈ B2(λ), Df (µ, ν) is well-defined in the sense that
Df (µ, ν) ≥ 0 and Df (µ, ν) = 0 ⇐⇒ µ = ν λ− a.s.

To address the challenge of estimating likelihood ratios from finite samples, we build on the ap-
proach in Nguyen et al. (2010) by developing a generalized variational framework applicable to
pseudo f -divergences.
Theorem 4.3. Let f : [0,∞) → R, convex on [a,∞) with 0 < a < ∞, concave on [0, a), assume
that f is twice continuously differentiable, and that ((f∗

∗ )
′)−1 is λ-a.s. well-defined. Furthermore,

let µ, ν ∈ B2(λ) with dµ
dλ (x) := pµ(x),

dν
dλ (x) := pν(x), x ∈ R . Then, T̃ (x) := f ′

(
pµ(x)
pν(x)

)
is an

optimizer for

sup
T∈C(M∗)

{
(Eµ(T )− Eν(f

∗
∗ ◦ T ))

}
+ inf

T∈C(N∗)

{
(Eµ(T )− Eν(f

∗
∗ ◦ T ))

}
. (3)

Here, C(M∗) (C(N∗)) denotes the set of continuous functions T : Ω → dom(f∗
∗ ) such that f∗

∗ ◦ T
is convex (concave).
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Figure 1: Plot of different pseudo-divergence-
generating functions f

Table 1: Table of different pseudo-divergence-
generating functions and their respective pseudo
divergence

f(u) Df (µ, ν)

u log(u)2 Eµ

(
log

(
pµ(x)
pν(x)

)2
)

u(u− 1)2 Eµ

((
pµ(x)
pν(x)

− 1
)2

)
u|u− 1| Eµ

(∣∣∣pµ(x)
pν(x)

− 1
∣∣∣)

√
u|u− 1| Eµ

(∣∣∣∣√pµ(x)√
pν(x)

−
√

pν(x)√
pµ(x)

∣∣∣∣)
√
u|
√
u− 1| Eµ

(∣∣∣∣1− √
pν(x)√
pµ(x)

∣∣∣∣)

Theorem 4.3 can be applied to the extended class of divergence-generating functions. A brief selec-
tion of such pseudo-divergence-generating functions and their respective pseudo-divergence can be
in Figure 1 and Table 1.

The optimization problem in equation 3 can be transformed to reduce the two objectives into a
single equivalent objective with the same optimum. This transformation leverages the property
inf(·) = − sup(·) and substituting T with T̄ = T (1{T∈C(M∗)} − 1{T∈C(N∗)}). For details, see
Proof of Corollary A.1.
Corollary 4.4. For any function f satisfying the conditions of Theorem 4.3

Df (µ, ν) ≥ sup
T̄∈C(M∗)∪C(N∗)

{
Eµ(T̄ )− Eν(f

∗
∗ ◦ T̄ )

}
. (4)

Therefore, by applying the generalizing mixed conjugate to the variational estimation framework of
Nguyen et al. (2010), we can still derive a lower bound for the pseudo f–divergence.

4.2 BAYES HILBERT SPACE DIVERGENCE

We can now utilize this newly established mixed conjugate framework to bridge a connection be-
tween the induced pseudo f–divergences and Bayes Hilbert spaces. One locally non-convex func-
tion we already considered in Table 1 is closely related to the centered log-ratio transformation and
of special interest for the remainder of the paper. It is defined as

fBHS : [0,∞) → R, x 7→ x log(x)2. (5)

It is easy to verify that fBHS is concave on the interval [0, e−1] as well as fBHS(1) = 0. We can
therefore use fBHS to define the pseudo f -divergence DfBHS

.

Let µ ∈ B2(λ), then we can derive a connection between this newly constructed divergence and the
Bayes Hilbert space metric:
Lemma 4.5. For fBHS as defined in equation 5, it holds that

DfBHS
(µ, ν) = dB2(µ)(pµ, pν)

2 + Eµ (log(µ⊖ ν))
2
.

Minimizing DfBHS
also minimizes dB2(µ)(pµ, pν), ensuring that two probability measures close

with respect to DfBHS
are similarly close in the corresponding Bayes Hilbert space. This aligns in-

tuitively with statistical learning, where we assume µ as the true underlying measure and aim to learn
a measure ν that closely approximates it. Consequently, µ generates a Bayes Hilbert space B2(µ)
in which the approximations must reside. Since densities relative to µ are rarely of primary interest,
we convert them to more familiar densities, such as those with respect to Lebesgue measures.

The mixed conjugate of fBHS is given by

f∗
∗,BHS(x) =

{
2(−1−

√
1 + x) exp(−1−

√
1 + x) x ∈ [−1, 0)

2(−1 +
√
1 + x) exp(−1 +

√
1 + x) x ≥ 0.
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Here, M = [0,∞) and N = [−1, 0). Applying Lemma 4.1 implies that f∗∗
∗∗,BHS = fBHS and

Theorem 4.3 implies that T̃ (x) = f ′
BHS

(
pµ(x)
pν(x)

)
is and optimizer for equation 3. Since f∗

∗,BHS ◦
T̃ (x) = 2 log(x)x, it follows that

sup
T∈C(M∗)

{
(Eµ(T )− Eν(f

∗
∗ ◦ T ))1{T∈MC}

}
+ inf

T∈C(N∗)

{
(Eµ(T )− Eν(f

∗
∗ ◦ T ))1{T∈NC}

}
= Eµ(T̃ )− Eν(f

∗
∗ ◦ T̃ )

= DfBHS
(µ, ν).

Thus, the bound in Corollary 4.4 is tight for fBHS . In summary, we have demonstrated that despite
the local non-convexity of fBHS , it defines a pseudo f -divergence closely related to the Bayes
Hilbert space metric. A slight adaptation of the results from Nowozin et al. (2016); Nguyen et al.
(2010) enables the minimization of a lower bound for DfBHS

, with this bound being attained by the
optimal estimate of T̃ .

In the next section, we will apply these results to generative modeling, introducing a new pseudo
f -GAN (Bayes Hilbert space GAN) that enables sampling from a learned Bayes Hilbert space dis-
tribution.

5 COMPUTATIONAL RESULTS

5.1 SETUP

Using the PyTorch framework (Paszke et al., 2019), we implemented the Bayes Hilbert space
GAN (BHSGAN) and compared its results to traditional f -GANs, shown in Table 2, as well as
a Wasserstein-GAN (Arjovsky et al., 2017) on the MNIST (Deng, 2012) (Appendix A.2) and CI-
FAR10 (Krizhevsky et al., 2009) data sets. Furthermore, we trained the benchmarking GAN ar-
chitectures to approximate a heavy-tailed distribution, specifically the lognormal distribution with
parameters (loc = 0, shape = 0.5, scale = 1).

Table 2: Specification of f -GAN activation functions and Fenchel conjugates similar to Nowozin
et al. (2016).

Name gf dom(f∗
(∗)) (Mixed) Conjugate f∗

(∗)(t)

Kullback-Leibler (KL) v R exp(t− 1)
Reverse KL − exp(−v) R− −1− log(−t)

Pearson v R 1
4 t

2 + t
GAN − log(1 + exp(−v)) R− − log(1− exp(t))
BHS −1 + exp(v) [−1,∞) 2

(
−1±

√
1 + t

)
exp

(
−1±

√
1 + t

)
In terms of implementation, our approach closely resembles Nowozin et al. (2016) where the au-
thors estimate generative models using variational divergence minimization (Nguyen et al., 2010).
According to Corollary 4.4, we need to optimize equation 4 with respect to T̄ , which is equivalent
to optimizing

min
ϑ

max
ω

F (ϑ, ω) := min
ϑ

max
ω

Eµ(T̄ω)− Eνϑ
(f∗

∗ ◦ T̄ω). (6)

Here, νϑ represents the generative model taking a random vector as an input and returning a sample
to be evaluated by the discriminatory model. The discriminatory model T̄ω returns some real-valued
constant we call score. A high value for the score indicates that the discriminatory model is confident
of the sample being generated by the generative model. In contrast, a low score indicates that the
discriminatory model evaluated the underlying sample to stem from the training data. ϑ and ω denote
the parametrizations of the respective models. We optimize equation 6 by sampling from a finite
training data set to estimate the underlying distribution. As underlying models for the approximation
on the MNIST and synthetic heavy tailed data set, we chose basic feed-forward neural networks
identical to the ones used in Nowozin et al. (2016).
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For the CIFAR-10 dataset, we employ the DCGAN architecture introduced by Radford et al. (2015).
We also utilize the same representation of the variational functions as in Nowozin et al. (2016),
summarized as follows: To ensure that T̄ω respects the domain of f∗

∗ , we represent the variational
function as T̄ω by T̄ω(x) = gf ◦ Vω(x). Here, Vω denotes the discriminatory model with no restric-
tions on the output, meaning Im(Vω) ⊆ R while gf is a final output activation function tailored to
the domain of f∗ (see Table 2). This approach accommodates various f -divergences, particularly
our newly introduced approach that allows for a locally non-convex divergence-generating function.
In our specific case, where f(x) = x log(x)2, we choose gf (x) = −1 + exp(v), to ensure the the
output lies in [−1,∞). To train the generative adversarial network, we slightly adjust the approach
in Radford et al. (2015). The specific adjustments, configurations, and algorithm can be found in the
appendix.

5.2 DISCUSSION OF RESULTS

Table 3: Comparison of GAN architectures with re-
spect to shape and scale parameters.

Name shape = 0.5 scale = 1
BHSGAN 0.5049± 0.0104 1.0937± 0.0227
Wasserstein 0.4220± 0.0071 1.6670± 0.0127
GAN 0.1952± 0.0028 1.3422± 0.0130
Pearson 0.6181± 0.0240 0.6863± 0.0183
KL 0.9951± 0.0167 1.0126± 0.0207
Reverse KL 0.8949± 0.0178 0.7376± 0.0120

To evaluate the performance of each GAN
architecture in terms of estimating a heavy-
tailed distribution, we estimate the shape
and scale parameters of the generated distri-
bution. These estimates are compared to the
true parameters to assess each model’s abil-
ity to capture the distribution’s heavy-tailed
nature.

Table 3 indicates that BHSGAN approxi-
mates the true shape parameter of the log-
normal distribution more accurately than
every other architecture. While the KL
GAN slightly outperforms the BHS GAN in scale estimation, KL GAN consistently overestimates
the shape parameter, with an average value nearly twice the true parameter. Thus, BHSGAN emerges
as a robust choice for generating heavy-tailed distributions like the lognormal distribution.

In addition to the descriptive analysis, we provide and discuss a histogram and KDE estimate for
each GAN architecture in Appendix A.2, which allows for a visual comparison of the different
generated distributions.

Table 4: Mean FID Scores and two
times the standard deviation for differ-
ent architectures on the CIFAR10 data
set over 100 seeds. Lower FID scores
indicate better model performance.

MODEL FID

BHSGAN 31.26± 0.08
KL GAN 37.50± 0.13
REVERSE KL GAN 85.27± 0.19
PEARSON GAN 33.60± 0.38
GAN 33.60± 0.10
WGAN 30.81± 0.12

However, the performance of the BHSGAN on the CI-
FAR10 dataset can be assessed by comparing the Fréchet
Inception Distance (FID) (Heusel et al., 2017) of gener-
ated samples to different f -GAN and Wasserstein GAN
architectures. Table 4 summarizes FID scores of the tested
architectures.

The BHSGAN outperforms all f -GAN variants, proving
its effectiveness in generating higher-quality and more di-
verse images. While the WGAN achieves a marginally
better FID score, the difference is negligible and unlikely
to be conclusive. Moreover, our approach guarantees that
the approximated and true distributions remain closely
aligned in the Bayes Hilbert space.

Upon inspecting Figure 2, the BHSGAN architecture
stands out among the other f -GAN architectures by hav-
ing the most refined picture structures. The KL, Reverse
KL, and Pearson GAN produce less recognizable shapes using the same training procedure as the
others.

As shown in Table 4, the WGAN and BHSGAN architectures produce the most recognizable sam-
ples. We can therefore conclude, that the BHSGAN outperforms traditional f -GANs and is on par
with the Wasserstein architecture.
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Figure 2: Experimental results for the CIFAR10 data set: Top row, from left to right: BHSGAN,
KLGAN, and Reverse KLGAN. Bottom row, from left to right: Pearson GAN, original GAN, and
Wasserstein GAN. Samples were drawn from the generators trained on the CIFAR10 dataset.

6 CONCLUSION

In this paper, we presented a novel framework for generalizing f -divergences, wherein we proved
that the divergence-generating function of an f -divergence does not need to be convex on the whole
domain, allowing for an even larger class of divergence-generating functions. We then showed, that
there is a direct connection between the metric induced by the Bayes Hilbert space inner product
and a pseudo f -divergence with pseudo-divergence-generating function fBHS .

This connection of f -divergences and Bayes Hilbert spaces poses an interesting future direction as
it circumvents one of the drawbacks of Bayes Hilbert space learning: learning from samples from
distributions. Additionally, our framework enables sampling from estimated Bayes Hilbert space
distributions in high dimensional settings, a feature that functional methods of estimation lack by
design due to the curse of dimensionality. The framework therefore poses an interesting approach
for sampling from posterior distributions in Bayesian statistics, which has to be addressed in detail
in future research.

Since the primary goal of this publication is to extend the theoretical framework of f -divergences
and bridge the gap to Bayes Hilbert spaces, we want to improve GAN performance in future work.
Performance in terms of FID-Scores could be improved by considering a more advanced training
procedure like progressively growing GAN (Karras et al., 2017) or state-of-the-art architectures like
StyleGAN (Karras et al., 2019) and VQGAN (Esser et al., 2021). The proposed framework can
also easily be implemented as an addition to existing f -GAN implementations as it only requires
defining the new pseudo-divergence generating function fBHS and adjusting the output activation
function gf specific to the domain of the generator.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. In Section 5, we provide de-
tailed explanations of the framework and model architectures, with pseudocode for the key algorithm
included in A.3. Proofs of technical results can be found in Section A.1.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROOFS OF THEORETICAL RESULTS

In this section, we provide proofs of several results we introduced throughout the publication.

While the following Lemma does not concern BHSGANs directly, we noticed that this connection
has not yet been drawn in previous publications.

Proof of Lemma 3.1.

dB2(λ)(pµ, pν)
2 = ⟨pµ ⊖ pν , pµ ⊖ pν⟩B2(λ)

= ⟨clr(pµ ⊖ pν), clr(pµ ⊖ pν)⟩L2(λ)

=

∫
Ω

log(pµ(x)⊖ pν(x))
2λ(dx)−

(∫
Ω

log(pµ(x)⊖ pν(x))λ(dx)

)2

= Varλ(log(µ⊖ ν)).

The proof of Lemma 4.1 is straightforward but shows nevertheless the importance of the restriction
to functions f that are unbounded on the convex part of the domain.

Proof of Lemma 4.1.

1. (a) Let t∗ ∈ M . Then x̂ := x̂(t∗) = argmax
x∈dom(f)

(xt∗ − f(x)) ∈ [a,∞). Since x̂ ∈ [a,∞),

the function x 7→ xt∗ − f(x) is concave in x̂ and monotonically decreasing for any
x > x̂. Thus, lim

x→∞
xt∗ − f(x) = −∞, i.e., argmin

x∈dom(f)

xt∗ − f(x) ∈ [a,∞) implying

that t∗ ̸∈ N . Analogously, t∗ ∈ N =⇒ t∗ ̸∈ M .
(b) In order to show that M ∪ N = dom(f∗

∗ ), let t̃ ∈ dom(f∗
∗ ). Then, there exists a xt̃

such that f∗
∗ (t̃) = xt̃t̃ − f(xt̃). Since xt̃ ∈ domf , either xt̃ ∈ [0, a) or [a,∞). As t̃

was chosen arbitrarily, M ∪N = dom(f∗
∗ ) holds.

2. Since M and N are disjoint, we can write

f∗∗
∗∗ = sup

x∈M
{tx− f∗

∗ (x)}1{t∈M∗} + inf
x∈N

{tx− f∗
∗ (x)}1{t∈N∗}

= sup
x∈M

{tx− f∗(x)}1{t∈M∗} + inf
x∈N

{tx− f∗(x)}1{t∈N∗}

= f1{t∈M∗} + f1{t∈N∗}

= f.

In Lemma 4.2 we restrict ourselves to the class of functions that have a nonnegative domain and
range. The reason for this restriction is simply to ensure that the introduced measure of dissimilarity
respects homogeneity.

Proof of Lemma 4.2. Let µ, ν ∈ B2(λ). Then,

Df (µ, ν) =

∫
Ω

pν(x)f

(
pµ(x)

pν(x)

)
λ(dx)

=

∫
Ω

pµ(x)︸ ︷︷ ︸
≥0

f

(
pµ(x)

pν(x)

)
︸ ︷︷ ︸

≥0

λ(dx)

≥ 0
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and

Df (µ, ν) =

∫
Ω

f

(
pµ(x)

pν(x)

)
ν(dx)

!
= 0 ⇐⇒ µ = ν λ-a.s.

In order to prove Theorem 4.3, we have to resort to a more technical argument involving the fun-
damental lemma of the calculus of variations to ensure that we can indeed derive an analytical
representation for the optimizer of equation 3.

Proof of Theorem 4.3. In order to optimize equation 3, we have to maximize

(Eµ(T )− Eν(f
∗
∗ ◦ T ))1{T∈C(M∗)}

and minimize
(Eµ(T )− Eν(f

∗
∗ ◦ T ))1{T∈C(N∗)}

with respect to some T ∈ C(dom(f∗
∗ )). Consider the term

Eµ(T )− Eν(f
∗
∗ ◦ T ).

It can be rewritten as

Eµ(T )− Eν(f
∗
∗ ◦ T ) =

∫ ∞

0

T (x)µ(dx)−
∫ ∞

0

(f∗
∗ ◦ T )(x)ν(dx)

=

∫ ∞

0

T (x)pµ(x)− (f∗
∗ ◦ T )(x)pν(x)λ(dx)︸ ︷︷ ︸

:=E(T )

.

Then, for an optimizer of equation 3

∂

∂ε

∣∣∣∣
ε=0

E(T + εU)
!
= 0

with U ∈ C∞
0 is a necessary condition for an extremum (Gelfand et al., 2000, Theorem 4.1).

Now,

E(T + εU) =

∫ ∞

0

[
(T + εU)(x)pµ(x)− f∗

∗ ◦ (T + εU)(x)pν(x)
]
λ(dx)

and
∂

∂ε
E(T + εU) =

∂

∂ε

∫ ∞

0

[
(T + εU)(x)pµ(x)− f∗

∗ ◦ (T + εU)(x)pν(x)
]
λ(dx)

=

∫ ∞

0

[
U(x)pµ(x)− (f∗

∗ )
′(T (x) + εU(x))U(x)pν(x)

]
λ(dx)

=

∫ ∞

0

U(x)
[
pµ(x)− (f∗

∗ )
′(T (x) + εU(x))pν(x)

]
λ(dx)

ε=0
=

∫ ∞

0

U(x)
[
pµ(x)− (f∗

∗ )
′(T (x))pν(x)

]
λ(dx). (7)

Applying the fundamental lemma of the calculus of variations (Gelfand et al., 2000, Lemma 1.1) to
equation 7 yields∫ ∞

0

U(x)
[
pµ(x)− (f∗

∗ )
′(T (x))pν(x)

]
λ(dx) = 0 =⇒ pµ(x)− (f∗

∗ )
′(T (x))pν(x) = 0 a.e..

Thus,

T (x) =

((
f∗′
∗
)−1 ◦ pµ

pν

)
(x)
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is a candidate for an optimizer. Note, that if (f∗′
∗ )−1 is well-defined, then (f∗′

∗ )−1(x) = f ′(x) (cf.
Rockafellar (1970)). For the second derivative, we have

∂2

∂ε2

∣∣∣∣
ε=0

E(T + εU) =

∫ ∞

0

−(f∗
∗ )

′′(T (x))U(x)2pν(x)︸ ︷︷ ︸
≥0

λ(dx).

Depending on the properties of f∗
∗ the candidate

T̃ (x) =

((
f∗′
∗
)−1 ◦ pµ

pν

)
(x)

is thus a maximizer or minimizer. The restriction in the maximization part of equation 3 enforces
that the optimizer T̃ is convex, implying that

(f∗
∗ )

′′ ◦
(
(f∗′

∗
)−1 ◦ pµ

pν

)
(x) ≥ 0

and therefore
∂2

∂ε2

∣∣∣∣
ε=0

E(T + εU) ≤ 0.

Conversely, to optimize the minimization part of equation 3, we consider the restriction to the con-
cave part of f∗

∗ , implying that

(f∗
∗ )

′′ ◦
(
(f∗′

∗
)−1 ◦ pµ

pν

)
(x) ≤ 0

and therefore
∂2

∂ε2

∣∣∣∣
ε=0

E(T + εU) ≥ 0.

Corollary 4.4 plays an important role when considering the computational perspective of equation 3.
Since we wanted to avoid optimizing a min max and min min game simultaneously, we derived a
lower bound for the pseudo f divergence that can be solved as a simple min max game instead. The
core idea is to rewrite the infimum as a supremum and combine both suprema to obtain a min max
game framework.

Proof of Corollary 4.4.

Df (µ, ν) =

∫
Ω

pν(x)f(
pµ(x)

pν(x)
)λ(dx)

=

∫
Ω

sup
t∈M

{
t
pµ(x)

pν(x)
− f∗

∗ (t)

}
λ(dx) +

∫
Ω

inf
t∈N

{
t
pµ(x)

pν(x)
− f∗

∗ (t)

}
λ(dx) (8)

≥ sup
T∈C(M∗)

{
Eµ(T )− Eν(f

∗
∗ ◦ T )

}
+

∫
Ω

inf
T∈C(N∗)

{
t
pµ(x)

pν(x)
− f∗(t)

}
λ(dx) (9)

= sup
T∈C(M∗)

{
(Eµ(T )− Eν(f

∗
∗ ◦ T ))

}
− sup

T∈C(N∗)

{
(Eµ(T )− Eν(f

∗
∗ ◦ T ))

}
(10)

= sup
T∈C(dom(f∗

∗ ))

{
Eµ(T (1{T∈C(M∗)} − 1{T∈C(N∗)}))−

Eν((f
∗
∗ ◦ T )(1{T∈C(M∗)} − 1{T∈C(N∗)}))

}
= sup

T̄∈C(M∗)∪C(N∗)

{
Eµ(T̄ )− Eν(f

∗
∗ ◦ T̄ )

}
(11)

where C(M∗) (C(N∗)) denotes the set of continuous functions such that f∗
∗ ◦T is convex (concave).

The second equality, equation 8, can be derived by applying the definition of the mixed conjugate.
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equation 9 is derived in the same way as equation 1 and equation 10 is an application of Gossez et al.
(2006) where we used that − inf = sup. In equation 11 we used the fact, that C(M∗)∩C(N∗) = ∅.
Defining T̄ = T (1{T∈C(M∗)} − 1{T∈C(N∗)}) yields the desired result.

Proof of Lemma 4.5.

DfBHS
(µ, ν) =

∫
Ω

pν(x)
pµ(x)

pν(x)
log

(
pµ(x)

pν(x)

)2

λ(dx)

=

∫
Ω

pµ(x) log

(
pµ(x)

pν(x)

)2

λ(dx)

= Eµ

(
log(µ⊖ ν)2

)
= dB2(µ)(pµ, pν)

2 + Eµ (log(µ⊖ ν))
2
.

A.2 ADDITIONAL EXPERIMENTS

In this section we present generated MNIST digits as well as histograms and KDEs for an estimated
lognormal distribution for each benchmarking GAN architecture.

The findings of Table 3 can be validated further by considering Figure 3. BHS GAN approximates
the true density well regarding mode and tail behavior. In comparison, the Wasserstein architecture
fails to capture the left tail behavior completely, and the right tail shows some discrepancies in terms
of monotonicity. While the KL GAN captures the true distributions’ scale relatively well, the right
tail seems to be much heavier than the tail of the true underlying distribution. Pearson GAN and
Reverse KL GAN struggle with oscillations and deviations from the true density, especially in the
tails. The basic GAN performs poorly in terms of alignment, with significant underestimation near
the mode and noisy approximation in the tails.

The generated MNIST samples in Figure 4 visibly depict digits between 0 and 9, indicating that
all GAN architectures learned the underlying distribution of the images well. Therefore we can
conclude that the BHSGAN is on par with the other GAN architecture for the MNIST dataset. We
limit ourselves to this high-level evaluation as a quantitative comparison for generative models on
this kind of data is not meaningful (Nowozin et al., 2016).

A.3 PRACTICAL CONSIDERATIONS AND ALGORITHMS

During the experiments we found that training (pseudo) f -GANs is highly unstable, suffering from
exploding and diminishing losses. To stabilize the training process we implemented two methods.
Firstly, we introduced a gradient penalty identical to the one used for WGANs (Gulrajani et al.,
2017) for all used GANs except the vanilla and reverse KL-GAN. Additionally, contrary to the
popular approach of training the discriminatory model first, we decided to start by training the gen-
erative model first. We interpret this finding as a (prior) practical drawback of f -GANs, in the way
that in theory, the supremum has to be found over all continuous functions, but in practice, this
class of functions is too general to be learned during training. This means that if the discriminator
is allowed to be too flexible it starts ”remembering” real images before the generator can generate
good fake ones, resulting in exploding losses for the discriminator and vanishing ones for the gen-
erator. Accordingly, forcing the discriminator to be Lipschitz-continuous constrains the supremum
and infimum in 3 to be found over all Lipschitz-continuous functions, which stabilizes the training
process by hindering the discriminator from remembering real images too fast.

All experiments were conducted on an AORUS RTX 4090 eGPU 24GB.
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Figure 3: Histograms and KDE estimates for different GAN architectures
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Figure 4: Experimental results for MNIST datasets: Left column, from top to bottom: BHSGAN,
KLGAN, and Reverse KLGAN. Right column, from top to bottom: Pearson GAN, original GAN,
and Wasserstein GAN. Samples were drawn from the generators trained on the MNIST dataset.

Algorithm 1 Default values for the training procedure in this paper were αg = αd = 0.0002 for
all GANs except BHSGAN and REVKLGAN, where αg = αd = 0.00005, nd = 2, ng = 2,
m = 128 for MNIST and m = 64 for CIFAR, Nepochs = 50, dz = 100 and λ = 10 except for
PEARSONGAN, where λ = 20

Input: αg , learning rate of generative model. αd, learning rate of discriminatory model. nd,
number of discriminator updates. ng , number of generator updates. m, batch size. Nepochs,
number of epochs. dz , dimension of noise, λ, gradient penalty coefficient, gp, gradient penalty,
w0, initial parameters of discriminatory model ϑ0, initial parameters of generative model.
for k = 1, ..., Nepochs do

for each batch = {x(1), ..., x(m)} in training set do
noise = {z(1), ..., z(m)} i.i.d.∼ N (0, Idz×dz

)
real sample = {x(1), ..., x(m)}
for n = 1, ..., ng do
Lνϑ

= − 1
m

∑m
i=1 f

∗
∗ ◦ gf ◦ Vω ◦ νϑ(z(i))

ϑ = ϑ−Adam(αg, ϑ,Lνϑ
)

end for
for n = 1, ..., nd do
LVω = 1

m

∑m
i=1

(
f∗
∗ ◦ gf ◦ Vω ◦ νϑ(z(i))−

gf ◦ Vω(x
(i))

)
+ λ · gp

ω = ω +Adam(αd, ω,LVω
)

end for
end for

end for
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