Tackling Shortcut Learning in Deep Neural Networks: An Iterative Approach
with Interpretable Models

Shantanu Ghosh! Ke Yu? Forough Arabshahi® Kayhan Batmanghelich '

Abstract

We use concept-based interpretable models to mit-
igate shortcut learning. Existing methods lack
interpretability. Beginning with a Blackbox, we
iteratively carve out a mixture of interpretable
experts (MolE) and a residual network. Each ex-
pert explains a subset of data using First Order
Logic (FOL). While explaining a sample, the FOL
from biased BB-derived MolE detects the shortcut
effectively. Finetuning the BB with Metadata Nor-
malization (MDN) eliminates the shortcut. The
FOLs from the finetuned-BB-derived MolE verify
the elimination of the shortcut. Our experiments
show that MoIE does not hurt the accuracy of the
original BB and eliminates shortcuts effectively.

1. Introduction

Shortcuts pose a significant challenge to the generalizabil-
ity of deep neural networks, denoted as Blackbox (BB), in
real-world scenarios (Geirhos et al., 2020; Kaushik et al.,
2019). Referred to as spurious correlations, shortcuts indi-
cate statistical associations between class labels and coin-
cidental features that lack a meaningful causal connection.
When trained on a dataset with shortcuts, a BB performs
poorly when applied to test data without these shortcuts.
This restricted generalization capability engenders a crucial
concern, particularly in critical applications e.g., medical
diagnosis (Bissoto et al., 2020).

Various methods e.g., invariant learning (Arjovsky et al.,
2020), correlation alignment (Sun & Saenko, 2016), vari-
ance penalty (Krueger et al., 2021), gradient alignment (Shi
et al., 2021), instance reweighting (Sagawa et al., 2019; Liu
et al., 2021), and data augmentation (Xu et al., 2020; Yao
et al., 2022) have been employed to address the issue of
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shortcuts in Empirical Risk Minimization (ERM) models.
However, they lack interpretability in 3 pivotal areas: 1) pin-
pointing the precise shortcut that the BB is aimed at, 2) clar-
ifying the mechanism through which a particular shortcut is
eradicated from the BB’s representation, and 3) establish-
ing a dependable technique to verify the elimination of the
shortcut. The application of LIME (Ribeiro et al., 2016) and
proxy-based interpretable models (Rosenzweig et al., 2021)
have been investigated to detect shortcuts in Explainable Al
However, they function within the pixel space rather than
the human interpretable concept space (Kim et al., 2017)
and fail to address the issue of shortcut learning. This paper
addresses this gap utilizing concept-based models.

Concept-based interpretable by design models (Koh et al.,
2020; Zarlenga et al., 2022) use 1) a concept classifier to
detect the presence/absence of concepts in an image, 2) an
interpretable function (e.g., linear regression or rule-based)
to map the concepts to the final output. However, these
approaches utilize a single interpretable model to explain
the whole dataset failing to encompass the diverse instance-
specific explanations and exhibiting inferior performance
than their BB counterparts.

Our contributions. This paper proposes a novel method
using the concept-based interpretable model to eliminate
the shortcut learning problem. First we carve out a mix-
ture of interpretable models and a residual network from
a given BB. We hypothesize that a BB encodes multiple
interpretable models, each pertinent to a unique data subset.
As each interpretable model specializes over a subset of
data, we refer to them as expert. Our design routes the sam-
ples through the interpretable models to explain them with
FOL. The remaining samples are routed through a residual
network. On the residual, we repeat the method until all
the experts explain the desired proportion of data. Next, we
employ MDN (Lu et al., 2021), a batch-level operation, to
mitigate the impact of extraneous variables (metadata) on
feature distributions. This approach effectively eliminates
metadata effects during the training process. Specifically,
we deploy a 3-step procedure to mitigate the shortcuts:

1) The FOLs from biased BB detect the presence of the

shortcut,
2) Assuming the detected shortcut as metadata, we use

MDN Ilayers to eliminate the shortcut by finetuning the
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Figure 1. Schematic view of our method. Note that f*(.) =
hF(®(.)). At iteration k, the selector routes each sample ei-
ther towards the expert g" with probability T ( ) or the residual
k — k=1 _ g* with probability 1 — 7¥(.). ¢* generates FOLs
to explain the samples it covers. Note ® is fixed across iterations.

BB,

3) The FOLs from the fine-tuned BB verify the elimina-
tion of the shortcut.

2. Method

Notation: Assume fo : X — Y is a BB, on a dataset
X x Y xC,with X, ), and C being the images, classes, and
concepts, respectively; fO = h° o ®, where ® and A" is the
feature extractor and the classifier respectively. f© predicts
Y from the input X'. Given a learnable projection (Ghosh
et al., 2023), t : ® — C, our method learns three functions:
(1) a set of selectors (7 : C — {0,1}) routing samples to
an interpretable model or residual, (2) a set of interpretable
models (g : C — ), and (3) the residuals. The interpretable
models are called “experts” since they specialize in a distinct
subset of data defined by that iteration’s coverage 7 as shown
in SelectiveNet (Rabanser et al., 2022). Fig. 1 illustrates our
method.

2.1. Distilling BB to the mixture of interpretable models

The selectors: As the first step of our method, the selector
7% routes the j' sample through the interpretable model
g" or residual 7* with probability 7" (c;) and 1 — 7% (c;)
respectively, where k € [0, K|, with K being the number
of iterations. We define the empirical coverage of the k'"
iteration as ¢(n*) = ;L 32" | 7% (c;), the empirical mean
of the samples selected by the selector for the associated
interpretable model g*, with m being the total number of
samples in the training set. Thus, the entire selective risk is:
m
Rk(ﬂ'k gk) _ %Zj:l ’C’(Cgk,ﬂ’c)(xj7cj) .
| L) (gt
is the optimization loss used to learn g* and 7" together,
discussed in the next section. For a given coverage of 7% ¢
(0, 1], we solve the following optimization problem:

where £

Algorithm 1 Applying MolE to eliminate shortcuts

1: Input: D ={x;, ¢, y;}7_,; biased BB fO = h°(®(.));
The total iterations K; Coverages 7y, ..., Tx . Freeze ®.

2: Using (Yuksekgonul et al., 2022) learn the projection ¢
to predict the concept value.

3. Detection step. Learn the experts in MolE {g}# | and
extract the FOLs. The FOL contains shortcuts.

4: Elimination step. Consider the detected shortcut con-

cept in the “Detection” step as metadata and finetune

BB (f°) with MDN (Lu et al., 2021) to remove the role

of that shortcut.

Retrain ¢ with @ of finetuned BB to get the concepts.

6: Verification step. Learn MoIE {g}X | again from
retrained ¢ and recompute the FOLs. The final FOLs
do not contain spurious concepts as they have been
eliminated in the “Elimination step”.

bl

Sk,@ % —argmlan<

0.k,0 K

st C(mF(500)) > T, (1)

where 9; , 0; . are the optimal parameters at iteration & for
the selector 7% and the interpretable model g* respectively.
In this work, 7s’ of different iterations are neural networks
with sigmoid activation. At inference time, the selector
routes the ;% sample with concept vector cj to g* if and

only if 7%(¢;) > 0.5 for k € [0, K.

Table 1. Datasets and BlackBoxes.

DATASET BB #EXPERTS

CUB-200 (Wah et al., 2011)

CUB-200 (Wah et al., 2011)

AWA?2 (Xian et al., 2018)

AWA?2 (Xian et al., 2018)

HAMI1000 (Tschandl et al., 2018)
SIIM-ISIC (Rotemberg et al., 2021)
EFFUSION IN MIMIC-CXR (Johnson et al.)

RESNET101 (He et al., 2016)
VIT (Wang et al., 2021)
RESNET101 (He et al., 2016)
VIT (Wang et al., 2021)
INCEPTION (Szegedy et al., 2015)
INCEPTION (Szegedy et al., 2015)
DENSENETI121 (Huang et al., 2017)

[ N - - NRYCN

The experts: For iteration k, the loss Ekgk k) distills the

expert g* from f¥~1, BB of the previous iteration:

H 1771'

i=1

ﬁ(y rk )(mJ’cJ): <fk Ha), g"( CJ)

trainable component

0 ) fixed component trained
for current iteration k

in the previous iterations
2
where the term 7%(c;) [[}= (1 — 7'(c;)) denotes the
probability of the sample going through the residuals for
all the previous iterations from 1 through k£ — 1 (i.e.,
152 (1 —(c;))) times the probability of going through
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Table 2. MolE does not hurt the performance of the original BB. We provide AUROC and accuracy for medical imaging (e.g., HAM10000,
ISIC, and Effusion) and vision (e.g., CUB-200 and Awa2) datasets, respectively, over 5 random seeds. For MolE, we also report the
“Coverage”. We only report the performance of the convolutional CEM (Zarlenga et al., 2022), leaving the construction of VIT-based
CEM as future work. As HAM10000 and ISIC have no concept annotation, interpretable-by-design models can not be constructed.

MODEL

DATASET

CUB-200 (RESNET101) CUB-200 (VIT) AWA2 (RESNET101) AWA2 (VIT) HAM10000 SIM-ISIC EFFUSION
BLACKBOX 088 092 0.89 099 096 0385 091
INTERPRETABLE-BY-DESIGN
CEM (Zarlenga et al., 2022) 077 £ 0.002 - 088 % 0.005 - NA NA 0.76 % 0.002
CBM (Sequential) (Koh et al., 2020) 0.65 = 0.003 0.86 == 0.002 0.88 == 0.003 0.94 % 0.002 NA NA 0.79 == 0.005
CBM + E-LEN (Koh et al., 2020; Barbiero et al., 2022) 0.71 = 0.003 0.88 == 0.002 0.86 == 0.003 0.93 % 0.002 NA NA 0.79 = 0.002
POSTHOC
PCBM (Yuksekgonul et al., 2022) 0.76 == 0.001 0.85 &= 0.002 0.82 == 0.002 0.94 % 0.001 0.93 £ 0.001 071 £ 0012 0.81 £ 0.017
PCBM-h (Yuksekgonul et al., 2022) 0.85 &= 0.001 0.91 = 0.001 0.87 == 0.002 0.98 = 0.001 0.95 &= 0.001 0.79 £ 0.056 0.87 £ 0.072
PCBM + E-LEN (Yuksekgonul et al., 2022; Barbiero et al., 2022) 0.80 == 0.003 0.89 = 0.002 0.85 =& 0.002 0.96 % 0.001 0.94 £ 0.021 0.73 £ 0011 0.81 £ 0014
PCBM-h + E-LEN (Yuksekgonul et al., 2022; Barbiero et al., 2022) 0.85 4 0.003 0.91 £ 0.002 0.88 == 0.002 0.98 =+ 0.002 0.95 £ 0.032 0.82 £ 0.056 0.87 £ 0.032

OURS
0.91 £ 0.001 (0.95)
0.90 £ 0.001

0.86 == 0.001 (0.9)
0.84 £ 0.001

MolE (COVERAGE)
MolE + RESIDUAL

0.87 £ 0.002 (0.91)
0.86 £ 0.002

0.87 == 0.001 (0.98)
0.86 £ 0.00

0.84 = 0.001 (0.94)
0.82 1 0.01

0.95 = 0.001 (0.9)
0.92 £ 0.00

0.97 = 0.004 (0.94)
0.94 £ 0.004

Table 3. Performance of various shortcut elimination methods on
Waterbirds dataset.

Method ‘ Avg Acc. ‘ Worst Acc.
ERM (Wah et al., 2011) 97.0 & 0.2% 63.7 + 1.9%
ERM-+aug (Wah et al., 2011) 87.4 4+ 0.5% 76.4 £+ 2.0%
UW (Xian et al., 2018) 96.3.0 + 0.3% 76.2 + 1.4%
IRM (Arjovsky et al., 2020) 875+ 0.7% 75.6 + 3.1%
IB-IRM (Ahuja et al., 2022) 88.5 + 0.9% 76.5 + 1.2%
V-REx (Krueger et al., 2021) 88.0 & 1.4% 73.6 + 0.2%
CORAL (Sun & Saenko, 2016) 90.3 + 1.1% 79.8 + 1.8%
Fish (Shi et al., 2021) 85.6 + 0.4% 64.0 + 0.3%
GroupDRO (Sagawa et al., 2019) 91.8 + 0.3% 90.6 + 1.1%
JTT (Liu et al.,, 2021) 93.3 + 0.3% 86.7 + 1.5%
DM-ADA (Xu et al., 2020) 76.4 £+ 0.3% 53.0 £ 1.3%
LISA (Yao et al., 2022) 91.8 + 0.3% 88.5 4+ 0.8%
BB w MDN (ours) 95.01 £+ 0.5% 94.4 4+ 0.5%
MolE from BB w MDN (ours) (COVERAGE) 91.0 4 0.5% (0.91) 93.7 4 0.4% (0.87)
MoIE+R from BB w MDN (ours) 90.2 £ 0.5% 92.1 £ 0.4%

the interpretable model at iteration k (i.e., 7*(c;)). At
iteration k, 7', ... 7%~ are not trainable.

The Residuals: The last step is to repeat with the residual
rk,as vk (xj,¢5) = fF7Nx5) — g (c;). We fix ® and
optimize the following loss to update h* to specialize on
those samples not covered by g*, effectively creating a new
BB f* for the next iteration (k + 1):

k
Lh(xj,c5) = L(rF (5, ¢5), fF(x5)) H (1—n'"(cy))

K3

trainable component
for iteration k&

non-trainable component
for iteration k

We refer to all the experts as the Mixture of Interpretable
Experts (MolE). We denote the experts, including the fi-
nal residual, as MoIE+R. Each expert in MolE constructs
sample-specific FOLs using the optimization strategy in

SelectiveNet (Geifman & El-Yaniv, 2019).

2.2. Applying to mitigate shortcuts

Algorithm 1 illustrates a 3-step procedure to eliminate short-
cuts. The BB, trained on a dataset with shortcuts, latches
on the spurious concepts to classify the labels. Detection.
The FOLs from the biased BB-derived MolE, capture the
spurious concepts. Elimination. Assuming the spurious
concepts as metadata, we minimize the effect of shortcuts
from the representation of the BB using MDN (Lu et al.,
2021) layers between two successive layers of the convo-
lutional backbone to fine-tune the biased BB. MDN is a
regression-based normalization technique to mitigate meta-
data effects and improve model robustness. Verfitication.
Finally, we distill the MoIE from the new robust BB and
generate the FOLs. The FOLs validate if the BB still uses
spurious concepts for prediction.

3. Experiments

We perform experiments to show that MoIE does not com-
promise the accuracy of the original BB across various
datasets and architectures and eliminates shortcuts using
the Waterbirds dataset (Sagawa et al., 2019). As a stopping
criterion, we repeat our method until MolE covers at least
90% of samples. Furthermore, we only include concepts as
input to g if their validation accuracy or AUROC exceeds
a certain threshold (in all of our experiments, we fix 0.7
or 70% as the threshold of validation auroc or accuracy).
Refer to Table 1 for the datasets and BBs’ experimented
with. For ResNets, Inception, and DenseNet121, we flatten
the feature maps from the last convolutional block to ex-
tract the concepts. For VITs, we use the image embeddings
from the transformer encoder to perform the same. We use
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SHM-ISIC as a real-world transfer learning setting, with the
BB trained on HAM 10000 and evaluated on a subset of the
SIIM-ISIC Melanoma Classification dataset (Yuksekgonul
et al., 2022). Appendix A.2 and Appendix A.3 expand on
the datasets and hyperparameters. Furthermore, we utilize
E-LEN, i.e., a Logic Explainable Network (Ciravegna et al.,
2023) implemented with an Entropy Layer as first layer (Bar-
biero et al., 2022) as the interpretable symbolic model g to
construct FOL explanations of a given prediction. With
ResNet50 as the BB for shortcut detection, we use MDN
layers between convolution blocks.
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Figure 2. MOolE fixes shortcuts. Performance of (a) the biased BB
and (b) final MolE extracted from the robust BB. (¢) Examples of
samples (top-row) and FOLs extracted from the biased (middle-

row) and robust BB (bottom-row). (d) Accuracies of the spurious
concepts extracted from the biased vs. the robust BB.

Baselines: To show the efficacy of our method compared
to other concept-based models, we compare our methods
to two concept-based baselines — 1) interpretable-by-design
and 2) posthoc. They consist of two parts: a) a concept
predictor ® : X — C, predicting concepts from images; and
b) a label predictor g : C — ), predicting labels from the
concepts. The end-to-end CEMs and sequential CBMs serve
as interpretable-by-design baselines. Similarly, PCBM and
PCBM-h serve as post hoc baselines. Convolution-based ®
includes all layers till the last convolution block. VIT-based
® consists of the transformer encoder block. The standard
CBM and PCBM models do not show how the concepts are
composed to make the label prediction. So, we create CBM
+ E-LEN, PCBM + E-LEN, and PCBM-h + E-LEN by using
the identical g of MOIE (shown in Appendix A.3), as a
replacement for the standard classifiers of CBM and PCBM.
We train the @ and g in these new baselines to sequentially
generate FOLs (Barbiero et al., 2022). Due to the unavail-

ability of concept annotations, we extract the concepts from
the Derm7pt dataset (Kawahara et al., 2018) using the pre-
trained embeddings of the BB (Yuksekgonul et al., 2022) for
HAM10000. Thus, we do not have interpretable-by-design
baselines for HAM 10000 and ISIC.

For shortcut-based methods, we compare our method with
Empirical Risk Minimization (ERM) with and without
data augmentations; Up- weighting (UW), which weights
the instances of minority groups; Invariant Learning al-
gorithms: IRM (Arjovsky et al., 2020), IB-IRM (Ahuja
et al., 2022); Domain generalization/adaptation methods: V-
REx (Krueger et al., 2021), CORAL (Sun & Saenko, 2016),
and Fish (Shi et al., 2021); Instance reweighting methods:
GroupDRO (Sagawa et al., 2020), JTT (Liu et al., 2021);
Data augmentation methods: DM-ADA (Xu et al., 2020),
LISA (Yao et al., 2022).

4. Results

MoIE does not compromise the performance of the orig-
inal BB. As MolE uses multiple experts covering different
subsets of data compared to the single one by the baselines,
MOolE outperforms the baselines for most of the datasets,
shown in Table 2. Awa2 comprises rich concept annotation
for zero-shot learning, resulting in better performance for
the interpretable-by-design baselines. Appendix A.4 illus-
trates that MolE captures a diverse set of concepts quali-
tatively. Appendix A.5 shows that later iterations of MolE
cover the “harder” examples.

Eliminating shortcuts. Table 3 demonstrates the effi-
cacy of MoIE in eliminating the shortcuts than the other
shortcut removal method by achieving high worst-case accu-
racy. First, the BB’s accuracy differs for land-based versus
aquatic subsets of the bird species, as shown in Figure 2a.
The Waterbird on the water is more accurate than on land
(96% vs. 67% in the red bar). In the interpretable “Detec-
tion” stage, the FOLs from the biased BB-derived MolE
detect the spurious background concept forest for a water-
bird, misclassified as a landbird in Figure 2¢ (fop row). In
the “Elimination” stage, the fine-tuned BB with MDN layers
removes the specific background from the BB’s represen-
tation (). Next, we train ¢, using ® of the finetuned BB,
and compare the accuracy of the spurious concepts with
the biased BB in Figure 2d. The validation accuracy of all
the spurious concepts retrieved from the finetuned BB falls
well short of the predefined threshold of 70% compared to
the biased BB. Finally, we distill the MolIE from the robust
BB. Figure 2b illustrates similar accuracies of MolIE for Wa-
terbirds on water vs. Waterbirds on land (89% - 91%). As
the shortcut concepts are removed successfully, MoIE out-
performs the other shortcut removal methods in worst group
accuracy in Table 3 (the last 2 rows). In the interpretable
“Verification” stage, the FOL from the robust BB does not
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include any background concepts ( 2c, bottom row).

5. Conclusion

This paper proposes a novel method to iteratively extract
a mixture of interpretable models from a flexible BB to
eliminate shortcuts. We aim to leverage MolE to eliminate
shortcuts with varying complexities in the future.
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A. Appendix
A.1. Code
Refer to the url https://github.com/batmanlab/ICML-2023-Route-interpret-repeat for the code.

Neuro-symbolic Al is an area of study that encompasses deep neural networks with symbolic approaches to computing
and Al to complement the strengths and weaknesses of each, resulting in a robust Al capable of reasoning and cognitive
modeling (Belle, 2020). Neuro-symbolic systems are hybrid models that leverage the robustness of connectionist methods
and the soundness of symbolic reasoning to effectively integrate learning and reasoning (Garcez et al., 2015; Besold et al.,
2017).

A.2. Dataset

CUB-200 The Caltech-UCSD Birds-200-2011 ((Wah et al., 2011)) is a fine-grained classification dataset comprising 11788
images and 312 noisy visual concepts. The aim is to classify the correct bird species from 200 possible classes. We adopted
the strategy discussed in (Barbiero et al., 2022) to extract 108 denoised visual concepts. Also, we utilize training/validation
splits shared in (Barbiero et al., 2022). Finally, we use the state-of-the-art classification models Resnet-101 ((He et al.,
2016)) and Vision-Transformer (VIT) ((Wang et al., 2021)) as the blackboxes f°.

Animals with attributes2 (Awa2) AwA?2 dataset (Xian et al., 2018) consists of 37322 images of a total of 50 animal
classes with 85 numeric attributes. We use the state-of-the-art classification models Resnet-101 ((He et al., 2016)) and
Vision-Transformer (VIT) ((Wang et al., 2021)) as the blackboxes f°.

HAM10000 HAMI10000 ((Tschandl et al., 2018)) is a classification dataset aiming to classify a skin lesion as benign or
malignant. Following (Daneshjou et al., 2021), we use Inception (Szegedy et al., 2015) model, trained on this dataset as the
blackbox f°. We follow the strategy in (Lucieri et al., 2020) to extract the eight concepts from the Derm7pt ((Kawahara
et al., 2018)) dataset.

SIIM-ISIC To test a real-world transfer learning use case, we evaluate the model trained on HAM10000 on a subset
of the SIIM-ISIC(Rotemberg et al., 2021)) Melanoma Classification dataset. We use the same concepts described in the
HAM10000 dataset.

MIMIC-CXR We use 220,763 frontal images from the MIMIC-CXR dataset (Johnson et al.) aiming to classify effusion.
We obtain the anatomical and observation concepts from the RadGraph annotations in RadGraph’s inference dataset ((Jain
et al., 2021)), automatically generated by DYGIE++ ((Wadden et al., 2019)). We use the test-train-validation splits from (Yu
et al., 2022) and Densenet121 (Huang et al., 2017) as the blackbox f 0,

Waterbirds (Sagawa et al., 2019) creates the Waterbirds dataset by using forest and bamboo as the spurious land concepts
of the Places dataset for landbirds of the CUB-200 dataset. We do the same by using oceans and lakes as the spurious water
concepts for waterbirds. We utilize ResNet50 as the Blackbox f° to identify each bird as a Waterbird or a Landbird.

A.3. Architectural details of symbolic experts and hyperparameters

Table 4 demonstrates different settings to train the Blackbox of CUB-200, Awa2 and MIMIC-CXR respectively. For the
VIT-based backbone, we used the same hyperparameter setting used in the state-of-the-art Vit-B_16 variant in (Wang et al.,
2021). To train ¢, we flatten the feature maps from the last convolutional block of ® using “Adaptive average pooling” for
CUB-200 and Awa?2 datasets. For MIMIC-CXR and HAM 10000, we flatten out the feature maps from the last convolutional
block. For VIT-based backbones, we take the first block of representation from the encoder of VIT. For HAM 10000, we
use the same Blackbox in (Yuksekgonul et al., 2022). Table 5, Table 6, Table 7, Table 8 enumerate all the different settings
to train the interpretable experts for CUB-200, Awa2, HAM, and MIMIC-CXR respectively. All the residuals in different
iterations follow the same settings as their blackbox counterparts.
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Table 4. Hyperparameter setting of different convolution-based Blackboxes used by CUB-200, Awa2 and MIMIC-CXR

Setting CUB-200 Awa2 MIMIC-CXR
Backbone ResNet-101 ResNet-101 DenseNet-121
Pretrained on ImageNet True True True
Image size 448 224 512
Learning rate 0.001 0.001 0.01
Optimization SGD Adam SGD
Weight-decay 0.00001 0 0.0001
Epcohs 95 90 50
Layers used as ® till 4'" ResNet ~ till 4'" ResNet  till 4/ DenseNet
Block Block Block
Flattening type for the input to ¢ Adaptive average Adaptive average Flatten
pooling pooling

A 4. Expert driven explanations by MolE

Heterogenity of Explanations: At each iteration of MoIE, the blackbox (h*(®(.)) splits into an interpretable expert (¢*)
and a residual (r*). Figure 3i shows this mechanism for VIT-based MoIE and compares the FOLs with CBM + E-LEN and
PCBM + E-LEN baselines to classify “Bay Breasted Warbler” of CUB-200. The experts of different iterations specialize in
specific instances of “Bay Breasted Warbler”. Thus, each expert’s FOL comprises its instance-specific concepts of the same
class. For example, the concept, leg_color_grey is unique to expert4, but belly_pattern_solid and back_pattern_multicolored
are unique to experts 1 and 2, respectively, to classify the instances of “Bay Breasted Warbler” in the Figure 3(i)-c. Unlike
MolE, the baselines employ a single interpretable model g, resulting in a generic FOL with identical concepts for all the
samples of “Bay Breasted Warbler” (Figure 3i(a-b)). Thus the baselines fail to capture the heterogeneity of explanations.
Due to space constraints, we combine the local FOLs of different samples.

Figure 3ii shows such diverse local instance-specific explanations for HAM 10000 (top) and ISIC (bottom). In Figure 3ii-(top),
the baseline-FOL consists of concepts such as AtypicalPigmentNetwork and BlueWhitishVeil (BWV) to classify “Malignancy”
for all the instances for HAM10000. However, expert 3 relies on RegressionStructures along with BWV to classify the same
for the samples it covers. At the same time, expert 5 utilizes several other concepts e.g., IrregularStreaks, Irregular dots and
globules (IrregularDG) etc. Due to space constraints, Figure 5 demonstrates similar results for the Awa2 dataset.

A.5. Identification of harder samples by successive residuals

Figure 7 (a-c) display the proportional accuracy of the experts and the residuals of our method per iteration. The proportional
accuracy of each model (experts and/or residuals) is defined as the accuracy of that model times its coverage. Recall that the
model’s coverage is the empirical mean of the samples selected by the selector. Figure 7a show that the experts and residual
cumulatively achieve an accuracy ~ 0.92 for the CUB-200 dataset in iteration 1, with more contribution from the residual
(black bar) than the expertl (blue bar). Later iterations cumulatively increase and worsen the performance of the experts and
corresponding residuals, respectively. The final iteration carves out the entire interpretable portion from the Blackbox f°
via all the experts, resulting in their more significant contribution to the cumulative performance. The residual of the last
iteration covers the “hardest” samples, achieving low accuracy. Tracing these samples back to the original Blackbox fY, it
also classifies these samples poorly (Figure 7(d-f)). As shown in the coverage plot, this experiment reinforces Figure 1,
where the flow through the experts gradually becomes thicker compared to the narrower flow of the residual with every
iteration. Figure 8 shows the coverage (top row), performances (bottom row) of each expert and residual across iterations of
- (a) ResNet101-derived Awa2 and (b) ResNet101-derived CUB-200 respectively.
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Table 5. Hyperparameter setting of interpretable experts (g) trained on ResNet-101 (top) and VIT (bottom) blackboxes for CUB-200
dataset

Settings based on dataset ‘ Expertl ‘ Expert2 ‘ Expert3 ‘ Expert4 ‘ Expert5 ‘ Expert6

CUB-200 (ResNet-101)
+ Batch size 16 16 16 16 16 16
+ Coverage (1) 0.2 0.2 0.2 0.2 0.2 0.2
+ Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
+ Aens 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
+agp 0.9 0.9 0.9 0.9 0.9 0.9
+Tkp 10 10 10 10 10 10
+hidden neurons 10 10 10 10 10 10
+As 32 32 32 32 32 32
+ Tiens 0.7 0.7 0.7 0.7 0.7 0.7
CUB-200 (VIT)

+ Batch size 16 16 16 16 16 16
+ Coverage () 0.2 0.2 0.2 0.2 0.2 0.2
+ Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
+ Aens 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
+agp 0.99 0.99 0.99 0.99 0.99 0.99
+Tkp 10 10 10 10 10 10
+hidden neurons 10 10 10 10 10 10
+Ag 32 32 32 32 32 32
+Tens 6.0 6.0 6.0 6.0 6.0 6.0

Table 6. Hyperparameter setting of interpretable experts (g) trained on ResNet-101 (top) and VIT (bottom) blackboxes for Awa2 dataset

Settings based on dataset ‘ Expertl ‘ Expert2 ‘ Expert3 ‘ Expert4 ‘ Expert5 ‘ Expert6

Awa2 (ResNet-101)
+ Batch size 30 30 30 30 - -
+ Coverage (1) 0.4 0.35 0.35 0.25 - -
+ Learning rate 0.001 0.001 0.001 0.001 - -
+ Aens 0.0001 | 0.0001 | 0.0001 | 0.0001 - -
+agp 0.9 0.9 0.9 0.9 - -
+Tkp 10 10 10 10 - -
+hidden neurons 10 10 10 10 - -
+As 32 32 32 32 - -
+ Tiens 0.7 0.7 0.7 0.7 - -

Awa2 (VIT)
+ Batch size 30 30 30 30 30 30
+ Coverage (1) 0.2 0.2 0.2 0.2 0.2 0.2
+ Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
+ Aens 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001
+axp 0.99 0.99 0.99 0.99 0.99 0.99
+Tkp 10 10 10 10 10 10
+hidden neurons 10 10 10 10 10 10
+As 32 32 32 32 32 32
+ Tiens 6.0 6.0 6.0 6.0 6.0 6.0
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Table 7. Hyperparameter setting of interpretable experts (g) for the dataset HAM 10000

Settings based on dataset ‘ Expertl ‘ Expert2 ‘ Expert3 ‘ Expert4 ‘ Expert5 ‘ Expert6

HAM10000 (Inception-V3)
+ Batch size
+ Coverage (1)
+ Learning rate
+ /\lens
+Q kD
+Tkp
+hidden neurons
+As
+ ,Tlens

32
0.4
0.01
0.0001
0.9
10
10
64
0.7

32
0.2
0.01
0.0001
0.9
10
10
64
0.7

32
0.2
0.01
0.0001
0.9
10
10
64
0.7

32
0.2
0.01
0.0001
0.9
10
10
64

0.7

32
0.1
0.01
0.0001
0.9
10
10
64
0.7

32
0.1
0.01
0.0001
0.9
10
10
64
0.7

Table 8. Hyperparameter setting of interpretable experts (g) for the dataset MIMIC-CXR

Settings based on dataset

‘ Expertl ‘ Expert2 ‘ Expert3

Effusion-MIMIC-CXR (DenseNet-121)

+ Batch size

+ Coverage (1)
+ Learning rate
+ )\lens

+QK D

+Tkp

+hidden neurons
+Ag

+nens

1028
0.6
0.01
0.0001
0.99
20
20, 20
96
7.6

1028
0.2
0.01
0.0001
0.99
20
20,20
128
7.6

1028
0.15
0.01
0.000
0.99
20

256
7.6
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Figure 3. MolE identifies diverse concepts for specific subsets of a class, unlike the generic ones by the baselines. (i) We construct
the FOL explanations of the samples of, “Bay breasted warbler” in the CUB-200 dataset for VIT-based (a) CBM + E-LEN as an
interpretable-by-design baseline, (b) PCBM + E-LEN as a posthoc baseline, (¢) experts in MolE at inference. We highlight the unique
concepts for experts 1,2, and 3 in red, blue, and magenta, respectively. (ii) Comparison of FOL explanations by MolE with the PCBM +
E-LEN baselines for HAM 10000 (top) and ISIC (down) to classify Malignant lesion. We highlight unique concepts for experts 3, 5, and
6 in red, blue, and violet, respectively. For brevity, we combine the local FOLs for each expert for the samples covered by them, shown in

the figure.
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Figure 4. Construction logical explanations of the samples of “Effusion” in the MIMIC-CXR dataset for various experts in MolE at
inference. The final residual covers the unexplained sample, which is “harder” to explain (indicated in red).
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Figure 5. Flexibility of FOL explanations by VIT-derived MolE MolE and the CBM + E-LEN and PCBM + E-LEN baselines for Awa2
dataset to classify “Otter” at inference. Both the baseline’s FOL constitutes identical concepts to distinguish all the samples. However,
expertl classifies “Otter” with hunter, group etc.as the identifying concept for the instances covered by it. Similarly expert5 classifies
“Otter” using buckteeth, gray etc.. Note that, meat and gray are shared between the two experts. We highlight the shared concepts (artic)
between the experts and the baselines as blue.
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Figure 6. Flexibility of FOL explanations by VIT-derived MoIE MolE and the CBM + E-LEN and PCBM + E-LEN baselines for Awa2
dataset to classify “Horse” at inference. Both the baseline’s FOL constitutes identical concepts to distinguish all the samples. However,
expert4 classifies “Horse” with smelly as the identifying concept for the instances covered by it. Similarly, expert5 classifies the same
“Horse” using longneck and fields. We highlight the shared concepts between the experts and the baselines as blue.
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Figure 7. The performance of experts and residuals across iterations. (a-c) Coverage and proportional accuracy of the experts and residuals.
(d-f) We route the samples covered by the residuals across iterations to the initial Blackbox f° and compare the accuracy of f° (red bar)
with the residual (blue bar). Figures d-f show the progressive decline in performance of the residuals across iterations as they cover the
samples in the increasing order of “hardness”. We observe the similar abysmal performance of the initial blackbox f° for these samples.
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Figure 8. The performances of experts and residuals across iterations for ResNet derived MolIE for CUB-200 and Awa2. (a-b) Coverage
and proportional accuracy of the experts and residuals. (c-d) We route the samples covered by the residuals across iterations to the initial
Blackbox f° and compare the accuracy of f 0 (red bar) with the residual (blue bar).



