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ABSTRACT

Free Energy Surfaces (FES) and metastable transition rates are key elements in
understanding the behaviour of molecules within a system. However, the typi-
cal approaches require computing force-fields across billions of time-steps in a
molecular dynamics (MD) simulation, which is often considered intractable when
dealing with large systems or databases. In this work we propose LAMODY, a
latent-space MD simulator to effectively tackle the intractability with around 20-
fold speed improvements compared to classical MD’s. The model leverages a
chirality aware SE(3)-invariant encoder-decoder architecture to generate a latent
space, coupled with a recurrent neural network to run the time-wise dynamics. We
show that LAMODY effectively recovers realistic trajectories and FES more accu-
rately and faster than existing methods, while capturing their major dynamical and
conformational properties. Furthermore, the proposed approach can generalize to
molecules outside the training distribution.

1 INTRODUCTION

Fundamental quantities of interest towards understanding a molecule’s dynamics and properties
are its Free Energy Surface (FES) and metastable states, alongside its transition rates between
metastable states. Accessing them enables many real-world applications in drug discovery or ma-
terial sciences (Peng et al., 2014; Bochevarov et al., 2013). Each 3D conformation of a molecule
is associated with a potential energy that determines its probability of occurring (via a Boltzmann
distribution).

The FES is a lower-dimensional representation of this

Figure 1: Free Energy Surface (FES) with
minima corresponding to different confor-
mations and an example MD trajectory as
dotted arrow.

energy landscape, providing insights into stable states
(energy minima), transition pathways, and free energy
differences. Additionally, a molecule’s kinetics are of
interest, such as the transition rates between metastable
states/modes of the Boltzmann distribution.

The usual approach to compute these properties is to
run long micro-second molecular dynamics (MD) sim-
ulations. Considering that each MD step is in the scale
of femto-seconds, the simulation comes with a high
computational cost. To accelerate the recovery of these
properties, it is essential to develop a method that (1)
can operate at time steps beyond the femtosecond level;
(2) captures the key reaction coordinates; (3) does not
suffer from instabilities (unphysical states) for long-
time simulations.

Learned simulators operating in a latent space suit
these requirements if the latent space captures reaction coordinates (a molecule’s most important
degrees of freedom) since they allow for larger time steps (Sidky et al., 2020; Vlachas et al., 2022).
However, existing architectures restrict the simulator to only work on a single molecule at a time,
meaning that they cannot generalize to new molecules (Sidky et al., 2020; Vlachas et al., 2022).
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Figure 2: Overview of LAMODY. An encoder E computes SE(3)-invariant latent embeddings
of a short initialization sequence, the dynamical propagator P iteratively predicts the next states to
produce a long-time trajectory in latent space from which molecular conformers can be reconstructed
by the decoder D. The warm-up sequence and predicted trajectory are visualized in the FES. Here,
N (0,Σ) denotes random noise, ⊕ is vector addition, Gt denotes the 3D graph representation of a
molecule at time t, z is a latent space state, τ is the time lag between states in a trajectory, and *
denotes the point where the MD trajectory crosses the plane.

Furthermore, LED (Vlachas et al., 2022) fails to recover rare metastable states and lacks practi-
cal relevance as it has only been shown to work with multiple re-initializations from Boltzmann
distributed states, meaning that a long MD simulation is still required to define the starting states.

Other approaches, such as Boltzmann generators (Noé et al., 2019) or Distributional Graphormer
(Zheng et al., 2023) can predict the equilibrium distribution of unseen molecules but do not have
a notion of time, i.e., no dynamical properties such as the transition rates can be extracted. In this
regard, machine learning (ML) force fields (Unke et al., 2021; Batzner et al., 2022; Hu et al., 2021)
have made significant progress for ab-initio simulations but are still slower for long simulations and
larger molecules where classical force fields are applied (Fu et al., 2023).

To tackle these limitations, we propose a learned Latent Molecular Dynamics LAMODY, model. We
employ an SE(3)-invariant encoder-propagator-decoder scheme based on message-passing neural
networks (MPNN) (Gilmer et al., 2017) that can be trained end-to-end on MD data and can gener-
alize to unseen molecules. For the tasks of FES recovery, past studies used different sampling and
evaluation protocols, making it difficult to compare methods. We define scientifically meaningful
tasks and metrics that allow that reflect a model’s practical relevance in probing the free energy
surface of molecules. In summary, our contributions are:

• 20-fold speed improvements compared to classical MD, thanks to a long operating time
step of 100fs.

• Generalization to unseen molecules thanks to our chirality-aware SE(3)-invariant encoder-
decoder.

• Defining a systematic evaluation scheme to assess the performance of simulation methods
against scientifically meaningful tasks for FES recovery.

2 RELATED WORK

Coarse Graining (CG) is a classical approach towards enabling longer time-steps and faster sim-
ulation by grouping multiple atoms into coarse-grained beads. A CG mapping can be constructed
through different approaches such as heuristics (Kmiecik et al., 2016), graph clustering (Fu et al.,
2022) or autoencoders (Wang & Gómez-Bombarelli, 2019). The major shortcoming of coarse-
graining methods is that (1) their effectiveness depends heavily on the system and observable of
interest, and (2) they lose atomic details of the molecular system. Their accuracy is usually not
sufficient for recovering the FES of flexible molecules. LAMODY generalizes across systems and
provides all-atom structures.
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Enhanced sampling methods inject bias to the potential energy function to facilitate fast sampling
of transitions between local energy minima that are separated by high energy barriers. Popular
methods include simulated annealing (Bernardi et al., 2015; Tsallis & Stariolo, 1996), metadynamics
(Laio & Gervasio, 2008), replica exchange (Bernardi et al., 2015), umbrella sampling (Torrie &
Valleau, 1977), and parallel tempering Yang et al. (2019). A major limitation of enhanced sampling
methods lies in the fact that they typically require determining collective variables (CVs) in advance,
which can be challenging for complex systems Wang et al. (2021). Furthermore, enhanced sampling
methods do not have an explicit notion of “time”, meaning that no extraction of dynamical properties
is possible (Stelzl & Hummer, 2017).

Latent Space Simulators enable to accelerate MD simulations in the 3D configuration space, by
updating a latent state generated by a learned encoder, instead of moving each atom according to its
velocity and computed force. The updates are performed by a dynamical propagator, and the all-
atom representation can be constructed with a decoder. Time-lagged autoencoders with propagators
(Otto & Rowley, 2019; Lusch et al., 2018) learn a linear propagator whereas Sidky et al. (2020) use
a mixture density network (Bishop, 1994) as a propagator. However, the above methods do not obey
the SE(3)-invariance of molecules (they could, e.g., arbitrarily flip a chirality each step). Vlachas
et al. (2022) train an LSTM network as propagator and account use a mixture density network as
autoencoder. However, this method requires multiple re-initializations from Boltzmann distributed
states and it remains unclear if the method stays stable for longer simulations. Additionally, all
previously mentioned methods only work on a single molecule they have been trained on - they are
not able to generalize unlike LAMODY.

3 METHOD

Following the arguments of the previous section, we define an encoder-propagator-decoder frame-
work that is generalizable across systems and obeys the SE(3)-invariance of molecular conformers.

Figure 3: Internal coordinates of a
molecule: Bond lengths dij ; Bond an-
gles ϕi,j,k; Torsion angles ψi,j,k,l.

To do so, we represent a molecule by its bond lengths
B, bond angles A, and torsion angles T (internal coordi-
nates), which provides an SE(3)-invariant representation
of a molecular conformer. We employ an encoder to com-
pute a fixed-sized latent embedding of the molecular state
and use an LSTM (Hochreiter & Schmidhuber, 1997) to
model the dynamics in the latent space. To regain molecu-
lar states with atomic details, we define a decoder that re-
constructs the internal coordinates based on a latent state.
We train the full model in an end-to-end fashion on MD
data without restricting the latent space in any way, effec-
tively allowing the model to construct meaningful latent
representations capturing all important dynamical proper-
ties.

3.1 MODEL ARCHITECTURE

Encoder To make the encoder architecture generalizable to other molecules, we use a graph repre-
sentation of internal coordinates 1 and employ a Graph Neural Network (GNN) architecture. Con-
cretely, a molecular state is represented by a graph G ∈ (V,B,X , C) with each node representing
a bond in the original molecule, and edges representing bond angles and torsion angles defined by
triplets and quadruplets of bonds respectively, hence |V| = |B| and |B| = |A| + |T|. Nodes are
featurized with information about the atoms forming the bond and the bond length and edges are
featurized with the respective bond or torsion angle and a categorical feature indicating whether the
edge defines a bond angle or a torsion angle 2. We then employ Lmessage-passing layers akin to Shi
et al. (2021), pool the nodes using a learnable set-to-set mapping (Vinyals et al., 2016), and predict
the final latent vector using a linear layer.

1See Figure 3
2for a detailed description see subsection C.1
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Figure 4: Training scheme for long sequences:
The propagator P takes in a latent state zt and
cell state St to predict the latent state at time t+1.
The cell states are not re-initialized and gradients
are detached after a fixed-length interval.

Decoder To reconstruct the internal coor-
dinates of a molecular state given a latent
representation, we use a second GNN
similar to Winter et al. (2021). The de-
coder takes as input a two-dimensional
molecular graph with nodes represent-
ing atoms and edges representing bonds
and a latent vector describing the molec-
ular state in the latent space. First node
level embeddings are computed by iter-
atively applying a sequence of message-
passing layers similar to the encoder. Then,
bond lengths are predicted by applying
a three-layer MLP onto the concatenated
pairs of nodes and the latent embedding,
i.e. di = Πbond([ha, hb, z]) with h∗ be-
ing the node embeddings, z the latent
vector and Πbond the MLP. The same
approach is taken for bond angles and
torsion angles with triplets/quadruplets of
node embeddings and Πang.Πtor respec-
tively.

Dynamical Propagator As suggested by Vlachas et al. (2022), sequences of MD states are not
necessarily Markovian since complex systems can exhibit long-term correlations in their behavior,
meaning that future states can depend on past states, violating the assumption of independence
between time steps. To account for this, we use an LSTM (Hochreiter & Schmidhuber, 1997) as the
dynamical model that is trained to predict the next latent state given a short history. Concretely, we
use

(ht+τ , ct+τ ) = LSTM (zt,ht, ct)

zt+τ = Ξ(ht+τ )
(1)

where ht, ct denote the LSTM hidden state and cell state at time t, zt is the latent state at time t and
Ξ is a two-layer MLP.

3.2 TRAINING

We train our model end-to-end on MD data. To do so, we randomly sample a batch of starting points
from the dataset from which we consider the consecutive k states with a time lag τ between states.
Hence, we end up with a batch of sub-sequences of the full trajectory of length k+1 states. Starting
with an initial LSTM state of S0 = (h0, c0) = (⃗0, 0⃗), we iteratively unfold the LSTM to predict the
next time step, while the LSTM cell states are passed through time. More specifically, we encode
G0 into latent space by z0 = E(G0), from which together with S0 the next time step latent state ẑ1
is predicted. Then S1 and z1 = E(G1) are used to predict ẑ2, which can all be decoded back to
molecular states.

To optimize the parameters of the model with backpropagation, we define an end-to-end propagation
loss that is additionally regularized by a reconstruction loss and a latent loss :

L = δe2e
1

k

k∑
i=1

Lrec [Gi,D ◦ P ◦ E(Gi−1)]

+ δlat
1

k

k∑
i=1

||zi − ẑi||2 + δrec
1

k + 1

k∑
i=0

Lrec [Gi,D ◦ E(Gi)]

(2)

here δrec, δlat, δe2e are hyperparameters and Lrec is defined as in Equation 11. Note that zi =
E(Gi), ẑi = P ◦ E(Gi−1). Although the end-to-end part of our loss function theoretically encap-
sulates the latent and the reconstruction loss, we found the explicit presence of both as additional
regularization to be crucial for the training process to succeed.
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Training on long sequences As we aim to predict long-timescale trajectories at inference time with
Nsteps ≫ k, we require training on long sequences without suffering from vanishing or exploding
gradients. To do so, we sample sub-trajectories of length c ∗ k with c being a hyperparameter and
iteratively train on sequences of length k where we keep the LSTM states but detach the gradients
as suggested by Vlachas et al. (2022).

3.3 INFERENCE

At inference time, we ”warm up” the LSTM with a sequence of k MD states from which we iter-
atively unfold the propagator to predict latent trajectories. Additionally, we infuse artificial noise
to the latent states before feeding them into the propagator. We found this to be crucial because
otherwise, the dynamical model was prone to become stuck at a local energy minimum. Concretely,
we predict the next latent state by :

ẑt+τ =

{
P (ẑt +N (0,Σ)) , if x ∼ U(0, 1) ≤ β

P (ẑt) , else
(3)

where β ∈ [0, 1] is a hyperparameter, x ∼ U(0, 1) indicates a sample from the uniform distribution
and Σ = I ∗ σ2, σ2 ∈ R+ is computed from the warmup trajectory.

4 EVALUATION PROTOCOL FOR FES RECOVERY

This section aims to provide an evaluation protocol that is both robust and scalable. After identifying
the issues with prior metrics, we propose a method of identifying metastable states and measuring
the agreement between the model and the ground truth.

Deficiencies of Past Metrics Past studies have used different tasks and metrics for evaluation,
making it difficult to compare methods. The metastable states of the free energy surface are fre-
quently used for evaluation as they allow to reason about dominant conformations and transition
rates. However, previous evaluation protocols are often not applicable to multiple systems but only
allow qualitative inspection of single molecules at a time. To overcome these challenges, we propose
a systematic evaluation protocol to reliably assess the quality of predicted trajectories for multiple
systems.

A common practice to evaluate the quality of predicted FES is to use Kullback-Leibler (KL) diver-
gences, either between one-dimensional marginals or the two-dimensional histogram (Klein et al.,
2023). However, this method is heavily dependent on the chosen bin size of the histogram and
ignores the fact that variations in the estimated density are negligible for multiple practical applica-
tions, where the correct identification of modes and transition rates is the desired goal.

Work on conformation generation (Jing et al., 2022; Zhu et al., 2023) is typically evaluated by
computing the coverage of predicted structures (in terms of RMSD) and reporting precision and
recall, i.e. the fraction of correctly predicted structures and the fraction of identified structures
compared to MD. Similar to the KL-based metrics, this protocol does not capture whether modes
and transition rates are correctly identified.

Identifying metastable states Identifying modes in a two-dimensional FES is highly non-trivial.
While previous works used K-MEANS clustering to identify metastable states (Pandey et al., 2023;
Jain & Stock, 2012), we found that K-MEANS frequently converges to incorrect minima. There-
fore, we use the method of Novelli et al. (2022) where the FES is first smoothed using a Gaussian
kernel and local minima are identified via running multiple BFGS solvers from random starting
points. For a detailed explanation, we refer to subsection B.1. Lastly, the identification of reac-
tion coordinates varies across past methods where multiple methods a sophisticated scheme such as
Time-Independent-Component-Analysis (TICA) (Pérez-Hernández et al., 2013) to define the reac-
tion coordinates from which the FES is constructed (Sidky et al., 2020; Klein et al., 2023). While
TICA is useful for a variety of applications, it requires a Chapman–Kolmogorov test and manual
inspection of the lag time to guarantee high-quality dimensionality reduction. Therefore, we use the
two dihedral angles ϕ, ψ as they are known to capture the conformation space of peptides (Choud-
huri, 2014).
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Figure 5: MSPR: Metastable State Precision/Recall; Ramachandran plot of a long and a short MD
simulation for a peptide where identified metastable states are indicated by crosses. The third figure
shows the long MD trajectory with modes identified by the short MD simulation superimposed
and the circles denote the area where a mode is considered to be correct. This allows to compute
metastable state precision and recall (MSPR).

Figure 6: Example MSM with
three states fitted to MD trajectory
with transition probabilities.

Metrics With the above-described procedure, we can iden-
tify metastable states without the need of manual specification.
This allows to compute precision and recall in terms of found
metastable states, i.e. the fraction of correctly predicted modes
and the percentage of modes found where a mode is considered
correct if it lies within close proximity to the ground-truth MD
mode 3.

Furthermore, the transition rates between these identified
metastable states are relevant for many applications, such as
inferring relaxation times or reaction rates, and can be studied
using a Markov State Model (MSM) (Bowman et al., 2014).
Hence, an MSM can be fitted to predicted and MD trajec-
tories, allowing to compare transition rates. Specifically, the
Mean First Passage Times (MFPTs) (Hoel et al., 1986) can be
computed which represent the expected times for a transition
to happen from a predefined origin state to a target state. The
relative error across the MFPTs for multiple molecules com-
pared to MD then gives insight about the practical use of the
predicted dynamical properties.

5 EXPERIMENTAL RESULTS

In this section, we first show LAMODY’s ability to recover the dynamics and transition states of
alaninde dipeptide, then show that it effectively generalizes across peptides. We further demonstrate
the large benefits of LAMODY in terms of simulation speed. Finally, we do ablation studies on some
of the architectural choices.

5.1 ALANINE DIPEPTIDE

Before we evaluate the generalization capabilities to unseen molecules, we test our method on a
single molecule, namely alanine dipeptide (ALDP), which is a widely used benchmark for MD
simulators and has been the subject of evaluation in previous works. In the case of ALDP, the
primary degrees of freedom under consideration are the two backbone dihedral angles ϕ and ψ.
Despite the model being trained on this exact molecule, it’s important to note that recovering long-
time FES and transition rates remains highly nontrivial, as dynamical models are typically designed

3See subsection B.1 and Figure 5
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to predict single or a limited number of steps. Specifically, we train on 100ns of MD data of ALDP
in implicit solvent to assess whether the model can qualitatively reproduce the free energy surface
in terms of the backbone dihedral angles. Additionally, we analyze the model’s ability to predict
transition rates between the identified metastable states, comparing them to MD results.
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Figure 7: Ramachandran plots of trajectories from MD data and predictions of our model for alanine
dipeptide with corresponding metastable states as defined by Vlachas et al. (2022).

FES recovery To use the trained model for simulating MD trajectories, we use the procedure de-
scribed above. Starting from an initialization sequence of five states, we simulate a trajectory of
length 100ns without re-initialization. The Ramachandran plots of the predicted trajectory along-
side the MD simulation are visualized in Figure 7. Figure 7 shows that our model is able to capture
all metastable states without becoming unstable, i.e. no unphysical states are visited throughout the
entire simulation. Notably, the model is able to explore the rare states Cax

7 , αL, which previous
latent space simulators (Vlachas et al., 2022) failed to achieve. The Ramachandran plots also show
that our model slightly overestimates the density of αR.
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Figure 8: Transition probabilities of MSMs for alanine dipeptide estimated from MD data and pre-
dictions of our model. Black squares are transitions that were never observed.

Transition dynamics To examine whether the overestimation of αR leads to unrealistic dynamical
properties, we can compare the transition rates extracted from MSMs fitted to MD data as well as
the predicted trajectory, which are shown in Figure 8. The transition probabilities clearly show that
the dynamical properties that can be inferred from the model predictions closely match the true
dynamics. Even for the highly unlikely states, our model approximates the correct transition rates.
We found the training scheme for long trajectories as described above to be crucial for this.

5.2 GENERALIZATION ACROSS MOLECULES

After this first sanity check, we assess the capability of our approach to generalize to unseen
molecules. To do so, we constructed a dataset of 216 dipeptides4 with a length of 12ns each of
which 200 are used for training and 16 are held out for evaluation. We use the systematic evaluation
protocol introduced in section 4.

4Peptides with two amino acids
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Figure 9: Metastable state precision and recall (MSPR) for train and test samples of the dipeptide
model.

FES recovery In contrast to prior work on latent space simulators (Sidky et al., 2020; Vlachas
et al., 2022) where the model can only be evaluated on the same molecule it has been trained on,
our architecture is not restricted to single molecules. We evaluate the peptide model on 16 unseen
molecules and randomly choose 16 peptides from the training set as a comparison. Figure 9 shows
the precision and recall values the dipeptide model achieved. We can observe, that the model is better
in terms of precision than recall. This suggests, that the learned simulator is more ”conservative”
and avoids predicting unphysical modes rather than exploring the full state space which is desirable.
However, Figure 9 also shows that the model fails to recover the correct metastable states for a subset
of the peptides.
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Figure 10: Mean relative error of MFPTs for MSMs fitted to predicted trajectories compared to MD
for train and test set. Correctly extracted metastable states from the predicted trajectory are used to
construct MSMs on MD and predicted data. Peptides where only one metastable state exists and
therefore the MFPT error would always be zero are held out.

Predicting transition dynamics To gain more insight into the predicted trajectories, we evaluate
the relative error between predicted and MD MFPTs for MSMs constructed from correctly identified
states as defined in section 4. The results of this analysis are shown in Figure 10 where peptides that
only contain one mode are excluded, as the MFPT error would be 0 in this case (only one state in
the MSM, so no transitions). Figure 10 shows that the mean relative error is below 0.5 except for
two peptides from the training set and two peptides from the test set. This confirms the previous
results, i.e. that the model can approximate the majority of peptides very well, but misses a small
subset. Furthermore, this metric shows that the modes which are found by the model are captured
accurately and the transitions between the modes are captured within a relative error that existing
latent space simulators (Vlachas et al., 2022) achieve for a single molecule they have been trained
on. Furthermore, this shows the practical use of this method, as it can quickly and efficiently recover

8



Under review as a conference paper at ICLR 2024

the leading states of unseen molecules from which accurate transition rates can be extracted making
this model especially useful for screening large chemical spaces.

5.3 SIMULATION SPEED

As high computational complexity/ slow simulation speed is the major limitation of MD simulations
Table 1 shows the propagation speed of our method and MD in terms of iterations per second and
the total wallclock time the respective simulation requires5. Table 1 clearly shows the advantage
of our method that realizes a speedup of approximately 20, improving upon the results of Vlachas
et al. (2022), who reported an acceleration by a factor of 3. Furthermore, in contrast to prior work,
our model does not require re-initialization paired with short timescale predictions but can instead
simulate long timescale trajectories starting from a five-state sequence without becoming unstable.
Note that the predictions of our model can also be run in parallel with up to 128 peptides on a single
GPU.

Table 1: Simulation Speed of MD and LAMODY given as averaged iterations per second and total
wallclock times.

Molecule
iteration/second wallclock time [minute]

MD LAMODY MD LAMODY

ALDP 189 3788 88 4.6
Peptides 117 2239 34.2 1.8

5.4 MODEL VARIATIONS AND ABLATIONS

Cartesian Encoders As the natural choice for an input representation seems to be representing a
state by the two-dimensional molecular graph and associated cartesian positions, we also employed
an SE(3)-invariant encoder operating on cartesian coordinates based on Euclidean graph neural
networks (Geiger & Smidt, 2022). Additionally, we also used the popular GEMNET (Gasteiger
et al., 2021) as our encoder network since GEMNET operates on cartesian coordinates and uses the
internal coordinates of a molecule as features during message passing. However, we unexpectedly
encountered that the cartesian encoder as well as GemNet failed to identify rare metastable states.
The results of these simulations are shown in Figure 12 and Figure 13. We suspect this to be the
case as both models are more memory intense than the internal encoder and we, therefore, had to
reduce the length over which we unroll the propagator states during training 6.

6 DISCUSSION

We present MSPR, a reliable evaluation metric for FES that tackles the necessity of comparable
evaluation schemes for learnerd simulators. Additionally, we introduce LAMODY, a learned sim-
ulator operating in a latent space to efficiently recover free energy surfaces and transition rates.
LAMODY is trained end-to-end on MD data constructing its own latent space. The model employs
an SE(3)-invariant encoder-propagator-decoder scheme. We show that our method can operate at
integration time steps that are two orders of magnitude larger than for MD while still being able
to conduct stable long-timescale simulations required for recovering properties such as FES and
transition rates.

In contrast to prior works, LAMODY does not require re-initialization throughout the simulation,
removing the need for prior MD simulations. We demonstrate that the predicted trajectories closely
match the results of MD and correct dynamical properties can be recovered even for rare metastable
states. Furthermore, our model is generalizable to molecules outside its training distribution and can
capture their leading structural and dynamical properties. Overall, our approach is approximately
20 times faster at recovering FES and transition rates than classical MD and can additionally easily
be parallelized for up to 128 peptides on a single GPU.

5Hardware specifications are reported in Appendix F
6Unrolling propagator states for long trajectories with detaching gradients, see subsection 3.2 for details.
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Identification of slow molecular order parameters for markov model construction. The Jour-
nal of Chemical Physics, 139(1):015102, July 2013. doi: 10.1063/1.4811489. URL https:
//doi.org/10.1063/1.4811489.
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Schütt, Alexandre Tkatchenko, and Klaus-Robert Müller. Machine learning force fields. Chem-
ical Reviews, 121(16):10142–10186, March 2021. doi: 10.1021/acs.chemrev.0c01111. URL
https://doi.org/10.1021/acs.chemrev.0c01111.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets,
2016.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
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A ADDITIONAL EXPLANATIONS

A.1 MOLECULAR DYNAMICS SIMULATION

Molecular Dynamics (MD) simulations are a computational tool that can be utilized to study the
behavior of molecules over time at an atomistic resolution. To do so, a popular method is Langevin
Dynamics (Lemons & Gythiel, 1997), which evolves the positions and velocities of the system under
study by the following stochastic differential equation:

mi
d2xi

dt2
= −∇iU(x1, ...,xN )− γmi

dxi

dt
+
√

2miγkBTdBt (4)

13

https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1021/acs.jctc.1c00809
https://doi.org/10.1021/acs.jctc.1c00809
https://doi.org/10.1038/s43588-021-00173-1
https://doi.org/10.1038/s41524-019-0261-5
https://arxiv.org/abs/2101.01618
https://arxiv.org/abs/2001.08317
https://arxiv.org/abs/2001.08317
https://doi.org/10.1063/1.5109531
https://arxiv.org/abs/2306.05445
https://doi.org/10.3390/ijms24086896
https://doi.org/10.3390/ijms24086896


Under review as a conference paper at ICLR 2024

where xi denotes the position of atom i, U is the potential energy, γ is a friction constant, mi is the
mass of atom i, T is the temperature of the system, kB is the Boltzmann constant, and dBt is standard
Brownian motion. To ensure the stability of the simulation, the integration time step size is typically
chosen to be in the range of a few femtoseconds. The potential energy of the molecule based on
the coordinates of the particles U(x1, ...,xN ) is usually parameterized by a force field7. Machine
learning methods that aim to simulate molecular systems are normally evaluated by their ability to
recover conformational modes, free energy surfaces, and dynamical properties in comparison to a
classical MD simulation (Vlachas et al., 2022; Sidky et al., 2020; Klein et al., 2023).

A.2 INTERNAL COORDINATE GRAPH

Figure 11 shows the a visualization of the internal coordinate graph used by the encoder as defined
in subsection 3.1.

Figure 11: Graph of internal coordinates superimposed onto the molecular graph. Blue vertices and
black edges show the corresponding molecular graph. The internal graph is superimposed with bond
vertices in purple, bond angle edges in orange, and torsion angle edges in green.

B ADDITIONAL RESULTS

B.1 IDENTIFICATION OF METASTABLE STATES

Following Novelli et al. (2022), we use a standard Gaussian kernel density estimator (Scott, 1992)
to approximate the free energy surface in the space of the two dihedral angles ϕ, ψ that are known
to capture the conformational space for peptides (Choudhuri, 2014). Then we aim to identify the
local minima of the FES as these will represent the metastable states. To do so, 100 BFGS solvers
(Nocedal & Wright, 2006) are initialized at random points and run until convergence from which
we recover the unique local minima. By doing so, we are able to reliably identify metastable states
without the need for manual specification 8.

To assess the quality of our predictions, we apply this procedure to the trajectories produced by
our model as well as the MD data. This allows to compute precision and recall of the metastable
states extracted from the predicted trajectories where we consider a metastable state to be correctly
identified if ||µpred − µMD|| ≤ 0.15. This allows us to judge the models’ ability to recover correct
FES for multiple peptides. Additionally, we use the set of correctly identified metastable states (from
our model predictions) to construct an MSM for which we can compare the mean first passage times
(MFPT) (Hoel et al., 1986) between MD and our model. The MFPTs are the expected time for a
transition to happen from a predefined origin state to a target state. In practical applications this
property is of great interest and can, for instance, be used to estimate the time it takes for a molecule
to bind to a receptor. With this evaluation metric, we can judge the quality of the predicted dynamics
and the practical use of the model, even if the model did not find all metastable states.

B.2 MODEL VARIATIONS AND ABLATIONS

Figure 12 and Figure 13 show the inference results for the models with a cartesian/GEMNET encoder
respectively. The figures show that both models miss the rare metastable states, which we suspect to

7see González (2011) for a detailed definition.
8An example is shown in Figure 5
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Figure 12: Ramachandran plots of trajectories from MD data and predictions of the model with
cartesian encoder based on tensor product convolutions (Geiger & Smidt, 2022).

be caused by the shorter training sequences due to memory limitations as described in subsection 5.4.
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Figure 13: Ramachandran plots of trajectories from MD data and predictions of the model with
GEMNET (Gasteiger et al., 2021) encoder.

C ARCHITECTURE DETAILS

C.1 ENCODER

The internal encoder operates on the internal coordinate graph as described in subsection 3.1, which
is SE(3)-invariant by construction. The internal coordinates are normalized to lie in [0, 1].
Nodes vi are featurized with: Atomic number of the first atom in the bond, atomic number of the
second atom in the bond, bond length, mass of the first atom, and mass of the second atom. Edges
between all pairs of bonds that form a bond angle are featurized with the bond angle and an addi-
tional categorical feature indicating the edge type. Torsional edges are featurized with the torsion
angle and the categorical feature accordingly. These scalar features are transformed by a set of
learnable MLPs (one for each feature), to compute an initial feature embedding h0 for each node.
After computing the initial embeddings h0

i , we iteratively apply L message passing layers that ad-
dionally employ a (multi-head) dot product attention mechanism to scale messages according to
their importance, akin to Shi et al. (2021). More specifically, node embeddings for a node a at layer
l get updated by:

hl+1
a = βaW1h

l
a + (1− βa)

 ∑
b∈N (a)

αab

(
W2h

l
b +W6cab

)
︸ ︷︷ ︸

ma

(5)
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with

αab = softmax

((
W3h

l
a

)T (
W4h

l
b +W6cab

)
√
d

)
βa = sigmoid

(
W5

[
W1h

l
a,ma,W1h

l
a −ma

]) (6)

here W∗ indicates learnable parameters, d is the hidden size of the attention heads, [a, b] indicates
vector concatenation, cab ∈ C are the edge features of edge (a, b), and N (a) = {b|(a, b) ∈ B ∨
(b, a) ∈ B}. Between each of the layers, ELU nonlinearities and batch normalization are applied.
After the final message passing layer, we use a learnable set-to-set mapping Vinyals et al. (2016) to
pool the nodes:

qt = LSTM(q∗
t−1)

ei,t = hL
i · qt

αi,t =
exp(ei,t)∑
j

exp(ej,t)

rt =

N∑
i=1

αi,th
L
i

q∗
t = [qt, rt]

(7)

where · denotes the dot product and hL
i indicates the node embedding after the final message passing

interaction layer. This layer iteratively updates the aggregated set for T processing steps by comput-
ing a weighted sum rt of node embeddings, concatenating this sum to the last state qt and passing
this concatenated vector q∗ through the LSTM. We found this learnable set-to-set mapping to yield
better results compared to sum or mean reduction. After the set-to-set aggregation, we use a linear
layer Φ to map to the fixed-size latent embedding vector:

z = Φ(q∗
T ) (8)

Given this model architecture, we are able to learn a mapping to a latent space, which is by con-
struction of the graph SE(3)-invariant. Moreover, the model is not limited to a fixed-size graph but
can be applied to graphs of distinct molecules.

C.2 DECODER

The molecular decoder acts as a counterpart to the encoder and reconstructs a molecular state from
a latent representation by predicting the molecule’s internal coordinates for that state. The decoder
architecture was heavily inspired by the work of Winter et al. (2021). As the decoder has to be
applicable to different molecules, we condition the decoder on the time-invariant two-dimensional
molecular graph. Concretely, the decoder predicts a molecular state at time t via:

Gt = D (zt,Gmol) (9)

To do so, we first compute node embeddings for all atoms of Gmol ∈ (Vmol,Bmol,Xmol, Cmol)
where nodes represent atoms and edges represent bonds between atoms in the molecule. Gmol is
constant throughout and MD simulation, as only the atom position change. We featurize nodes with
the following attributes: Atomic number, chirality, degree, number of rings the atom is involved
in, implicit valence, formal charge, number of bonded hydrogens, hybridization type, whether or
not it is in an aromatic ring, whether or not it is in a 5 or 6-ring, the residue name and the atom
name. Bonds between atoms are featurized by bond type and a radial basis embedding of the bond
length (Schütt et al., 2017). Since torsion angles are defined by quadruplets of atoms that do not
necessarily have to be direct neighbors, we add additional edges by connecting each node to all its
k-hop neighbors. Concretely, we modify Bmol to be Bmol :=

{
(a, b) | a ∈ Vmol ∧ b ∈ N k(a)

}
where N k(a) denotes all nodes that can be reached with a maximum of k hops from a. The
additional edges facilitate the information flow over longer distances during message passing.
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After an initial node embedding akin to subsection C.1, we apply L message passing layers that
update the node embeddings similar to subsection C.1. With the final node embeddings hL

i , we
predict the internal coordinates of the current state by:

dtab = Πbond

([
hL
a ,h

L
b , zt

])
∀(a, b) ∈ B

ϕtabc = Πang

([
hL
a ,h

L
b ,h

L
c , zt

])
∀(a, b, c) ∈ A

cosψt
abcd = Πtorcos

([
hL
a ,h

L
b ,h

L
c ,h

L
d , zt

])
∀(a, b, c, d) ∈ T

sinψt
abcd = Πtorsin

([
hL
a ,h

L
b ,h

L
c ,h

L
d , zt

])
∀(a, b, c, d) ∈ T

(10)

where Π∗ are two-layer MLPs with ELU activations and dropout that map from the concatenated
node embeddings and latent state to the single scalar of interest. B denotes the set of all pairs of
atoms defining a bond, A is the set of all triplets of atoms defining a bond angle, and T is the set of
all quadruplets of atoms defining a torsion angle. Note that the decoder outputs a prediction for the
bond angles directly, while for the torsion angles, sin and cos are predicted. This design choice is
grounded on the fact that the models’ parameters could not be optimized to decode the full space of
torsion angles when predicting them directly.

D TRAINING AND INFERENCE

We define the reconstruction loss in terms of internal coordinates by:

Lrec(Gi, Ĝi) = ξb
1

|B|
∑

(a,b)∈B

||dab − d̂ab||

+ ξa
1

|A|
∑

(a,b,c)∈A

cos(ϕabc − ϕ̂abc)

+ ξt
1

2|T|
∑

(a,b,c,d)∈T

(
cos(ψabcd)− ˆcosψabcd

)2
+
(
sin(ψabcd)− ˆsinψabcd

)2
(11)

where ξb, ξa, ξt are hyperparameters, B denotes the set of all pairs of atoms defining a bond, A is
the set of all triplets of atoms defining a bond angle, and T is the set of all quadruplets of atoms
defining a torsion angle. Note that as described in subsection C.2, the model predicts the bond
angles directly, whereas, for the torsion angles, it predicts sin(ψ) and cos(ψ).

To infer σ2, i.e. the amount of noise added during inference, we found that the required noise level
strongly correlates with the variance of the (normalized) torsion angles in the warmup trajectory.
We identified a relationship of

σ2 =
1

|T|

|T|∑
i=1

V ar(ψi) (12)

to reliably give a good estimate of the noise level with |T| being the number of torsion for the
respective molecule. While this relationship holds across molecules, we used a noise level of
σ2
i = 6 ∗ V ar(ψi) for the alanine dipeptide model where the factor of six was inferred from the

norm of the latent space.

E DATASET DETAILS

All datasets were created by performing MD simulations using the openmm library (Eastman et al.,
2017).

The simulation was performed with the parameters shown in Table 2 and Figure 14 shows the free
energy surface based on the two backbone dihedral angles (ϕ, ψ) of alanine dipeptide in implicit
solvation. Given the distribution of (ϕ, ψ), the free energy surface can be computed by:

FESi = −kBT ln [p(ϕi, ψi)] (13)
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where kB is the Boltzmann constant and T is the temperature of the system. We can ob-
serve five energetically favorable metastable states {PII , C

ax
7 , C5, αR, αL} which we also refer to

as modes of the Boltzmann distribution. Note that the metastable states {Cax
7 , αL} are visited rarely.

Table 2: Alanine dipeptide dataset properties.

Property Value
Simulation time 100ns
Integrator Langevin
Integrator time step 1fs
Forcefield AMBER ff96
Solvation OBC GBSA implicit
Frame Spacing 100fs
Temperature 300K
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Figure 14: Ramachandran plot of the two backbone dihedral angles of the alanine dipeptide dataset
with parameters from Table 2 and metastable states {PII , C

ax
7 , C5, αR, αL} as defined by Vlachas

et al. (2022).

The dipeptide dataset was created with the simulation parameters given in Table 3.

Table 3: Dipeptide dataset properties.

Property Value
# Peptides 216
Simulation time (each) 12ns
Integrator Langevin
Integrator time step 1fs
Forcefield AMBER 14-all
Solvation implicit GBn
Frame Spacing 120fs
Temperature 300K

F IMPLEMENTATION DETAILS

All experiments were implemented in PyTorch (Paszke et al., 2019) using the extension for deep
learning on graphs Pytorch Geometric (Fey & Lenssen, 2019). Furthermore, the scipy library (Vir-
tanen et al., 2020) is extensively used throughout our implementation and we utilized the stateinter-
preter package (Novelli et al., 2022) to automatically identify metastable states.
The experiments were run on two different machines. All training was run on a machine with two
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AMD EPYC 7513 CPU @ 2.60GHz with 32/64 cores each, 504GB of RAM, and eight NVIDIA
RTX A6000 GPUs with 48GB vRam of which only a single one was used at a time. All inference
experiments were performed on a machine with two Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
with 20/40 cores each, 504GB of RAM, and eight NVIDIA Tesla V100 GPUs with 32GB vRam
where again only a single GPU was used at a time.

G ADDITIONAL MODEL VARIATIONS

Dynamical Propagator We found the LSTM architecture to consistently achieve the best simulation
metrics outperforming the following architectures: Gated Recurrent Unit (GRU) (Cho et al., 2014);
MLP; Mixture Density Network (Bishop, 1994); Transformer for time series forecasting (Wu et al.,
2020). Besides the different architectures, we evaluated if conditioning the dynamical model onto
the molecule it currently works with improves the generalization capabilities of our model. To do
so, we employed another GNN that computes a fixed-size embedding based on the two-dimensional
molecular graph, essentially constructing a learned representation of a certain molecule. This rep-
resentation was then appended to the latent space to facilitate the prediction of correct dynamics for
the propagator. However, we did not encounter any benefits of using this approach in terms of the
quality of predicted trajectories for varying molecules.

Training Schemes Besides the training scheme described in subsection 3.2, we explored various
methods of improving the robustness of the dynamical model mainly inspired by the approaches
of Brandstetter et al. (2022). The model always gets correct latent states as input at training time
whereas at inference time the propagator gets its own previous prediction as input which introduces
a distribution shift between training and inference time. To mitigate this error, Brandstetter et al.
(2022) suggest the ”pushforward trick” which means to instead of using the correct latent state as
input, the previous prediction of the dynamical model is used with a certain probability. Addition-
ally, we tested whether infusing noise at different stages of our pipeline (in cartesian space; in in-
ternal coordinate space; in the latent space) improves the test performance of our dynamical model.
While the above two approaches did not improve the simulation results, we found the approach
of unrolling the LSTM for multiples of its sequence length and cutting the gradients between the
steps as described in subsection 3.2 to be absolutely crucial for the model to learn correct long-term
dynamics.

Pretraining the autoencoder In contrast to the results of Sidky et al. (2020), we found that pre-
training the autoencoder did not improve simulation results but in fact significantly constrained the
latent space such that dynamical properties could not be modeled precisely anymore.

H HYPERPARAMETERS

For all training, we use the Adam9 optimizer and the ReduceLROnPlateau10 learning rate scheduler
with reduction parameter 0.7 and patience 5 epochs. We define an epoch to consist of 12 batches
of trajectories with length T for alanine dipeptide and 16 batches for the peptide models and train
each model for 100 epochs, as we found all training metrics to have fully converged after that time.

Training the smaller model on alanine dipeptide took 14.6 hours with a memory consumption of
8.9GB. During inference, the memory consumption was 6B, which is mainly caused by the batched
decoding of structures where we used batches of size 1e5 and which could be adapted to other hard-
ware limitations. For the dipeptide models, training took approximately three days with a memory
consumption of 43GB. For decoding, we used a batch size of 1e4, which led to 14GB of used GPU
memory.

9https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
10https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

ReduceLROnPlateau.html
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H.1 ALANINE DIPEPTIDE HYPERPARAMETERS

The parameters were tuned in the order in which they appear in the table from top to bottom. The
final parameters are marked in bold.
We found the batch size to have a significant impact on the performance of our model, as batches
larger than 8 independent trajectories prevented the models to produce reasonable inference results.
While we do not have concrete evidence, we suspect this to be the case because batches larger than
8 contain too diverse trajectories, essentially impeding the computation of meaningful gradients.

Table 4: Search space for the general hyperparameters, spanning across encoder, decoder and prop-
agator.

Parameter Search Space
latent embedding dimension [5, 10, 32, 64, 75, 100, 128, 256, 512]
data normalization [min-max, z-score]
batch size [2, 4, 8, 16, 32, 64]
starting learning rate [1e-3, 5e-4, 1e-4, 1e-5, 1e-6]
c [1, 2, 5, 10, 25, 50, 100, 120, 150, 200]
δrec, δlat, δe2e, ξb, ξa, ξt [0.33, 1 , 2] (independently altered)

Table 5: Search space for the hyperparameters of the encoder network.

Parameter Search Space
# layers [2, 3, 4, 5, 6, 7, 8, 10]
# final MLP layers [1, 2, 3, 4]
# attention heads [2, 4, 8, 16]
node embedding size [5, 10, 15, 25]
edge embedding size [2, 4, 8, 12]
# readout function [Set2Set, Sum, Mean]
dropout [0, 0.1, 0.15, 0.2]

Table 6: Search space for the hyperparameters of the decoder network.

Parameter Search Space
# MP layers [1, 2, 3, 4, 5, 6, 7, 8, 10]
k-hop edge concatenation [2, 3, 4]
# attention heads [2, 4, 8, 16]
input node embedding size [5, 10, 15, 25]
output node embedding size [10, 15, 25, 50, 100]
# final MLP layers [1, 2, 3, 4]
dropout MP layers [0, 0.1, 0.15]
dropout MLP layers [0, 0.1, 0.15]

H.2 DIPEPTIDE HYPERPARAMETERS

For the training of the peptide models, we identified a batch size of 64 to yield the best results.
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Table 7: Search space for the hyperparameters of the LSTM propagator.

Parameter Search Space
k (sequence length) [1, 3, 5, 10, 25, 50, 100, 250]
# LSTM layers [1, 2, 3, 4, 5, 6]
# MLP layers [1, 2, 3]
LSTM dropout [0, 0.1, 0.2]
β 0.15

Table 8: Search space for the hyperparameters of the dipeptides model. All hyperparameters that
are not explicitly listed are the same as for the alanine dipeptide model.

Parameter Search Space
latent embedding dimension [128, 256, 512, 1024, 2048]
# num encoder layers [4, 5, 6, 8, 10]
# num decoder layers [4, 5, 6, 8, 10]
# LSTM layers [ 4, 5, 6, 8]
c [1, 2, 5, 10, 25, 50, 100, 120, 150, 200]
decoder output node embedding size [10, 15, 25, 50, 100]
β 0.9
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