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ABSTRACT

Bayesian persuasion, a central model in information design, studies how a sender,
who privately observes a state drawn from a prior distribution, strategically sends
a signal to influence a receiver’s action. A key assumption is that both sender
and receiver share the precise knowledge of the prior. Although this prior can be
estimated from past data, such assumptions break down in high-dimensional or
infinite state spaces, where learning an accurate prior may require a prohibitive
amount of data. In this paper, we study a learning-based variant of persuasion,
which we term persuasive prediction. This setting mirrors Bayesian persuasion
with large state spaces, but crucially does not assume a common prior: the sender
observes covariates X, learns to predict a payoff-relevant outcome Y from past
data, and releases a prediction to influence a population of receivers. To model ra-
tional receiver behavior without a common prior, we adopt a learnable proxy: de-
cision calibration, which requires the prediction to be unbiased conditioned on the
receiver’s best response to the prediction. This condition guarantees that myopi-
cally responding to the prediction yields no swap regret. Assuming the receivers
best respond to decision-calibrated predictors, we design a provably efficient al-
gorithm that learns a decision-calibrated predictor within a randomized predictor
class that optimizes the sender’s utility. In the commonly studied single-receiver
case, our method matches the utility of a Bayesian sender who has full knowledge
of the underlying prior distribution. Finally, we extend our algorithmic result to a
setting where receivers respond stochastically to predictions and the sender may
randomize over an infinite predictor class.

1 INTRODUCTION

The strategic disclosure of information to influence downstream decisions—commonly studied un-
der the information design literature (see e.g., Bergemann et al.[(2023))—has become a central topic
in economic theory. A foundational model in this area is Bayesian persuasion, introduced by |[Ka-
menica & Gentzkow|(2011)), which formalizes how a sender, who privately observes an underlying
state unknown to the receiver, can send a signal to shape the receiver’s belief and ultimately in-
fluence their chosen action. Crucially, the sender is endowed with the power of commitment—the
ability to credibly commit to a signaling scheme in advance. Based on the committed signaling
scheme, the receiver updates their beliefs upon receiving the signal and selects an action accord-
ingly. Both receivers have utility functions that depend on the state and the receiver’s action, but
these utilities are typically misaligned, so that the sender needs to strategically design their scheme.

A key assumption underpinning Bayesian persuasion—and much of information design—is the ex-
istence of a common prior: a probability distribution over the state space that both the sender and
receiver have precise knowledge about. The most obvious source for such a probability distribution
is past data. However, in many real-world environments, the state space may be high-dimensional or
even infinite, which makes it challenging to estimate an accurate prior distribution from finite data.
A natural example is the following setting of prediction for decision making.

Persuasive Prediction Problem. The data (z,y) € X x ) are drawn from a joint distribution D.
The sender observes a realization x of X', and seeks to predict the unobserved outcome y. Both the
sender’s and the receiver’s utilities depend on the receiver’s action and the unknown outcome Y, but
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not directly on X. Upon observing z, the sender provides a prediction f(z), which acts as a signal to
inform the receiver’s decision. In the language of Bayesian persuasion, the sender’s observed state
corresponds to the posterior distribution P[Y | X = z], and the prior is the marginal distribution
over such posterior distributions, which is effectively D. However, when & is high-dimensional or
infinite, learning the prior D from finite past data can be infeasible.

This persuasive prediction framework captures a wide range of real-world scenarios where the
sender observes high-dimensional covariates describing the state of the world and aims to shape in-
dividual decisions toward a socially desirable outcome. For example, a small community bank may
partner with a fintech platform that outputs predicted default probabilities based on high-dimensional
financial and behavioral data. However, the incentives of the two parties are not fully aligned: the
fintech platform benefits from increasing loan origination volume and thus may have incentives to
produce predictions that make approvals more likely, whereas the bank remains cautious and pri-
marily uses these predictions to safeguard against excessive default risk.

When data are insufficient to recover the full prior, persuasive prediction presents two central chal-
lenges: How should receiver behavior be modeled in the absence of a common prior? And can the
sender, using only finite data, achieve utility comparable to that of a fully informed Bayesian sender
with exact knowledge of the distribution D?

1.1 OUR RESULTS AND TECHNIQUES

In persuasive prediction, a sender learns a predictor f from past data such that upon observing
X = z, they will send the prediction f(z) to a population of receivers, who will then select their
actions. The sender’s goal is to optimize their utility that depends jointly on the unknown outcome Y
and the joint action chosen by the receivers. Our results establish a connection between (Bayesian)
persuasion and decision calibration (Noarov et al., 2023} Zhao et al.,[2021)), which allows a learning-
based approach for modeling incentives without requiring full knowledge of the prior.

Behavioral Modeling via Decision Calibration. Informally, a (possibly randomized) predictor
f: X = Yisdecision-calibrated if, for every receiver with utility function v; and every action a;,

By (xyyep ¥ = F(X) | argmaxoi(£(X),a) = a;] = 0. M

Intuitively, decision calibration captures a natural notion of credibility: conditioned on any event
defined by the receiver’s best response, the predictor f(X) must be an unbiased estimate of the
true outcome Y. A predictor is approximately decision-calibrated if condition equation |I|holds up
to a small additive error. We show that myopically best responding to an approximately decision-
calibrated, receivers obtain low swap regret (Lemma [2.T). This motivates a clean behavioral as-
sumption that receivers best respond to approximately decision calibrated predictions.

Efficient Optimal Persuasive Prediction. Suppose the sender is allowed to use a stochastic pre-
dictor f € A(H), that is, a distribution over deterministic predictors in some finite class . Our first
main result is a statistically efficient algorithm that learns a predictor f that optimizes the sender’s
utility within the class of decision-calibrated predictors in A(#). The core technical idea is to
formulate the learning problem as a zero-sum game between a min player, who updates the pre-
dictor, and an max player, who identifies the most violated calibration constraint. Simulating no-
regret dynamics between the two players yields a minimax equilibrium, which recovers the optimal
decision-calibrated predictor. The number of required samples scales polynomially in the number
of receiver actions and the dimension of ), and is independent of the size |X|. Our algorithm is
also oracle-efficient in the sense that it runs in polynomial time when given access to an ERM oracle
over H.

Matching the Bayesian Benchmark. In the special case of a single receiver, we show that the
sender utility achieved by our algorithm matches that of a fully informed Bayesian sender who is
restricted to sending signals induced by the same class of decision-calibrated predictors, even though
our sender only has access to a finite dataset that is far from sufficient to approximate D.

Extension to Quantal Responses. Finally, we extend our results to settings where receivers per-
form quantal responses-—that is, their action choices follow a softmax distribution rather than deter-
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ministic best responses. This extension models scenarios where receiver behavior is stochastic and
not perfectly rational (McKelvey & Palfrey, [1995). Under this setting, we also provide an efficient
algorithm for learning the approximately optimal decision-calibrated predictor for sender utility, and
can also handle infinite hypothesis classes H, provided it has bounded covering numbers.

1.2 RELATED WORK

The work most closely related to ours is|Feng & Tang|(2025), which studied the problem of selecting
an optimal calibrated predictor to maximize the learner’s utility. Part of their result was based on
Jain & Perchet| (2024), who established the connection between online calibration and Bayesian
persuasion. Notably, [Feng & Tang| (2025) assumed a finite context space X and that the learner
knows the distribution D over X x ). We also consider a selection problem: choosing an optimal
decision-calibrated predictor to maximize the learner’s utility, but in a more challenging setting: (i)
we focus on a prior-free model, where the sender does not know D and the context space X is rich
enough so that learning the conditional distribution Dy, for arbitrary x is infeasible, and (ii) we
allow the outcome space to extend beyond the binary case.

Our work is also conceptually related to recent work on prior-free mechanisms. |Lin & Li| (2024)
studied Bayesian persuasion without knowing the prior. They showed that, under certain regularity
conditions, it is possible to learn an approximately optimal signaling scheme by first estimating the
prior from the data and then solving the persuasion problem with the estimated prior. Their approach
is infeasible in our setting since we do not assume D to be learnable with a finite sample. |(Camara
et al.| (2020); |Collina et al.| (2024)) studied a repeated Principal-Agent problem between a pair of
long-lived Principal and Agent in an adversarial setting where there is no prior distribution. To
address the challenges of the online setting, they impose additional rationality assumptions on the
agent’s behavior. In contrast, we make no such assumptions and only require that the agent (receiver
in our case) follows the (smoothed) best response. Due to space limitations, we include additional

related work in the

2 MODEL AND PRELIMINARIES

Predictors We consider the prediction task over the data domain X x ), where the data is drawn
from a distribution D. Here, X’ is a rich feature space, and ) = [—1, 1]d is the outcome space. We
define H = {h | h : X — Y} as a hypothesis class of deterministic predictors. For any h € H and
x € X, h(x) is interpreted as a prediction of the conditional mean E[Y | X = x]. We use h(z); and
y; to denote the j-coordinate of the predicted and true outcome vectors, respectively.

In this paper, we consider a more general setting where the goal is to learn a randomized predictor
f € A(H), representing a distribution over h € H. This aligns with the standard information design
literature, where a sender typically transmits a randomized signal to the receiver to achieve higher
utility. We assume no direct access to the full distribution D; instead, we seek to learn f from n i.i.d.
samples drawn from D, which we denote as dataset D.

Receivers’ Behavior Model We consider N receivers who make decisions based on the prediction
h(z). For each i € [N], receiver ¢ has a finite action set .4;. Without loss of generality, we assume
|A;| = m for all i € [N], since any smaller set can be augmented with dummy actions to reach size
m. Receiver ¢’s utility function is denoted as v;(a, y), where v;: A; x ¥ — [0, 1].

We assume that v; is linear and Lipschitz continuous in the outcome y.

Assumption 2.1 (Linearity and L-Lipschitzness). For any i € [N], and a € A;, the utility function
v;(a,y) is linear in y, and satisfies |v;(a,y1) — vi(a,y2)| < Lllyr — y2]|co-

Next, we define the receiver’s decision rule given the prediction h(z). A natural rule is to treat the
prediction as accurate and respond optimally to it.

Definition 2.1 (Strict Best Response). For any i € [N], receiver i, given utility function v;, strictly
best responds to the prediction h(x) by choosing:

L ifa; = argmaxgy c 4, vi(aj, h(z)),

0 otherwise.

bi(h(z), a;) = {
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Here, b;(h(z), a;) represents the probability that receiver i takes action a; given the prediction h(x).

Decision Calibration We aim to design f such that receivers experience no regret when best re-
sponding to it. This mirrors the setting in standard Bayesian persuasion, where, given a known
prior, the sender recommends an action through a signal, and the receiver’s best response—after
Bayesian updating—is to follow that recommendation. As we do not assume a known prior, we
leverage the notion of decision calibration (Noarov et al., 2023; Zhao et al., 2021), which has been
shown to provide similar no-regret guarantees for receivers. Specifically, it ensures that receivers
have no incentive to deviate from the recommended action, whether by swapping actions or by act-
ing as if their utility were that of another receiver. Moreover, it can be shown that any approximately
decision-calibrated predictor can be post-processed into an approximately fully calibrated predictor
that induces the same receiver’s behavior. We will show that fully calibrated predictors correspond
to signaling schemes in Bayesian persuasion with a known prior (Cemma 4.1)). A similar observa-
tion was made in (Jain & Perchet,2024)) for online calibrated predictions. But they made finite-state
Bayesian persuasion assumption, which we do not require. For these reasons, we adopt decision cal-
ibration as a desirable property that the predictor f should satisfy. We provide a detailed discussion

of the no-regret guarantees in[Appendix F| and their connection to Bayesian persuasion in[Section 4

We now formally define decision calibration as follows.
Definition 2.2 (Decision Calibration). A randomized predictor f € A(H) is said to be perfectly
decision calibrated if

DecCE(f) = Epe Eipoplys — h(x);) - bi(h(z), a)]| = 0.
ecCE(f) g%ﬁ?ﬁggﬂ et Bo ) ~onl(y; — h(@);) - bi(h(z),a)]| =0

Moreover; f is said to be e-decision calibrated if DecCE(f) < e.

A decision-calibrated predictor ensures that receivers have no incentive to deviate from best respond-
ing to the prediction; that is, receivers cannot achieve higher utility by swapping their chosen action
with another action. Similar guarantees have been established by Noarov et al.| (2023)); Roth & Shi
(2024), and we provide a variant tailored to our setting of randomized predictor in the distributional
setting. We formally define swap regret as follows:

Definition 2.3 (Swap Regret). We say that a predictor f achieves e-swap regret if, for any receiver
i € [N], mapping function ¢ : A — A,

Z vi(a,y) - bi(h(z),a)| +e.

a

EnsEp |3 vi((a),y) - bilh(a), a>] < EnsEp

a

Theorem 2.1 (No Swap Regret via Decision Calibration). If a predictor f is e-decision calibrated,
then it has at most 2L|Ale-swap regret.

We further show that decision calibration can guarantee other forms of regret, such as type regret,
which ensures that receivers have no incentive to pretend to be another receiver, as well as combi-
nations of swap and type regret. These results demonstrate that decision calibration is a strongly
compatible with receivers’ incentive. We provide detailed statements and proofs in

We consider randomized predictors in A(7) that has decision calibration error bounded by some
target level ~ and assume that such predictors are not vacuous.

Assumption 2.2 (Feasibility). There is a randomized predictor f € A(H) that DecCE(f) < ~.

Note that [Assumption 2.2]is mild since as long as # contains all deterministic constant predictors
(or a discretized cover thereof), it necessarily includes a decision-calibrated predictor, specifically
the constant predictor h(z) = E[Y], which is fully calibrated.

Sender’s Objective The sender does not have direct access to the data distribution D, but has
examples drawn from D. The sender’s utility depends on the outcome y and the joint action of all
receivers, given by v : A x Y — R where A := A; x --- x Ay. Without loss of generality, we
assume the sender’s utility is bounded by 1, i.e. u(a,y) € [0,1] forany a € A and y € ). Given
any prediction h(x), for any @ = (a1, -+ ,an) € A, the probability that receivers play joint action

ais b(h(z),a) = [T, bi(h(x), a;).
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The sender’s goal is to maximize their expected utility subject to a y-decision calibration constraint.
Formally, the sender’s optimization problem is

m?XEthE(Ly)ND Z u(a,y)b(h(z),a)| st. DecCE(f) <~. (2)
acA

We denote the optimal objective value of [Eq. (2)|by OPT(H, D, 7).

3 A MINIMAX APPROACH FOR EFFICIENT PERSUASIVE PREDICTION

In this section, we present an efficient algorithm PerDecCal for persuasive pre-
diction, which learns an approximately optimal solution to the constrained optimization problem
from data when || is finite. We argue that finite hypothesis classes are already powerful: in
finite-state Bayesian persuasion, a simple finite class suffices, as randomization over it can achieve
the same sender utility as the full space of continuous signaling schemes. A detailed discussion is

provided in

We begin by stating the theoretical guarantee achieved by PerDecCal.

Theorem 3.1. Suppose PerDecCal runs for T = O(log(Nmd)/e*) rounds and is given a dataset
D drawn ii.d. from D of size n > O(W) With probability at least 1 — 6, the output
predictor f that satisfies

1. DecCE(f) <~v+e.

2. Suppose the receivers play strict best response to f Then the receivers obtain swap regret
bounded by 2mL(~y + ¢€). The sender achieves e-optimal utility:

En~rEp [u(av y) - b(h(z), a)} > OPT(H,D,7) — .

shows that, with enough sample size, our proposed algorithm PerDecCal learns a
predictor f that achieves nearly optimal utility compared to the best in-class y-decision-calibrated
predictor, while ensuring that its decision calibration error exceeds «y by at most €, and this ensures
that the receivers have no regret best responding to the predictions. It establishes a bi-criteria op-
timization: instead of requiring the predictor to be exactly ~y-decision calibrated, we allow slight
violations, which increase the swap regret by at most 2m Le. Furthermore, we prove a lower bound
showing that it is statistically infeasible to learn a near-optimal predictor within the class of exactly

~-decision calibrated predictors. We defer the details to

PerDecCal follows a minimax-based approach. Specifically, we introduce Lagrangian variables
and reformulate the original problem as a minimax game. We then apply an oracle-efficient algo-
rithm to compute an approximate equilibrium of this game, which yields a near-optimal solution to
the original problem We now present the details and analysis of PerDecCal, with full

proofs provided in

Lagrangian and Minimax Game As a standard technique in optimization theory, the constrained
optimization problem can be equivalently written in its Lagrangian form, which can be interpreted
as a minimax game. Specifically, we introduce the Lagrangian as follows:

i L: )\ = _E ~ ]E 9 : b h )
frélir%uerﬂr{lia]ﬁnd p(f, A h~fED ;U(a y) - b(h(x),a)

N d
+ 30 3N MisasErEp[(h(x); — ;) - bi(h(x), a:)] - 7).

se{+,—} i=1 j=la;€A;

3)

By the folklore result in optimization theory (Boyd & Vandenberghe|(2004)), the minimax solution
of [Eq. (3)|coincides with the optimal solution of [Eq. (2)| After introducing the Lagrange multipliers,
can be viewed as a minimax game, where the minimization player is the predictor f, and the
maximization player is the Lagrangian multiplier \.
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Best Response vs. No Regret Dynamics Viewing the problem as a minimax game, we consider
solving it using Best Response vs. No Regret (BRNR) dynamics, where the min player f plays a
best response to the current A\, and the max player updates A according to a no-regret algorithm.
Freund & Schapire| (1996) showed that when both players achieve low regret, the average of their
plays converges to an approximate equilibrium. Since both A(#) and RiN md are convex spaces,
we can apply their result once we establish sublinear regret for both players.

For the min player f, this is straightforward because £(f, A) is linear in the randomized predictor
f. As a result, the best response to any fixed \ is achieved by a deterministic predictor, that is,
argmingea(py) £(f, A) = argminpey £(h, A). However, since the max player’s strategy space
Rf_N md j5 unbounded, designing a no-regret algorithm for the max player is non-trivial, as standard
regret-minimization algorithms typically require bounded decision spaces.

Bounded Minimax Games To design a no-regret algorithm for the max player \,we first re-
strict the Lagrangian variables to be bounded. Specifically, we consider A € A = {N|N €
R2VNmd |IX||; < C}. When the ¢; norm of X is bounded, it becomes straightforward to design
a no-regret algorithm for the domain A. We define the C-bounded minimax games as follows:

min, max Lp(f, A) := — EnsEp ;Mayy) “b(h(z), a)

N d
> DY AigasEED[(A(x); — y5) - bih(w), ai)] — 7).

se{+,—}i=1j=1la;€A;
“)

We first show that an approximate equilibrium (f, A) to the C-bounded minimax game is indeed an
approximately optimal solution to the original problem We prove that f achieves approx-
imately optimal utility with respect to OPT(#, D, ), while ensuring that its decision calibration
error satisfies the y-constraint up to an approximation error introduced by solving the C-bounded
minimax game.

Lemma 3.1. For an e-approximate equilibrium of the C-bounded minimax game (f,\). For
the original unbounded constraint optimization problem |Eq. (2)| we have that Ep ;Epu(a,y) -
b(h(x),a)] > OPT(H,D,~) — 2¢, and DecCE(f) < v+ “£<.

Therefore, we reduce the sender’s constrained optimization problem [Eq. (2)]to solving the equilib-
rium of the above bounded minimax game.

Solving Bounded Minimax Games We now move on to solve the C-bounded minimax game.
Note that the domain A can be viewed as a scaling of the probability simplex. A natural choice of
algorithm for this domain is a variant of the Hedge algorithm (Freund & Schapire, |1997), which is
originally designed for the simplex. For simplicity, we scale the Hedge algorithm by C' while still
referring to it as Hedge. For computing the best response of the minimization player, we assume
access to an empirical risk minimization (ERM) oracle that finds the best deterministic predictor
given the current A\. We formally define the ERM oracle as follows:

Definition 3.1 (ERM oracle). Let the loss function be

Ua(hyz,y) == ula,y) - b(h(z), a)

acA

N d
+ 3 3T Aigas((h(@); — y5) - bi(hl(@), a5) = ),

s€{+,—} i=1 j=1 a;€A;

given a dataset with data points D = {(x1,41), ..., (Tn, Yn)}, the ERM oracle finds the best predic-
tor that minimizes the empirical average loss: ERM(D, \) = arg minp ey % S Oa(h, @i, ys).

The ERM oracle is commonly assumed in the learning theory literature and can often be imple-
mented in practice using standard optimization methods. For example, when # is a class of neural
networks, the ERM oracle can be approximated by running heuristic methods such as stochastic
gradient descent (SGD) with a smoothed surrogate of the indicator b(h(z), a) and b;(h(z), a).
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We are now ready to present our algorithm PerDecCal in PerDecCal is efficient
the ERM oracle is called only once per iteration, and all other operations are computationally poly-
nomial in N, m, d. Therefore, overall PerDecCal is oracle-efficient, requiring O(log(Nmd)/e*)
calls to the ERM oracle.

Algorithm 1 PerDecCal (Persuasive Decision Calibration)

Input: A set of samples D, ERM oracle ERM(D, \), dual bound C' and tolerance .
1: Initialize A\; = %1.
2. fort=1,---,T do
3:  Learner best responds to A:
4: Use the ERM oracle to compute h; = ERM(D, A;).
5:  Auditor runs Hedge to obtain A\y41:
6: Avy1 = Hedge(cr:) where ¢4 (Asija;) = As,igia S(ED[(he ()5 — y5) - bi(he(2), ai)] = ).
7: end for
Output: f = Uniform(hy,--- , hr).

PerDecCal operates on the empirical dataset D instead of the true distribution D. Therefore, a
finite-sample analysis is needed to show that an approximate equilibrium found for £p(f, A) also
serves as an approximate equilibrium for Lp (f, A). We prove a uniform convergence result showing
that the payoff Lp(f, A) can be uniformly approximated by Lp(f, A).

] 3 In AHINdm
Lemma 3.2. We have |Lp(f,\) — Lp(f,A)] < \/ 5 JrC\/T“forallf € A(H), A e

A with probability 1 — 4.

Then we can show that, with high probability, an approximate equilibrium under £p(f, \) is also
an approximate equilibrium under L5 ( f, A), completing the analysis of [Theorem 3.1

4 MATCHING THE BAYESIAN BENCHMARK

In this section, we show that the sender utility achieved by our algorithm matches that of a fully
informed Bayesian sender who is restricted to send signals induced by the same class of decision-
calibrated predictors. Specifically, we compare against a restricted Bayesian persuasion benchmark
in which both the sender and the receiver have full knowledge of the distribution D, and the sender
is constrained to commit to signaling schemes induced by # (defined in[Definition 4.2), rather than
all possible signaling schemes. Since the classical Bayesian persuasion model inherently involves a
single receiver, we focus on the comparison within the single-receiver setting.

Bayesian Persuasion Benchmark The distribution D over X x ) which induces a distribution
wp over means of the outcome y conditional on the feature x: for any 6 € )
0)= Pr [Ely|=x]=290]

po(®) = Pr [Ely|s] =
Here we use the fact that ) is convex. The set of state is © C ) with prior up. The receiver’s action
set ABP equals to the action set A in the prediction setting with utility function vF : ABP x© — R.
The sender has utility function uB¥ : ABF x © — R. We have v (a,0) = E,s[v(a,y)] and
uB¥(a,0) = Eyp[u(a,y)]. Here we slightly abuse notation by writing y ~ 6 to indicate that y is
drawn from a distribution with mean 6. A signaling scheme 7 : © — A(S) that randomly maps
states to a set S of signals. Once the receiver observes a signal s € S, they will update their belief
from the prior y to a posterior 11 € A(®) and consequently obtain a posterior mean that is in ). In
other words, any signaling scheme will result in a distribution of posterior means @ € A(}).

We now establish the connection between decision calibration and the Bayesian persuasion bench-
mark introduced above. To do so, we use the notion of calibration as a bridge. Therefore, we begin
by introduction the notion of calibration and presenting its relationship to Bayesian persuasion.

Definition 4.1 (Calibration). A randomized predictor f € A(H) is said to be perfectly calibrated if
Voel,  CE(f) :=Epvszy~plly — h(z))h(z) =] =0.
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The following lemma states that every signaling scheme corresponds to a perfectly calibrated predic-
tor, in the sense that the distribution over posterior means induced by the signaling scheme coincides
with the distribution over predictions induced by a randomized calibrated predictor, and vice versa.

Lemma 4.1. Consider a randomized predictor f € A(Hary) where Hary, = {h : X — YV} is
the class of all possible deterministic predictors. There exists a distribution Qy € A(Y) such that
forany v € Y, Qf(v) = Pryoy (zy)~plh(x) = v]. A distribution Q € A(Y) corresponds to the
distribution over posterior means induced by some signaling scheme if and only if it is the prediction
distribution Q) ¢ of a perfectly calibrated predictor f.

Note that the receiver’s utility function v; in the prediction setting is linear in the outcome y and
the corresponding utility function vB" in the Bayesian persuasion setting is linear in the conditional
mean 6. By it follows immediately that for the receiver, best responding to the pre-
dictions of a perfectly calibrated predictor is equivalent to best responding to the posterior means
induced by the corresponding signaling scheme. Therefore, the calibrated predictor and the corre-
sponding signaling scheme lead to the same sender’s utility.

Now we present the connection between decision calibration and calibration. The next lemma says
that any decision-calibrated predictor can be converted to a calibrated predictor without decreasing
the sender’s expected utility. Zhao et al| (2021) made a similar observation, though their result
applies only to deterministic predictors, whereas we extend the analysis to randomized predictors.

Lemma 4.2. For any randomized predictor f is perfectly decision calibrated, we can construct a
randomized predictor [’ such that (i) f' is perfectly calibrated; (ii) the sender obtains the same
expected utility under f and f'.

We are now ready to define the set of signaling schemes induced by H that we consider in our
Bayesian persuasion benchmark.

Definition 4.2 (Signaling scheme class induced by H). Given any class of deterministic predictors
H,

1. We define Fpcar (M) as the class of randomized predictor over H that is perfectly decision
calibrated.

2. For any f € FpcaL(H), let [’ be the perfectly calibrated predictor constructed by
Define Foar,(H) as the class of all such predictors f'.

3. For any f'" in Fcar(H), let wp be the corresponding signaling scheme by
Define 113, be the class of all such signaling schemes . We say that 113, is the class of

signaling schemes induced by H.

Finally we are ready to present our main result in this section.

Theorem 4.1. Given at least O((ln(me‘*ﬂs)) samples, with probability 1 — §, PerDecCal

can output a predictor f such that the expected sender’s utility under f is no worse than

BayesOPT (up, Iy ) — € where we denote the optimal sender utility under our Bayesian persuasion
benchmark as BayesOPT (up, Ily).

says the sender utility achieved by our algorithm matches that of a fully informed
Bayesian sender who is restricted to send signals induced by the same class of predictors H. Note
that[Theorem 4.T| naturally extends to the multi-receiver setting. In this case, the predictor can still
match the Bayesian benchmark, where each receiver updates their posterior based on their own
recommended action as the signal. However, if the receivers instead take the recommended joint
action across all receivers as the signal, the decision calibration constraints need be modified to
ensure unbiasedness with respect to the joint indicator b(h(x), a) instead of individual b;(h(z), a).

5 PERSUASIVE PREDICTION UNDER INFINITE HYPOTHESIS CLASS

In this section, we turn to the more general case where |H| can potentially be infinite. In this
setting, strict best responses pose a challenge due to their discontinuity: even when two predictors
hi,ha € H are close—i.e., sup,cy ||h1(z) — ha(x)||,, is small—the sender’s utility under strict
best response can differ by a constant. We illustrate this in the following example.
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Example 5.1 (Discontinuity from best response). Consider a distribution D over X x ) such that
Y =[0,1] and for any x € X, Prly | x] = 0.5. There is a single receiver, i.e. N = 1, who has two
actions A = {a, da'} to choose from. The receiver has a utility function v : A x Y — [0, 1] such
that v(a,y) = y,v(a’,y) = 1 — y. In other words, the receiver’s best response is a when y < 0.5
and is a’ when y > 0.5. The sender has a utility function v : A x Y — [0, 1] that only depends
on the receiver’s action: u(a,y) = 1,u(a’,y) = 0. Now consider the following two predictors: for
any x € X, hi(z) = 0.5 — e and ha(x) = 0.5 + €. It is not hard to verify that both hy and hy are
e-decision calibrated predictor under distribution D. However, for any € € (0,0.5), the sender’s
expected utility is 1 under hy, but 0 under hs.

Because of the discontinuity of the best response, even if H has a bounded complexity mea-
sure—such as a covering number or Rademacher complexity—it can be difficult to estimate the
sender’s utility (which best depends on receivers’ best responses) uniformly over all h € H from
data. To overcome this challenge, we consider a smoothed version of the best response decision rule,
commonly known as the quantal response model in economics and decision theory. This model has
been extensively studied in the literature (McFadden et all |1976; McKelvey & Palfrey, [1995) as it
captures more realistic receiver behavior in the presence of noise, uncertainty, or bounded rational-
ity. Unlike strict best responses, it allows receivers to probabilistically favor better actions while still
occasionally choosing suboptimal ones, providing a smoother and more practical behavior model.

Definition 5.1 (Quantal Response). For any i € [N], the i-th receiver with utility function v; re-
sponds to a prediction h(x) according to the following n-quantal response:

envi(ai;h(z))

S ea € EHED

S

z(h(x)a ai) =

bi(h(x), a;) denotes the probability that receiver i selects action a; given the prediction h(z). Here,
1 > 0 is the inverse temperature parameter, where as 11 — +00, the receiver’s behavior approaches
the strict best response.

Analogously, we define a smoothed version of decision calibration when receivers follow quantal
response model.

Definition 5.2 (Smoothed Decision Calibration). A randomized predictor f € A(H) is said to be
perfectly smoothed decision calibrated if

SmDecCE(f) := max max max
i€[N] j€[d] a€A;

Moreover, f is said to be e-decision calibrated if SmDecCE(f) < e.

EnsBe)n | (95 — h(@);) - bi(h(2), )] | = 0.

It can be shown that receivers have no regret when following the quantal response to a smoothed

calibrated predictor; we refer the reader to[Appendix F|for a detailed discussion. Similar to[Section 3|
we design an oracle-effcient algorithm SmPerDecCal (Algorithm 2) for persuasive prediction

given quantal response and || can be infinite.

Theorem 5.1. Suppose SmPerDecCal runs for T = O(log(Nmd)/€*) rounds and is given a

52 m
dataset D drawn i.i.d of size n > O(In w/e‘l). With probability at least 1 — 6, it

outputs f that satisfies

1. SmDecCE(f) <~ +e.

2. Suppose the receivers play n-quantal response to f Then the receivers obtain swap regret
bounded by 2mL(y + €) + lanH The sender achieves e-optimal utility:

EprEp [u(a,y) -b(h(z), a)} > OPT(H,D,~) —e.

Theorem 5.1|shows that, with enough sample size, SmPerDecCal learns a predictor f that achieves
nearly optimal utility compared to the best in-class y-smoothed-decision-calibrated predictor, while
ensuring that its smoothed decision calibration error exceeds -y by at most e.
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A ETHICS STATEMENT

This paper develops a theoretical and algorithmic framework for persuasive prediction under deci-
sion calibration. Our contributions are methodological: we provide formal definitions, theorems,
and algorithms, without using human subjects, sensitive personal data, or deployed systems. As
such, we do not identify immediate ethical risks directly arising from this work.

Nevertheless, it is important to acknowledge that algorithms for persuasive prediction may have so-
cietal implications if applied in practice. In domains such as credit scoring, lending, or healthcare,
predictive persuasion could create incentives for strategic manipulation. These potential issues fall
outside the scope of our study, but we emphasize that our contribution is purely theoretical and algo-
rithmic, and real-world deployment of related methods must be approached with care and oversight.

B REPRODUCIBILITY STATEMENT

We have provided complete formal definitions, theorems, and proofs in the main text and appen-
dices, ensuring that all results can be independently verified. Our algorithms are fully specified in
pseudocode with stated assumptions and sample complexity guarantees. Since our contributions are
theoretical, no external datasets are required.

C USE OF LARGE LANGUAGE MODELS

We used large language models only as writing assistants to improve readability and polish the
presentation.

D ADDITIONAL RELATED WORK

Our work is related to a growing line of work calibration in decision-making settings. The semi-
nal work of [Foster & Vohra| (1999) showed that a decision maker who best responds to calibrated

12
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forecasts obtain diminishing internal regret. More recent studies extend this result by proposing re-
fined notions of calibration that are more efficient to achieve and offer fine-grained regret guarantees
(Zhao et al., 2021} [Kleinberg et al., 2023} |Hu & Wu, |2024; Roth & Shi, [2024; [Fishelson et al., 2025}
Luo et al.,|2025}; |Tang et al.|[2025). Building on (multi)calibration, |Gopalan et al.[(2021) introduced
the notion of omniprediction, which aims to construct a single predictor that guarantees no worse
loss than a family of predetermined benchmarks for all the downstream receivers in a class, followed
by |Gopalan et al.| (2022} 2024); Garg et al.|(2024)); Dwork et al.| (2024)); |(Okoroafor et al.|(2025); Lu
et al.| (2025). In contrast to these works, we not only aim to achieve a specific notion of calibra-
tion (decision calibration, in our case), but also seek to approximately maximize the sender’s utility
among all such calibrated predictors.

Our work shares the common goal of replacing prior knowledge with data, aligning with many
works in mechanism design, such as auction design (Balcan et al., 2008} |Cole & Roughgarden, 2014
Morgenstern & Roughgarden, 2015} Daskalakis & Syrgkanis, 2016} Syrgkanis, |2017; Dudik et al.,
2020; |[Fu & Lin, 2020), Stackelberg game (Balcan et al., 2015; |[Camara et al., [2020; |Collina et al.
2024), algorithm discrimination (Cummings et al.,[2020) and recommendation system (Immorlica
et al.l [2018)).

More broadly, a growing body of work in economics aims to relax the assumption of perfect prior
knowledge rather than replace it entirely, such as relaxing the prior to some kind of approximate
agreement on the distribution (Artemov et al., 2013; Ollar & Pental 2017) and robustness to prior
distribution (Dworczak & Pavanl 2022; Kosterina, 2022). In contrast to these works, we adopt a
data-driven approach to address the challenge of an unknown prior distribution. [Parakhonyak &
Sobolev| (2025) also studies persuasion without a prior. Unlike our setting, which assumes sample
access to the data distribution, they design a signaling scheme that minimizes the worst-case gap
relative to the Bayesian benchmark.

From a technical perspective, the problem of solving constrained optimization through No Regret
versus Best Response dynamics has been studied in the algorithmic fairness literature (Agarwal
et al.l [2019; 2018 [Kearns et al.l [2018;|Globus-Harris et al.|, 2023)).

E GLOBAL OPTIMALITY FOR FINITE-SIZE X

In this section, we consider the case that |X'| < oo, Y = {0, 1} and there is one receiver, i.e. N = 1.
We show that it is sufficient to consider predictions in an instance-dependent discretization set. Fix
any receiver’s utility v, we slightly abuse notation, let A = {ay,--- ,a,,} denote the receiver’s
action set. Let J; = {p € [0,1] : a; = argmaxE, . gc,(p)[v(a,y)]} for any i € [m]. If there are
ties, the receiver breaks ties in favor of the sender. Then we know that J; is an interval on [0,1]
for any ¢ € [m] and {J;}, is a partition of [0, 1]. Let Z be the set of thresholds of adjacent best
response intervals. We know |Z| < m — 1. Let® = {Pr[y = 1 | z] : Vo € X}. We know
O] < |X].

Definition E.1 (Instance-dependent discretization). For any positive € < min;e,, len(J;), define
discretized set S, of space [0,1] as

Se 2 ({0,6,2¢,---}N[0,1)UZ U O,

Definition E.2 (Discretized predictor set). Let H, = {h : X — S} be the set of all possible
predictors whose predictions are always in the instance-dependent discretization set Se.

Note that . is finite with size | S, |X. The following theorem shows that any randomized predictor
in A(Harr) can be converted to a randomized predictor in A(#H,) without changing the sender’s
utility and increase the decision calibration error up to e.

Theorem E.1. For any € > 0, for any randomized predictor f € A(HarL) that is y-decision
calibrated, we can construct a randomized predictor ' € A(H.) such that (1) the sender obtains
the same expected utility under f and ' (2) [ is (v + €)-decision calibrated.

Proof. Define the range of f as range(f) = Uy cqupp ; range(h). Consider the following rounding
function 7 : range(f) — Se:

r(v)=p velJ;, p=ar inf ! — ).
(v)=p i P gp,e(smi)lp |
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Forany h ~ f € A(Harw), we construct b’ € Hc as b’ : © — r(h(z)). Let f’ be the distribution
over such h'. By the definition of S, we have that (1) [v — 7(v)| < € (2) the receiver has the same
best response under v and 7(v). Therefore, the sender obtains the same expected utility under f and
f'. And we have

B Ba yymn[(y = h(@)) - b(R' (2), a)]| = [Bnrm g Bayy~nl(y — h(2)) - b(h(2), )|
< |Bhim B y~pl(y — h(2)) - b(h(), a)]|
+ |Enm g Bagy~nl(h () — B(2)) - b(h(z), a)]|
= |En~E (o y)~pl(y — h(2)) - b(h(x), a)]|
+ |Enn s B gy~ (B (2) = h(x)) - b(h(2), a)]|

<vy+e

This theorem implies that, at least in the special case considered in this section, to find the optimal
decision-calibrated predictor randomized over all deterministic predictors, it suffices to consider a
finite subset of deterministic predictors H..

F NO REGRET GUARANTEES OF DECISION CALIBRATION

F.1 NO REGRET GUARANTEES OF STRICT DECISION CALIBRATION

We first prove that approximate decision calibrated predictor gives the downstream agent no swap
regret best responding to it. Noarov et al.| (2023) proved it for deterministic predictor in the online
calibration setting. We provide our proof for randomized predictor in the batch settting here for
completeness.

Theorem 2.1 (No Swap Regret via Decision Calibration). If a predictor f is e-decision calibrated,
then it has at most 2L|A|e-swap regret.

Proof. We prove the result for any receiver i € [N].

Ep~fEp [Z vi(¢(a),y) - bi(h(z),a)| — En~sEp

S vila,y) - bilh(a). a>]

a

— EnesEp

=Ep~fEp lz vi(¢(a),y) - bi(h(z), a) > vild(a), h(x)) - bi(h(), a)]

+ Ep~rEp —EprEp

> vild(a) h(x)) - bi(h(x), a)

Z 'Ui(av h(.’t)) : bz(h(m)a a)]

S vila.y) - bilh(a), a)]

+EprEp —EperEp

> via,h(@)) - bi(h(z), a)

When f is e-decision-calibrated, we know that

> vilgla),y) - bi(h(z), a)

=Y EwvEn| Y vilé(a),y — h(@)) - bi(h(z), a)]

< ZLe = L|Ale.

Eth]E'D — EthED

> vi(d(a), h(x)) - bi(h(), a)]

Similarly we can prove that

EnEp | Y vila, h(@)) - bi(h(x), a)

a

— EnsEp | Y vi(a,y) - bi(h(z), a)

a

< L|Ale.
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Since b;(h(z), a) plays the best response given the prediction h(z), we know that

EnsEp| D vi(¢(a), h(z)) - bi(h(z), a)

a

—EnsEp [Z vila, h(x)) - bi(h(a), a>] <o.
Putting them together, we have
EprEp

—EprEp < 2L|Ale.

> vilgla),y) - bi(h(x), a)

Z Ui(av y) ' bz(h(x)’ Cl)

O

Definition F.1 (Type Regret). We say that a predictor f achieves e-type regret if, for any receiver
i,i’ € [N,¢p: A — A

Ep~tEp Z vi(a,y) - by (h(x), a)

a

+ €.

< EporEp lz vi(a,y) - bi(h(z),a)

a

Now we introduce a different notion of regret, named type regret. Type regret is first introduced by
Zhao et al.[(2021). Intuitively, it says that once the predictor gets decision calibrated with respect to
a class of utility functions of receivers, the receivers will have no regret best responding according
to another receiver’s utility function instead their own. [Zhao et al.| (2021) proved that decision
calibrated predictor achieves no type regret for the receivers. Here we state and prove the result for
randomized predictors.

Theorem F.1 (No Type Regret via Decision Calibration). If a predictor f is e-decision calibrated,
then it satisfies 2L| A|e-type regret.

Proof. We prove the result for any receiver ¢,i’ € [N].

En~sEp

S vi(ay) - b (h(a), a>] ~ EnsEp

S vila,y) - bilha), a)}

=EpsEp

Z vi(a,y) - by (h(x), a)] —En~rEp

a

> wila, h(x)) - bir (h(z), a)]

a

+EnesBop | Y vila, h(@)) - bi (h(x),a) | — EpnsEp

Z vi(a, h(x)) - b;(h(x), a)]

—+ EthIED Z vi(a, h(.ﬁ)) . bl(h(l‘), a) — EthED

S vila,y) - bi(h(a), a>]

a

When f is e-decision-calibrated, we know that

— EprEp

EnfEp | > vila,y) - bi(h(z), a) > wila, h(x)) - by (h(z), a)]

= Z Ep~rEp

< ZLe = L|Ale.

S vilay — h(a)) b (h(), a>]

a

Similarly we can prove that
]EthE’D [Z Ui(au h((E)) : bz’(h‘(‘r)7 CL)‘| - EthED lz Ui(av h(x)) . bl(h(‘r)7 (l)‘| < L‘A|6
a a
Since b;(h(z), a) plays the best response given the prediction h(z), we know that

Ep;Ep lz vi(a, h(x)) - by (h(x),a) | — EpefEp

> wia, h(x)) - bi(h(x), a)] <0.

a
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Putting them together, we have

EpsEp Z vi(a,y) - bi(h(z),a)| —EpusEp

S vi(ay) - bilh(z),a) | < 2L|Ale.
O

We also introduce a new notion of regret which we call swap-type-regret, which intuitively capture
the case where the receivers can first pretend that they were another receiver and then swap the
corresponding best-response action. We formally define it as follows:

Definition F.2 (Swap-Type Regret). We say that a predictor [ achieves e-swap-type regret if, for
any receiver i,i’ € [N), mapping function ¢ : A — A,

EnsEp | Y vi((a),y) - bis(h(w), a)

a

< EpvrEp

Z Ui("‘? y) ! bz(h(x)v CL)

a

+ €.

Theorem F.2 (No Swap-Type Regret via Decision Calibration). If a predictor f is e-decision cali-
brated, then it satisfies 2L| A|e-swap-type regret.

Proof. The proof is similar to the proofs of [Theorem 2.1|and [Theorem F.1| We can similarly prove
that

EnsBp | Y vi(d(a),y) - bir(h(z), a)

a

> vi(é(a), h(x)) - bir(h(x), a)

a

—EthED S L|14|€7

and

EnrEp | Y vila, h(@)) - bi(h(x), a)

a

— EnsEp | Y vila,y) - bi(h(z), a)

a

< L|Ale.

From the fact that b;(h(x), a) selects the best response action, we also have

Ep~fsEp

> vid(a), h(x)) - by ((z), a)] —EpsEp

Zvi(a, h(x)) ~bi(h(x),a)] <0.
Putting them together completes the proof. O

F.2 NO REGRET GUARANTEES OF SMOOTHED DECISION CALIBRATION

We provide analogous result for the behavior model where the receivers follow quantal response.
We first define the three notions of regret for quantal response.

Definition F.3 (Swap Regret under Quantal Response). We say that a predictor f achieves e-swap
regret for receivers that follow quantal response rule if, for any receiver i € [N|, mapping function

¢:A— A

EthED Zvi(aay) ' Bz(h(x)va)

a

+ €.

> vild(a),y) - bih(z), a)] < EnvEp

a

Definition F.4 (Type Regret under Quantal Response). We say that a predictor f achieves e-type
regret for receivers that follow quantal response rule if, for any receiveri,i’ € [N],¢ : A — A,

EthED + €.

Zw(%y) : Bi’(h(x)va)

< Ep~rEp lz vi(a,y) - bi(h(z), a)

Definition F.5 (Swap-Type under Quantal Response). We say that a predictor f achieves e-swap-
type regret for receivers that follow quantal response rule if, for any receiver i,i' € [N), mapping
function ¢ : A — A,

S w(@la).y) - b (ha), a)

a

En~fEp < Ep~sEp +e

S vila,y) - bi(h(@).a)

a
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We now present the analogous no regret guarantee for quantal response receivers. Swap regret for
quantal response receivers are discussed in Roth & Shi (2024)) in the online setting for deterministic
predictors. Here, we provide the result for randomized predictors in the batch setting. Type regret
for quantal response receivers are discussed in|Tang et al.| (2025)) for determinisitc predictors. Here,
we state and prove the result for randomized predictors.

Theorem F.3. If a predictor f is e-smoothed-decision calibrated, then it satisfies 2L|Ale +
swap/type/swap-type regret.

In|A[+1
n

To prove[Theorem FE.3| we first present a lemma proved by Roth & Shi|(2024), which shows that the
utility that a receiver gets when they play quantal response with respect to the true outcome will be
close that when they strictly best responds.

Lemma F.1 (Roth & Shi|(2024)). For any utility function v and y € Y, let a* = arg max, v(a, y),

we have
~ InfAl+1

> " v(a, y)bly, a) > v(a,y) ;.

a

Proof of[Theorem F.3] We only provide proof for swap-type regret as it is the strongest. The guar-
antees for swap regret and type regret are simple corollaries by considering ¢ to be the identical
mapping and i = 7.

Forany ¢ : A x A,i,i" € [N], we have

S vil6(a).y) - b (h(), a)

a

S vilay) - Bilh(a), a)]

a

S vi(6(a).y) - b (h(z),a)

a

SEthED - Ehwf]ED

> vil¢(a), h(@)) - by (), a)]

a

+EpsEp lz vi(d(a), h(x)) - by (h(x), a)] —EpsEp lz vi(a, h(x)) - ~i(h(a:), a)]

+EpsEp lz vi(a, h(x)) - bi(h(x), a)] —EprEp lz vi(a,y) - bi(h(z), a)]

From the definition of decision calibration, we know that

EpsEp [Z vi(¢(a),y) - bi/(h(w)ya)l — EnvsEp [Z vi(¢(a), h(z)) - Ei/(h(ff)va)] < L|Ale

and

> wia, h(x)) - bi(h(x), a)
By[Cemma F.I| we know that
Z vi(a, h(x)) - Bi(h(x), a)

EthED - Eh~f]ED

S vi(ay) - Bxh(x),a)] < L|AJe.

a

In|Al+1

Ep~rEp
d n

> EprEp lz vi(a, h(z)) - bi(h(x), a)]
Therefore, we have

Ep~Ep

> wil@a), (@) - b (, hz), a)} — EpsEp [Z via, h(@)) - bi(h(z), a)}

a

<Ep~sEp

> vild(a) h(x)) - by (, h(w), a)}

~ EpvsEp [Z vila, h(@)) - bi(, h(w), “)1 + h““n'“

17
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Since given h(z), b;(h(x), a) is the optimal decision rule for v;, we know that

Ep~sEp

S 0i(6(a), h(@)) - by (h(x), a)] ~ EnsEp

> wila, h(z)) -bi(h(x),a)] <0.

Putting them together, we have that

Ep~rEp lz vi(d(a), y) - bir (h(x), a)] — En~sEp lz vi(a,y) - bi(h(z), a)]

In|A|+1
§2L|A\e+ﬁ.
1

G STATISTICAL HARDNESS OF LEARNING AN OPTIMAL PREDICTOR WITH
THE EXACT CONSTRAINTS

In this section, we show that it is statistically hard to learn the optimal predictor in the class of
~y-decision calibrated predictor. Specially, we focus on 7 = 0. Then an algorithm is called (¢, 0)-
bicriteria optimal if, there exist a function ng : (0,1)®> — N such that given n > ng(e,d) i.i.d.
samples from an unknown distribution D, it outputs a (possibly randomized) predictor f such that,
with probability at least 1 — 9,

) DecCE(f) <e  and (i) EthE(I,y)ND[Zu(a,y) b(h(x),a)} > OPT(H,D,7)—c.
acA

Instance. Consider one receiver (N=1), outcomes y € {0, 1}, a feature space X = {0}, and a
hypothesis class
H:{hl,h2}7 hl(m)E’Uh hg(l’)Evg, 0<v <w <1

Suppose the receiver’s optimal action is a; if y > v; and ay otherwise. The sender receives utility 1
if the receiver chooses a1, and 0 otherwise. Let D_ be the distribution with x = 0 and y ~ Bern(v,),
and D, the same with y ~ Bern(vz). Define A := vy — vy = TVD(D_,D,) and assume
v1,v2 € [r,1 — 7] for some 7 € (0, 3). Choose ¢ so that 0 < & < A/2.

For any (possibly randomized) f € A(H),
DecCE(f) = | Bunr [Efy] — h(0)] | (5)

Theorem G.1. For the instance above, any (e, 0)-bicriteria algorithm with 0 < ¢ < A/2 and
0<d< % that succeeds using n samples must satisfy

27(1 —17) (1 —20)?
> A2 ~
Equivalently, the sample complexity is Q((1 — 25)?/TVD(D_, D1)?).

Proof. From equation [5} under D_ the feasibility condition DecCE(f) < e implies Ej~[h(0)] €
[v1 — €, v1 + €]; under Dy it implies Ej,~. r[h(0)] € [va — €, vo + €]. These intervals are disjoint
because 2¢ < A.

Under D_ (resp. Dy), the exactly calibrated point mass dp, (resp. Jp,) is optimal, i.e.,
OPT(H,D+,0) = 1. Moreover, any f € A(H) with DecCE(f) < ¢ is also e-optimal for the
objective.

Let an algorithm be (e, §)-bicriteria optimal. With probability at least 1 — ¢ it outputs an f that is
e-feasible (and therefore e-optimal). Consequently, the statistic 1 := Ep~r[h(0)] lies in disjoint
intervals depending on whether the data come from D_ or D. Thus declaring D iff u > (v1 +
vy)/2 identifies the generating distribution with error at most 4.

18
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For any rule that distinguishes D®" from D?" with error at most J one must have
TVD(DZ", DY™) > 1 — 26. Pinsker’s inequality and the KL chain rule give

2

For Bernoulli parameters p, q € [r,1 — 7], Dk1(Bern(p) || Bern(q)) < (p — ¢)?/(7(1 — 7)). Here
lp—q| = A, so

n
TVD(D®", D$™) < \/ Dxv(D- || Dy).

A2
TVD(D®", D& < |27
VD(D=", D) < 27(1—1)

Combining with TVD > 1 — 2§ yields \/nA2/(27(1 — 7)) > 1—25,ie,n>27(1—7)(1 -
26)% /A%

O

With zero slack (e = 0) the condition € < A/2 holds for any A > 0; since we can choose A =
vy — vy arbitrarily small while keeping vy, vy € [7,1 — 7], Theorem[G.1| gives n > 27(1 — 7)(1 —
26)2 /A% — coas A — 0, i.e., the sample complexity is unbounded.

H MISSING PROOFS IN SECTION 3]

We first state the lemma from |[Freund & Schapire|(1996) which proves that when both players have

low regret, their average play converge to an approximate equilibrium.

Lemma H.1 (Freund & Schapire| (1996))). Consider a two-player zero-sum game where the min

player chooses strategies from P and the max player chooses strategies from Q. Assume P and Q

are convex, and the utility function is bilinear in the players’ strategies. If the sequence of plays

satisfies sublinear regret for both players, i.e.,
T

gggZU(pt, qt) —u(p,q:) < vpT, and I&aSZU(pt, q) — u(pe, qt) < voT,
t=1 t=1

S

then letting p = % Z;‘FZI py and § = % Z;‘ll qt, we have that (p, q) is a (yp + Yo )-approximate
minimax equilibrium of the game.

Lemma 3.1. For an e-approximate equilibrium of the C-bounded minimax game (f,\). For
the original unbounded constraint optimization problem |Eq. (2)| we have that Ey sEplu(a,y) -

b(h(z),a)] > OPT(H,D,~) — 2¢, and DecCE(f) < v 4 15

Proof. Weuse f* to denote the optimal feasible solution to[Eq. (2)] since the constraints are satisfied,
we have that L(f*,\) < OPT(H, D, ~y). We prove the theorem by considering two cases.

First, if fis a feasible solution to the problem|Eq. (2), i.e. DecCE(f) <y < v+ 142¢ Since (f, )
is a e-approximate equilibrium, we have that

_]Eh~fED[Z u(a,y) - b(h(z),a)] = mgxﬁ(f, A)
acA
<L(f A +e

in L(f,A)+2
1808, FU A 2

< L(f*A) + 2¢

*Eth*]ED[Z u(a,y) - b(h(z),a)] + 2¢
acA

— _OPT(H, D, ).

IN

IN

Therefore, we have

EnfEp[ Y u(a,y) - b(h(z),a)] > OPT(H,D,7) — 2e.
acA
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Second, we consider the case where f is not a feasible solution to [Eq. (2)] Let (§7i,j,di) =
ArgMAX,  j 4, S S(EfEp[(h(z); —y;) - bi(h(x),a;)] —7) > 0, and let X" be the vector such that

the (3,1, , a;)-th coordinate )\ﬁ i = (C, and all else coordinates are 0, then we have that given

N e argmax, L(f, \). Therefore since (f, \) is a e-approximate equilibrium, we have

L(f,A) > m/\ax/l(f,)\) —€

= ~EnsEn[Y_ u(a,y) - b(h(x), a)] + C3(EEp[(h(@); — ;) - by(h(w), a;)] —7) — e

acA
Therefore,

~EisEpl Y ula,y) - b(h(z), @) + C3(EED[(h(x); — y;) - bi(h(x). ;)] =)

acA
<L(f ) +e
< L(f*N) + 2¢
< —E,_Ep[>_ u(a,y)-b(h(z),a)] + 2

acA

Since Va, y, u(a, y) € [0, 1], we have that

Cé(Ef]ED[(h(m)j —y;) - by(h(x),a;)] - w) <142

Thus,
1+ 2
Jnax s(E/Ep[(h(z); —y;) - bi(h(x), )] =) < —5—,
and this implies that DecCE(f) < v + 1£2¢. O

We need the following technical lemmas before proving[Cemma 3.2] For any function ¢ : X x ) —
R and any dataset D = {(z(",y())}"_,, we denote the empirical expectation of ¢ over D as

n

Eplu(ey)] 2 3 wla®,y).

i=1

Theorem H.1. Fix a finite-size class of deterministic predictors H. For any distribution D, let
D ~ D" be a dataset consisting of n samples (), y(l)) sampled i.i.d. from D. Then for any
6 € (0,1), with probability 1 — §, for every f € A(H), we have

In 2|H‘

< -9
- 2n

EDEth lz u(av y) : b(h(l’), a)

acA

_ EDEth lz u(a,y) - b(h(z), a)]

acA

Proof. For any (x,y) ~ D, observe that ) _ ,u(a,y) - b(h(z),a) < > b(h(z),a) = 1. By
Hoeffding’s inequality, we have for any h € H, for any ¢’ € (0, 1) with probability 1 — ¢’, we have

2
< lny

E —
D - 2n

" ula.y) - b(h(), a)

acA

~fip [Z u(a,y) - blh(a), a)}

acA

Then let 8’ = ¢/|#|, by union bound we have with probability 1 — ¢, for any h € H,

In 2\7'”

> ula,y) - b(h(z), a)] | <\

acA

—Ep

Ep [Z u(a,y) - b(h(x). a)

acA
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Finally we have with probability 1 — ¢, for any f € A(H),

EpEp-f _gu(a,y) -b(h(w),a)| — EpEny l;u(my) +b(h(z), a)} |
= |Epey _IED _;u(a,y) ~b(h(m),a)- — Epey [IFZD l;u(a,y) : b(h(x),a)H|
= |Epvy _IED Z;u(a,y) ~b(h(:c),a)_ —Ep [;u(my) : b(h(x),a)m
< Epy||[Ep -gu(my) ~b(h(x)7a)- ~Ep [;u(my) : b(h(x),a)] H

O

Theorem H.2. Fix a finite-size class of deterministic predictors H. For any distribution D, let
D ~ D" be a dataset consisting of n samples (), y(l)) sampled i.i.d. from D. Then for any
0 € (0,1), with probability 1 — ¢, for every f € A(H),i € [N],j € [d],a; € A; we have

EoEnvsl(y; = h(@);) - bi(h(2), a.)) = EpEins[(y; — hla);) - bilh(z),a)]

g Ip 2HINdm

<45
- n

Proof. For any (z,y) ~ D,i € [N],j € [d], observe that (y; — h(x);) - b;(h(x),a;) € [-2,2]. By
Hoeffding’s inequality, we have for any h € H, for any ¢’ € (0, 1) with probability 1 — ¢’, we have

2
8111?

n

[Bol(y; — h(x);) - bilh(e), ai)) = Bpl(y; — hlw);) - bi(h(x), a:)]| <

Then let 6’ = §/(|H|Ndm), by union bound we have with probability 1 — 4, for any h € H, i € [N]
and j € [d] and a; € A;

o 2AHINdm
[Eol(y; — b)) - bilh(x), ai)] — Epl(y; — h();) - m(ux),a»]]sW.

Finally we have with probability 1 — &, for any f € A(H),

B oy Bnms (55 = B2);) - i), 00)] — EpBiesl(; — b)) - bi(h(), a0)
= [Enes [Eyp~nl(ys = hl@);) - bilh(@), a)]] = Enny [Enl(y; - h(@);) - bilh(@), 0]
\Eh~f[E<w>~D[<- h@);) - bilh(@), as)) — Bpl(y; — h(2);) - bilh(w),a0)]]|

< B [[ Byl — h@);) - bilh(@), ai)] = Bpl(y; — h(2);) - bilh(e), )

8 In AHINdm 8 In 2HINdm
< Epy :

Now we are ready to prove
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H\Ndm
Lemma 3.2. We have |Lp(f,\) — Lp(f,N)] < ln +C ——F—forall f € A(H),\ €
A with probability 1 — 4.

Proof. This is straightforward from |Theorem H.1{and|Theorem H.2| we split the budget to §/2,
‘CD(fa )‘) - ‘CD(fv A)
= —EnsEp[ ) u(a,y) - b(h(z),a)] + —EnwsEp[ >  u(a,y) - b(h(z),a)]

acA acA

N d
3 ST DT AiasBEp[(h(@); — ;) - bilh(x), a:)] — )

se{+,—} i=1 j=1 a;€A;

Z ZZ Z )\szya S EfED[(h( ) _yj) bl(h(x)Val)}_’Y)

se{+,—}i=1 j=1la;€A;

Therefore,

£0(£.\) = Lo(f, N)
N d
<|EnesEn(Y ula,y) - b(h(z), )] — EnesEp[ Y ula,y)-blh(a),a)] + S 33

acA acA se{+,—}i=1j=1a;€4;
s|EfEp[(h(2); — y;) - bi(h(x), a:)] — EfEp[(h(x); —y;) - bi(h(z), ai)]]

1y 47 8 I AHINdm
<\/n RN OTY Rty S
2n n

Finally we are ready to prove
Theorem 3.1. Suppose PerDecCal runs for T = O(log(Nmd)/e*) rounds and is given a dataset

D drawn ii.d. from D of size n > O(W). With probability at least 1 — 6, the output
predictor f that satisfies

As,ij,aq

1. DecCE(f) <~ +e.

2. Suppose the receivers play strict best response to f Then the receivers obtain swap regret
bounded by 2mL(~y + ¢€). The sender achieves e-optimal utility:

En~fEp(u(a,y) - b(h(z),a)] = OPT(H,D,7) —e.
Proof. The regret bound of Hedge algorithm is O(Cy/T log Nmd), and the best response of f give

non-positive regret. From and T = O(log(Nmd/§)/€*), we have that (f, \) is an £ /4-

approximate equilibrium under £ (f, \). From|[Lemma 3.2} we know that with probability 1 — ¢,

VieA(H), A €A,
\4H| 4\H|Ndm
|£'D(f7 ) ['D fv

Therefore, let f' = argmingea ) Lp(f, A)
Lo(f. ) = Lo, X) < Lo(F.3) = Lo(f: ) + Lo(FX) = Lo(f' ) + Lo(F'.3) = Lo(f', )

|4H\ §In 4dNam 4|7—L|Ndm
<e€/2+42

Similarly, we can prove that

. In 1274 8 In AFNdm
rilgxcp(fx) Lo(f, ) <e/d+2 2; +2C Té
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2NN . lnM 8§ ln AHINdm . crep
Therefore, (f,\) isane/4+2 -— 4 2('"\/ ——-*—-approximate equilibrium for the payoff

Lp(f, A) under the true dlstrlbutlon D. When n > O(M), we have (f,\) is a €/2-
approximate equilibrium under the true distribution D. Then, by [Cemma 3.1] and the choice of C,

we have
1+e¢ 1+e¢

C v 2/e

DecCE(f) < v+

IN

SVt =7"te

2
2/e
En~¢Eplu(a,y) - b(h(z),a)] > OPT(H,D,v) —e.

Finally by [Theorem 2.1| the receivers who play n-quantal response obtain the stated swap regret
bound. O

and

I MISSING PROOFS IN SECTION[4]

Lemma 4.1. Consider a randomized predictor f € A(HarL) where Hary, = {h : X — YV} is
the class of all possible deterministic predictors. There exists a distribution Q; € A(Y) such that
forany v € Y, Qf(v) = Pryoy (zy)~p[h(x) = v]. A distribution Q € A(Y) corresponds to the
distribution over posterior means induced by some signaling scheme if and only if it is the prediction
distribution Q) ¢ of a perfectly calibrated predictor f.

Proof. Fix any signaling scheme 7 : J — A(S). Any context ' € X corresponds to a state
.- = E[y | '] and hence corresponds to a distribution of signals. Any signal s € S corresponds to
a posterior mean E[f, | s]. We define the mapping g : X — A(Y) such that

Prig(z) = E[0. | s]] = 7(s | 0z).
We have that for any s € S

Ely | g(z) = E[0. | s]] = y Prly | g(z) = E[0, | s]ldy

v (/ Prly |z S]dx>dy
</yPr |a:sdy>dm
E

ly | z, sldx

/9 Pr[z | s]dx

—E ac’|5]

Therefore, we can convert g to a randomized predictor f € A(H a1 ) that is perfectly calibrated.

I
\\\\

Now consider any randomized predictor f that is calibrated, i.e. we have that for any v € Y
Ep~ tE(gyy~ply — h(z) | h(z) = v] = 0.

Now consider a signaling scheme such that the signal set is ) and given any state § = Ey | ],
it sends signal v € Y with probability Prj..s[h(z) = v | §]. We have that for any signal v, the
posterior mean is

|
=
S
=
B

|
&

O

Lemma 4.2. For any randomized predictor f is perfectly decision calibrated, we can construct a
randomized predictor f' such that (i) f' is perfectly calibrated; (ii) the sender obtains the same
expected utility under f and f'.
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Proof. Without loss of generality, we assume that for any a, event {b(h(z),a) = 1} happens with
non-zero probability, otherwise we could remove that action. Since f is perfectly decision calibrated,
we have

ma max EnnfE(e,y)~p[(yj — M(z);) - b(h(7),a)] = 0.

Since Pr{b(h(x),a) = 1} > 0, equivalently, we have
EthE(:r,y)N'D[h(x) - y|b(h(l‘), a) = 1] =0.

For any a € A, let f, := EpsE, ,)~p[h(x)|b(h(x),a) = 1] Consider a post-processing function
p(h(z)) = > ,ca b(M(x),a)f;. Now we are ready to construct f’, we let f = p(f). Note that
f' only output at most m values, we only need to check the level sets of each f.. Also, the set
{y|b(y, a) = 1} is convex, therefore b(f.,a) = 1.

=En Bz ~nl(y; — [b(R(2),a) fo];) - b(h(x), a)]
=Ep~tE(zy)~p[(y; - b(M(2),a)] — EnnfE(z ) ~pl(h(z); - b(h(z), a)]
=0.

(

=Ep~sE(zy)~D [ Yj — [ b(h(x)7a)f[l,] -b(h(z),a)
(
(

Theorem 4.1. Given at least O(w)

can output a predictor f such that the expected sender’s utility under f is no worse than
BayesOPT (up, I1y) — € where we denote the optimal sender utility under our Bayesian persuasion
benchmark as BayesOPT(up, ITy).

samples, with probability 1 — §, PerDecCal

Proof. By [Theorem 3.1| we know that given any tolerance v > 0 and n > O w , let
y g y Y -

C = 2, when PerDecCal runs for T = O(In(Nmd)/€*) rounds, with probability at least 1 — 4,
it outputs f that satisfies

En~fEplu(a,y) - b(h(z),a)] > OPT(H,D,v) — ¢
> OPT(H,D,0) —e.

Note that OPT(#, D, 0) is the optimal sender utility achieved by the randomized predictors over
H that are perfectly decision calibrated, i.e. Fpcar(H). By |[Definition 4.2 and [Lemma 4.2]
OPT(#H, D, 0) is equal to the optimal sender utility achieved by the predictors in Foar, (H).

Then by [Definition 4.2fand [Lemma 4.1}, OPT(#, D, 0) is equal to the optimal sender utility achieved
by the signaling schemes in I3, i.e. BayesOPT (up, ).

Putting all these together, we know that the sender’s expected utility under f is greater than
BayesOPT (up,IIy) — €.

O
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J ALGORITHM AND MISSING PROOFS IN SECTION [3]

J.1 THE ALGORITHM FOR INFINITE HYPOTHESIS CLASS

Lagrangian and Minimax Game Similarly, we can introduce the Lagrangian and restrict the
Lagrangian variables to be bounded as follows:

frgir%{ Iilé%/)\(ﬁp(f, A) i=— EthED[aze;u(a»y) -b(h(x),a)]

N d
Y Y Y Ansas(BrEDl(h(@); — v) - Bilh(@),a0)] 7))

se{+,—}i=1 j=1la;€A;
(6)

Now we present our oracle efficient algorithm SmPerDecCal.

Algorithm 2 SmPerDecCal
Input: A set of samples D, ERM oracle ERM(D, \), dual bound C' and tolerance .
1: Initialize \; = 5;5—1.
2: fort=1,---,7T do
3:  Learner best responds to A;:
Use the ERM oracle to compute h; = ERM(D, A).

4

5:  Auditor runs Hedge to obtain A;11:
6

7

: At+1 = Hedge(ci1.¢) where ¢:(As i j a;) = Asyijiai S(Ep[(he(z) — y) - B(ht(x), a)l — ).
: end for .
Output: Output f = Uniform(hy,- -, hr).

J.2  MISSING PROOFS

We need the following technical lemmas before proving

Lemma J.1 (Lipschitzness of single smoothed best response). For any i € [N],a; € A;, we have
that the function b; (-, a;) is 2nL-Lipschitz in the Lo, norm.

Proof. For any z € [—1,1]¢, for simplicity, we drop the subscript i. Let g,(2) =
exp(nv(z,a)),G(z) £ 3, exp(nv(z,a’)). We have
Viega(2)  9a(2)V.G(2)

A E T
_19a(2) g nga ga o(zra
=G Ve Z V )

=nb(z,a)V,v(z,a) — szasza)

Therefore for any z € [—1,1]%, we have

|Vt )|, < bz <|vzv<z,a>||1 + Zi)(z,a’)vzv(z,a'm)

< nb(z,a)(L + L) < 2nL.
By mean-value theorem we have that

b(z,a) — b(#, a)‘ = /01 V.b(z' +t(z—2"),a) (2 — z’)dt’
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< sup ||V.B(E 4tz - ), a)|| 12— 2l
te[0,1] 1

<2nL|z - z'HOO.
O

Lemma J.2 (Lipschitzness of joint smoothed best response). For any a € A, the joint smoothed
best response b(-, a) satisfies that

Z ’5(2,0,) —b(z';a)| <2ymNL||z — 2| .
acA

Proof. For any predictions z, 2’ € [—1,1]% and joint action @ = (a1, ,ay), denote b;(z,a;) as
(% (al) and bi (Z/, a,») as v; (al)

Z |b(z,a) — b(z', a)|

acA

H ul(al)— H UZ‘(CLZ‘)
€[N 1€[N]

N N
H U'L(az) — U1 (al) H u,(a,) + vy (al) Huz(az) — H Uz'(ai)
€[N i=2 i=2 ;

N N N
(ur(ar) = vi(ar)) [ T wilai) + vi(ar) (H ui(a;) — Hw(w)) |
=2

=2 =2
N
(ur(ar) — vi(ar)) [ Jwi(as) +vi(ar)(ua(az) — va(az)) [ [ wila:)
=2 1=3

N

N
+v1(a1)va(az) (H ui(a;) — H%‘(%’)) ‘
i=3

=3

N i—1

N
= Z Zij(aj)(ui(ai) —vi(a;)) H uj(a;)

acA |i=1 j=1 j=i+1

N i—1 N

Conte 1 Y|S0 [T wten) TT wile)

acA |i=1j=1 =i+l
N i—1 N

=Lz =20 D> [T vila) [ wiay)

acAi=1j=1 j=i+1

—onrlls— 1S S [ wsa) T i)

i=1 a€A j=1 j=i+1

N i—1 N
=2mLlz = >0 3 D [Twitan) [T wlay)
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where (a) holds because of and (b) holds because H;;ll vj(aj) H;V:l 41 uj(a;) can be
viewed as the probability density function of a_; and then }_, H;;ll vj(aj) H;V:Z 1 uj(ay) =
1. O

Lemma J.3. Fix a class of deterministic predictors H. For any distribution D, let D ~ D™ be a
dataset consisting of n samples (zV),y()) sampled i.i.d. from D. Then for any § € (0,1), with
1 =0, forevery f € A(H), we have

EpEjs | Y u(@y) - blh(w), a)] ~ EpEns [Z u(a,y)  b(h(z), aﬂ |
acA acA
In 2N (H,doo ,€)
<'inf | e9gmNLe + | ——°>——
e>0 2n

Proof. Define Zj, = [Ep[),c 4 ula,y) - b(h(z),a)] —Ep[d_,c 4 ula,y) - b(h(z),a)]|. For any
h1, he € H, we have

|Zh1 - Zh2| =

Ep [Z u(a,y) - b(ha(x), @) = bha (), a))]

acA

~Ep lz u(a,y) - (b(hi(x), @) — b(ha(z), a))} |

acA

21z |3 ula.n) - (b (@), @) ~ b(ha(e), a))] ‘
acA
+|Ep| Y ula,y) - (b(h(x),a) - b(ha(), a))] ’
acA
(%) Ep Z ‘(B(hl(w), a) — b(ha(x), a))”
+Ep Z ‘(B(hl(l'), a)— B(h2(x)a a))”

© 29pmN L(Ep|[|h1 (x) = ha(2)| ] + Epl[llhn () — ha(2)]| )
(%) dnmNL SEE |h1(z) — ha()]]

where (a) holds because of Triangle Inequality, (b) holds because of u(a,y) < 1, (¢) holds because
of and (d) holds by definition.

By Hoeffding’s inequality, fixing any h € H, we have with probability 1 — 6,

2
'l
2n

1
|Zn| < -

Then as a result of the standard covering number argument we conclude with probability 1 — & for
any h € H,

n 2N (H,do ,€)
|Zn| < 4nmNLe + | ——%——
2n
where doo (h1, he) £ sup, ey [|h1(x) — ha()]| . O
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Lemma J.4. Fix a class of deterministic predictors H. For any distribution D, let D ~ D" be a
dataset consisting of n samples (xV),y")) sampled i.i.d. from D. Then for any § € (0,1), with
probability 1 — 6, for every f € A(H),i € [N],j € [d],a; € A; we have

[EoBans () = b)) - bi(h(@),a:)| = EoBany [(; = hix),) - bi(h(2), a))||

In 2N (H,doo ,€) Ndm
< inf | 8nLe + 0
e>0 n

Proof. Define Z;, = Ep|(y; — h(x);) - bi(h(x),a:)] — Ep[(y; — h(x);) - bi(h(x),a;)]. For any
h1, hs € H, we have

|Zh, — Zn,| = |Ep {(Z/j — h(x);) - (bi(h1(2), a5) — Ez‘(h2($)7ai))}
~Ep|(y; — hla),) - (bi(hs (2), ) bz<h2(x>,az>>]‘
(a) - -
< [Bo[(y; — h(@);) - (il (@), a5) = Bilha(@), )] |

< L (IEp [l (@) ~ ha(@) )1 + Bl (z) — heo@). ]|

(d)
< 8nLsup [|hi(z) = ha(2)]|

reX

where (a) holds because of Triangle Inequality, (b) holds because of y, h(z) € [~1,1]¢, (c) holds

because of and (d) holds by definition.

By Hoeffding’s inequality, fixing and i € H, we have with probability 1 — 6,

81n 2
\Zn] < ] 2.,
n

Then as a result of the standard covering number argument we conclude with probability 1 — ¢’ for
any h € H,
I 2V (Hodos €)

|Zn] < 8nLe + || ————
n

where doo (h1, ho) £ sup,cy [|h1(x) — hao()]| .

Then let 6’ = 6/(Ndm), by union bound we have with probability 1 — 4, for any h € H, i € [N]
and j € [d] and a; € A;,

2N (H,doo ,€) Ndm
R S

Ep (g = hl@);) - bilh(x),a)|=Ep |(y; = h(@);) - bilh(@), 0] < 8nLe+\/ .
O
Lemma J.5. With probability 1 — 6, Vf € A(H),\ € A,

2(1,0) = £o(f.0)|

In AN (H,d o ,€) S1n AN (H,do ,€) Ndm
<inf [ 4n(mN +2C)Le +\| ——2>— +C J
>0 2n n
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Proof. This is straightforward from [Lemma J.3|and [Lemma J.4] First we have
ED(fv )‘) - Z’D(f, )‘)
= EthED[Z u(a7y) : E(h(.’t), a)} + _EthED[Z ’LL((Ly) : B(h(l’), a)]

acA acA

N d
D DI )‘SxiJ:aiS(EfED[(h(x)j_yj)'?’i(h(x)aaiﬂ —v)

se{+,—} i=1 j=1a;€A;

N d
S O3S M (EEpl(h(@); — ;) - bilh(x), a)] = 7)

se{+,—}i=l j=la;€A;

Therefore, by union bound with probability 1 — 4,
20(1,0) = £o(f.0)]

<|En~sEp[)  u(a.y) - b(h(z),a)] = EnsEp[)  u(a,y) - b(h(z), a)]

acA acA

As,igia:SIEfEp[(h(2); — y;) - bi(h(x), a;)] — EfEp[(h(z); — y;) - bi(h(z), a;)]|
In AN (H,d s ,€) S1n AN (H,do ,€) Ndm
<inf [ 4n(mN +2C)Le +\| ——2>— +C g
>0 2n n

Now we are ready to prove|{Theorem 5.

Theorem 5.1. Suppose SmPerDecCal runs for T = O(log(Nmd)/e*) rounds and is given a

.. . N(H,doo, Nd
dataset D drawn i.i.d of size n > O(In M

outputs f that satisfies

/€*). With probability at least 1 — 6, it

1. SmDecCE(f) < v + .

2. Suppose the receivers play n-quantal response to f Then the receivers obtain swap regret
bounded by 2mL(v + €) + h"%ﬂ The sender achieves e-optimal utility:

EpsEp {u(a,y) b(h(z), a)} > OPT(H,D,) —e.

Proof. The regret bound of the Hedge algorithm is O(C+\/T log Nmd), and the ERM oracle
gives non-positive regret. From and T = O(log(Nmd)/e*), we have that (f,\)
is an e/4-approximate equilibrium under £p(f, ). From [Lemma J.5, we know that when n >

a(e,8,m,my d, N, L) 2 O(ln MO8 30NGM ) ay i probability 1 — 6, VF € A(K), A € A,
[2o(£.0) = £(£.0)] <
Therefore, let f* = argmingea () Lo (f, A)

Lp(f.N) = Lo(f,N) <£D<

Similarly, we can prove that
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Therefore, (f, ) is an €/2-approximate equilibrium for the payoff L1 (f, \) under the true distribu-
tion D. Then, similar to[Lemma 3.1, we have

1+e¢ 1+e€ 2
< < — =
G ST+ g STtg=te

DecCE(f) < v+ 2

and ~
Ep~rEplu(a,y) - b(h(z),a)] > OPT(H,D,v) —e.

Finally by the receivers who play 7-quantal response obtain the stated swap regret
bound. [
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