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ABSTRACT

Bayesian persuasion, a central model in information design, studies how a sender,
who privately observes a state drawn from a prior distribution, strategically sends
a signal to influence a receiver’s action. A key assumption is that both sender
and receiver share the precise knowledge of the prior. Although this prior can be
estimated from past data, such assumptions break down in high-dimensional or
infinite state spaces, where learning an accurate prior may require a prohibitive
amount of data. In this paper, we study a learning-based variant of persuasion,
which we term persuasive prediction. This setting mirrors Bayesian persuasion
with large state spaces, but crucially does not assume a common prior: the sender
observes covariates X , learns to predict a payoff-relevant outcome Y from past
data, and releases a prediction to influence a population of receivers. To model ra-
tional receiver behavior without a common prior, we adopt a learnable proxy: de-
cision calibration, which requires the prediction to be unbiased conditioned on the
receiver’s best response to the prediction. This condition guarantees that myopi-
cally responding to the prediction yields no swap regret. Assuming the receivers
best respond to decision-calibrated predictors, we design a provably efficient al-
gorithm that learns a decision-calibrated predictor within a randomized predictor
class that optimizes the sender’s utility. In the commonly studied single-receiver
case, our method matches the utility of a Bayesian sender who has full knowledge
of the underlying prior distribution. Finally, we extend our algorithmic result to a
setting where receivers respond stochastically to predictions and the sender may
randomize over an infinite predictor class.

1 INTRODUCTION

The strategic disclosure of information to influence downstream decisions—commonly studied un-
der the information design literature (see e.g., Bergemann et al. (2023))—has become a central topic
in economic theory. A foundational model in this area is Bayesian persuasion, introduced by Ka-
menica & Gentzkow (2011), which formalizes how a sender, who privately observes an underlying
state unknown to the receiver, can send a signal to shape the receiver’s belief and ultimately in-
fluence their chosen action. Crucially, the sender is endowed with the power of commitment—the
ability to credibly commit to a signaling scheme in advance. Based on the committed signaling
scheme, the receiver updates their beliefs upon receiving the signal and selects an action accord-
ingly. Both receivers have utility functions that depend on the state and the receiver’s action, but
these utilities are typically misaligned, so that the sender needs to strategically design their scheme.

A key assumption underpinning Bayesian persuasion—and much of information design—is the ex-
istence of a common prior: a probability distribution over the state space that both the sender and
receiver have precise knowledge about. The most obvious source for such a probability distribution
is past data. However, in many real-world environments, the state space may be high-dimensional or
even infinite, which makes it challenging to estimate an accurate prior distribution from finite data.
A natural example is the following setting of prediction for decision making.

Persuasive Prediction Problem. The data (x, y) ∈ X × Y are drawn from a joint distribution D.
The sender observes a realization x of X , and seeks to predict the unobserved outcome y. Both the
sender’s and the receiver’s utilities depend on the receiver’s action and the unknown outcome Y , but
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not directly onX . Upon observing x, the sender provides a prediction f(x), which acts as a signal to
inform the receiver’s decision. In the language of Bayesian persuasion, the sender’s observed state
corresponds to the posterior distribution P[Y | X = x], and the prior is the marginal distribution
over such posterior distributions, which is effectively D. However, when X is high-dimensional or
infinite, learning the prior D from finite past data can be infeasible.

This persuasive prediction framework captures a wide range of real-world scenarios where the
sender observes high-dimensional covariates describing the state of the world and aims to shape in-
dividual decisions toward a socially desirable outcome. For example, a small community bank may
partner with a fintech platform that outputs predicted default probabilities based on high-dimensional
financial and behavioral data. However, the incentives of the two parties are not fully aligned: the
fintech platform benefits from increasing loan origination volume and thus may have incentives to
produce predictions that make approvals more likely, whereas the bank remains cautious and pri-
marily uses these predictions to safeguard against excessive default risk.

When data are insufficient to recover the full prior, persuasive prediction presents two central chal-
lenges: How should receiver behavior be modeled in the absence of a common prior? And can the
sender, using only finite data, achieve utility comparable to that of a fully informed Bayesian sender
with exact knowledge of the distribution D?

1.1 OUR RESULTS AND TECHNIQUES

In persuasive prediction, a sender learns a predictor f from past data such that upon observing
X = x, they will send the prediction f(x) to a population of receivers, who will then select their
actions. The sender’s goal is to optimize their utility that depends jointly on the unknown outcome Y
and the joint action chosen by the receivers. Our results establish a connection between (Bayesian)
persuasion and decision calibration (Noarov et al., 2023; Zhao et al., 2021), which allows a learning-
based approach for modeling incentives without requiring full knowledge of the prior.

Behavioral Modeling via Decision Calibration. Informally, a (possibly randomized) predictor
f : X → Y is decision-calibrated if, for every receiver with utility function vi and every action ai,

Ef,(X,Y )∼D

[
Y − f(X) | argmax

a
vi(f(X), a) = ai

]
= 0. (1)

Intuitively, decision calibration captures a natural notion of credibility: conditioned on any event
defined by the receiver’s best response, the predictor f(X) must be an unbiased estimate of the
true outcome Y . A predictor is approximately decision-calibrated if condition equation 1 holds up
to a small additive error. We show that myopically best responding to an approximately decision-
calibrated, receivers obtain low swap regret (Lemma 2.1). This motivates a clean behavioral as-
sumption that receivers best respond to approximately decision calibrated predictions.

Efficient Optimal Persuasive Prediction. Suppose the sender is allowed to use a stochastic pre-
dictor f ∈ ∆(H), that is, a distribution over deterministic predictors in some finite class H. Our first
main result is a statistically efficient algorithm that learns a predictor f that optimizes the sender’s
utility within the class of decision-calibrated predictors in ∆(H). The core technical idea is to
formulate the learning problem as a zero-sum game between a min player, who updates the pre-
dictor, and an max player, who identifies the most violated calibration constraint. Simulating no-
regret dynamics between the two players yields a minimax equilibrium, which recovers the optimal
decision-calibrated predictor. The number of required samples scales polynomially in the number
of receiver actions and the dimension of Y , and is independent of the size |X |. Our algorithm is
also oracle-efficient in the sense that it runs in polynomial time when given access to an ERM oracle
over H.

Matching the Bayesian Benchmark. In the special case of a single receiver, we show that the
sender utility achieved by our algorithm matches that of a fully informed Bayesian sender who is
restricted to sending signals induced by the same class of decision-calibrated predictors, even though
our sender only has access to a finite dataset that is far from sufficient to approximate D.

Extension to Quantal Responses. Finally, we extend our results to settings where receivers per-
form quantal responses-—that is, their action choices follow a softmax distribution rather than deter-
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ministic best responses. This extension models scenarios where receiver behavior is stochastic and
not perfectly rational (McKelvey & Palfrey, 1995). Under this setting, we also provide an efficient
algorithm for learning the approximately optimal decision-calibrated predictor for sender utility, and
can also handle infinite hypothesis classes H, provided it has bounded covering numbers.

1.2 RELATED WORK

The work most closely related to ours is Feng & Tang (2025), which studied the problem of selecting
an optimal calibrated predictor to maximize the learner’s utility. Part of their result was based on
Jain & Perchet (2024), who established the connection between online calibration and Bayesian
persuasion. Notably, Feng & Tang (2025) assumed a finite context space X and that the learner
knows the distribution D over X × Y . We also consider a selection problem: choosing an optimal
decision-calibrated predictor to maximize the learner’s utility, but in a more challenging setting: (i)
we focus on a prior-free model, where the sender does not know D and the context space X is rich
enough so that learning the conditional distribution DY|x for arbitrary x is infeasible, and (ii) we
allow the outcome space to extend beyond the binary case.

Our work is also conceptually related to recent work on prior-free mechanisms. Lin & Li (2024)
studied Bayesian persuasion without knowing the prior. They showed that, under certain regularity
conditions, it is possible to learn an approximately optimal signaling scheme by first estimating the
prior from the data and then solving the persuasion problem with the estimated prior. Their approach
is infeasible in our setting since we do not assume D to be learnable with a finite sample. Camara
et al. (2020); Collina et al. (2024) studied a repeated Principal-Agent problem between a pair of
long-lived Principal and Agent in an adversarial setting where there is no prior distribution. To
address the challenges of the online setting, they impose additional rationality assumptions on the
agent’s behavior. In contrast, we make no such assumptions and only require that the agent (receiver
in our case) follows the (smoothed) best response. Due to space limitations, we include additional
related work in the Appendix D.

2 MODEL AND PRELIMINARIES

Predictors We consider the prediction task over the data domain X × Y , where the data is drawn
from a distribution D. Here, X is a rich feature space, and Y = [−1, 1]d is the outcome space. We
define H = {h | h : X → Y} as a hypothesis class of deterministic predictors. For any h ∈ H and
x ∈ X , h(x) is interpreted as a prediction of the conditional mean E[Y | X = x]. We use h(x)j and
yj to denote the j-coordinate of the predicted and true outcome vectors, respectively.

In this paper, we consider a more general setting where the goal is to learn a randomized predictor
f ∈ ∆(H), representing a distribution over h ∈ H. This aligns with the standard information design
literature, where a sender typically transmits a randomized signal to the receiver to achieve higher
utility. We assume no direct access to the full distribution D; instead, we seek to learn f from n i.i.d.
samples drawn from D, which we denote as dataset D.

Receivers’ Behavior Model We considerN receivers who make decisions based on the prediction
h(x). For each i ∈ [N ], receiver i has a finite action set Ai. Without loss of generality, we assume
|Ai| = m for all i ∈ [N ], since any smaller set can be augmented with dummy actions to reach size
m. Receiver i’s utility function is denoted as vi(a, y), where vi : Ai × Y −→ [0, 1].

We assume that vi is linear and Lipschitz continuous in the outcome y.
Assumption 2.1 (Linearity and L-Lipschitzness). For any i ∈ [N ], and a ∈ Ai, the utility function
vi(a, y) is linear in y, and satisfies |vi(a, y1)− vi(a, y2)| ≤ L∥y1 − y2∥∞.

Next, we define the receiver’s decision rule given the prediction h(x). A natural rule is to treat the
prediction as accurate and respond optimally to it.
Definition 2.1 (Strict Best Response). For any i ∈ [N ], receiver i, given utility function vi, strictly
best responds to the prediction h(x) by choosing:

bi(h(x), ai) =

{
1 if ai = argmaxa′

i∈Ai
vi(a

′
i, h(x)),

0 otherwise.
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Here, bi(h(x), ai) represents the probability that receiver i takes action ai given the prediction h(x).

Decision Calibration We aim to design f such that receivers experience no regret when best re-
sponding to it. This mirrors the setting in standard Bayesian persuasion, where, given a known
prior, the sender recommends an action through a signal, and the receiver’s best response—after
Bayesian updating—is to follow that recommendation. As we do not assume a known prior, we
leverage the notion of decision calibration (Noarov et al., 2023; Zhao et al., 2021), which has been
shown to provide similar no-regret guarantees for receivers. Specifically, it ensures that receivers
have no incentive to deviate from the recommended action, whether by swapping actions or by act-
ing as if their utility were that of another receiver. Moreover, it can be shown that any approximately
decision-calibrated predictor can be post-processed into an approximately fully calibrated predictor
that induces the same receiver’s behavior. We will show that fully calibrated predictors correspond
to signaling schemes in Bayesian persuasion with a known prior (Lemma 4.1). A similar observa-
tion was made in (Jain & Perchet, 2024) for online calibrated predictions. But they made finite-state
Bayesian persuasion assumption, which we do not require. For these reasons, we adopt decision cal-
ibration as a desirable property that the predictor f should satisfy. We provide a detailed discussion
of the no-regret guarantees in Appendix F, and their connection to Bayesian persuasion in Section 4.

We now formally define decision calibration as follows.
Definition 2.2 (Decision Calibration). A randomized predictor f ∈ ∆(H) is said to be perfectly
decision calibrated if

DecCE(f) := max
i∈[N ]

max
j∈[d]

max
a∈Ai

∣∣Eh∼fE(x,y)∼D[(yj − h(x)j) · bi(h(x), a)]
∣∣ = 0.

Moreover, f is said to be ϵ-decision calibrated if DecCE(f) ≤ ϵ.

A decision-calibrated predictor ensures that receivers have no incentive to deviate from best respond-
ing to the prediction; that is, receivers cannot achieve higher utility by swapping their chosen action
with another action. Similar guarantees have been established by Noarov et al. (2023); Roth & Shi
(2024), and we provide a variant tailored to our setting of randomized predictor in the distributional
setting. We formally define swap regret as follows:
Definition 2.3 (Swap Regret). We say that a predictor f achieves ϵ-swap regret if, for any receiver
i ∈ [N ], mapping function ϕ : A→ A,

Eh∼fED

[∑
a

vi(ϕ(a), y) · bi(h(x), a)

]
≤ Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
+ ϵ.

Theorem 2.1 (No Swap Regret via Decision Calibration). If a predictor f is ϵ-decision calibrated,
then it has at most 2L|A|ϵ-swap regret.

We further show that decision calibration can guarantee other forms of regret, such as type regret,
which ensures that receivers have no incentive to pretend to be another receiver, as well as combi-
nations of swap and type regret. These results demonstrate that decision calibration is a strongly
compatible with receivers’ incentive. We provide detailed statements and proofs in Appendix F.

We consider randomized predictors in ∆(H) that has decision calibration error bounded by some
target level γ and assume that such predictors are not vacuous.
Assumption 2.2 (Feasibility). There is a randomized predictor f ∈ ∆(H) that DecCE(f) ≤ γ.

Note that Assumption 2.2 is mild since as long as H contains all deterministic constant predictors
(or a discretized cover thereof), it necessarily includes a decision-calibrated predictor, specifically
the constant predictor h(x) = E[Y ], which is fully calibrated.

Sender’s Objective The sender does not have direct access to the data distribution D, but has
examples drawn from D. The sender’s utility depends on the outcome y and the joint action of all
receivers, given by u : A × Y → R where A := A1 × · · · × AN . Without loss of generality, we
assume the sender’s utility is bounded by 1, i.e. u(a, y) ∈ [0, 1] for any a ∈ A and y ∈ Y . Given
any prediction h(x), for any a = (a1, · · · , aN ) ∈ A, the probability that receivers play joint action
a is b(h(x),a) :=

∏N
i=1 bi(h(x), ai).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The sender’s goal is to maximize their expected utility subject to a γ-decision calibration constraint.
Formally, the sender’s optimization problem is

max
f

Eh∼fE(x,y)∼D

[∑
a∈A

u(a, y)b(h(x),a)

]
s.t. DecCE(f) ≤ γ. (2)

We denote the optimal objective value of Eq. (2) by OPT(H,D, γ).

3 A MINIMAX APPROACH FOR EFFICIENT PERSUASIVE PREDICTION

In this section, we present an efficient algorithm PerDecCal (Algorithm 1) for persuasive pre-
diction, which learns an approximately optimal solution to the constrained optimization problem
Eq. (2) from data when |H| is finite. We argue that finite hypothesis classes are already powerful: in
finite-state Bayesian persuasion, a simple finite class suffices, as randomization over it can achieve
the same sender utility as the full space of continuous signaling schemes. A detailed discussion is
provided in Appendix E

We begin by stating the theoretical guarantee achieved by PerDecCal.
Theorem 3.1. Suppose PerDecCal runs for T = O(log(Nmd)/ϵ4) rounds and is given a dataset
D drawn i.i.d. from D of size n ≥ O( log(|H|Ndm/δ)

ϵ4 ). With probability at least 1 − δ, the output
predictor f̂ that satisfies

1. DecCE(f̂) ≤ γ + ϵ.

2. Suppose the receivers play strict best response to f̂ . Then the receivers obtain swap regret
bounded by 2mL(γ + ϵ). The sender achieves ϵ-optimal utility:

Eh∼fED[u(a, y) · b(h(x),a)] ≥ OPT(H,D, γ)− ϵ.

Theorem 3.1 shows that, with enough sample size, our proposed algorithm PerDecCal learns a
predictor f̂ that achieves nearly optimal utility compared to the best in-class γ-decision-calibrated
predictor, while ensuring that its decision calibration error exceeds γ by at most ϵ, and this ensures
that the receivers have no regret best responding to the predictions. It establishes a bi-criteria op-
timization: instead of requiring the predictor to be exactly γ-decision calibrated, we allow slight
violations, which increase the swap regret by at most 2mLε. Furthermore, we prove a lower bound
showing that it is statistically infeasible to learn a near-optimal predictor within the class of exactly
γ-decision calibrated predictors. We defer the details to Appendix G.

PerDecCal follows a minimax-based approach. Specifically, we introduce Lagrangian variables
and reformulate the original problem as a minimax game. We then apply an oracle-efficient algo-
rithm to compute an approximate equilibrium of this game, which yields a near-optimal solution to
the original problem Eq. (2). We now present the details and analysis of PerDecCal, with full
proofs provided in Appendix H.

Lagrangian and Minimax Game As a standard technique in optimization theory, the constrained
optimization problem can be equivalently written in its Lagrangian form, which can be interpreted
as a minimax game. Specifically, we introduce the Lagrangian as follows:

min
f∈∆H

max
λ∈R2Nmd

+

LD(f, λ) := −Eh∼fED

[∑
a∈A

u(a, y) · b(h(x),a)

]

+
∑

s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ai
s(EfED[(h(x)j − yj) · bi(h(x), ai)]− γ).

(3)

By the folklore result in optimization theory (Boyd & Vandenberghe (2004)), the minimax solution
of Eq. (3) coincides with the optimal solution of Eq. (2). After introducing the Lagrange multipliers,
Eq. (3) can be viewed as a minimax game, where the minimization player is the predictor f , and the
maximization player is the Lagrangian multiplier λ.

5
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Best Response vs. No Regret Dynamics Viewing the problem as a minimax game, we consider
solving it using Best Response vs. No Regret (BRNR) dynamics, where the min player f plays a
best response to the current λ, and the max player updates λ according to a no-regret algorithm.
Freund & Schapire (1996) showed that when both players achieve low regret, the average of their
plays converges to an approximate equilibrium. Since both ∆(H) and R2Nmd

+ are convex spaces,
we can apply their result once we establish sublinear regret for both players.

For the min player f , this is straightforward because L(f, λ) is linear in the randomized predictor
f . As a result, the best response to any fixed λ is achieved by a deterministic predictor, that is,
argminf∈∆(H) L(f, λ) = argminh∈H L(h, λ). However, since the max player’s strategy space
R2Nmd

+ is unbounded, designing a no-regret algorithm for the max player is non-trivial, as standard
regret-minimization algorithms typically require bounded decision spaces.

Bounded Minimax Games To design a no-regret algorithm for the max player λ,we first re-
strict the Lagrangian variables to be bounded. Specifically, we consider λ ∈ Λ = {λ′|λ′ ∈
R2Nmd

+ , ∥λ∥1 ≤ C}. When the ℓ1 norm of λ is bounded, it becomes straightforward to design
a no-regret algorithm for the domain Λ. We define the C-bounded minimax games as follows:

min
f∈∆H

max
λ∈Λ

LD(f, λ) :=− Eh∼fED

[∑
a∈A

u(a, y) · b(h(x),a)

]

+
∑

s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ais(EfED[(h(x)j − yj) · bi(h(x), ai)]− γ).

(4)

We first show that an approximate equilibrium (f, λ) to the C-bounded minimax game is indeed an
approximately optimal solution to the original problem Eq. (2). We prove that f achieves approx-
imately optimal utility with respect to OPT(H,D, γ), while ensuring that its decision calibration
error satisfies the γ-constraint up to an approximation error introduced by solving the C-bounded
minimax game.
Lemma 3.1. For an ϵ-approximate equilibrium of the C-bounded minimax game (f, λ). For
the original unbounded constraint optimization problem Eq. (2), we have that Eh∼fED[u(a, y) ·
b(h(x),a)] ≥ OPT(H,D, γ)− 2ϵ, and DecCE(f) ≤ γ + 1+2ϵ

C .

Therefore, we reduce the sender’s constrained optimization problem Eq. (2) to solving the equilib-
rium of the above bounded minimax game.

Solving Bounded Minimax Games We now move on to solve the C-bounded minimax game.
Note that the domain λ can be viewed as a scaling of the probability simplex. A natural choice of
algorithm for this domain is a variant of the Hedge algorithm (Freund & Schapire, 1997), which is
originally designed for the simplex. For simplicity, we scale the Hedge algorithm by C while still
referring to it as Hedge. For computing the best response of the minimization player, we assume
access to an empirical risk minimization (ERM) oracle that finds the best deterministic predictor
given the current λ. We formally define the ERM oracle as follows:
Definition 3.1 (ERM oracle). Let the loss function be

ℓλ(h, x, y) =−
∑
a∈A

u(a, y) · b(h(x),a)

+
∑

s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ais((h(x)j − yj) · bi(h(x), ai)− γ),

given a dataset with data points D = {(x1, y1), ..., (xn, yn)}, the ERM oracle finds the best predic-
tor that minimizes the empirical average loss: ERM(D,λ) = argminh∈H

1
n

∑n
i=1 ℓλ(h, xi, yi).

The ERM oracle is commonly assumed in the learning theory literature and can often be imple-
mented in practice using standard optimization methods. For example, when H is a class of neural
networks, the ERM oracle can be approximated by running heuristic methods such as stochastic
gradient descent (SGD) with a smoothed surrogate of the indicator b(h(x),a) and bi(h(x),a).

6
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We are now ready to present our algorithm PerDecCal in Algorithm 1. PerDecCal is efficient
the ERM oracle is called only once per iteration, and all other operations are computationally poly-
nomial in N,m, d. Therefore, overall PerDecCal is oracle-efficient, requiring O(log(Nmd)/ϵ4)
calls to the ERM oracle.

Algorithm 1 PerDecCal (Persuasive Decision Calibration)
Input: A set of samples D, ERM oracle ERM(D,λ), dual bound C and tolerance γ.

1: Initialize λ1 = C
2Nmd1.

2: for t = 1, · · · , T do
3: Learner best responds to λt:
4: Use the ERM oracle to compute ht = ERM(D,λt).
5: Auditor runs Hedge to obtain λt+1:
6: λt+1 = Hedge(c1:t) where ct(λs,i,j,ai) = λs,i,j,ais(ED[(ht(x)j − yj) · bi(ht(x), ai)]− γ).
7: end for

Output: f̂ = Uniform(h1, · · · , hT ).

PerDecCal operates on the empirical dataset D instead of the true distribution D. Therefore, a
finite-sample analysis is needed to show that an approximate equilibrium found for LD(f, λ) also
serves as an approximate equilibrium for LD(f, λ). We prove a uniform convergence result showing
that the payoff LD(f, λ) can be uniformly approximated by LD(f, λ).

Lemma 3.2. We have |LD(f, λ)− LD(f, λ)| ≤
√

ln
|4H|

δ

2n +C

√
8 ln

4|H|Ndm
δ

n for all f ∈ ∆(H), λ ∈
Λ with probability 1− δ.

Then we can show that, with high probability, an approximate equilibrium under LD(f, λ) is also
an approximate equilibrium under LD(f, λ), completing the analysis of Theorem 3.1.

4 MATCHING THE BAYESIAN BENCHMARK

In this section, we show that the sender utility achieved by our algorithm matches that of a fully
informed Bayesian sender who is restricted to send signals induced by the same class of decision-
calibrated predictors. Specifically, we compare against a restricted Bayesian persuasion benchmark
in which both the sender and the receiver have full knowledge of the distribution D, and the sender
is constrained to commit to signaling schemes induced by H (defined in Definition 4.2), rather than
all possible signaling schemes. Since the classical Bayesian persuasion model inherently involves a
single receiver, we focus on the comparison within the single-receiver setting.

Bayesian Persuasion Benchmark The distribution D over X × Y which induces a distribution
µD over means of the outcome y conditional on the feature x: for any θ ∈ Y

µD(θ) = Pr
(x,y)∼D

[E[y | x] = θ].

Here we use the fact that Y is convex. The set of state is Θ ⊂ Y with prior µD. The receiver’s action
set ABP equals to the action set A in the prediction setting with utility function vBP : ABP×Θ → R.
The sender has utility function uBP : ABP × Θ → R. We have vBP(a, θ) = Ey∼θ[v(a, y)] and
uBP(a, θ) = Ey∼θ[u(a, y)]. Here we slightly abuse notation by writing y ∼ θ to indicate that y is
drawn from a distribution with mean θ. A signaling scheme π : Θ → ∆(S) that randomly maps
states to a set S of signals. Once the receiver observes a signal s ∈ S, they will update their belief
from the prior µ to a posterior µs ∈ ∆(Θ) and consequently obtain a posterior mean that is in Y . In
other words, any signaling scheme will result in a distribution of posterior means Q ∈ ∆(Y).

We now establish the connection between decision calibration and the Bayesian persuasion bench-
mark introduced above. To do so, we use the notion of calibration as a bridge. Therefore, we begin
by introduction the notion of calibration and presenting its relationship to Bayesian persuasion.

Definition 4.1 (Calibration). A randomized predictor f ∈ ∆(H) is said to be perfectly calibrated if

∀v ∈ Y, CE(f) := Eh∼f,(x,y)∼D[(y − h(x))|h(x) = v] = 0.

7
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The following lemma states that every signaling scheme corresponds to a perfectly calibrated predic-
tor, in the sense that the distribution over posterior means induced by the signaling scheme coincides
with the distribution over predictions induced by a randomized calibrated predictor, and vice versa.
Lemma 4.1. Consider a randomized predictor f ∈ ∆(HALL) where HALL = {h : X → Y} is
the class of all possible deterministic predictors. There exists a distribution Qf ∈ ∆(Y) such that
for any v ∈ Y , Qf (v) = Prh∼f,(x,y)∼D[h(x) = v]. A distribution Q ∈ ∆(Y) corresponds to the
distribution over posterior means induced by some signaling scheme if and only if it is the prediction
distribution Qf of a perfectly calibrated predictor f .

Note that the receiver’s utility function vi in the prediction setting is linear in the outcome y and
the corresponding utility function vBP in the Bayesian persuasion setting is linear in the conditional
mean θ. By Lemma 4.1, it follows immediately that for the receiver, best responding to the pre-
dictions of a perfectly calibrated predictor is equivalent to best responding to the posterior means
induced by the corresponding signaling scheme. Therefore, the calibrated predictor and the corre-
sponding signaling scheme lead to the same sender’s utility.

Now we present the connection between decision calibration and calibration. The next lemma says
that any decision-calibrated predictor can be converted to a calibrated predictor without decreasing
the sender’s expected utility. Zhao et al. (2021) made a similar observation, though their result
applies only to deterministic predictors, whereas we extend the analysis to randomized predictors.
Lemma 4.2. For any randomized predictor f is perfectly decision calibrated, we can construct a
randomized predictor f ′ such that (i) f ′ is perfectly calibrated; (ii) the sender obtains the same
expected utility under f and f ′.

We are now ready to define the set of signaling schemes induced by H that we consider in our
Bayesian persuasion benchmark.
Definition 4.2 (Signaling scheme class induced by H). Given any class of deterministic predictors
H,

1. We define FDCAL(H) as the class of randomized predictor over H that is perfectly decision
calibrated.

2. For any f ∈ FDCAL(H), let f ′ be the perfectly calibrated predictor constructed by
Lemma 4.2. Define FCAL(H) as the class of all such predictors f ′.

3. For any f ′ in FCAL(H), let πf ′ be the corresponding signaling scheme by Lemma 4.1.
Define ΠH be the class of all such signaling schemes πf ′ . We say that ΠH is the class of
signaling schemes induced by H.

Finally we are ready to present our main result in this section.

Theorem 4.1. Given at least O( (ln(|H|dm/δ)
ϵ4 ) samples, with probability 1 − δ, PerDecCal

can output a predictor f̂ such that the expected sender’s utility under f̂ is no worse than
BayesOPT(µD,ΠH)−ϵ where we denote the optimal sender utility under our Bayesian persuasion
benchmark as BayesOPT(µD,ΠH).

Theorem 4.1 says the sender utility achieved by our algorithm matches that of a fully informed
Bayesian sender who is restricted to send signals induced by the same class of predictors H. Note
that Theorem 4.1 naturally extends to the multi-receiver setting. In this case, the predictor can still
match the Bayesian benchmark, where each receiver updates their posterior based on their own
recommended action as the signal. However, if the receivers instead take the recommended joint
action across all receivers as the signal, the decision calibration constraints need be modified to
ensure unbiasedness with respect to the joint indicator b(h(x),a) instead of individual bi(h(x), a).

5 PERSUASIVE PREDICTION UNDER INFINITE HYPOTHESIS CLASS

In this section, we turn to the more general case where |H| can potentially be infinite. In this
setting, strict best responses pose a challenge due to their discontinuity: even when two predictors
h1, h2 ∈ H are close—i.e., supx∈X ∥h1(x)− h2(x)∥∞ is small—the sender’s utility under strict
best response can differ by a constant. We illustrate this in the following example.

8
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Example 5.1 (Discontinuity from best response). Consider a distribution D over X × Y such that
Y = [0, 1] and for any x ∈ X , Pr[y | x] = 0.5. There is a single receiver, i.e. N = 1, who has two
actions A = {a, a′} to choose from. The receiver has a utility function v : A × Y → [0, 1] such
that v(a, y) = y, v(a′, y) = 1 − y. In other words, the receiver’s best response is a when y ≤ 0.5
and is a′ when y > 0.5. The sender has a utility function v : A × Y → [0, 1] that only depends
on the receiver’s action: u(a, y) = 1, u(a′, y) = 0. Now consider the following two predictors: for
any x ∈ X , h1(x) = 0.5 − ϵ and h2(x) = 0.5 + ϵ. It is not hard to verify that both h1 and h2 are
ϵ-decision calibrated predictor under distribution D. However, for any ϵ ∈ (0, 0.5), the sender’s
expected utility is 1 under h1, but 0 under h2.

Because of the discontinuity of the best response, even if H has a bounded complexity mea-
sure—such as a covering number or Rademacher complexity—it can be difficult to estimate the
sender’s utility (which best depends on receivers’ best responses) uniformly over all h ∈ H from
data. To overcome this challenge, we consider a smoothed version of the best response decision rule,
commonly known as the quantal response model in economics and decision theory. This model has
been extensively studied in the literature (McFadden et al., 1976; McKelvey & Palfrey, 1995) as it
captures more realistic receiver behavior in the presence of noise, uncertainty, or bounded rational-
ity. Unlike strict best responses, it allows receivers to probabilistically favor better actions while still
occasionally choosing suboptimal ones, providing a smoother and more practical behavior model.
Definition 5.1 (Quantal Response). For any i ∈ [N ], the i-th receiver with utility function vi re-
sponds to a prediction h(x) according to the following η-quantal response:

b̃i(h(x), ai) =
eηvi(ai,h(x))∑

a′
i∈Ai

eηvi(a
′
i,h(x))

.

b̃i(h(x), ai) denotes the probability that receiver i selects action ai given the prediction h(x). Here,
η > 0 is the inverse temperature parameter, where as η → +∞, the receiver’s behavior approaches
the strict best response.

Analogously, we define a smoothed version of decision calibration when receivers follow quantal
response model.
Definition 5.2 (Smoothed Decision Calibration). A randomized predictor f ∈ ∆(H) is said to be
perfectly smoothed decision calibrated if

SmDecCE(f) := max
i∈[N ]

max
j∈[d]

max
a∈Ai

∣∣∣Eh∼fE(x,y)∼D

[
(yj − h(x)j) · b̃i(h(x), a)

]∣∣∣ = 0.

Moreover, f is said to be ϵ-decision calibrated if SmDecCE(f) ≤ ϵ.

It can be shown that receivers have no regret when following the quantal response to a smoothed
calibrated predictor; we refer the reader to Appendix F for a detailed discussion. Similar to Section 3,
we design an oracle-effcient algorithm SmPerDecCal (Algorithm 2) for persuasive prediction
given quantal response and |H| can be infinite.
Theorem 5.1. Suppose SmPerDecCal runs for T = O(log(Nmd)/ϵ4) rounds and is given a

dataset D drawn i.i.d of size n ≥ O(ln
N (H,d∞, ϵ2

ηL )Ndm

δ /ϵ4). With probability at least 1 − δ, it
outputs f̂ that satisfies

1. SmDecCE(f̂) ≤ γ + ϵ.

2. Suppose the receivers play η-quantal response to f̂ . Then the receivers obtain swap regret
bounded by 2mL(γ + ϵ) + lnm+1

η . The sender achieves ϵ-optimal utility:

Eh∼fED

[
u(a, y) · b̃(h(x),a)

]
≥ OPT(H,D, γ)− ϵ.

Theorem 5.1 shows that, with enough sample size, SmPerDecCal learns a predictor f̂ that achieves
nearly optimal utility compared to the best in-class γ-smoothed-decision-calibrated predictor, while
ensuring that its smoothed decision calibration error exceeds γ by at most ϵ.

9
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forecasts obtain diminishing internal regret. More recent studies extend this result by proposing re-
fined notions of calibration that are more efficient to achieve and offer fine-grained regret guarantees
(Zhao et al., 2021; Kleinberg et al., 2023; Hu & Wu, 2024; Roth & Shi, 2024; Fishelson et al., 2025;
Luo et al., 2025; Tang et al., 2025). Building on (multi)calibration, Gopalan et al. (2021) introduced
the notion of omniprediction, which aims to construct a single predictor that guarantees no worse
loss than a family of predetermined benchmarks for all the downstream receivers in a class, followed
by Gopalan et al. (2022; 2024); Garg et al. (2024); Dwork et al. (2024); Okoroafor et al. (2025); Lu
et al. (2025). In contrast to these works, we not only aim to achieve a specific notion of calibra-
tion (decision calibration, in our case), but also seek to approximately maximize the sender’s utility
among all such calibrated predictors.

Our work shares the common goal of replacing prior knowledge with data, aligning with many
works in mechanism design, such as auction design (Balcan et al., 2008; Cole & Roughgarden, 2014;
Morgenstern & Roughgarden, 2015; Daskalakis & Syrgkanis, 2016; Syrgkanis, 2017; Dudı́k et al.,
2020; Fu & Lin, 2020), Stackelberg game (Balcan et al., 2015; Camara et al., 2020; Collina et al.,
2024), algorithm discrimination (Cummings et al., 2020) and recommendation system (Immorlica
et al., 2018).

More broadly, a growing body of work in economics aims to relax the assumption of perfect prior
knowledge rather than replace it entirely, such as relaxing the prior to some kind of approximate
agreement on the distribution (Artemov et al., 2013; Ollár & Penta, 2017) and robustness to prior
distribution (Dworczak & Pavan, 2022; Kosterina, 2022). In contrast to these works, we adopt a
data-driven approach to address the challenge of an unknown prior distribution. Parakhonyak &
Sobolev (2025) also studies persuasion without a prior. Unlike our setting, which assumes sample
access to the data distribution, they design a signaling scheme that minimizes the worst-case gap
relative to the Bayesian benchmark.

From a technical perspective, the problem of solving constrained optimization through No Regret
versus Best Response dynamics has been studied in the algorithmic fairness literature (Agarwal
et al., 2019; 2018; Kearns et al., 2018; Globus-Harris et al., 2023).

E GLOBAL OPTIMALITY FOR FINITE-SIZE X

In this section, we consider the case that |X | <∞, Y = {0, 1} and there is one receiver, i.e. N = 1.
We show that it is sufficient to consider predictions in an instance-dependent discretization set. Fix
any receiver’s utility v, we slightly abuse notation, let A = {a1, · · · , am} denote the receiver’s
action set. Let Ji = {p ∈ [0, 1] : ai = argmaxEy∼Ber(p)[v(a, y)]} for any i ∈ [m]. If there are
ties, the receiver breaks ties in favor of the sender. Then we know that Ji is an interval on [0,1]
for any i ∈ [m] and {Ji}mi=1 is a partition of [0, 1]. Let Z be the set of thresholds of adjacent best
response intervals. We know |Z| ≤ m − 1. Let Θ = {Pr[y = 1 | x] : ∀x ∈ X}. We know
|Θ| ≤ |X |.
Definition E.1 (Instance-dependent discretization). For any positive ϵ < mini∈m len(Ji), define
discretized set Sϵ of space [0,1] as

Sϵ ≜ ({0, ϵ, 2ϵ, · · · } ∩ [0, 1]) ∪ Z ∪Θ.

Definition E.2 (Discretized predictor set). Let Hϵ = {h : X → Sϵ} be the set of all possible
predictors whose predictions are always in the instance-dependent discretization set Sϵ.

Note that Hϵ is finite with size |Sϵ|X . The following theorem shows that any randomized predictor
in ∆(HALL) can be converted to a randomized predictor in ∆(Hϵ) without changing the sender’s
utility and increase the decision calibration error up to ϵ.
Theorem E.1. For any ϵ > 0, for any randomized predictor f ∈ ∆(HALL) that is γ-decision
calibrated, we can construct a randomized predictor f ′ ∈ ∆(Hϵ) such that (1) the sender obtains
the same expected utility under f and f ′ (2) f ′ is (γ + ϵ)-decision calibrated.

Proof. Define the range of f as range(f) =
⋃

h∈supp f range(h). Consider the following rounding
function r : range(f) → Sϵ:

r(v) = p v ∈ Ji, p = arg inf
p′∈(Sϵ∩Ji)

|p′ − v|.
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For any h ∼ f ∈ ∆(HALL), we construct h′ ∈ Hϵ as h′ : x 7→ r(h(x)). Let f ′ be the distribution
over such h′. By the definition of Sϵ, we have that (1) |v − r(v)| < ϵ (2) the receiver has the same
best response under v and r(v). Therefore, the sender obtains the same expected utility under f and
f ′. And we have∣∣Eh′∼f ′E(x,y)∼D[(y − h(x)) · b(h′(x), a)]

∣∣ = ∣∣Eh′∼f ′E(x,y)∼D[(y − h(x)) · b(h(x), a)]
∣∣

≤
∣∣Eh′∼f ′E(x,y)∼D[(y − h(x)) · b(h(x), a)]

∣∣
+
∣∣Eh′∼f ′E(x,y)∼D[(h

′(x)− h(x)) · b(h(x), a)]
∣∣

=
∣∣Eh∼fE(x,y)∼D[(y − h(x)) · b(h(x), a)]

∣∣
+
∣∣Eh∼fE(x,y)∼D[(h

′(x)− h(x)) · b(h(x), a)]
∣∣

≤ γ + ϵ.

This theorem implies that, at least in the special case considered in this section, to find the optimal
decision-calibrated predictor randomized over all deterministic predictors, it suffices to consider a
finite subset of deterministic predictors Hϵ.

F NO REGRET GUARANTEES OF DECISION CALIBRATION

F.1 NO REGRET GUARANTEES OF STRICT DECISION CALIBRATION

We first prove that approximate decision calibrated predictor gives the downstream agent no swap
regret best responding to it. Noarov et al. (2023) proved it for deterministic predictor in the online
calibration setting. We provide our proof for randomized predictor in the batch settting here for
completeness.
Theorem 2.1 (No Swap Regret via Decision Calibration). If a predictor f is ϵ-decision calibrated,
then it has at most 2L|A|ϵ-swap regret.

Proof. We prove the result for any receiver i ∈ [N ].

Eh∼fED

[∑
a

vi(ϕ(a), y) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]

=Eh∼fED

[∑
a

vi(ϕ(a), y) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · bi(h(x), a)

]

+ Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]

+ Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
When f is ϵ-decision-calibrated, we know that

Eh∼fED

[∑
a

vi(ϕ(a), y) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · bi(h(x), a)

]

=
∑
a

Eh∼fED

[∑
a

vi(ϕ(a), y − h(x)) · bi(h(x), a)

]
≤
∑
a

Lϵ = L|A|ϵ.

Similarly we can prove that

Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
≤ L|A|ϵ.
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Since bi(h(x), a) plays the best response given the prediction h(x), we know that

Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
≤ 0.

Putting them together, we have

Eh∼fED

[∑
a

vi(ϕ(a), y) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
≤ 2L|A|ϵ.

Definition F.1 (Type Regret). We say that a predictor f achieves ϵ-type regret if, for any receiver
i, i′ ∈ [N ],ϕ : A→ A,

Eh∼fED

[∑
a

vi(a, y) · bi′(h(x), a)

]
≤ Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
+ ϵ.

Now we introduce a different notion of regret, named type regret. Type regret is first introduced by
Zhao et al. (2021). Intuitively, it says that once the predictor gets decision calibrated with respect to
a class of utility functions of receivers, the receivers will have no regret best responding according
to another receiver’s utility function instead their own. Zhao et al. (2021) proved that decision
calibrated predictor achieves no type regret for the receivers. Here we state and prove the result for
randomized predictors.
Theorem F.1 (No Type Regret via Decision Calibration). If a predictor f is ϵ-decision calibrated,
then it satisfies 2L|A|ϵ-type regret.

Proof. We prove the result for any receiver i, i′ ∈ [N ].

Eh∼fED

[∑
a

vi(a, y) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]

=Eh∼fED

[∑
a

vi(a, y) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi′(h(x), a)

]

+ Eh∼fED

[∑
a

vi(a, h(x)) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]

+ Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
When f is ϵ-decision-calibrated, we know that

Eh∼fED

[∑
a

vi(a, y) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi′(h(x), a)

]

=
∑
a

Eh∼fED

[∑
a

vi(a, y − h(x)) · bi′(h(x), a)

]
≤
∑
a

Lϵ = L|A|ϵ.

Similarly we can prove that

Eh∼fED

[∑
a

vi(a, h(x)) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
≤ L|A|ϵ.

Since bi(h(x), a) plays the best response given the prediction h(x), we know that

Eh∼fED

[∑
a

vi(a, h(x)) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
≤ 0.
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Putting them together, we have

Eh∼fED

[∑
a

vi(a, y) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
≤ 2L|A|ϵ.

We also introduce a new notion of regret which we call swap-type-regret, which intuitively capture
the case where the receivers can first pretend that they were another receiver and then swap the
corresponding best-response action. We formally define it as follows:
Definition F.2 (Swap-Type Regret). We say that a predictor f achieves ϵ-swap-type regret if, for
any receiver i, i′ ∈ [N ], mapping function ϕ : A→ A,

Eh∼fED

[∑
a

vi(ϕ(a), y) · bi′(h(x), a)

]
≤ Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
+ ϵ.

Theorem F.2 (No Swap-Type Regret via Decision Calibration). If a predictor f is ϵ-decision cali-
brated, then it satisfies 2L|A|ϵ-swap-type regret.

Proof. The proof is similar to the proofs of Theorem 2.1 and Theorem F.1. We can similarly prove
that

Eh∼fED

[∑
a

vi(ϕ(a), y) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · bi′(h(x), a)

]
≤ L|A|ϵ,

and

Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]
≤ L|A|ϵ.

From the fact that bi(h(x), a) selects the best response action, we also have

Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
≤ 0.

Putting them together completes the proof.

F.2 NO REGRET GUARANTEES OF SMOOTHED DECISION CALIBRATION

We provide analogous result for the behavior model where the receivers follow quantal response.
We first define the three notions of regret for quantal response.
Definition F.3 (Swap Regret under Quantal Response). We say that a predictor f achieves ϵ-swap
regret for receivers that follow quantal response rule if, for any receiver i ∈ [N ], mapping function
ϕ : A→ A,

Eh∼fED

[∑
a

vi(ϕ(a), y) · b̃i(h(x), a)

]
≤ Eh∼fED

[∑
a

vi(a, y) · b̃i(h(x), a)

]
+ ϵ.

Definition F.4 (Type Regret under Quantal Response). We say that a predictor f achieves ϵ-type
regret for receivers that follow quantal response rule if, for any receiver i, i′ ∈ [N ],ϕ : A→ A,

Eh∼fED

[∑
a

vi(a, y) · b̃i′(h(x), a)

]
≤ Eh∼fED

[∑
a

vi(a, y) · b̃i(h(x), a)

]
+ ϵ.

Definition F.5 (Swap-Type under Quantal Response). We say that a predictor f achieves ϵ-swap-
type regret for receivers that follow quantal response rule if, for any receiver i, i′ ∈ [N ], mapping
function ϕ : A→ A,

Eh∼fED

[∑
a

vi(ϕ(a), y) · b̃i′(h(x), a)

]
≤ Eh∼fED

[∑
a

vi(a, y) · b̃i(h(x), a)

]
+ ϵ.
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We now present the analogous no regret guarantee for quantal response receivers. Swap regret for
quantal response receivers are discussed in Roth & Shi (2024) in the online setting for deterministic
predictors. Here, we provide the result for randomized predictors in the batch setting. Type regret
for quantal response receivers are discussed in Tang et al. (2025) for determinisitc predictors. Here,
we state and prove the result for randomized predictors.

Theorem F.3. If a predictor f is ϵ-smoothed-decision calibrated, then it satisfies 2L|A|ϵ+ ln |A|+1
η -

swap/type/swap-type regret.

To prove Theorem F.3, we first present a lemma proved by Roth & Shi (2024), which shows that the
utility that a receiver gets when they play quantal response with respect to the true outcome will be
close that when they strictly best responds.
Lemma F.1 (Roth & Shi (2024)). For any utility function v and y ∈ Y , let a∗ = argmaxa v(a, y),
we have ∑

a

v(a, y)b̃(y, a) ≥ v(a∗, y)− ln |A|+ 1

η
.

Proof of Theorem F.3. We only provide proof for swap-type regret as it is the strongest. The guar-
antees for swap regret and type regret are simple corollaries by considering ϕ to be the identical
mapping and i = i′.

For any ϕ : A×A, i, i′ ∈ [N ], we have

Eh∼fED

[∑
a

vi(ϕ(a), y) · b̃i′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · b̃i(h(x), a)

]

≤Eh∼fED

[∑
a

vi(ϕ(a), y) · b̃i′(h(x), a)

]
− Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · b̃i′(h(x), a)

]

+ Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · b̃i′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · b̃i(h(x), a)

]

+ Eh∼fED

[∑
a

vi(a, h(x)) · b̃i(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · b̃i(h(x), a)

]
From the definition of decision calibration, we know that

Eh∼fED

[∑
a

vi(ϕ(a), y) · b̃i′(h(x), a)

]
− Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · b̃i′(h(x), a)

]
≤ L|A|ϵ

and

Eh∼fED

[∑
a

vi(a, h(x)) · b̃i(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · b̃i(h(x), a)

]
≤ L|A|ϵ.

By Lemma F.1, we know that

Eh∼fED

[∑
a

vi(a, h(x)) · b̃i(h(x), a)

]
≥ Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
− ln |A|+ 1

η
.

Therefore, we have

Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · b̃i′(, h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · b̃i(h(x), a)

]

≤Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · bi′(, h(x), a)

]

− Eh∼fED

[∑
a

vi(a, h(x)) · bi(, h(x), a)

]
+

ln |A|+ 1

η
.
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Since given h(x), bi(h(x), a) is the optimal decision rule for vi, we know that

Eh∼fED

[∑
a

vi(ϕ(a), h(x)) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, h(x)) · bi(h(x), a)

]
≤ 0.

Putting them together, we have that

Eh∼fED

[∑
a

vi(ϕ(a), y) · bi′(h(x), a)

]
− Eh∼fED

[∑
a

vi(a, y) · bi(h(x), a)

]

≤ 2L|A|ϵ+ ln |A|+ 1

η
.

G STATISTICAL HARDNESS OF LEARNING AN OPTIMAL PREDICTOR WITH
THE EXACT CONSTRAINTS

In this section, we show that it is statistically hard to learn the optimal predictor in the class of
γ-decision calibrated predictor. Specially, we focus on γ = 0. Then an algorithm is called (ε, δ)-
bicriteria optimal if, there exist a function n0 : (0, 1)2 → N such that given n ≥ n0(ϵ, δ) i.i.d.
samples from an unknown distribution D, it outputs a (possibly randomized) predictor f such that,
with probability at least 1− δ,

(i) DecCE(f) ≤ ε and (ii) Eh∼fE(x,y)∼D

[∑
a∈A

u(a, y) b(h(x), a)
]
≥ OPT(H,D, γ)−ε.

Instance. Consider one receiver (N=1), outcomes y ∈ {0, 1}, a feature space X = {0}, and a
hypothesis class

H = {h1, h2}, h1(x) ≡ v1, h2(x) ≡ v2, 0 < v1 < v2 < 1.

Suppose the receiver’s optimal action is a1 if y ≥ v1 and a2 otherwise. The sender receives utility 1
if the receiver chooses a1, and 0 otherwise. Let D− be the distribution with x ≡ 0 and y ∼ Bern(v1),
and D+ the same with y ∼ Bern(v2). Define ∆ := v2 − v1 = TVD(D−,D+) and assume
v1, v2 ∈ [τ, 1− τ ] for some τ ∈ (0, 12 ). Choose ε so that 0 < ε < ∆/2.

For any (possibly randomized) f ∈ ∆(H),

DecCE(f) =
∣∣∣Eh∼f

[
E[y]− h(0)

] ∣∣∣. (5)

Theorem G.1. For the instance above, any (ε, δ)-bicriteria algorithm with 0 < ε < ∆/2 and
0 < δ < 1

2 that succeeds using n samples must satisfy

n ≥ 2 τ(1− τ) (1− 2δ)2

∆2
.

Equivalently, the sample complexity is Ω((1− 2δ)2/TVD(D−,D+)
2).

Proof. From equation 5, under D− the feasibility condition DecCE(f) ≤ ε implies Eh∼f [h(0)] ∈
[v1 − ε, v1 + ε]; under D+ it implies Eh∼f [h(0)] ∈ [v2 − ε, v2 + ε]. These intervals are disjoint
because 2ε < ∆.

Under D− (resp. D+), the exactly calibrated point mass δh1 (resp. δh2 ) is optimal, i.e.,
OPT(H,D±, 0) = 1. Moreover, any f ∈ ∆(H) with DecCE(f) ≤ ε is also ε-optimal for the
objective.

Let an algorithm be (ε, δ)-bicriteria optimal. With probability at least 1 − δ it outputs an f that is
ε-feasible (and therefore ε-optimal). Consequently, the statistic µ := Eh∼f [h(0)] lies in disjoint
intervals depending on whether the data come from D− or D+. Thus declaring D+ iff µ > (v1 +
v2)/2 identifies the generating distribution with error at most δ.
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For any rule that distinguishes D⊗n
− from D⊗n

+ with error at most δ one must have
TVD(D⊗n

− , D⊗n
+ ) ≥ 1− 2δ. Pinsker’s inequality and the KL chain rule give

TVD(D⊗n
− , D⊗n

+ ) ≤
√
n

2
DKL(D− ∥D+).

For Bernoulli parameters p, q ∈ [τ, 1− τ ], DKL(Bern(p) ∥Bern(q)) ≤ (p− q)2/(τ(1− τ)). Here
|p− q| = ∆, so

TVD(D⊗n
− , D⊗n

+ ) ≤

√
n∆2

2 τ(1− τ)
.

Combining with TVD ≥ 1 − 2δ yields
√
n∆2/(2 τ(1− τ)) ≥ 1 − 2δ, i.e., n ≥ 2 τ(1 − τ) (1 −

2δ)2/∆2.

With zero slack (ϵ = 0) the condition ϵ < ∆/2 holds for any ∆ > 0; since we can choose ∆ =
v2 − v1 arbitrarily small while keeping v1, v2 ∈ [τ, 1− τ ], Theorem G.1 gives n ≥ 2τ(1− τ)(1−
2δ)2/∆2 → ∞ as ∆ → 0, i.e., the sample complexity is unbounded.

H MISSING PROOFS IN SECTION 3

We first state the lemma from Freund & Schapire (1996) which proves that when both players have
low regret, their average play converge to an approximate equilibrium.
Lemma H.1 (Freund & Schapire (1996)). Consider a two-player zero-sum game where the min
player chooses strategies from P and the max player chooses strategies from Q. Assume P and Q
are convex, and the utility function is bilinear in the players’ strategies. If the sequence of plays
satisfies sublinear regret for both players, i.e.,

min
p∈P

T∑
t=1

u(pt, qt)− u(p, qt) ≤ γPT, and max
q∈Q

T∑
t=1

u(pt, q)− u(pt, qt) ≤ γQT,

then letting p̄ = 1
T

∑T
t=1 pt and q̄ = 1

T

∑T
t=1 qt, we have that (p̄, q̄) is a (γP + γQ)-approximate

minimax equilibrium of the game.
Lemma 3.1. For an ϵ-approximate equilibrium of the C-bounded minimax game (f, λ). For
the original unbounded constraint optimization problem Eq. (2), we have that Eh∼fED[u(a, y) ·
b(h(x),a)] ≥ OPT(H,D, γ)− 2ϵ, and DecCE(f) ≤ γ + 1+2ϵ

C .

Proof. We use f∗ to denote the optimal feasible solution to Eq. (2), since the constraints are satisfied,
we have that L(f∗, λ̂) ≤ OPT(H,D, γ). We prove the theorem by considering two cases.

First, if f̂ is a feasible solution to the problem Eq. (2), i.e. DecCE(f̂) ≤ γ ≤ γ+ 1+2ϵ
C . Since (f̂ , λ̄)

is a ϵ-approximate equilibrium, we have that

−Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)] = max
λ

L(f̂ , λ)

≤ L(f̂ , λ̄) + ϵ

≤ min
f∈∆(H)

L(f̂ , λ̄) + 2ϵ

≤ L(f∗, λ̄) + 2ϵ

≤ −Eh∼f∗ED[
∑
a∈A

u(a, y) · b(h(x),a)] + 2ϵ

= −OPT(H,D, γ).
Therefore, we have

Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)] ≥ OPT(H,D, γ)− 2ϵ.
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Second, we consider the case where f̂ is not a feasible solution to Eq. (2). Let (ŝ, î, ĵ, âi) =
argmaxs,i,j,ai

s(EfED[(h(x)j − yj) · bi(h(x), ai)]− γ) > 0, and let λ′ be the vector such that
the (ŝ, î, ĵ, âi)-th coordinate λ′

ŝ,̂i,ĵ,âi
= C, and all else coordinates are 0, then we have that given

λ′ ∈ argmaxλ L(f̂ , λ). Therefore, since (f̂ , λ̄) is a ϵ-approximate equilibrium, we have

L(f̂ , λ̄) ≥ max
λ

L(f̂ , λ)− ϵ

= −Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)] + Cŝ
(
EfED[(h(x)ĵ − yĵ) · bî(h(x), aî)]− γ

)
− ϵ

Therefore,

− Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)] + Cŝ
(
EfED[(h(x)ĵ − yĵ) · bî(h(x), aî)]− γ

)
≤ L(f̂ , λ̄) + ϵ

≤ L(f∗, λ̄) + 2ϵ

≤ −Eh∼f̂ED[
∑
a∈A

u(a, y) · b(h(x),a)] + 2ϵ

Since ∀a, y, u(a, y) ∈ [0, 1], we have that

Cŝ
(
EfED[(h(x)ĵ − yĵ) · bî(h(x), aî)]− γ

)
≤ 1 + 2ϵ.

Thus,

max
s,i,j,ai

s(EfED[(h(x)j − yj) · bi(h(x), ai)]− γ) ≤ 1 + 2ϵ

C
,

and this implies that DecCE(f̂) ≤ γ + 1+2ϵ
C .

We need the following technical lemmas before proving Lemma 3.2. For any function ψ : X ×Y →
R and any dataset D = {(x(i), y(i))}ni=1, we denote the empirical expectation of ψ over D as

ÊD[ψ(x, y)] ≜
1

n

n∑
i=1

ψ(x(i), y(i)).

Theorem H.1. Fix a finite-size class of deterministic predictors H. For any distribution D, let
D ∼ Dn be a dataset consisting of n samples (x(i), y(i)) sampled i.i.d. from D. Then for any
δ ∈ (0, 1), with probability 1− δ, for every f ∈ ∆(H), we have∣∣∣∣∣EDEh∼f

[∑
a∈A

u(a, y) · b(h(x),a)

]
− ÊDEh∼f

[∑
a∈A

u(a, y) · b(h(x),a)

]∣∣∣∣∣ ≤
√

ln 2|H|
δ

2n
.

Proof. For any (x, y) ∼ D, observe that
∑

a∈A u(a, y) · b(h(x),a) ≤
∑
b(h(x),a) = 1. By

Hoeffding’s inequality, we have for any h ∈ H, for any δ′ ∈ (0, 1) with probability 1− δ′, we have∣∣∣∣∣ED

[∑
a∈A

u(a, y) · b(h(x),a)

]
− ÊD

[∑
a∈A

u(a, y) · b(h(x),a)

]∣∣∣∣∣ ≤
√

ln 2
δ′

2n
.

Then let δ′ = δ/|H|, by union bound we have with probability 1− δ, for any h ∈ H,∣∣∣∣∣ED

[∑
a∈A

u(a, y) · b(h(x),a)

]
− ÊD

[∑
a∈A

u(a, y) · b(h(x),a)

]∣∣∣∣∣ ≤
√

ln 2|H|
δ

2n
.
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Finally we have with probability 1− δ, for any f ∈ ∆(H),∣∣∣∣∣EDEh∼f

[∑
a∈A

u(a, y) · b(h(x),a)

]
− ÊDEh∼f

[∑
a∈A

u(a, y) · b(h(x),a)

]∣∣∣∣∣
=

∣∣∣∣∣Eh∼f

[
ED

[∑
a∈A

u(a, y) · b(h(x),a)

]]
− Eh∼f

[
ÊD

[∑
a∈A

u(a, y) · b(h(x),a)

]]∣∣∣∣∣
=

∣∣∣∣∣Eh∼f

[
ED

[∑
a∈A

u(a, y) · b(h(x),a)

]
− ÊD

[∑
a∈A

u(a, y) · b(h(x),a)

]]∣∣∣∣∣
≤ Eh∼f

[∣∣∣∣∣ED

[∑
a∈A

u(a, y) · b(h(x),a)

]
− ÊD

[∑
a∈A

u(a, y) · b(h(x),a)

]∣∣∣∣∣
]

≤ Eh∼f


√

ln 2|H|
δ

2n

 =

√
ln 2|H|

δ

2n
.

Theorem H.2. Fix a finite-size class of deterministic predictors H. For any distribution D, let
D ∼ Dn be a dataset consisting of n samples (x(i), y(i)) sampled i.i.d. from D. Then for any
δ ∈ (0, 1), with probability 1− δ, for every f ∈ ∆(H), i ∈ [N ], j ∈ [d], ai ∈ Ai we have∣∣∣EDEh∼f [(yj − h(x)j) · bi(h(x), ai)]− ÊDEh∼f [(yj − h(x)j) · bi(h(x), ai)]

∣∣∣
≤

√
8 ln 2|H|Ndm

δ

n
.

Proof. For any (x, y) ∼ D, i ∈ [N ], j ∈ [d], observe that (yj − h(x)j) · bi(h(x), ai) ∈ [−2, 2]. By
Hoeffding’s inequality, we have for any h ∈ H, for any δ′ ∈ (0, 1) with probability 1− δ′, we have∣∣∣ED[(yj − h(x)j) · bi(h(x), ai)]− ÊD[(yj − h(x)j) · bi(h(x), ai)]

∣∣∣ ≤
√

8 ln 2
δ′

n
.

Then let δ′ = δ/(|H|Ndm), by union bound we have with probability 1−δ, for any h ∈ H, i ∈ [N ]
and j ∈ [d] and ai ∈ Ai∣∣∣ED[(yj − h(x)j) · bi(h(x), ai)]− ÊD[(yj − h(x)j) · bi(h(x), ai)]

∣∣∣ ≤
√

8 ln 2|H|Ndm
δ

n
.

Finally we have with probability 1− δ, for any f ∈ ∆(H),∣∣∣E(x,y)∼DEh∼f [(yj − h(x)j) · bi(h(x), ai)]− ÊDEh∼f [(yj − h(x)j) · bi(h(x), ai)]
∣∣∣

=
∣∣∣Eh∼f

[
E(x,y)∼D[(yj − h(x)j) · bi(h(x), ai)]

]
− Eh∼f

[
ÊD[(yj − h(x)j) · bi(h(x), ai)]

]∣∣∣
=
∣∣∣Eh∼f

[
E(x,y)∼D[(yj − h(x)j) · bi(h(x), ai)]− ÊD[(yj − h(x)j) · bi(h(x), ai)]

]∣∣∣
≤ Eh∼f

[∣∣∣E(x,y)∼D[(yj − h(x)j) · bi(h(x), ai)]− ÊD[(yj − h(x)j) · bi(h(x), ai)]
∣∣∣]

≤ Eh∼f


√

8 ln 2|H|Ndm
δ

n

 =

√
8 ln 2|H|Ndm

δ

n
.

Now we are ready to prove Lemma 3.2.
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Lemma 3.2. We have |LD(f, λ)− LD(f, λ)| ≤
√

ln
|4H|

δ

2n +C

√
8 ln

4|H|Ndm
δ

n for all f ∈ ∆(H), λ ∈
Λ with probability 1− δ.

Proof. This is straightforward from Theorem H.1 and Theorem H.2, we split the budget to δ/2,

LD(f, λ)− LD(f, λ)

=− Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)] +−Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)]

+
∑

s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ai
s(EfED[(h(x)j − yj) · bi(h(x), ai)]− γ)

−
∑

s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ai
s(EfED[(h(x)j − yj) · bi(h(x), ai)]− γ)

Therefore,

|LD(f, λ)− LD(f, λ)|

≤

∣∣∣∣∣Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)]− Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)]

∣∣∣∣∣+ ∑
s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ais|EfED[(h(x)j − yj) · bi(h(x), ai)]− EfED[(h(x)j − yj) · bi(h(x), ai)]|

≤

√
ln |4H|

δ

2n
+ C

√
8 ln 4|H|Ndm

δ

n
.

Finally we are ready to prove Theorem 3.1.
Theorem 3.1. Suppose PerDecCal runs for T = O(log(Nmd)/ϵ4) rounds and is given a dataset
D drawn i.i.d. from D of size n ≥ O( log(|H|Ndm/δ)

ϵ4 ). With probability at least 1 − δ, the output
predictor f̂ that satisfies

1. DecCE(f̂) ≤ γ + ϵ.

2. Suppose the receivers play strict best response to f̂ . Then the receivers obtain swap regret
bounded by 2mL(γ + ϵ). The sender achieves ϵ-optimal utility:

Eh∼fED[u(a, y) · b(h(x),a)] ≥ OPT(H,D, γ)− ϵ.

Proof. The regret bound of Hedge algorithm is O(C
√
T logNmd), and the best response of f give

non-positive regret. From Lemma H.1 and T = O(log(Nmd/δ)/ϵ4), we have that (f̂ , λ̄) is an ε/4-
approximate equilibrium under LD(f, λ). From Lemma 3.2, we know that with probability 1 − δ,
∀f ∈ ∆(H), λ ∈ Λ,

|LD(f, λ)− LD(f, λ)| ≤

√
ln |4H|

δ

2n
+ C

√
8 ln 4|H|Ndm

δ

n
.

Therefore, let f ′ = argminf∈∆(H) LD(f, λ̄)

LD(f̂ , λ̄)− LD(f
′, λ̄) ≤ LD(f̂ , λ̄)− LD(f̂ , λ̄) + LD(f̂ , λ̄)− LD(f ′, λ̄) + LD(f ′, λ̄)− LD(f

′, λ̄)

≤ ϵ/2 + 2

√
ln |4H|

δ

2n
+ 2C

√
8 ln 4|H|Ndm

δ

n
.

Similarly, we can prove that

max
λ∈Λ

LD(f̂ , λ)− LD(f̂ , λ̄) ≤ ϵ/4 + 2

√
ln |4H|

δ

2n
+ 2C

√
8 ln 4|H|Ndm

δ

n
.
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Therefore, (f̂ , λ̄) is an ϵ/4+2

√
ln

|4H|
δ

2n +2C

√
8 ln

4|H|Ndm
δ

n -approximate equilibrium for the payoff
LD(f, λ) under the true distribution D. When n ≥ O( log(|H|Ndm)

ϵ4 ), we have (f̂ , λ̄) is a ϵ/2-
approximate equilibrium under the true distribution D. Then, by Lemma 3.1, and the choice of C,
we have

DecCE(f̂) ≤ γ +
1 + ϵ

C
≤ γ +

1 + ϵ

2/ϵ
≤ γ +

2

2/ϵ
= γ + ϵ,

and
Eh∼fED[u(a, y) · b(h(x),a)] ≥ OPT(H,D, γ)− ϵ.

Finally by Theorem 2.1, the receivers who play η-quantal response obtain the stated swap regret
bound.

I MISSING PROOFS IN SECTION 4

Lemma 4.1. Consider a randomized predictor f ∈ ∆(HALL) where HALL = {h : X → Y} is
the class of all possible deterministic predictors. There exists a distribution Qf ∈ ∆(Y) such that
for any v ∈ Y , Qf (v) = Prh∼f,(x,y)∼D[h(x) = v]. A distribution Q ∈ ∆(Y) corresponds to the
distribution over posterior means induced by some signaling scheme if and only if it is the prediction
distribution Qf of a perfectly calibrated predictor f .

Proof. Fix any signaling scheme π : Y → ∆(S). Any context x′ ∈ X corresponds to a state
θx′ = E[y | x′] and hence corresponds to a distribution of signals. Any signal s ∈ S corresponds to
a posterior mean E[θx′ | s]. We define the mapping g : X → ∆(Y) such that

Pr[g(x) = E[θx′ | s]] = π(s | θx).
We have that for any s ∈ S

E[y | g(x) = E[θx′ | s]] =
∫
y

y · Pr[y | g(x) = E[θx′ | s]]dy

=

∫
y

y ·
(∫

x

Pr[y | x, s]dx
)
dy

=

∫
x

(∫
y

Pr[y | x, s]dy
)
dx

=

∫
x

E[y | x, s]dx

=

∫
x

θx Pr[x | s]dx

= E[θx′ | s]
Therefore, we can convert g to a randomized predictor f ∈ ∆(HALL) that is perfectly calibrated.

Now consider any randomized predictor f that is calibrated, i.e. we have that for any v ∈ Y
Eh∼fE(x,y)∼D[y − h(x) | h(x) = v] = 0.

Now consider a signaling scheme such that the signal set is Y and given any state θ = E[y | x],
it sends signal v ∈ Y with probability Prh∼f [h(x) = v | θ]. We have that for any signal v, the
posterior mean is

E[θ | v] = E[θ | h(x) = v]

= E[E[y | x] | h(x) = v]

= E[y | h(x)]
= v.

Lemma 4.2. For any randomized predictor f is perfectly decision calibrated, we can construct a
randomized predictor f ′ such that (i) f ′ is perfectly calibrated; (ii) the sender obtains the same
expected utility under f and f ′.
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Proof. Without loss of generality, we assume that for any a, event {b(h(x), a) = 1} happens with
non-zero probability, otherwise we could remove that action. Since f is perfectly decision calibrated,
we have

max
j∈[d]

max
a∈A

Eh∼fE(x,y)∼D[(yj − h(x)j) · b(h(x), a)] = 0.

Since Pr{b(h(x), a) = 1} > 0, equivalently, we have

Eh∼fE(x,y)∼D[h(x)− y|b(h(x), a) = 1] = 0.

For any a ∈ A, let f ′a := Eh∼fE(x,y)∼D[h(x)|b(h(x), a) = 1] Consider a post-processing function
p(h(x)) =

∑
a∈A b(h(x), a)f

′
a. Now we are ready to construct f ′, we let f ′ = p(f). Note that

f ′ only output at most m values, we only need to check the level sets of each f ′a. Also, the set
{y|b(y, a) = 1} is convex, therefore b(f ′a, a) = 1.

Eh∼f ′E(x,y)∼D[(yj − h(x)j) · 1(h(x) = f ′a)]

=Eh∼f ′E(x,y)∼D[(yj − h(x)j) · b(h(x), a)]
=Eh∼fE(x,y)∼D[(yj − p(h(x))j) · b(h(x), a)]

=Eh∼fE(x,y)∼D

yj − [∑
a′∈A

b(h(x), a)f ′a′

]
j

 · b(h(x), a)


=Eh∼fE(x,y)∼D[(yj − [b(h(x), a)f ′a]j) · b(h(x), a)]
=Eh∼fE(x,y)∼D[(yj · b(h(x), a)]− Eh∼fE(x,y)∼D[(h(x)j · b(h(x), a)]
=0.

Theorem 4.1. Given at least O( (ln(|H|dm/δ)
ϵ4 ) samples, with probability 1 − δ, PerDecCal

can output a predictor f̂ such that the expected sender’s utility under f̂ is no worse than
BayesOPT(µD,ΠH)−ϵ where we denote the optimal sender utility under our Bayesian persuasion
benchmark as BayesOPT(µD,ΠH).

Proof. By Theorem 3.1 we know that given any tolerance γ ≥ 0 and n ≥ O( ln(|H|dm/δ)
ϵ4 ), let

C = 2
ϵ , when PerDecCal runs for T = O(ln(Nmd)/ϵ4) rounds, with probability at least 1 − δ,

it outputs f̂ that satisfies

Eh∼fED[u(a, y) · b(h(x),a)] ≥ OPT(H,D, γ)− ϵ

≥ OPT(H,D, 0)− ϵ.

Note that OPT(H,D, 0) is the optimal sender utility achieved by the randomized predictors over
H that are perfectly decision calibrated, i.e. FDCAL(H). By Definition 4.2 and Lemma 4.2,
OPT(H,D, 0) is equal to the optimal sender utility achieved by the predictors in FCAL(H).

Then by Definition 4.2 and Lemma 4.1, OPT(H,D, 0) is equal to the optimal sender utility achieved
by the signaling schemes in ΠH, i.e. BayesOPT(µD,ΠH).

Putting all these together, we know that the sender’s expected utility under f̂ is greater than
BayesOPT(µD,ΠH)− ϵ.
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J ALGORITHM AND MISSING PROOFS IN SECTION 5

J.1 THE ALGORITHM FOR INFINITE HYPOTHESIS CLASS

Lagrangian and Minimax Game Similarly, we can introduce the Lagrangian and restrict the
Lagrangian variables to be bounded as follows:

min
f∈∆H

max
λ∈Λ

L̃D(f, λ) :=− Eh∼fED[
∑
a∈A

u(a, y) · b̃(h(x),a)]

+
∑

s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ai
s
(
EfED[(h(x)j − yj) · b̃i(h(x), ai)]− γ

)
.

(6)

Now we present our oracle efficient algorithm SmPerDecCal.

Algorithm 2 SmPerDecCal
Input: A set of samples D, ERM oracle ERM(D,λ), dual bound C and tolerance γ.

1: Initialize λ1 = C
2Nmd1.

2: for t = 1, · · · , T do
3: Learner best responds to λt:
4: Use the ERM oracle to compute ht = ERM(D,λt).
5: Auditor runs Hedge to obtain λt+1:
6: λt+1 = Hedge(c1:t) where ct(λs,i,j,ai) = λs,i,j,ais(ED[(ht(x)− y) · b̃(ht(x), a)]− γ).
7: end for

Output: Output f̂ = Uniform(h1, · · · , hT ).

J.2 MISSING PROOFS

We need the following technical lemmas before proving Theorem 5.1.
Lemma J.1 (Lipschitzness of single smoothed best response). For any i ∈ [N ], ai ∈ Ai, we have
that the function b̃i(·, ai) is 2ηL-Lipschitz in the L∞ norm.

Proof. For any z ∈ [−1, 1]d, for simplicity, we drop the subscript i. Let ga(z) ≜
exp(ηv(z, a)), G(z) ≜

∑
a′ exp(ηv(z, a′)). We have

∇z b̃(z, a) =
∇zga(z)

G(z)
− ga(z)∇zG(z)

G(z)2

=
ηga(z)

G(z)
∇zv(z, a)−

ηga(z)

G(z)

∑
a′

ga′(z)

G(z)
∇zv(z, a

′)

= ηb(z, a)∇zv(z, a)−
∑
a′

b(z, a′)∇zv(z, a
′).

Therefore for any z ∈ [−1, 1]d, we have∥∥∥∇z b̃(z, a)
∥∥∥
1
≤ ηb̃(z, a)

(
∥∇zv(z, a)∥1 +

∑
a′

b̃(z, a′)∥∇zv(z, a
′)∥1

)
≤ ηb̃(z, a)(L+ L) ≤ 2ηL.

By mean-value theorem we have that∣∣∣b̃(z, a)− b̃(z′, a)
∣∣∣ = ∣∣∣∣∫ 1

0

∇z b̃(z
′ + t(z − z′), a) · (z − z′)dt

∣∣∣∣
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≤ sup
t∈[0,1]

∥∥∥∇z b̃(z
′ + t(z − z′), a)

∥∥∥
1
∥z − z′∥∞

≤ 2ηL∥z − z′∥∞.

Lemma J.2 (Lipschitzness of joint smoothed best response). For any a ∈ A, the joint smoothed
best response b̃(·,a) satisfies that∑

a∈A

∣∣∣b̃(z,a)− b̃(z′,a)
∣∣∣ ≤ 2ηmNL∥z − z′∥∞.

Proof. For any predictions z, z′ ∈ [−1, 1]d and joint action a = (a1, · · · , aN ), denote bi(z, ai) as
ui(ai) and bi(z′, ai) as vi(ai)∑

a∈A
|b(z,a)− b(z′,a)|

=
∑
a∈A

∣∣∣∣∣∣
∏

i∈[N ]

ui(ai)−
∏

i∈[N ]

vi(ai)

∣∣∣∣∣∣
=
∑
a∈A

∣∣∣∣∣∣
∏

i∈[N ]

ui(ai)− v1(a1)

N∏
i=2

ui(ai) + v1(a1)

N∏
i=2

ui(ai)−
∏

i∈[N ]

vi(ai)

∣∣∣∣∣∣
=
∑
a∈A

∣∣∣∣∣(u1(a1)− v1(a1))

N∏
i=2

ui(ai) + v1(a1)

(
N∏
i=2

ui(ai)−
N∏
i=2

vi(ai)

)∣∣∣∣∣
=
∑
a∈A

∣∣∣∣∣(u1(a1)− v1(a1))

N∏
i=2

ui(ai) + v1(a1)(u2(a2)− v2(a2))

N∏
i=3

ui(ai)

+ v1(a1)v2(a2)

(
N∏
i=3

ui(ai)−
N∏
i=3

vi(ai)

)∣∣∣∣∣
...

=
∑
a∈A

∣∣∣∣∣∣
N∑
i=1

i−1∏
j=1

vj(aj)(ui(ai)− vi(ai))

N∏
j=i+1

uj(aj)

∣∣∣∣∣∣
(a)

≤ 2ηL∥z − z′∥∞
∑
a∈A

∣∣∣∣∣∣
N∑
i=1

i−1∏
j=1

vj(aj)

N∏
j=i+1

uj(aj)

∣∣∣∣∣∣
= 2ηL∥z − z′∥∞

∑
a∈A

N∑
i=1

i−1∏
j=1

vj(aj)

N∏
j=i+1

uj(aj)

= 2ηL∥z − z′∥∞
N∑
i=1

∑
a∈A

i−1∏
j=1

vj(aj)

N∏
j=i+1

uj(aj)

= 2ηL∥z − z′∥∞
N∑
i=1

∑
ai∈Ai

∑
a−i

i−1∏
j=1

vj(aj)

N∏
j=i+1

uj(aj)

(b)
= 2ηL∥z − z′∥∞

N∑
i=1

∑
ai∈Ai

1

= 2ηmNL∥z − z′∥∞
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where (a) holds because of Lemma J.1 and (b) holds because
∏i−1

j=1 vj(aj)
∏N

j=i+1 uj(aj) can be

viewed as the probability density function of a−i and then
∑

a−i

∏i−1
j=1 vj(aj)

∏N
j=i+1 uj(aj) =

1.

Lemma J.3. Fix a class of deterministic predictors H. For any distribution D, let D ∼ Dn be a
dataset consisting of n samples (x(i), y(i)) sampled i.i.d. from D. Then for any δ ∈ (0, 1), with
1− δ, for every f ∈ ∆(H), we have∣∣∣∣∣EDEh∼f

[∑
a∈A

u(a, y) · b̃(h(x),a)

]
− ÊDEh∼f

[∑
a∈A

u(a, y) · b̃(h(x),a)

]∣∣∣∣∣
≤ inf

ϵ>0

4ηmNLϵ+

√
ln 2N (H,d∞,ϵ)

δ

2n

.
Proof. Define Zh = |ED[

∑
a∈A u(a, y) · b̃(h(x),a)]− ÊD[

∑
a∈A u(a, y) · b̃(h(x),a)]|. For any

h1, h2 ∈ H, we have

|Zh1 − Zh2 | =

∣∣∣∣∣ED

[∑
a∈A

u(a, y) · b̃(h1(x),a)− b̃(h2(x),a))

]

− ÊD

[∑
a∈A

u(a, y) · (b̃(h1(x),a)− b̃(h2(x),a))

]∣∣∣∣∣
(a)

≤

∣∣∣∣∣ED

[∑
a∈A

u(a, y) · (b̃(h1(x),a)− b̃(h2(x),a))

]∣∣∣∣∣
+

∣∣∣∣∣ÊD

[∑
a∈A

u(a, y) · (b̃(h1(x),a)− b̃(h2(x),a))

]∣∣∣∣∣
(b)

≤ ED

[∑
a

∣∣∣(b̃(h1(x),a)− b̃(h2(x),a))
∣∣∣]

+ ÊD

[∑
a

∣∣∣(b̃(h1(x),a)− b̃(h2(x),a))
∣∣∣]

(c)

≤ 2ηmNL(ED[∥h1(x)− h2(x)∥∞] + ÊD[∥h1(x)− h2(x)∥∞])

(d)

≤ 4ηmNL sup
x∈X

∥h1(x)− h2(x)∥∞,

where (a) holds because of Triangle Inequality, (b) holds because of u(a, y) ≤ 1, (c) holds because
of Lemma J.2 and (d) holds by definition.

By Hoeffding’s inequality, fixing any h ∈ H, we have with probability 1− δ,

|Zh| ≤

√
ln 2

δ

2n
.

Then as a result of the standard covering number argument we conclude with probability 1 − δ for
any h ∈ H,

|Zh| ≤ 4ηmNLϵ+

√
ln 2N (H,d∞,ϵ)

δ

2n

where d∞(h1, h2) ≜ supx∈X ∥h1(x)− h2(x)∥∞.
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Lemma J.4. Fix a class of deterministic predictors H. For any distribution D, let D ∼ Dn be a
dataset consisting of n samples (x(i), y(i)) sampled i.i.d. from D. Then for any δ ∈ (0, 1), with
probability 1− δ, for every f ∈ ∆(H), i ∈ [N ], j ∈ [d], ai ∈ Ai we have∣∣∣EDEh∼f

[
(yj − h(x)j) · b̃i(h(x), ai)

]
− ÊDEh∼f

[
(yj − h(x)j) · b̃i(h(x), ai)

]∣∣∣
≤ inf

ϵ>0

8ηLϵ+

√
8 ln 2N (H,d∞,ϵ)Ndm

δ

n

.
Proof. Define Zh = ED[(yj − h(x)j) · b̃i(h(x), ai)] − ÊD[(yj − h(x)j) · b̃i(h(x), ai)]. For any
h1, h2 ∈ H, we have

|Zh1
− Zh2

| =

∣∣∣∣∣ED

[
(yj − h(x)j) · (b̃i(h1(x), ai)− b̃i(h2(x), ai))

]
− ÊD

[
(yj − h(x)j) · (b̃i(h1(x), ai)− b̃i(h2(x), ai))

]∣∣∣∣∣
(a)

≤
∣∣∣ED

[
(yj − h(x)j) · (b̃i(h1(x), ai)− b̃i(h2(x), ai))

]∣∣∣
+
∣∣∣ÊD

[
(yj − h(x)j) · (b̃i(h1(x), ai)− b̃i(h2(x), ai))

]∣∣∣
(b)

≤ 2
∣∣∣ED

[
b̃i(h1(x), ai)− b̃i(h2(x), ai))

]∣∣∣+ 2
∣∣∣ÊD

[
b̃i(h1(x), ai)− b̃i(h2(x), ai))

]∣∣∣
(c)

≤ 4ηL
(
|ED[∥h1(x)− h2(x)∥∞]|+

∣∣∣ÊD[∥h1(x)− h2(x)∥∞]
∣∣∣)

(d)

≤ 8ηL sup
x∈X

∥h1(x)− h2(x)∥∞

where (a) holds because of Triangle Inequality, (b) holds because of y, h(x) ∈ [−1, 1]d, (c) holds
because of Lemma J.1 and (d) holds by definition.

By Hoeffding’s inequality, fixing and h ∈ H, we have with probability 1− δ,

|Zh| ≤

√
8 ln 2

δ

n
.

Then as a result of the standard covering number argument we conclude with probability 1− δ′ for
any h ∈ H,

|Zh| ≤ 8ηLϵ+

√
8 ln 2N (H,d∞,ϵ)

δ′

n

where d∞(h1, h2) ≜ supx∈X ∥h1(x)− h2(x)∥∞.

Then let δ′ = δ/(Ndm), by union bound we have with probability 1 − δ, for any h ∈ H, i ∈ [N ]
and j ∈ [d] and ai ∈ Ai,

ED

[
(yj − h(x)j) · b̃i(h(x), ai)

]
−ÊD

[
(yj − h(x)j) · b̃i(h(x), ai)

]
≤ 8ηLϵ+

√
8 ln 2N (H,d∞,ϵ)Ndm

δ

n
.

Lemma J.5. With probability 1− δ, ∀f ∈ ∆(H), λ ∈ Λ,∣∣∣L̃D(f, λ)− L̃D(f, λ)
∣∣∣

≤ inf
ϵ>0

4η(mN + 2C)Lϵ+

√
ln 4N (H,d∞,ϵ)

δ

2n
+ C

√
8 ln 4N (H,d∞,ϵ)Ndm

δ

n

.
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Proof. This is straightforward from Lemma J.3 and Lemma J.4. First we have

L̃D(f, λ)− L̃D(f, λ)

=− Eh∼fED[
∑
a∈A

u(a, y) · b̃(h(x),a)] +−Eh∼fED[
∑
a∈A

u(a, y) · b̃(h(x),a)]

+
∑

s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ai
s
(
EfED[(h(x)j − yj) · b̃i(h(x), ai)]− γ

)

−
∑

s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ai
s
(
EfED[(h(x)j − yj) · b̃i(h(x), ai)]− γ

)
Therefore, by union bound with probability 1− δ,∣∣∣L̃D(f, λ)− L̃D(f, λ)

∣∣∣
≤

∣∣∣∣∣Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)]− Eh∼fED[
∑
a∈A

u(a, y) · b(h(x),a)]

∣∣∣∣∣+ ∑
s∈{+,−}

N∑
i=1

d∑
j=1

∑
ai∈Ai

λs,i,j,ai
s|EfED[(h(x)j − yj) · bi(h(x), ai)]− EfED[(h(x)j − yj) · bi(h(x), ai)]|

≤ inf
ϵ>0

4η(mN + 2C)Lϵ+

√
ln 4N (H,d∞,ϵ)

δ

2n
+ C

√
8 ln 4N (H,d∞,ϵ)Ndm

δ

n

.

Now we are ready to prove Theorem 5.1.
Theorem 5.1. Suppose SmPerDecCal runs for T = O(log(Nmd)/ϵ4) rounds and is given a

dataset D drawn i.i.d of size n ≥ O(ln
N (H,d∞, ϵ2

ηL )Ndm

δ /ϵ4). With probability at least 1 − δ, it
outputs f̂ that satisfies

1. SmDecCE(f̂) ≤ γ + ϵ.

2. Suppose the receivers play η-quantal response to f̂ . Then the receivers obtain swap regret
bounded by 2mL(γ + ϵ) + lnm+1

η . The sender achieves ϵ-optimal utility:

Eh∼fED

[
u(a, y) · b̃(h(x),a)

]
≥ OPT(H,D, γ)− ϵ.

Proof. The regret bound of the Hedge algorithm is O(C
√
T logNmd), and the ERM oracle

gives non-positive regret. From Lemma H.1 and T = O(log(Nmd)/ϵ4), we have that (f̂ , λ̄)
is an ε/4-approximate equilibrium under L̃D(f, λ). From Lemma J.5, we know that when n >

α(ϵ, δ, η,m, d,N,L) ≜ O(ln
N (H,d∞, ϵ2

ηL )Ndm

δ /ϵ4) with probability 1− δ, ∀f ∈ ∆(H), λ ∈ Λ,∣∣∣L̃D(f, λ)− L̃D(f, λ)
∣∣∣ ≤ ϵ

8
.

Therefore, let f ′ = argminf∈∆(H) LD(f, λ̄)

L̃D(f̂ , λ̄)− L̃D(f
′, λ̄) ≤L̃D(f̂ , λ̄)− L̃D(f̂ , λ̄)

+ L̃D(f̂ , λ̄)− L̃D(f ′, λ̄) + L̃D(f ′, λ̄)− L̃D(f
′, λ̄)

≤ ϵ

8
+
ϵ

4
+
ϵ

8
=
ϵ

2
.

Similarly, we can prove that
max
λ∈Λ

L̃D(f̂ , λ)− L̃D(f̂ , λ̄) ≤
ϵ

2
.
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Therefore, (f̂ , λ̄) is an ϵ/2-approximate equilibrium for the payoff LD(f, λ) under the true distribu-
tion D. Then, similar to Lemma 3.1, we have

DecCE(f̂) ≤ γ +
1 + ϵ

C
≤ γ +

1 + ϵ

2/ϵ
≤ γ +

2

2/ϵ
= γ + ϵ,

and
Eh∼fED[u(a, y) · b̃(h(x),a)] ≥ OPT(H,D, γ)− ϵ.

Finally by Theorem F.3, the receivers who play η-quantal response obtain the stated swap regret
bound.
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