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ABSTRACT

Neural networks are powered by an implicit bias: a tendency of gradient descent
to fit training data in a way that generalizes to unseen data. A recent class of neu-
ral network models gaining increasing popularity is structured state space models
(SSMs), regarded as an efficient alternative to transformers. Prior work argued that
the implicit bias of SSMs leads to generalization in a setting where data is gener-
ated by a low dimensional teacher. In this paper, we revisit the latter setting, and
formally establish a phenomenon entirely undetected by prior work on the implicit
bias of SSMs. Namely, we prove that while implicit bias leads to generalization
under many choices of training data, there exist special examples whose inclusion
in training completely distorts the implicit bias, to a point where generalization
fails. This failure occurs despite the special training examples being labeled by
the teacher, i.e. having clean labels! We empirically demonstrate the phenomenon,
with SSMs trained independently and as part of non-linear neural networks. In
the area of adversarial machine learning, disrupting generalization with cleanly
labeled training examples is known as clean-label poisoning. Given the prolifera-
tion of SSMs, particularly in large language models, we believe significant efforts
should be invested in further delineating their susceptibility to clean-label poison-
ing, and in developing methods for overcoming this susceptibility.

1 INTRODUCTION

Overparameterized neural networks can fit their training data in multiple ways, some of which gen-
eralize to unseen data, while others do not. Remarkably, when the training data is fit via gradient
descent (or a variant thereof), generalization tends to occur. This phenomenon—one of the greatest
mysteries in modern machine learning (Zhang et al. (2021); Chatterjee and Zielinski (2022))—is
often viewed as stemming from an implicit bias: a tendency of gradient descent, when applied to
neural network models, to fit training data in a way that complies with common data-generating
distributions. The latter view was formalized for several neural network models and data-generating
distributions (Soudry et al. (2018); Gunasekar et al. (2018); Razin et al. (2022); Neyshabur (2017)).

A recent class of neural network models gaining increasing popularity is structured state space mod-
els (SSMs). SSMs are often regarded as a computationally efficient alternative to transformers (Wang
et al. (2022)), and underlie prominent neural networks such as S4 (Gu et al. (2021)), Mamba (Gu
and Dao (2023)), LRU (Orvieto et al. (2023)), Mega (Ma et al. (2023)), S5 (Smith et al. (2023))
and more (Poli et al. (2023); Dao and Gu (2024)). The implicit bias of SSMs, i.e., of gradient
descent over SSMs, was formally studied in prior works, e.g. Emami et al. (2021); Cohen-Karlik
et al. (2022; 2023). Notable among these is Cohen-Karlik et al. (2023), which considered a setting
where data is generated by a low dimensional teacher SSM, and gradient flow (gradient descent
with infinitesimally small step size) applied to a high dimensional student SSM fits training data
comprising infinitely many sequences of a certain length.1 In this setting, the student SSM can fit
the training data in multiple ways, some of which generalize to sequences longer than those seen in
training, while others do not. It was shown in Cohen-Karlik et al. (2023) that under mild conditions,
an implicit bias leads to generalization.

1More precisely, the training data is formed from a continuous (Gaussian) distribution of sequences having
a certain length, all labeled by the teacher SSM.
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In this paper, we revisit the setting of Cohen-Karlik et al. (2023), with one key exception: rather
than training data comprising infinitely many sequences, we consider the realistic case where the
number of sequences is finite. Surprisingly, our theory and experiments reveal a phenomenon en-
tirely undetected by prior works on the implicit bias of SSMs. Namely, we find that while implicit
bias leads the student SSM to generalize under many choices of sequences to include in training,
there exist special sequences which if included in training completely distort the implicit bias, re-
sulting in the student SSM failing to generalize. This failure to generalize takes place despite the
fact that the special sequences are labeled by the teacher SSM, i.e. they have clean labels! In the
area of adversarial machine learning, the phenomenon of generalization being disrupted by training
instances with clean labels is known as clean-label poisoning, and received significant attention in
recent years, both empirically (Huang et al. (2020); Shafahi et al. (2018)) and theoretically (Suya
et al. (2021); Blum et al. (2021)). To our knowledge, the current paper is the first to formally prove
susceptibility of SSMs to clean-label poisoning.

Our theoretical analysis comprises two main results, which may be of independent interest. First, is
a dynamical characterization of gradient flow over an SSM, trained individually or as part of a non-
linear neural network. The dynamical characterization reveals that greedy low rank learning (Sun
et al. (2021); Li et al. (2020); Razin et al. (2021; 2022))—a sufficient condition for generalization
with a low dimensional teacher SSM—is implicitly induced under many, but not all, choices of
training sequences. Our second theoretical contribution builds on our dynamical characterization for
a fine-grained analysis of gradient flow over an SSM, employing an advanced tool from dynamical
systems theory: a non-resonance linearization theorem (Sell (1985)). The analysis proves that there
exist situations where: (i) training a student SSM on a collection of sequences labeled by a low
dimensional teacher SSM exhibits an implicit bias that leads to generalization; and (ii) adding to
the training set a single sequence, also labeled by the teacher SSM (i.e., that also has a clean label),
entirely distorts the implicit bias, to an extent where generalization fails.

We corroborate our theory via experiments, which demonstrate how adding a small amount of
cleanly labeled sequences to the training set of an SSM can completely ruin its generalization. In
light of the growing prominence of SSMs, particularly in the context of large language models, we
believe significant research efforts should be invested in further delineating their susceptibility to
clean-label poisoning, and in developing methods for overcoming this susceptibility.

2 PRELIMINARIES

2.1 NOTATIONS

We use non-boldface lowercase letters for denoting scalars (e.g., α ∈ R, d ∈ N), boldface lowercase
letters for denoting vectors (e.g., x ∈ Rd), and non-boldface uppercase letters for denoting matrices
(e.g., A ∈ Rd×d). For d ∈ N, we let: 1d be the all-ones vector of dimension d; 0d be the all-zeros
vector of dimension d; and [d] be the set {1, 2, . . . , d}. For d ∈ N and i ∈ [d], we denote by ei the
i’th standard basis vector (i.e., a vector holding one in entry i and zeros elsewhere) of dimension d,
where for simplicity the dimension is omitted from the notation and should be inferred from context.
Scalar series of finite lengths are identified with vectors.

2.2 STRUCTURED STATE SPACE MODELS

A structured state space model (SSM) of dimension d ∈ N is parameterized by three matrices:
A ∈ Rd,d, a state transition matrix, which conforms to a predefined structure (e.g. is constrained to
be diagonal); B ∈ Rd,1, an input matrix; and C ∈ R1,d, an output matrix. Given the values of A,
B and C, the SSM realizes a mapping ϕ(A,B,C)(·) that receives as input a length k scalar sequence
x ∈ Rk, for any k ∈ N, and produces as output a scalar y ∈ R equal to the last element of the series
y ∈ Rk defined through the following recursive formula:

sk′ = Ask′−1 +Bxk′ , yk′ = Csk′ , k
′ ∈ [k] , (1)

where (sk′ ∈ Rd)k′∈[k] is a sequence of states, and s0 = 0d. It is straightforward to show that
the mapping ϕ(A,B,C)(·) is fully determined by the sequence (CAk

′
B)∞k′=0, known as the impulse

response of the SSM. In particular, for any k ∈ N and x ∈ Rk:

y = ϕ(A,B,C)(x) = (CB,CAB,CA2B, . . . , CAk−1B)⊤x . (2)
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For convenience, we often identify an SSM with the triplet (A,B,C) holding its parameter matrices,
and regard the (single column) matrices B and C⊤ as vectors. Perhaps the most common form of
structure imposed on SSMs is diagonality (Gu et al. (2022); Gupta et al. (2022); Orvieto et al.
(2023); Ma et al. (2023); Gu and Dao (2023)). Accordingly, unless stated otherwise, we assume that
the state transition matrix A of an SSM is diagonal.

Some of our results will account for SSMs that are part of non-linear neural networks—or more
specifically, for SSMs whose output undergoes a transformation σ(· ,w), where: σ : R×W → R is
some differentiable mapping; W is some Euclidean space, regarded as a parameter space; and w ∈
W , regarded as a parameter vector. Given values for A, B, C and w, such a neural network realizes
the mapping ϕ(A,B,C),w(·) := σ(ϕ(A,B,C)(·),w). This architecture (namely, an SSM followed by a
parametric transformation) is ubiquitous among SSM-based neural networks, for example Gu et al.
(2021), Gupta et al. (2022), and Gu et al. (2022).

2.3 TEACHER-STUDENT SETTING

We consider the teacher-student setting of Cohen-Karlik et al. (2023), specified hereafter. Data is
labeled by a teacher SSM (A∗, B∗, C∗) of dimension d∗, i.e. the ground truth label of x ∈ Rk,
for any k ∈ N, is ϕ(A∗,B∗,C∗)(x) ∈ R. For some κ ∈ N, t̄ > 2d∗, we are given a training
set S comprising n labeled sequences of length κ, i.e. S := (x(i), y(i))ni=1 where x(i) ∈ Rκ and
y(i) = ϕ(A∗,B∗,C∗)(x

(i)) for every i ∈ [n]. A student SSM (A,B,C) of dimension d ∈ N, d > t̄, is
trained, i.e. optimized, by minimizing the square loss over S , referred to as the training loss:

ℓ(A,B,C;S) := 1

n

∑n

i=1

(
y(i) − ϕ(A,B,C)(x

(i))
)2

. (3)

Optimization is implemented via gradient flow, which is formally equivalent to gradient descent
with infinitesimally small step size (learning rate), and was shown to well-approximate gradient
descent so long as the step size is moderately small Elkabetz and Cohen (2021):

(Ȧ(t), Ḃ(t), Ċ(t)) = −∇ℓ(A(t), B(t), C(t);S) , t ∈ R>0 , (4)

where (Ȧ(t), Ḃ(t), Ċ(t)) := d
dt (A(t), B(t), C(t)), and (A(·), B(·), C(·)) is a curve representing

the optimization trajectory. Generalization of the student at time t ∈ R≥0 of optimization is mea-
sured by the extent to which ϕ(A(t),B(t),C(t))(·) approximates ϕ(A,B,C)(·), not only over input se-
quences of length κ as used for training, but of other lengths as well. This allows accounting not just
for in-distribution generalization as considered in classical machine learning theory (Shalev-Shwartz
and Ben-David (2014)), but for out-of-distribution generalization (extrapolation) as prevalent in
modern machine learning (Liu et al. (2021)). Formally, in line with Equation (2), generalization
is quantified through the first k entries of the student and teacher impulse responses, for different
values of k.
Definition 1. The generalization error of the student SSM over sequence length k is:

maxk′∈{0,1,...,k−1}
∣∣BAk′C −B∗(A∗)k

′
C∗∣∣ . (5)

Clearly, there exist assignments for (A,B,C) with which the training loss ℓ(·) is minimized (i.e.,
equals zero) and the student SSM perfectly generalizes over any sequence length k.2 On the other
hand, it was shown in Cohen-Karlik et al. (2023) that, regardless of the size of the training set S
and the input sequences it comprises (namely, (x(i))ni=1), there exist assignments for (A,B,C) with
which the training loss ℓ(·) is minimized and yet the student has arbitrarily high generalization error
over sequence lengths beyond κ, e.g. κ + 1 (for completeness, we prove this fact in Section A).
The latter two facts together imply that if minimization of the training loss ℓ(·) via gradient flow
(Equation (4)) produces an assignment for (A,B,C) with which the student SSM generalizes, it
must be a result of implicit bias. The main result in Cohen-Karlik et al. (2023) states that if the
training set S is infinite and each entry of each input sequence x(i) is independently drawn from
the standard normal distribution (in other words, if the training loss ℓ(·) is the expected value of
(y − ϕ(A,B,C)(x))

2, where the entries of x are independently drawn from the standard normal

2This is the case, for example, if A, B and C are respectively attained by padding A∗, B∗ and C∗ with
zeros on the right and/or bottom.
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distribution and y = ϕ(A∗,B∗,C∗)(x)), then under mild conditions the implicit bias of gradient flow
is such that it convergences to a solution which generalizes over any sequence length k.

In this paper, we focus on the realistic case where the training set S is finite. Surprisingly, our theory
and experiments (Sections 3 and 4, respectively) will reveal a phenomenon completely undetected
by Cohen-Karlik et al. (2023), and any other work we are aware of on the implicit bias of SSMs.

3 THEORETICAL ANALYSIS

In this section we present our theoretical analysis. For streamlining the presentation, we embed defi-
nitions and assumptions in the body of the text (rather than placing them in dedicated environments).
Readers who wish to view a concentrated list of all assumptions underlying each theoretical result
are referred to Section B.

3.1 DYNAMICAL CHARACTERIZATION

In this subsection we derive a dynamical characterization of gradient flow over an SSM, trained
individually or as part of a non-linear neural network. The dynamical characterization will reveal
that greedy low rank learning (Arora et al. (2019); Li et al. (2020); Razin et al. (2021; 2022))—a
sufficient condition for generalization with a low dimensional teacher SSM—is implicitly induced
under many, but not all, choices of training sequences. Section 3.2 will build on the dynamical
characterization to prove that the implicit bias of SSMs can be poisoned with clean labels.

Our dynamical characterization applies to a setting more general than that laid out in Section 2.3.
Namely, it applies to the same setting, with two exceptions: (i) the student SSM is potentially
embedded in a non-linear neural network, i.e. the mapping ϕ(A,B,C)(·) is replaced by ϕ(A,B,C),w(·)
as defined in Section 2.2; and (ii) the training labels (y(i))ni=1 need not be assigned by a teacher
SSM, i.e. they may be arbitrary. We denote the resulting training loss—a generalization of ℓ(·)
defined in Equation (3)—by ℓ̃(·), namely:

ℓ̃(A,B,C,w;S) := 1

n

n∑
i=1

(
y(i) − ϕ(A,B,C),w(x(i))

)2
. (6)

Proposition 1 below establishes our dynamical characterization—equations of motion for the (diag-
onal) entries of A during gradient flow over ℓ̃(·).
Proposition 1. Consider optimization of the generalized loss ℓ̃(·) defined in Equation (6) via gradi-
ent flow, namely:

(Ȧ(t), Ḃ(t), Ċ(t), ẇ(t)) = −∇ℓ̃(A(t), B(t), C(t),w(t);S) , t ∈ R>0 , (7)

where (Ȧ(t), Ḃ(t), Ċ(t), ẇ(t)) := d
dt (A(t), B(t), C(t),w(t)), and (A(·), B(·), C(·),w(·)) is a

curve representing the optimization trajectory. For j ∈ [d], denote by aj(·) the j’th diagonal entry
of A(·), by bj(·) the j’th entry of B(·), and by cj(·) the j’th entry of C(·). Assume that the training
sequence length κ is greater than or equal to two. For l ∈ [κ] and i ∈ [n], denote the l’th entry of
the i’th training sequence x(i) by x(i)l . Then:

ȧj(t) :=
d
dtaj(t) = bj(t)cj(t)

κ−2∑
l=0

γ(l)(t) · aj(t)l , j ∈ [d], t ∈ R>0 , (8)

where:

γ(l)(t) := 2(l+1)
n

n∑
i=1

δ(i)(t)ξ(i)(t)x
(i)
κ−l−1 , (9)

with:

δ(i)(t) := y(i) − ϕ(A(t),B(t),C(t)),w(t)(x
(i)) , (10)

ξ(i)(t) := ∂
∂zσ(z,w(t))

∣∣
z=ϕ(A(t),B(t),C(t)),w(t)(x(i))

. (11)

Proof sketch (proof in Section C). The desired result readily follows from differentiation of ℓ̃(·)
(Equation (6)) with respect to each diagonal entry of A.
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Interpretation. Proposition 1 (Equations (8) to (11)) implies that during gradient flow, the motion
of aj(·)—the j’th diagonal entry of the state transition matrix A(·)—is given by a degree κ − 2
polynomial in aj(·), where the coefficients of the polynomial are time-varying. In particular, at time
t ∈ R>0 of optimization, the coefficient of the l’th power in the polynomial, for l ∈ {0, 1, . . . , κ−2},
is a product of two factors: (i) γ(l)(t), which depends on the power l but not on the entry j; and
(ii) bj(t)cj(t)—j’th entry of the input matrix B(·) times the j’th entry of the output matrix C(·)—
which does not depend on the power l but does depend on the entry j. Consider the case where A(·)
emanates from standard near-zero initialization (Glorot and Bengio (2010); He et al. (2015); Par-
nichkun et al. (2024)), i.e. where aj(0) ≈ 0 for all j. If the factor γ(0)(·) is small throughout—as is
the case, e.g., if the κ − 1’th entry of each training sequence x(i) is small (see Equation (9))—then
the constant term in the polynomial determining the motion of aj(·) is negligible. The dynamics of
(aj(·))dj=1 then exhibit greedy learning, similarly to the dynamics of various quantities in various
types of neural networks (Arora et al. (2019); Li et al. (2020); Razin et al. (2021; 2022)). Namely,
(aj(·))dj=1 all progress slowly at first, following near-zero initialization, and then, whenever an entry
reaches a critical threshold, it starts moving rapidly—see empirical demonstrations in Figure 2. The
greedy learning of (aj(·))dj=1 implies a greedy low rank learning of the state transition matrix A.
More specifically, it implies a tendency to fit training data with A having low rank, meaning a ten-
dency to generalize if data is generated by a low dimensional teacher SSM. In stark contrast, if the
training sequences (x(i))ni=1 are such that the factor γ(0)(·) is not small, then the polynomials deter-
mining the motions of (aj(·))dj=1 have non-negligible constant terms, and greedy low rank learning
will generally not take place—see empirical demonstrations in Figure 2 and Section F.1.

3.2 CLEAN-LABEL POISONING

Building on the dynamical characterization from Section 3.1, in this subsection we provide a fine-
grained analysis of gradient flow over an SSM. The analysis considers a teacher-student setting as
in Section 2.3, and proves existence of situations where: (i) training a student SSM on a collection
of sequences labeled by a low dimensional teacher SSM exhibits an implicit bias that leads to gen-
eralization; and (ii) adding to the training set a single sequence, also labeled by the teacher SSM
(i.e., that also has a clean label), entirely distorts the implicit bias, to an extent where generalization
fails. To our knowledge, this constitutes the first formal proof of susceptibility of SSMs to clean
label poisoning. Facilitating our analysis is an advanced tool from dynamical systems theory—a
non-resonance linearization theorem—which may be of independent interest.

Hereinbelow we present our analysis in a basic setting, deferring more elaborate settings (all treated
similarly) to Section E. Suppose the teacher SSM has dimension d∗ = 2 and parameters:

A∗ =

(
1 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
. (12)

Suppose also that the state transition matrix of the student SSM A(·) emanates from standard near-
zero initialization (Glorot and Bengio (2010); He et al. (2015); Parnichkun et al. (2024)), and its
input and output matrices B(·) and C(·) are fixed at 1d and 1⊤

d , respectively. In this setting, a
sufficient condition for the student SSM to achieve low generalization error over all sequence lengths
(Definition 1) is that one of the diagonal entries of A(·) be close to one while the rest are close
to zero. Theorem 1 below shows that the latter sufficient condition for generalization is satisfied
under some choices of training sequences, and yet, despite the condition being mild, adding a single
sequence labeled by the teacher SSM (i.e., a single sequence that has a clean label) can entirely fail
generalization.
Theorem 1. Assume that the training sequence length and the dimension of the student SSM re-
spectively satisfy κ ∈ {7, 9, 11, . . .} and d ≥ 8. Let k ∈ N≥κ+2 and ϵ ∈ R>0. Then, for any n ∈ N,
there exist a training set S = (x(i), y(i))ni=1 (where, for every i ∈ [n], ∥x(i)∥∞ = 1), a labeled se-
quence (x†, y†) ∈ Rκ × R (where the entry of x† with largest absolute value is the second-to-last,
holding the value n1/2), and an open set I of initializations for the student SSM,3 such that, with
any initialization in I, the following holds:

• gradient flow converges to a point at which the training loss is minimal (i.e., equals zero)
and the generalization errors over sequences lengths 1, 2, . . . , k are no greater than ϵ; and

3That is, an open subset of the set of diagonal matrices in Rd,d.
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Figure 1: Illustration of the main ideas behind the proof of Theorem 1. See proof sketch for an annotation.

• if the labeled sequence (x†, y†) is appended to the training set S, gradient flow converges
to a point at which the training loss is minimal and the generalization error over sequence
length k is at least min{0.1, 1/(9d) · (1− (0.6)1/(κ−1))}.

Proof sketch (proof in Section D). Figure 1 illustrates the main ideas behind the proof. Below is a
description of these ideas, along with an annotation of the figure.

The proof shows that the student SSM admits low generalization error (over any sequence length)
when its state transition matrixA has a single (diagonal) entry close to one and the remaining entries
close to zero. That is, the set labeled “generalizing solutions” in Figure 1 comprises a neighborhood
of one-hot assignments for A. Using the dynamical characterization from Proposition 1, the proof
establishes that with a properly constructed training set S (namely, a training set S without se-
quences in which the last elements are relatively large4), if gradient flow emanates from standard
near-zero initialization, then it exhibits greedy low rank learning of A (see interpretation following
Proposition 1, as well as empirical demonstrations in Figure 2 and Section F.1), and accordingly
converges to a generalizing solution. Thus, under choices of I (set of initializations) close to the
origin, when training on S, a gradient flow trajectory emanating from I converges to the set of
generalizing solutions—as illustrated in Figure 1.

To analyze the behavior of gradient flow when training on S ∪ (x†, y†), the proof makes use of the
structure of x† (namely, the fact that its last elements are relatively large5) to show that greedy low
rank learning does not take place (see interpretation following Proposition 1, as well as empirical
demonstrations in Figure 2 and Section F.1). This allows identifying certain reference trajectories
that converge to non-generalizing solutions (one such reference trajectory is illustrated in Figure 1).
These reference trajectories emanate from initializations that cannot be included in I, since they
lead gradient flow to converge to non-generalizing solutions even when training on S. However, the
proof shows that I can comprise initializations near those of reference trajectories, since under such
choice of I, each of its initializations leads gradient flow to: (i) converge to a generalizing solution
when training on S; and (ii) closely track a reference trajectory when training on S ∪ (x†, y†),
resulting in convergence to a non-generalizing solution—as illustrated in Figure 1. This concludes
the proof.

The main technical challenge faced by the proof lies in item (ii) above, namely, in establishing that
when training on S ∪ (x†, y†), an initialization near that of a reference trajectory leads gradient flow
to closely track the reference trajectory. Since the training loss is non-convex, gradient flow tra-
jectories can diverge from one another exponentially fast. Establishing that a reference trajectory is
tracked thus requires sharp bounds on convergence times. The crux of the challenge is to derive such
bounds, as trajectories pass near saddle points, and a-priori, may not escape (the vicinities of) these
saddle points sufficiently fast. To show that saddle points are escaped swiftly, the proof employs
an advanced tool from dynamical systems theory which may be of independent interest: a non-
resonance linearization theorem (Sell (1985)). Namely, rather than directly analyzing trajectories in

4For simplicity, the proof considers S = {pi ·e1, pi}ni=1, where
∑n

i=1 p
2
i = n, but it is possible to account

for a much wider class of training sets—see Section E for details.
5The proof takes x† = n

1
2 eκ−1.
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Figure 2: Demonstration of the dynamical characterization derived in Proposition 1—optimization of an SSM,
trained individually or as part of a non-linear neural network, implicitly induces greedy learning of the (di-
agonal) entries of the state transition matrix A under some, but not all, choices of training sequences. First
(leftmost) plot shows the magnitudes of the entries of A throughout the iterations of gradient descent, in a case
where a student SSM of dimension d = 10 is trained individually on a training set labeled by a teacher SSM
of dimension d = 1, and the training set does not include “special” sequences, i.e. sequences in which the last
elements are relatively large. Second plot portrays the exact same scenario, except that special sequences are
included in the training set. Third and fourth plots adhere to the descriptions of first and second plots, respec-
tively, except that the student SSM is trained along with a successive multi-layer perceptron (non-linear neural
network), and the teacher SSM is followed by a (fixed) multi-layer perceptron. Notice that, with and without
a multi-layer perceptron, greedy learning takes place when special sequences are excluded, and does not take
place when they are included. For further details and experiments (including teachers of higher dimension) see
Sections F.1 and G.1.

the vicinity of a saddle point, the proof constructs linear approximations, and uses the non-resonance
linearization theorem to show that the linear approximations are sufficiently accurate, which in turn
implies that the trajectories escape the saddle point sufficiently fast. The non-resonance lineariza-
tion theorem requires the spectrum of the Hessian of the training loss to be free of certain algebraic
dependencies known as resonances. If these resonances are absent—which the proof shows to be
the case—the non-resonance linearization theorem provides guarantees on the accuracy of linear ap-
proximations that are far better than guarantees attainable via standard smoothness arguments.

4 EXPERIMENTS

This section presents experiments corroborating our theory. It is organized as follows. Section 4.1
demonstrates the dynamical characterization we derived (in Proposition 1), showcasing that opti-
mization of an SSM implicitly induces greedy low rank learning (a sufficient condition for general-
ization with a low dimensional teacher SSM) under some, but not all, choices of training sequences.
Section 4.2 then demonstrates the clean-label poisoning phenomenon we established (in Theorem 1),
by showing that adding a small amount of cleanly labeled sequences to the training set of an SSM
can completely ruin its generalization. Code for reproducing all of the experiments will be made
publicly available.

4.1 DYNAMICAL CHARACTERIZATION

As discussed in Section 3.1, the dynamical characterization in Proposition 1 (Equations (8) to (11))
implies that optimization of an SSM—trained individually or as part of a non-linear neural
network—implicitly induces greedy learning of the (diagonal) entries of the state transition ma-
trix A under some, but not all, choices of training sequences. For example, if the penultimate entry
of each training sequence is small then greedy learning takes place, and if these entries are not small
then greedy learning may not take place. Figure 2 clearly demonstrates this, for a standalone SSM as
well as one included in a non-linear neural network. Further experiments are reported in Section F.1.

4.2 CLEAN-LABEL POISONING

Theorem 1 proved existence of situations where clean-label poisoning of an SSM takes place, i.e. sit-
uations where: (i) training a student SSM on a collection of sequences labeled by a low dimensional
teacher SSM exhibits an implicit bias that leads to generalization; and (ii) adding to the training set
a sequence also labeled by the teacher SSM (i.e., that also has a clean label) entirely distorts the
implicit bias, to an extent where generalization fails. Table 1 demonstrates clean-label poisoning of
SSMs in three different settings: the setting of Theorem 1; an SSM setting beyond Theorem 1 (i.e.,
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an SSM setting that does not satisfy the assumptions of Theorem 1, e.g. it includes learning of the
input and output matricesB and C, respectively); and a setting where an SSM is part of a non-linear
neural network.

We further demonstrate clean-label poisoning of SSMs in a real-world (non-synthetic) setting. To
that end, we employ an adapted version of a method known as Gradient Matching (Geiping et al.,
2020) for generating cleanly labeled examples that poison (i.e., that disrupt generalization for) an
SSM-based S4 neural network (Gu et al., 2021) trained on the sequential MNIST dataset (Deng,
2012). In this experiment we do not have access to a teacher (i.e., to a ground truth labeling function),
and accordingly, a cleanly labeled poisonous example is generated from a given training example by
introducing human-imperceptible noise to the input sequence, while keeping the label intact. The
noise introduced for generating a cleanly labeled poisonous example has its last entries relatively
large, in line with our theory. After training with cleanly labeled poisonous examples as above, the
S4 neural network misclassifies preselected test instances—see Table 2.

We believe the susceptibility of SSMs to clean-label poisoning goes far beyond the demonstrations
herein. In light of the growing prominence of SSMs, particularly in the context of large language
models, further delineating this susceptibility, and developing methods for overcoming it, are of
prime importance.

Table 1: Demonstration of clean-label poisoning of SSMs in three different settings: the setting of Theorem 1;
an SSM setting beyond Theorem 1 (i.e., an SSM setting that does not satisfy the assumptions of Theorem 1,
e.g. it includes learning of the input and output matrices B and C, respectively); and a setting where an SSM
is part of a non-linear neural network, i.e. is followed by a multi-layer perceptron. In each setting, a high
dimensional student is trained until convergence (i.e., until the training loss is lower than 0.01), and data is
generated (i.e., sequences are labeled) by a low dimensional teacher of the same architecture as the student.
Reported are generalization errors (each averaged over 4 random seeds) for two training sets per setting: a
training set that does not include “special” sequences, i.e. sequences in which the last elements are relatively
large; and a training set that does include such sequences. In the first two settings (SSMs trained independently)
generalization errors are measured via impulse responses, as defined in Definition 1. In the third setting (SSM
trained as part of non-linear neural network) generalization errors are measured using a held-out test set. All
reported generalization errors were normalized (scaled) such that a zero mapping corresponds to a value of one.
Notice that across all settings, special training sequences significantly deteriorate generalization. For further
details and experiments (including teachers of higher dimension) see Sections F.2 and G.2.

Setting Without special sequences With special sequences

SSM per Theorem 1 1.34× 10−3 4.1× 10−2

SSM beyond Theorem 1 2.13× 10−1 24.66
SSM in non-linear neural network 2.92× 10−3 8.93× 10−2

5 RELATED WORK

SSMs can be viewed as a special case of linear dynamical systems (LDSs)—a classic object of study
in areas such as systems theory (Oppenheim et al. (1996)) and control theory (Sontag (1990)). The
problem of learning from data an SSM that admits in-distribution and out-of-distribution generaliza-
tion is an instance of what is known in the LDS literature as system identification (Simpkins (2012)).
Determination of whether a high dimensional SSM realizes a mapping that is also realizable by a
low dimensional SSM (in our context, these are a student and a teacher, respectively) is considered
in the LDS literature under the topic of minimal realization theory (Silverman (1971)). Despite these
connections, our work is clearly distinct from classic LDS literature: it studies the implicit bias of
gradient descent—a phenomenon brought to light by the recent rise of overparameterized neural
networks (Neyshabur (2017)).

Several recent works formally studied the implicit bias of gradient descent in the context of recurrent
neural networks (Lim et al. (2021); Emami et al. (2021); Cohen-Karlik et al. (2023))—a broad class
of models that includes SSMs. Some of these works, namely Emami et al. (2021); Cohen-Karlik
et al. (2023) focus specifically on SSMs, in particular Cohen-Karlik et al. (2023) which we extend
(by lifting the unrealistic assumption of infinite training data). However, to our knowledge, none of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Demonstration of clean-label poisoning of SSMs in a real-world (non-synthetic) setting. Each row in
the table summarizes an experiment using an adapted version of the Gradient Matching method for generat-
ing cleanly labeled examples that poison a four layer SSM-based S4 neural network trained on the sequential
MNIST dataset. Each cleanly labeled poisonous example is generated from a given training example by intro-
ducing human-imperceptible noise to the input sequence, while keeping the label intact. The noise introduced
for generating each cleanly labeled poisonous example has its last entries relatively large, in line with our the-
ory. The first column in the table specifies the number of test instances preselected for misclassification. The
second column indicates the percentage of cleanly labeled poisonous examples, i.e., of training examples sub-
ject to poisoning. The third and fourth columns present the number of test instances correctly classified before
and after poisoning, respectively. The fifth column reports the size of the last elements of the noise in poisonous
examples, quantified by the (Euclidean) norm of the last 3% of the elements in a noise sequence as a fraction
of the norm of the entire sequence, averaged across all poisonous examples. In all cases, the S4 neural network
achieved training accuracies exceeding 85%, with or without poisonous examples. For implementation details
see Section G.2.4.

# of test instances % poison Without poison With poison Last size
1 10 1 out of 1 0 out of 1 0.898
1 1 1 out of 1 0 out of 1 0.602
5 5 5 out of 5 0 out of 5 0.981
5 1 5 out of 5 0 out of 5 0.841
10 1 9 out of 10 1 out of 10 0.744

the prior works on the implicit bias of gradient descent over SSMs of recurrent neural networks have
formally established susceptibility to clean-label poisoning, as we do.

Since its demonstration in Shafahi et al. (2018), clean-label poisoning has received significant em-
pirical attention (Huang et al. (2020); Zhu et al. (2019); Aghakhani et al. (2021); Zhao et al. (2020)).
It was also studied theoretically for convex models in Suya et al. (2021); Blum et al. (2021).6 To the
best our knowledge, none of the prior works on clean-label poisoning have formally established the
phenomenon for SSMs, whose optimization results in a nonconvex objective.

We note that the vast majority of literature (theoretical and empirical) on clean-label poisoning per-
tains to classification problems, where the discontinuous nature of labels can be leveraged in favor of
poisoning (e.g., training examples close to true decision boundaries can be used to distort the learned
classifier’s decision boundaries). In contrast, our work pertains to regression problems, where, ar-
guably, the continuous nature of labels renders it more challenging to establish clean-label poison-
ing.

6 LIMITATIONS

While this paper provides meaningful contributions to the understanding of the implicit bias of SSMs
and of clean-label poisoning, it is important to acknowledge several of its limitations. First, while
Theorem 1—our theoretical result establishing susceptibility of SSMs to clean-label poisoning—is
extended in Section E, it is still an existence result that applies to specific settings. For example,
although it applies to a set of initializations that has positive volume, this volume may be low.
Moreover, although it allows the input and output matrices to be learned, their learning rates must
be small compared to that of the state transition matrix. Second, both Theorem 1 and our experi-
ments pertain to near-zero initialization, and while such initialization is generally standard for neural
networks (Glorot and Bengio (2010); He et al. (2015)), it does not account for modern SSM initial-
izations designed to alleviate vanishing gradients (Gu et al. (2020; 2022)). Third, due to vanishing
gradients—which result in long run times—all of our experiments have relatively low dimension for
the teacher SSM. Finally, while some of our theory treats SSMs trained as part of non-linear neural
networks, these non-linear neural networks do not account for various architectural features present
in modern SSM-based neural networks (e.g., multiple SSM layers as in S4 Gu et al. (2021), and

6Non-convex models were also studied theoretically, for example in Mahloujifar et al. (2019); Mahloujifar
and Mahmoody (2018); Gao et al. (2021), but these works considered a different type of poisoning, namely one
where training examples are replaced (rather than added).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

selectivity as in Mamba Gu and Dao (2023)). Addressing the above limitations is regarded as an
important set of directions for future research.

7 CONCLUSION

The proliferation of SSMs, particularly in large language models, renders it crucial to understand
their implicit bias. In this paper, we revisited prior beliefs by which the implicit bias of SSMs leads
to generalization when data is generated by a low dimensional teacher. We formally proved and
empirically demonstrated that, in stark contrast to these beliefs, there exist special examples whose
inclusion in training completely distorts the implicit bias, to a point where generalization with a low
dimensional teacher fails. This failure occurs despite the special training examples being labeled by
the teacher, i.e. having clean labels!

Our results suggest significant challenges in both the theory and practice of SSMs. On the theoretical
front, our results suggest that generalization in SSMs cannot be explained via the traditional view of
implicit complexity minimization (Yun et al. (2020); Soudry et al. (2018); Gunasekar et al. (2017)),
or through the nascent view by which generalization is typical (Mingard et al. (2021; 2023); Buzaglo
et al. (2024)). Indeed, if generalization in SSMs was due to the implicit bias finding a solution which,
among all solutions fitting training data, minimizes some (data-independent) complexity measure,
then training with additional cleanly labeled examples would not change the solution found, and thus
would not disrupt generalization.7 Moreover, if generalization in SSMs was due to typicality, i.e.,
to the majority of solutions fitting training data being ones that generalize, then additional cleanly
labeled training examples would only improve generalization, as they enhance the dominance of
such majority. We believe fundamentally new approaches may be needed in order to theoretically
pinpoint the source of generalization in SSMs.

Moving to the practical side, the fact that generalization in SSMs can be disrupted by cleanly labeled
training examples—i.e., that SSMs are susceptible to clean-label poisoning—raises significant con-
cerns regarding safety, robustness and reliability. For example, large language models, which are
becoming more and more reliant on SSMs (Glorioso et al. (2024); Pióro et al. (2024); Alonso et al.
(2024)), are often fine-tuned via supervised learning on public internet data (Le Scao et al. (2023);
Touvron et al. (2023); Lhoest et al. (2021)), and in this process, it may be easy for a malicious ac-
tor to add cleanly labeled training examples, e.g., by adding unlabeled training examples prior to
label generation. We believe significant research efforts should be invested in further delineating
the susceptibility of SSMs to clean-label poisoning, and in developing methods for overcoming this
susceptibility.
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A ZERO LOSS, NON EXTRAPOLATING STUDENTS

For completeness, we give a proof of Proposition 3 in Cohen-Karlik et al. (2023), which shows that
there exist student SSMs which generalize up to any given horizon k, but not up to a longer horizon.

Lemma 1. Assume d > κ, and let c > 0 and q > k. Then, for any teacher (A∗, B∗, C∗), there
exists a d dimensional student (A,B,C) such that its generalization error over sequences of length
k equals zero, and yet its generalization error over sequences of length q is > c.

Proof. LetA = Diag(λ1, . . . , λd). We first note that for any vector r ∈ Rd, the system of equations

(CAiB)0≤i≤d−1 = r

can be rewritten as V ⊤g = r, where

V =


1 λ1 λ21 · · · λd−1

1

1 λ2 λ22 · · · λd−1
2

...
...

...
. . .

...
1 λd λ2d · · · λd−1

d


and g = (b1c1, . . . , bdcd)

⊤. V is a Vandermonde matrix, and it is well known that it is invertible
as long as λ1,. . . ,λd are all distinct. Therefore for any such r, and fixed, distinct λ1,. . . ,λd, one can
solve the equation with g = (V T )−1r. To solve g = (V T )−1r, one can simply set B = 1d, C =
gT . To prove the claim, we choose r such that its first k entries coincide with (C∗(A∗)iB∗)0≤i≤k−1,
and its final d− k entries are > c.

B ASSUMPTIONS

For the convenience of the reader, we provide below a concentrated list of all assumptions underlying
each of our theoretical results.

Assumptions underlying Proposition 1:

• The structure imposed on the teacher and student SSMs is diagonality, i.e. their state tran-
sition matrices, A∗ and A, respectively, are constrained to be diagonal.

Assumptions underlying Theorem 1:

• The structure imposed on the teacher and student SSMs is diagonality, i.e. their state tran-
sition matrices, A∗ and A, respectively, are constrained to be diagonal.

• The teacher and student SSMs are not part of non-linear neural networks, i.e. their outputs
do not undergo a transformation σ(·,w) as described in Section 2.2.

• The teacher SSM has dimension d∗ = 2 and parameters:

A∗ =

(
1 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
,

and the training labels (y(i))ni=1 are assigned by the teacher.

• Throughout gradient flow, the input and output matrices of the student SSM (namely, B(·)
and C(·), respectively) are fixed at 1d and 1⊤

d , respectively.

C PROOF OF PROPOSITION 1

In this section we prove Proposition 1 by deriving equations of motion for each diagonal entry of
the state inequality matrix A.
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Proof. Fix t ≥ 0. We use the following shorthands for simplicity:

ϕ̃(x(i)) := ϕ(A(t),B(t),C(t)),w(t)(x
(i)), ϕ(x(i)) := ϕ(A(t),B(t),C(t))(x

(i))

The objective ℓ̃ in time t takes the following form:

ℓ̃((A(t), B(t), C(t))) =
1

n

n∑
i=1

(y(i) − ϕ̃(x(i)))2

Fix j ∈ [d]. Deriving w.r.t aj(t) and consecutively applying the chain rule we obtain the following

∂

∂aj(t)
ℓ̃((A(t), B(t), C(t))) =

1

n

n∑
i=1

∂

∂ϕ̃(x(i))
(y(i) − ϕ̃(x(i)))2 · ∂

∂aj(t)
ϕ̃(x(i)) =

=
2

n

n∑
i=1

(ϕ̃(x(i))− y(i)︸ ︷︷ ︸
=−δ(i)(t)

)
∂

∂aj(t)
σ
(
ϕ(x(i)),w(t)

)
=

= − 2

n

n∑
i=1

δ(i)(t)
∂

∂z
σ(z,w(t))|z=ϕ(x(i))︸ ︷︷ ︸

=ξ(i)(t)

∂

∂aj(t)
ϕ(x(i)) =

= − 2

n

n∑
i=1

δ(i)(t)ξ(i)(t)
∂

∂aj(t)

( κ∑
l=1

C(t)A(t)L−lB(t)x
(i)
l

)
= (∗)

Recalling thatA is diagonal, we have that C(t)A(t)κ−lB(t)x
(i)
l =

∑d
j′=1 cj′(t)aj′(t)

κ−lbj′(t)x
(i)
l .

Hence,

(∗) = − 2

n

n∑
i=1

δ(i)(t)ξ(i)(t)
∂

∂aj(t)

( κ∑
l=1

d∑
j′=1

cj′(t)aj′(t)
κ−lbj′(t)x

(i)
l

)
=

= − 2

n

n∑
i=1

δ(i)(t)ξ(i)(t)

( κ∑
l=1

(κ− l)cj(t)aj(t)
κ−l−1bj(t)x

(i)
l

)
= (∗∗)

Reversing the order of summation and reordering we receive the following:

(∗∗) = −cj(t)bj(t)
κ−2∑
l=0

aj(t)
l

( n∑
i=1

2(l + 1)

n
· δ(i)(t)ξ(i)(t)x(i)κ−l−1

)
The proof concludes by noting that ȧj(t) = − ∂

∂aj(t)
ℓ̃((A(t), B(t), C(t))).

D PROOF OF THEOREM 1

In this section we prove Theorem 1. The outline of the proof is as follows; Section D.1 details the
exact theoretical setting we consider. Section D.2 analyzes gradient flow over ℓ on a dataset without
”poisoned” samples, and we show that it converges to a generalizing solution . Section D.3 analyzes
gradient flow after the addition of ”poisoned” samples, showing that generalization is degraded.
Section D.4 proves that the different initialization sets considered in Section D.2 and Section D.3 in-
tersect, and that one can construct an open set I ⊆ Rd such that both phenomena occur. Section D.5
contains auxiliary theorems and lemmas used throughout the proof.

D.1 SETTING AND ADDITIONAL NOTATIONS

We will slightly change our notation and use L to denote the sequence length, and k as an index.
For any x ∈ Rd and any r ≥ 0 we use Br(x) to denote

Br(x) := {z ∈ Rd : ∥x− z∥2 < r} (13)
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and Br(x) to denote

Br(x) := {z ∈ Rd : ∥x− z∥2 ≤ r} (14)

For any x ∈ Rd and any V ⊆ Rd we define the Euclidean distance between x and V as

Dist(x,V) := min
z∈V

∥x− z∥2 (15)

We use W1 and W2 to respectively denote

W1 := span{1d}, W2 := span{e1 − e2, . . . , e1 − ed} (16)

Note that for any j ∈ {2, . . . , d} it holds that

1⊤
d (e1 − ej) = 1− 1 = 0

Hence W1 and W2 are orthogonal. Additionally, it holds that

W1 ∩W2 = {0d}, dimW1 = 1, dimW2 = d− 1

hence W1 ∪W2 = Rd. Finally, for any ψ ≥ 0 we use Diff(ψ) to denote

Diff(ψ) :=
{
x ∈ Rd : ∀i, j ∈ [d], |xi − xj | ≤ ψ

}
(17)

and Diff(ψ)C to denote

Diff(ψ)C :=

{
x ∈ Rd : ∃i, j ∈ [d] s.t. |xi − xj | > ψ

}
(18)

Recall that the teacher SSM (Equation (12)) is given by (A∗, B∗, C∗), where

A∗ =

(
1 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
.

We claim that the teacher is equivalent, i.e. has the same impulse response, as a d-dimensional SSM
with Ad = Diag(1, 0, ..., 0), Bd = 1d, C

d = 1⊤
d .

Proposition 2. For all i ≥ 0

C∗(A∗)iB∗ = Cd(Ad)iBd

Proof. It is easy to see that both expressions evaluate to d when i = 0, and to 1 when i ≥ 1.

We will henceforth abuse notation slightly and redefine the teacher (A∗, B∗, C∗) to equal this d
dimensional teacher, i.e. we set A∗ := Ad, B∗ := Bd, C∗ := Cd.

We denote the generalization error on sequences of length L (Definition 1) by GenL(A), i.e.

GenL(A) := maxL′∈{0,1,...,L−1}
∣∣BAL′

C −B∗(A∗)L
′

C∗∣∣ .
note that B,C are kept implicit in this notation, as they are fixed to the values B = 1d, C = 1⊤

d
throughout our analysis.

We will prove a slightly more general claim than the one appearing in the main text (Theorem 1):
Theorem 2. Assume that the training sequence length and the dimension of the student SSM re-
spectively satisfy L ∈ {7, 9, 11, . . .} and d ≥ 8. Let L

′ ∈ N≥L+2 and ϵ ∈ R>0. Then for any
n < m ∈ N, there exist training sets S1 ⊆ S2 with |S1| = n, |S2| = m and

∀i ∈ [n], ∥x(i)∥∞ = pi, ∀i ∈ [m] \ [n], x(i)
L−1 = qi,

∑
i∈[n]

p2i =
∑

i∈[m]\[n]

q2i

for some p1, . . . , pn, qn+1, . . . , qm ∈ R, and an open set I of initializations for the student SSM,8
such that, with any initialization in I, the following holds:

8That is, an open subset of the set of diagonal matrices in Rd,d.
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• under S1 gradient flow converges to a point, which we denote Â1, at which the training
loss is minimal (i.e., equals zero) and GenL′ (Â1) ≤ ϵ.

• Under S2 gradient flow converges to a point, which we denote Â2, at which the training
loss is minimal and GenL′ (Â2) ≥ min{0.1, 1

9d · (1− (0.6)
1

L−1 )}.

One recovers the original statement by taking m = n + 1, S1 = S, S2 = S ∪ (x†, y†), pi = 1 for
all i ∈ [n] and qn+1 = n

1
2 .

Examining the teacher weights (A∗, B∗, C∗), one can note that for any j ∈ [L − 1] and any z ∈ R
it holds that

ϕ(A∗,B∗,C∗)(z · ej) =
d∑
k=1

c∗k(a
∗
k)
L−jb∗kz = 1 · 1L−j · 1 · z + 0 · z = z

Definition 2. The datasets S1,S2 are defined as follows:
S1 := {(pie1, ϕ(A∗,B∗,C∗)(pie1))}ni=1 = {(pie1, pi)}ni=1

S2 := S1 ∪ {(qieL−1, ϕ(A∗,B∗,C∗)(qieL−1))}m−n
i=1 = S1 ∪ {(qieL−1, qi)}m−n

i=1

where {pi}ni=1 and {qi}m−n
i=1 are real numbers such that P :=

∑n
i=1 p

2
i =

∑m−n
i=1 q2i > 0.

The objective ℓ(·;S1) takes the following form:

ℓ(A;S1) =
1

n

n∑
i=1

(ϕ(A∗,B∗,C∗)(pie1)− ϕ(A,B,C)(pie1))
2 = (19)

=
1

n

n∑
i=1

(pi −
d∑
k=1

aL−1
k pi)

2 =
1

n

n∑
i=1

p2i (1−
d∑
k=1

aL−1
k )2 = (20)

=
P

n
(1−

d∑
k=1

aL−1
k )2 (21)

For any time t ≥ 0 and any index j ∈ [d] the gradient flow update ȧj(t;S1) takes the following form

ȧj(t;S1) = − ∂

∂aj(t;S1)
ℓ(A(t;S1);S1) = (22)

= 2(L− 1)
P

n
(1−

d∑
k=1

ak(t;S1)
L−1)aj(t;S1)

L−2 (23)

The objective ℓ(·;S2) takes the following form:

ℓ(A;S2) =
1

m

n∑
i=1

(ϕ(A∗,B∗,C∗)(pie1)− ϕ(A,B,C)(pie1))
2+ (24)

+
1

m

m−n∑
i=1

(ϕ(A∗,B∗,C∗)(qieL−1)− ϕ(A,B,C)(qieL−1))
2 = (25)

=
1

m

n∑
i=1

(pi −
d∑
k=1

aL−1
k pi)

2 +
1

m

m−n∑
i=1

(qi −
d∑
k=1

akqi)
2 = (26)

=
P

m

(
(1−

d∑
k=1

aL−1
k )2 + (1−

d∑
k=1

ak)
2

)
(27)

For any time t ≥ 0 and any index j ∈ [d] the gradient flow update ȧj(t;S2) takes the following form

ȧj(t;S2) = − ∂

∂aj(t;S2)
ℓ(A(t;S2);S2) = (28)

=
2P

m

(
(L− 1)(1−

d∑
k=1

ak(t;S2)
L−1)aj(t;S2)

L−2 + (1−
d∑
k=1

ak(t;S2))

)
(29)
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Note that by Lemma 24 the above flows are defined for all t ≥ 0. We denote by I0 a set of initial
values for the matrix A which we will use throughout the proof:9:

I0 :=

{
α · (ζ1, . . . , ζd)⊤ ∈ Rd : α ∈ (0,

1

2d
), 1 = ζ1 > ζ2 > · · · > ζd > 0

}
(30)

Throughout Section D.2 and Section D.3 we will be concerned with subsets of I0 for which the
respective claims hold.

D.2 GRADIENT FLOW UNDER S1 GENERALIZES

Throughout this part, we omit the dependence on S1 for simplicity. We begin by proving that when
initializing at some A(0) ∈ I0, the parameters of A converge to a point where the training loss
equals zero:
Lemma 2. Suppose we initialize at A(0) ∈ I0 and evolve A(t) according to the gradient flow
dynamics in Equation (19). Then the limit limt→∞A(t) =: Â1 exists and satisfies

ℓ(Â1) = 0

Proof. We first prove that for any j ∈ [d] and for any time t ≥ 0 it holds that

αζj ≤ aj(t) ≤ 1

Recall that

ȧj(t) = 2(L− 1)
P

n
(1−

d∑
k=1

ak(t)
L−1)aj(t)

L−2

Hence, by Equation (30) it must hold that ȧj(t) ≥ 0 for any t ≥ 0 - It holds that αζj > 0 and since
L− 1 is even we have

1−
d∑
k=1

(αζk)
L−1 ≥ 1− d · (αζ1)L−1 ≥ 1− d(

1

2d
)L−1 > 0

Hence at time t = 0 we have ȧj(0) > 0. For any t > 0, if the derivative equals zero then either
1 −

∑d
k=1 ak(t)

L−1 = 0 or aj(t) = 0, implying the derivative must remain equal to zero for
t
′
> t. Hence, αζj ≤ aj(t) for any t ≥ 0. Additionally, for any time t ≥ 0 it holds that 1 −∑d
k=1 ak(t)

L−1 ≥ 0 - at initialization it is positive by the above, and again if at some point it is
equals zero then it must remain zero thereafter. Therefore, aj(t) can never reach 1 - since L − 1
is even and since all entries are strictly positive, if it were to reach or cross 1 we would reach a
contradiction to the previous argument. Thus, we have showed that the gradient flow trajectory is
contained in the following open and bounded set:

V = Bd(0d) \Bαζd
2

(0d)

Note that the teacher A∗ is within V . Next, we claim that within V the objective ℓ satisfies the PL
condition (see Definition 13) with PL coefficient 1

n ·2(L−1)2P ( αζd
2
√
d
)2L−4 - indeed, for any A ∈ V

and any j ∈ [d] it holds that

∂

∂aj
ℓ(A) = 2(L− 1)

P

n
(1−

d∑
k=1

aL−1
k )aL−2

j

For any A ∈ V there must exist an index j∗ ∈ [d] for which |aj∗ | ≥ αζd
2
√
d

and thus

∥∇ℓ(A)∥22 ≥
(
2(L− 1)

P

n
(1−

d∑
k=1

aL−1
k )aL−2

j∗

)2

=
4(L− 1)2Pa2L−4

j∗

n
ℓ(A) ≥

≥ 2 ·
2(L− 1)2P ( αζd

2
√
d
)2L−4

n
ℓ(A)

9A is a diagonal matrix , so we treat I0 as a subset of Rd.
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Finally, there exists some constant M > 0 such that within V the objective ℓ has M -Lipschitz
gradients, since ℓ is analytic in Rd and since V is contained within the compact and boundedBd(0d).
The above conditions allows us to invoke Lemma 26 which states that the limit limt→∞A(t) =: Â1

exists and satisfies ℓ(A(t)) = 0 as required.

We now introduce a set I1 ⊆ I0, under which we prove the rest of the claims in this section:
Definition 3. Let η > 0. We use I1(η1) to denote the following subset of I0:

I1(η) :=
{
A ∈ I0 : ∀j ∈ {2, . . . , d}. α ≤ (

1− (1− η)L−1 − η
√

n
P

d− 1
)

1
L−1

1

ζj
(1− ζL−3

j )
1

L−3

}
We now prove that if A(0) ∈ I1, the first diagonal entry tends to 1, while the rest of the entries must
remain close to 0:
Proposition 3. Let η1 > 0. Suppose we initialize at A(0) ∈ I1(η1) and evolve A(t) according to
the gradient flow dynamics in Equation (19). For any j ∈ {2, . . . , d} and for any time t ≥ 0 it holds
that:

0 ≤ aj(t) ≤ (
1− (1− η1)

L−1 − η1
√

n
P

d− 1
)

1
L−1

Additionally, there exists some time t∗ ≥ 0 such that for any time t ≥ t∗ it holds that:

1− η1 ≤ a1(t) ≤ 1

Proof. Per the proof of Lemma 2, ȧj(t) ≥ 0 for any j ∈ [d] and t ≥ 0 and thus the entries aj(t) are
positive and non-decreasing (as functions of t). Reordering the dynamics, we have the following for
any j ∈ {2, . . . , d} and for any time τ ≥ 0:

ȧj(τ)aj(τ)
−L+2 =

ȧj(τ)

aj(τ)L−2
= 2(L− 1)

P

n
(1−

d∑
k=1

ak(τ)
L−1) =

ȧ1(τ)

a1(τ)L−2
= ȧ1(τ)a1(τ)

−L+2

Integrating both sides w.r.t time, we receive the following for any time t ≥ 0:

aj(t)
−L+3

−L+ 3
− aj(0)

−L+3

−L+ 3
=

∫ t

0

ȧj(τ)aj(τ)
−L+2dτ =

=

∫ t

0

ȧ1(τ)a1(τ)
−L+2dτ =

a1(t)
−L+3

−L+ 3
− a1(0)

−L+3

−L+ 3

Organizing the equation and plugging the initial values, we get that

aj(t)
−L+3 = a1(t)

−L+3 + (αζj)
−L+3 − α−L+3

Both sides are positive by our first argument and since αζj < α, and so taking the 1
L−3 root yields

aj(t) =

(
1

a1(t)−L+3 + (αζj)−L+3 − α−L+3

) 1
L−3

≤
(

1
1

(αζj)L−3 − 1
αL−3

) 1
L−3

=

=

(
(αζj)

L−3

1− ζL−3
j

) 1
L−3

= αζj

(
1

1− ζL−3
j

) 1
L−3

= (∗)

Since A(0) ∈ I1(η1), we obtain that

aj(t) ≤ (
1− (1− η1)

L−1 − η1
√

n
P

d− 1
)

1
L−1

1

ζj
(1− ζL−3

j )
1

L−3 ζj

(
1

1− ζL−3
j

) 1
L−3

=

= (
1− (1− η1)

L−1 − η1
√

n
P

d− 1
)

1
L−1

as desired. We Now show that there exists t∗ ≥ 0 such that for any time t ≥ t∗ it holds that

a1(t) ≥ 1− η1
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By Lemma 2, there exists time t∗ ≥ 0 such that for any t ≥ t∗ it holds that

ℓ(A(t)) =
P

n
(1−

d∑
k=1

ak(t)
L−1)2 ≤ η21

Therefore, for any time t ≥ t∗ we have

|1−
d∑
k=1

ak(t)
L−1| ≤ η1

√
n

P
=⇒ 1− η1

√
n

P
≤

d∑
k=1

ak(t)
L−1 ≤ 1 + η1

√
n

P

Focusing on the left hand side and plugging the bound on the rest of the entries, we receive

1− η1

√
n

P
≤ a1(t)

L−1 + (d− 1) ·
1− (1− η1)

L−1 − η1
√

n
P

d− 1
=

= a1(t)
L−1 + 1− (1− η1)

L−1 − η1

√
n

P

Rearranging yields

(1− η1)
L−1 ≤ a1(t)

L−1 =⇒ 1− η1 ≤ a1(t)

Additionally, a1(t) can never cross 1 - since L− 1 is even and since all entries are strictly positive,
if it were to cross 1 we would reach a contradiction to the argument in Lemma 2 stating that the
residual 1−

∑d
k=1 ak(t)

L−1 is always non-negative. With this we complete our proof.

An immediate result from Proposition 3 is the following corollary regarding the student’s recovery
of the teacher:
Corollary 1. Let η1 > 0. Suppose we initialize at A(0) ∈ I1(η1) and evolve A(t) according to the
gradient flow dynamics in Equation (19). The limit limt→∞A(t) =: Â1 satisfies

∥Â1 −A∗∥2 ≤

√
η21 + (d− 1)(

1− (1− η1)L−1 − η1
√

n
P

d− 1
)

2
L−1

Proof. By Proposition 3, there exists time t∗ ≥ 0 such that for any time t ≥ t∗ it holds that

∥A(t)−A∗∥2 =

√√√√(1− a1(t))2 +

d∑
k=2

(0− ak(t))2 ≤

≤

√
η21 + (d− 1)(

1− (1− η1)L−1 − η1
√

n
P

d− 1
)

2
L−1

The argument follows from Lemma 2 and from continuity.

Remark 1. Note that the upper bound in corollary 1 satisfies the following

lim
η1→0

√
η21 + (d− 1)(

1− (1− η1)L−1 − η1
√

n
P

d− 1
)

2
L−1 =

=

√
lim
η1→0

η21 + (d− 1)(
1− (1− η1)L−1 − η1

√
n
P

d− 1
)

2
L−1 =

√
0 = 0

Hence, for any recovery threshold δ > 0 there exists η1,δ > 0 such that if A(0) ∈ I1(η1,δ) then Â1

recovers A∗ with an error of no more than δ.

So far, we have argued that the parameters of A converge to a point which is close A∗. We conclude
by showing that this leads to low generalization error.

Proposition 4. Let L
′ ≥ L+2. For any ϵ > 0 there exists an open set of initializations I1 := I1(δϵ)

such that under S1, A converges to a point such that GenL′ (A) ≤ ϵ.
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Proof. Under the dataset S1, we have shown above that for any δ > 0 there exists an open set
of initializations I1(δ) such that GF will converge to a solution a whose parameters satisfy ∥A −
A∗∥2 ≤ δ . It follows from the continuity of the length L

′
impulse response that there is an open set

of initializations from which we converge to a point GenL′ (A) ≤ ϵ.

We abuse notation slightly and denote I1(ϵ) := I1(η1,δ1) where δ1 is the maximal δ that guarantees
GenL′ (Â1) ≤ ϵ.

D.3 GRADIENT FLOW OVER S2 CONVERGES BUT DOESN’T GENERALIZE

In this section we show that one can find a set of initialization I2 such that gradient flow under S2

converges to a point with high generalization error. The proof shows that gradient flow trajecto-
ries initialized in I2 evolve similarly to reference trajectories which provably stays away from any
permutation of A∗.10 Since the training loss is non-convex, gradient flow trajectories can diverge
from one another exponentially fast. Establishing that a reference trajectory is tracked thus requires
sharp bounds on convergence times. The proof in this section is rather involved and is thus split into
several parts;

• D.3.1 defines the reference trajectories and shows their poor ability of generalization.

• D.3.2 characterizes the critical points of the objective ℓ, focusing on a specific saddle point
of interest (which we denote s).

• D.3.3 presents relevant background on dynamical systems, introducing a linearization re-
sult needed for the rest of the proof.

• In D.3.4 we start analyzing the trajectories itself, showing that it must pass near s.

• D.3.5 shows that the trajectories must escape sufficiently fast from s using the tools pre-
sented in D.3.3.

• D.3.6 proves that after escaping from s the trajectories converge to global minima.

• D.3.7 shows that the overall divergence between trajectories emanating from I2 and their
corresponding reference trajectories can be bounded from above, implying the former tra-
jectories have poor generalization.

Throughout this part, we omit the dependence on S2 for simplicity.

D.3.1 REFERENCE TRAJECTORIES

We begin our proof by proving the following useful lemma which states that gradient flows maintains
the order of the entries of A:

Lemma 3. Suppose we initialize at A(0) ∈ Rd and evolve A(t) according to Equation (28). Let
π : [d] → [d] be a permutation such that for any j ∈ [d− 1]:

aπ(j)(0) ≥ aπ(j+1)(0)

Then for any j ∈ [d− 1] and any t ≥ 0 it holds that

aπ(j)(t) ≥ aπ(j+1)(t)

Proof. Recall the dynamics from Equation (28):

ȧj(t) =
2P

m

(
(L− 1)(1−

d∑
k=1

ak(t)
L−1)aj(t)

L−2 + (1−
d∑
k=1

ak(t))

)
10Any permutation of A∗ yields a system with the same impulse response.
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Fix j ∈ [d− 1]. By the linearity of the derivative, we obtain the following equality by plugging the
above dynamics

d

dt

(
aπ(j)(t)− aπ(j+1)(t)

)
= ˙aπ(j)(t)− ˙aπ(j+1)(t) =

=
2(L− 1)P

m
(1−

d∑
k=1

ak(t)
L−1)(aπ(j)(t)

L−2 − aπ(j+1)(t)
L−2)

Assume on the contrary there exists some time t1 ≥ 0 for which aπ(j)(t1) < aπ(j+1)(t1). By the
assumption, t1 > 0. By continuity, there must exist some time t2 ∈ [0, t1) for which aπ(j)(t2) =

aπ(j+1)(t2). This would imply that for any t ≥ t2, the derivative d
dt

(
aπ(j)(t) − aπ(j+1)(t)

)
is

equal zero, which in turn would imply that

aπ(j)(t)− aπ(j+1)(t) = aπ(j)(t2)− aπ(j+1)(t2) = 0

in contradiction to the assumption on t1.

In what follows, we define the notion of reference initialization:
Definition 4. Let A ∈ I0 be some initialization of the parameters. The corresponding reference
initialization Aref is defined as

∀j ∈ [d]. arefj =

{
a1, j = 1, 2

aj , otherwise

We use Aref (t) to denote the gradient flow trajectories emanating from the reference initializations.

We now prove that any point with zero training loss which is sufficiently close to a reference tra-
jecory has poor generalization.

Lemma 4. Let L
′ ≥ L+ 2. There exists some δ2 > 0 such that any point A = (a1, a2, ...ad) ∈ Rd

which satisfies:

• ℓ(A) = 0

• a1 ≥ a2 ≥ ... ≥ ad

• ∥A−Aeq∥ ≤ δ2 for some point Aeq = (aeq1 , . . . , a
eq
d ) ∈ Rd such that aeq1 = aeq2 .

must satisfy GenL′ (A) ≥ min{0.1, 1
9d · (1− (0.6)

1
L−1 )}.

Proof. Let L∗ ∈ {L+ 1, . . . , L
′} such that L∗ is even. We now show that

d∑
k=1

aL
∗−1

k ≤ 1− c

for some constant c > 0 which is independent of L
′
. This in turn implies that

GenL′ (A) ≥ (1− CAL
∗−1B) ≥ c

which gives us the desired lower bound. To do this, we write

d∑
k

aL
∗−1

k =

d∑
k

aL−1
k aL

∗−L
k

First note that |ak| ≤ 1 for all k ∈ [d] - this follows from the fact that L − 1 is even and from the
fact that ℓ(A) = 0 and hence

∑
k a

L−1
k = 1. Therefore, for all k ∈ [d] we have

|aL
∗−1

k | = |aL−1
k aL

∗−L
k | = |aL−1

k | · |aL
∗−L

k | ≤ aL−1
k
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Assume first that a1 = a2 = a. Then clearly aL−1
1 + aL−1

2 = 2aL−1 ≤ 1 and hence

aL−1
1 , aL−1

2 ≤ 1

2
=⇒ a1, a2 ≤ (

1

2
)

1
L−1

Now by continuity it follows that for sufficiently small δ2 > 0, we have that if ∥A−Aeq∥ ≤ δ2 then

a1, a2 ≤ (0.6)
1

L−1

Let J := {r : ar ≤ 0}. For such indices we have aL
∗−1

r ≤ 0. Suppose that∑
k∈J

aL−1
k ≥ 0.1

Then we have that
d∑
k=1

aL
∗−1

k ≤
∑
k/∈J

aL
∗−1

k =
∑
k/∈J

aL−1
k aL

∗−L
k ≤

∑
k/∈J

aL−1
k = 1−

∑
k/∈J

aL−1
k ≤ 0.9

so we can take c = 0.1. Otherwise we have that∑
k/∈J

aL−1
k ≥ 0.9

so there exists some k∗ /∈ J such that aL−1
k∗ ≥ 1

9d . On the other hand, we have

ak∗ ≤ a1 ≤ |a1| ≤ (0.6)
1

L−1

Therefore, since k∗ /∈ J we have 0 ≤ aL
∗−L

k∗ ≤ ak∗ and so

aL−1
k∗ − aL

∗−1
k∗ = aL−1

k∗ (1− aL
∗−L

k∗ ) ≥ 1

9d
(1− ak∗) ≥

1

9d
(1− (0.6)

1
L−1 )

This yields the following:

1−
d∑
k=1

aL
∗−1

k =

d∑
k=1

aL−1
k −

d∑
k=1

aL
∗−1

k =

d∑
k=1

(aL−1
k − aL

∗−1
k ) ≥ 1

9d
(1− ((0.6)

1
L−1 )

which gives us c = 1
9d (1 − (0.6)

1
L−1 ). In either case we can find a constant c > 0 proving the

argument.

Lemma 4 motivates us to find an open subset of initializations under which the respective gradient
flow trajectories remain close to their reference trajectory counterparts, as this would allow us to
lower bound generalization error.

D.3.2 CHARACTERIZATION OF CRITICAL POINTS

In this section we characterize the critical points of the objective ℓ.
Lemma 5. Let A ∈ Rd be a point such that

∇ℓ(A) = 0

Then either A is a global minimum, i.e. ℓ(A) = 0, or exists s ∈ R such that A = s · 1d.

Proof. By Equation (28), for any j ∈ [d] it holds that

∂

∂aj
ℓ(A) =

2P

m

(
(L− 1)(

d∑
k=1

aL−1
k − 1)aL−2

j + (

d∑
k=1

ak − 1)

)
= 0

If
∑d
k=1 a

L−1
k − 1 = 0, then the above simplifies to

2P

m
(

d∑
k=1

ak − 1) = 0
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which implies by our assumption on P being positive that
∑d
k=1 ak − 1 = 0. This in turn yields

that

ℓ(A) =
P

m

(
(1−

d∑
k=1

aL−1
k )2 + (1−

d∑
k=1

ak)
2

)
= 0

i.e. A is a global minimum. Suppose
∑d
k=1 a

L−1
k − 1 ̸= 0. Then we obtain by rearranging that

aL−2
j =

(1−
∑d
k=1 ak)

(L− 1)(
∑d
k=1 a

L−1
k − 1)

L− 2 is odd, and so taking the L-2 root on both sides we obtain that

aj =

(
(1−

∑d
k=1 ak)

(L− 1)(
∑d
k=1 a

L−1
k − 1)

) 1
L−2

:= s

completing our proof.

Lemma 5 establishes that critical points of ℓ which are not global minima must reside within W1 =
span{1d} (Equation (16)). These saddle points pose an obstacle to the convergence of gradient
flow to a global minimum. The following lemma outlines the type of points gradient flow could ever
encounter assuming we initialize at I0 or at a reference initialization:
Lemma 6. Suppose we initialize at A(0) ∈ I0 and at Aref (0), and evolve A(t) and Aref (t)
according to Equation (28). Then for any time t ≥ 0 it holds that

ℓ(A(t)), ℓ(Aref (t)) ≤ 2P

m

Proof. Per Equation (30) the entries at initialization are arranged in descending order. Since L − 1
is even we have that the initializations satisfy the inequalities

1−
d∑
k=1

ak(0)
L−1 = 1−

d∑
k=1

(αζk)
L−1 ≥ 1− 2(αζ1)

L−1 −
d∑
k=3

(αζk)
L−1 = 1−

d∑
k=1

arefk (0)L−1

and

1−
d∑
k=1

ak(0) = 1−
d∑
k=1

(αζk) ≥ 1− 2(αζ1)−
d∑
k=3

(αζk) = 1−
d∑
k=1

arefk (0)

By Equation (30) it holds that αζ1 < 1
2d , thus we have that

1− 2(αζ1)
L−1 −

d∑
k=3

(αζk)
L−1 ≥ 1− d · (αζ1)L−1 ≥ 1− d(

1

2d
)L−1 > 0

and

1− 2(αζ1)−
d∑
k=3

(αζk) ≥ 1− d · (αζ1) ≥ 1− d(
1

2d
) > 0

On the other hand, by Equation (30) it also holds that αζd > 0, thus we have that

1−
d∑
k=1

(αζk)
L−1 ≤ 1− d · (αζd)L−1 < 1

and

1−
d∑
k=1

(αζk) ≤ 1− d · (αζd) < 1
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Therefore, both the original initialization and the reference initalization satisfy

1−
d∑
k=1

ak(0)
L−1, 1−

d∑
k=1

arefk (0)L−1 ∈ (0, 1)

and

1−
d∑
k=1

ak(0), 1−
d∑
k=1

arefk (0) ∈ (0, 1)

Thus, the objective at both initializations is no more than 2P
m since both satisfy

ℓ(A) =
P

m

(
(1−

d∑
k=1

aL−1
k )2 + (1−

d∑
k=1

ak)
2

)
≤ P

m

(
12 + 12

)
≤ 2P

m

The proof is completed by the argument in Lemma 23 which states that under gradient flow the
objective is non-increasing.

The following lemma shows that only a specific region of W1 potentially contains critical points
with loss lower than that of the initialization points we consider, implying by Lemma 23 that only a
specific region of W1 is relevant:
Lemma 7. Let A ∈ Rd be a point for which there exists a ∈ R such that

A = a · 1d

If a ̸∈ [ 1d ,
3
d ] then either ∇ℓ(A) ̸= 0 or ℓ(A) > 2P

m

Proof. We begin by proving that for any a ∈ R, if a /∈ (0, 3d ] then a · 1d must incur a loss greater
than 2P

m . If a > 3
d then it holds that d · a > 3, hence we obtain that

ℓ(a · 1d) =
P

m

(
(1− d · aL−1)2 + (1− d · a)2

)
≥ P (1− d · a)2

m
>

2P

m

The same argument applies when a < − 1
d , since in that case d · a < −1 =⇒ (1 − d · a)2 > 2.

Next, we show that if a ∈ [− 1
d ,

1
d ) then ∇ℓ(a · 1d) ̸= 0. Suppose a ∈ [− 1

d , 0]. L − 1 is even and
d ≥ 8 hence

d · aL−1 − 1 ∈ [−1, 0) =⇒ (L− 1)(d · aL−1 − 1)aL−2 ∈ (0,
L− 1

dL−2
) ⊆ (0,

L− 1

8L−2
)

The function f(L) := L−1
8L−2 is decreasing for L ≥ 3 and acheives the value 0.25 when L = 3, hence

since L ≥ 3 we get f(L) ≤ 0.25. Thus we have for any j ∈ [d] that the gradient’s jth entry statisfies

∇ℓ(a · 1d) =
2P

m

(
(L− 1)(d · aL−1)aL−2 + (d · a− 1)

)
≤ 2P

m

(
0.25 + (d · a− 1)

)
≤

≤ 2P

m

(
0.25− 1

)
< 0

Suppose a ∈ (0, 1d ). In this case, we have that

aL−1 <
1

d
=⇒ d · aL−1 < 1 =⇒ (L− 1)(d · aL−1 − 1)aL−2 < 0

Hence, since d · a− 1 < 0 we have for any j ∈ [d] that the gradient’s jth entry satisfies

∇ℓ(a · 1d)j =
2P

m

(
(L− 1)(d · aL−1 − 1)aL−2 + (d · a− 1)

)
< 0

Therefore, any critical point which is not a global minimum and has value in (0, 2Pm ) cannot reside
outside of [ 1d ,

3
d ].
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Having disqualified most of W1, we now identify the unique critical point on the non-disqualified
region of W1 and show that it is not a global minimum:
Lemma 8. There exists a unique s ∈ [ 1d ,

3
d ] for which ∇ℓ(s · 1d) = 0. Additionally, s satisfies

s := s · 1d = argmin
A∈W1

ℓ(A)

and

ℓ(s) ≥ P

4(m)
> 0

Proof. We focus on the following function:

f(a) =
P

m

(
(1− d · aL−1)2 + (1− d · a)2

)
Note that f(a) = ℓ(a · 1d). It holds that

f
′
(a) :=

2P · d
m

(
(L− 1)(d · aL−1 − 1)aL−2 + (d · a− 1)

)
Note that f

′
(a) = ∇ℓ(a · 1d)j for any j ∈ [d], and so f

′
(a) = 0 if and only if ∇ℓ(a · 1d) = 0d. We

proceed to show that within [− 1
d ,

3
d ], f

′(a) has a root and is monotonic. It holds that

f
′
(0) =

2P · d
m

(
(L− 1)(d · (0)L−1 − 1)(0)L−2 + (d · 0− 1)

)
= −2P · d

m
< 0

Next, since d ≥ 8 it holds that

(L− 1)(1− d · (3
d
)L−1)(

3

d
)L−2 ≤ (L− 1)(

3

d
)L−2 ≤ L− 1

2L−2
(
3

4
)L−2 =: h(L)

h(L) is a decreasing function for L ≥ 3 and achieves the value 0.75 when L = 3, hence since L ≥ 3
we get h(L) ≤ 1. Therefore,

f
′
(
3

d
) =

2P · d
m

(
(L− 1)(d · (3

d
)L−1 − 1)(

3

d
)L−2 + (d · 3

d
− 1)

)
=

=
2P · d
m

(
2− (L− 1)(1− d · (3

d
)L−1)(

3

d
)L−2

)
≥ 2P · d

m

(
2− 1

)
> 0

Hence by continuity, f
′
(a) has a root within [− 1

d ,
3
d ]. Note that by Lemma 5, f

′
(a) doesn’t have a

root within [− 1
d ,

1
d ), implying the root is actually achieved in [ 1d ,

3
d ]. Next, it holds that

f
′′
(a) =

2P · d
m

(
(L− 1)(2L− 3)d · a2L−4 − (L− 1)(L− 2)aL−3 + d

)
≥

≥ 2P · d
m

(
d− (L− 1)(L− 2)aL−3

)
Because d ≥ 8 and L− 3 is even, we have for any a ∈ [− 1

d ,
3
d ]

(L− 1)(L− 2)aL−3 ≤ (L− 1)(L− 2)(
3

d
)L−3 ≤ (L− 1)(L− 2)

2L−3
(
3

4
)L−3 =: g(L)

g(L) is a decreasing function for L ≥ 4 and achieves the value 2.25 when L = 4, hence since L ≥ 4
we get g(L) ≤ 2.25. Therefore,

f
′′
(a) ≥ 2P · d

m

(
d− 2.25

)
> 0

implying f
′

is monotonically increasing in [− 1
d ,

3
d ]. Hence, there exists a unique s ∈ [ 1d ,

3
d ] such

that f
′
(s) = 0, which implies that ∇ℓ(s · 1d) = 0. Note that we showed that s is a minimizer of
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f over [− 1
d ,

3
d ], as f ’s derivative is zero at s and the second derivative is positive along the interval.

Finally, let a ∈ R \ [− 1
d ,

3
d ]. By Lemma 5, it holds that

f(a) = ℓ(a · 1d) ≥
2P

m

On the other hand, it also holds that

f(s) < f(
1

d
) =

P

m

(
(1− d · (1

d
)L−1)2 + (1− d · 1

d
)2
)
≤ P

m

Thus, s is a minimizer of f over R, meaning that s := s ·1d is a minimizer of ℓ over W1 as required.
On the other hand, since d ≥ 8 and L ≥ 4 it holds that

1− d · sL−1 ≥ 1− d · (3
d
)L−1 = 1− 3 · (3

d
)L−2 ≥ 1− 3 · (3

8
)2 ≥ 1

2

Therefore,

ℓ(s) =
P

m

(
(1− d · sL−1)2 + (1− d · s)2

)
≥ P

m

(
1− d · sL−1

)2

≥ P

4(m)
> 0

completing the proof.

In the last two lemmas of this section, we explicitly compute an eigendecomposition of ℓ’s hessian
in s and bound its eigenvalues:
Lemma 9. Consider s defined in Lemma 8. An eigendecomposition of the symmetric hessian matrix
∇2ℓ(s) is the following:

• The eigenvector 1d with the eigenvalue

λ+ :=
2P

m

(
(L− 1)

(
(2L− 3)d · sL−1 − (L− 2)

)
sL−3 + d

)
• For j ∈ {2, . . . , d} the eigenvector e1 − ej with the eigenvalue

λ− :=
2P

m

(
(L− 1)(L− 2)

(
d · sL−1 − 1

)
sL−3

)
Proof. We begin by computing the hessian matrix ∇2ℓ(A) for a generalA ∈ Rd, which is symmetric
since ℓ(A) is analytic. by Equation (28), for any j ∈ [d] it holds that

∂

∂aj
ℓ(A) =

2P

m

(
(L− 1)(

d∑
k=1

aL−1
k − 1)aL−2

j + (

d∑
k=1

ak − 1)

)
Therefore, for any j ∈ [d] we have that(
∇2ℓ(A)

)
jj

=
2P

m

(
(L− 1)

(
(2L− 3)a2L−4

j + (L− 2)

d∑
k=1,k ̸=j

aL−1
k aL−3

j − (L− 2)aL−3
j

)
+1

)
Additionally, for any j, i ∈ [d] such that j ̸= i we have that(

∇2ℓ(A)

)
ij

=
2P

m

(
(L− 1)2aL−2

i aL−2
j + 1

)
Now we specialize to A = s. For j ∈ [d], we obtain(

∇2ℓ(s)

)
jj

=
2P

m

(
(L− 1)

(
(2L− 3)s2L−4 + (L− 2)(d− 1)s2L−4 − (L− 2)sL−3

)
+1

)
=

=
2P

m

(
(L− 1)

(
(2L− 3 + L · d− 2d− L+ 2)s2L−4 − (L− 2)sL−3

)
+1

)
=

=
2P

m

(
(L− 1)

(
(L− 1 + L · d− 2d)s2L−4 − (L− 2)sL−3

)
+1

)
=: ω1
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For j, i ∈ [d] such that j ̸= i we obtain that(
∇2ℓ(s)

)
ij

=
2P

m

(
(L− 1)2s2L−4 + 1

)
=: ω2

Observe that

∇2ℓ(s) = (ω1 − ω2)Id + ω21d×d

Hence, by Lemma 27 we obtain that an eigendecomposition for ∇2ℓ(s) is the following:

• The eigenvector 1d with the eigenvalue λ+ := ω1 + (d− 1)ω2.

• For j ∈ {2, . . . , d} the eigenvector e1 − ej with the eigenvalue λ− := ω1 − ω2.

λ+ takes the following form:

λ+ =
2P

m

(
(L− 1)

(
(L− 1 + L · d− 2d)s2L−4 − (L− 2)sL−3

)
+1+

+ (d− 1)
(
(L− 1)2s2L−4 + 1

))
=

=
2P

m

(
(L− 1)

(
(L− 1 + L · d− 2d+ Ld− d− L+ 1)s2L−4 − (L− 2)sL−3

)
+d

)
=

=
2P

m

(
(L− 1)

(
(2L · d− 3d)s2L−4 − (L− 2)sL−3

)
+d

)
=

=
2P

m

(
(L− 1)

(
(2L− 3)d · sL−1 − (L− 2)

)
sL−3 + d

)
λ− takes the following form:

λ− =
2P

m

(
(L− 1)

(
(L− 1 + L · d− 2d)s2L−4 − (L− 2)sL−3

)
+1−

−
(
(L− 1)2s2L−4 + 1

))
=

=
2P

m

(
(L− 1)

(
(L− 1 + L · d− 2d− L+ 1)s2L−4 − (L− 2)sL−3

))
=

=
2P

m

(
(L− 1)

(
(L · d− 2d)s2L−4 − (L− 2)sL−3

))
=

=
2P

m

(
(L− 1)

(
(L− 2)d · sL−1 − (L− 2)

)
sL−3

)
=

=
2P

m

(
(L− 1)(L− 2)

(
d · sL−1 − 1

)
sL−3

)

We now turn to bounding λ+ and λ−:

Lemma 10. The eigenvalue λ+ from Lemma 9 statisfies

λ+ ≥ 2P (d− 1)

m
> 0

The eigenvalue λ− from Lemma 9 statisfies

λ− ∈ (−2P

m
, 0)
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Proof. Since s ∈ [ 1d ,
3
d ] and since d ≥ 8 we obtain

(L− 1)
(
(2L− 3)d · sL−1 − (L− 2)

)
sL−3 ≥ −(L− 1)(L− 2)sL−3 ≥

−(L− 1)(L− 2)(
3

d
)L−3 ≥ − (L− 1)(L− 2)

2L−3
(
3

4
)L−3 =: f(L)

f(L) is increasing for L ≥ 7 and achieves a value that is > −0.6 for L = 7. Hence since L ≥ 7 we
get f(L) ≥ −0.6 > −1. Therefore,

λ+ =
2P

m

(
(L− 1)

(
(2L− 3)d · sL−1 − (L− 2)

)
sL−3 + d

)
≥ 2P

m

(
d− 1

)
> 0

Next, since s ∈ [ 1d ,
3
d ] and since d ≥ 8 we obtain

(L− 1)(L− 2)sL−3 ≤ (L− 1)(L− 2)(
3

d
)L−3 ≤ (L− 1)(L− 2)

2L−3
(
3

4
)L−3 =: g(L)

g(L) is decreasing for L ≥ 7 and achieves a value that is < 0.6 for L = 7. Hence since L ≥ 7 we
get g(L) ≤ 0.6 < 1. Additionally, note that

−1 ≤ d · sL−1 − 1 ≤ 3 · (3
d
)L−2 − 1 ≤ 3(

3

8
)L−2 < 0

Therefore, we obtain that

(L− 1)(L− 2)sL−3(d · sL−1 − 1) ∈ (−1, 0)

and so

λ− =
2P

m

(
(L− 1)(L− 2)

(
d · sL−1 − 1

)
sL−3

)
∈ (−2P

m
, 0)

which completes our proof.

In the first half of D.3.2 we characterized the critical point s and established that it is the only critical
point that is relevant in our case, since it is not a global minimum and since we cannot exclude the
possibility that gradient flow would converge to it. In what follows, we give a closed form solution
to the dynamics obtained under the linear approximation around s to our true dynamics. We will
show that under these linearized dynamics, any gradient flow trajectory not initialized in W1 will
escape s at an exponential rate.
Lemma 11. The linear approximation around s of the gradient flow dynamics (see Equation (28))
is defined by

Ȧlin(t) := −∇ℓ(s)−∇2ℓ(s)(Alin(t)− s) = −∇2ℓ(s)(Alin(t)− s)

The solution to the above linear differential equations system is given by

Alin(t) = Q exp(−t ·Diag(λ+, λ−, . . . , λ−))Q
⊤(Alin(0)− s) + s

where λ+ and λ− are the eigenvalues ∇2ℓ(s) found in Lemma 9, and Q is an orthogonal matrix
whose first column is 1√

d
1d and the rest of its columns are an orthonormal basis of W2 (defined in

Equation (16)).

Proof. First note that the first order Taylor’s expansion around s of −∇ℓ(A) is given by

−∇ℓ(s)−∇2ℓ(s)(A(t)− s)

and since s is a critical point of ℓ (i.e., ∇ℓ(s) = 0d), we obtain the following linear approximation

Ȧlin(t) = −∇2ℓ(s)(A(t)− s)

Per Lemma 9, an eigendecomposition of ∇2ℓ(s) is given by the eigenvector 1d with the eigenvalue
λ+, and the eigenvectors {e1 − e2, . . . , e1 − ed} with the eigenvalue λ−. Therefore, we may write
∇2ℓ(s) as the orthogonal eigendecomposition

∇2ℓ(s) = QDiag(λ+, λ−, . . . , λ−)Q
⊤
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where the first column of Q is 1√
d
1d, and the rest of its columns are an orthonormal basis of

span{e1 − e2, . . . , e1 − ed} = W2. The proof is completed by invoking Lemma 28 which yields
the following solution to the linear system:

Alin(t) = Q exp(−t ·Diag(λ+, λ−, . . . , λ−))Q
⊤(Alin(0)− s) + s

The following corollary computes the solution of the linear approximation as a function of the ini-
tialization’s projections onto W1 and W2 (Equation (16)):
Corollary 2. Denote the projection of Alin(0) to W1 by β11d where β1 ∈ R, and the projection of
Alin(0) to W2 by β2 · v ∈ W2 where v ∈ W2 is a unit vector β2 ∈ R. Then for any t ≥ 0 it holds
that

Alin(t) =

(
exp(−t · λ+)(β1 − s) + s

)
1d + (exp(−t · λ−) · β2)v

Proof. Plugging the projections of Alin(0) to W1 and W2, we can write the following:

Alin(0)− s = (β1 − s)1d + β2v

Hence per Lemma 28 at time t ≥ 0 the solution Alin(t) takes the following form:

Alin(t) = Q exp(−t ·Diag(λ+, λ−, . . . , λ−))Q
⊤
(
(β1 − s)1d + β2v

)
+s

Q is a projection matrix to the respective eigenspaces of ∇2ℓ(s), hence since 1d ∈ W1 and v ∈ W2

we obtain

Alin(t) =

(
exp(−t · λ+)(β1 − s)

)
1d + (exp(−t · λ−) · β2)v + s =

=

(
exp(−t · λ+)(β1 − s) + s

)
1d + (exp(−t · λ−) · β2)v

as required.

Remark 2. Note that if β2 ̸= 0 (i.e. the initialization Alin(0) was not in W1), then the solution to
the system diverges from s. Since λ− < 0 < λ+ we obtain

lim
t→∞

(
exp(−t · λ+)(β1 − s) + s

)
1d = s · 1d = s

lim
t→∞

∥(exp(−t · λ−) · β2)v − s∥ → ∞

On the other hand, if β2 = 0 then the solution to the system converges to s.

D.3.3 LINEARIZATION OF DYNAMICAL SYSTEMS

In D.3.2 we characterized the critical point s ∈ 1d and established that it is the only non global
minimum that we could converge to given our initialization. We would now like to show that in fact
gradient flow will escape s and converge rapidly towards a global minimum. Corollary 2 gives some
indication why this may be the case - it shows that the local linearization of the dynanics near s will
tend to repel any trajectory which is not on the line W1. Intuitively one expects that once we are
sufficiently close to s, the linearized dynamics provide a sufficiently good approximation to ensure
that the same conclusion will hold for the nonlinear system as well. Unfortunately, existing results
from the optimization literature (e.g. Jin et al. (2017)) give escape times which do not suffice for
our purposes11. To obtain the required bounds on the escape time we will require some results from
dynamical systems theory. Informally, the idea is that if a non linear dynamical system satisfies

11recall that our strategy is to bound the divergence between our trajectory and the reference one, and this
divergence depends on the convergence time achieved by gradient flow.
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certain conditions on the spectrum of its linearization (these are sometimes called ”non-resonance
conditions”), then it is locally smoothly equivalent to its linearization. This will allow us to bound
the escape time of gradient flow in terms of the closed form dynamics obtained for the linearization
in Corollary 2.

We begin by defining the notions of smooth conjugation and smooth linearization of dynamical
systems:
Definition 5. Let f, g : Rd → Rd be two CM vector fields with a common fixed point x0 ∈ Rd,
i.e., f(x0) = g(x0) = 0d. For any K ∈ [M ] we say that f and g are CK-conjugate near x0 when
there exist neighborhoods V1,U1 ⊆ Rd such that x0 ∈ V1,U1 and there exist a CK-diffeomorphism
H : V1 → U1 satisfying the following:

• H(x0) = x0

• Whenever x(t) ∈ V1 is a solution of ẋ(t) = f(x(t)) for t in some interval I ⊆ R then
y(t) = H(x(t)) is a solution of ẏ(t) = g(y(t)) for t ∈ I.

• Whenever y(t) ∈ U1 is a solution of ẏ(t) = g(y(t)) for t in some interval I ⊆ R then
x(t) = H−1(y(t)) is a solution of ẋ(t) = f(x(t)) for t ∈ I.

The mapping H is referred to as the CK-conjugation between ẋ(t) = f(x(t)) and ẏ(t) = g(y(t)).
Consider the first order Taylor’s expansion of f around x0 given by

ẋ(t) = f(x(t)) = A(x(t)− x0) + F (x(t)− x0)

where A = Df(x0), F (0d) = 0d and DF (0d) = 0d×d. The associated linear equation is given by

ẏ(t) = A(y(t)− x0)

We say that f admits a CK-linearization near x0 when it is CK-conjugate near x0 with its linear
approximation.

We now introduce the Strict Hyperbolicity property and the Non-resonance condition (also known as
the Sternberg condition). These are sufficient conditions for a dynamical system to admit a smooth
linearization and we will later show our system satisfies them:
Definition 6. Let A ∈ Rd×d be a matrix with eigenvalues λ1, . . . , λd ∈ R repeated with multiplici-
ties. We say that A is strictly hyperbolic when:

• For all j ∈ [d] it holds that λj ̸= 0.

• There exist j+, j− ∈ [d] such that λj+ > 0 and λj− < 0.

Definition 7. Let A ∈ Rd×d be a matrix with eigenvalues λ1, . . . , λd ∈ R repeated with multiplic-
ities. For any m ∈ Nd≥0 non-negative integers vector and any λ ∈ R we denote γ(λ,m) as the
following quantity:

γ(λ,m) := λ−
d∑
k=1

mk · λk

For any N ∈ N such that N ≥ 2 we say that A satisfies the non-resonance condition of order N
when for all j ∈ [d] and all m ∈ Nd≥0 such that

∑d
k=1mk ∈ {2, . . . , N} it holds that γ(λj ,m) ̸= 0.

Finally, we present the property of matrix Q-smoothness:
Definition 8. Let A ∈ Rd×d be a matrix with eigenvalues λ1, . . . , λd ∈ R repeated with multiplici-
ties. Suppose A is strictly hyperbolic. Denote the following quantities:

ρ+ :=
max{|λj | : j ∈ [d], λj > 0}
min{|λj | : j ∈ [d], λj > 0}

, ρ− :=
max{|λj | : j ∈ [d], λj < 0}
min{|λj | : j ∈ [d], λj < 0}

Let Q ∈ N>0. We define the Q-smoothness of A to be the largest integer K ∈ N≥0 for which there
exist M,N ∈ N>0 satisfying the following:

• Q =M +N
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• M −Kρ+ ≥ 0

• N −Kρ− ≥ 0

We are now ready to present Theorem 1 of Sell (1985), which states conditions under which there
exists a smooth linearization of a dynamical system12:
Theorem 3 (Theorem 1 of Sell (1985) (adapted)). LetQ ∈ N such thatQ ≥ 2. Let f : Rd → Rd be
an analytic (i.e. C∞) vector field with a fixed point x0. Consider the first order Taylor’s expansion
of f around x0 given by

ẋ(t) = f(x(t)) = A(x(t)− x0) + F (x(t)− x0)

where A = Df(x0), F (0d) = 0d and DF (0d) = 0d×d. If A is strictly hyperbolic (Definition 6)
and satisfies the non-resonance condition of orderQ (Definition 7) then f admits aCK linearization
near x0 where K is the Q-smoothness of A (Definition 8).

Proof. See proof of Theorem 1 in Sell (1985).

Having introduced these general results on local linearization, we now show that the dynamical
system induced by gradient flow admits a smooth linearization near s. We begin by showing that
−∇2ℓ(s) is strictly hyperbolic and satisfies the non-resonance condition:
Proposition 5. Consider s defined in Lemma 8. The hessian matrix −∇2ℓ(s) is strictly hyperbolic
and satisfies the non-resonance condition of order d− 2.

Proof. Per Lemma 10, it holds that

λ+ ≥ 2P (d− 1)

m
> 0

and

−2P

m
< λ− < 0

Hence by Definition 6, ∇2ℓ(s) is strictly hyperbolic. Additionally, for any m ∈ {0, . . . , d − 2} we
have that

λ+ +m · λ− ≥ 2P (d− 1)

m
− 2P ·m

m
> 0

Let m ∈ Nd≥0 such that
∑d
k=1mk ∈ {2, . . . , d− 2}. Per definition Definition 7 we have that

γ(λ+,m) = (1−m1)λ+ − λ−

d∑
k=2

mk

If m1 ∈ {0, 1} then since λ− < 0 < λ+ and
∑d
k=2mk ∈ {1, . . . , d− 2} we obtain

γ(λ+,m) ≥ −λ−
d∑
k=2

mk > 0

Otherwise, since
∑d
k=2mk ∈ {0, . . . , d− 4} we obtain by the above that

γ(λ+,m) ≤ −λ+ − λ−

d∑
k=2

mk ≤ −2P (d− 1)

m
+

2P
∑d
k=2mk

m
< 0

Hence γ(λ+,m) ̸= 0. Next, per Definition 7 we have that

γ(λ−,m) = (1−
d∑
k=2

mk)λ− −m1 · λ+

12We present slightly adapted results that are specialized to our setting.
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If m1 = 0 then since 1−
∑d
k=2mk ∈ {−1, . . . ,−d+ 3} we obtain

γ(λ−,m) = (1−
d∑
k=2

mk)λ− > 0

If m1 = d− 2 then 1−
∑d
k=2mk = 1 and so

γ(λ−,m) = λ− − (d− 2)λ+ < 0

Otherwise, since
∑d
k=2mk − 1 ∈ {0, . . . , d− 3} we obtain by the above that

γ(λ−,m) ≤ −λ+ − (

d∑
k=2

mk − 1)λ− ≤ −2P (d− 1)

m
+

2P (
∑d
k=2mk − 1)

m
< 0

Hence γ(λ−,m) ̸= 0. Therefore by Definition 7, −∇2ℓ(s) satisfies the non-resonance condition of
order d− 2.

Next, we turn to lower bound the Q-smoothness of −∇2ℓ(s):

Proposition 6. For any Q ∈ N>0, the Q-smoothness of −∇2ℓ(s) is at least ⌊Q2 ⌋.

Proof. Per Lemma 10, we have the following:

ρ+ =
max{λ+}
min{λ+}

= 1, ρ− =
max{λ−}
min{λ−}

= 1

Therefore per Definition 8 and since ∇2ℓ(s) is strictly hyperbolic, the Q-smoothness of −∇2ℓ(s) is
the largest K ∈ N≥0 for which there exist M,N ∈ N>0 such that

• Q =M +N

• M −K ≥ 0

• N −K ≥ 0

One can easily verify this implies that the Q-smoothness of −∇2ℓ(s) is at least ⌊Q2 ⌋.

Finally, we are ready to prove the following proposition which shows that our dynamical system
induced by gradient flow admits a linearization which is at least C3:
Proposition 7. The dynamical system induced by gradient flow (see Equation (28)) admits a lin-
earization near s that is at least C3.

Proof. First note that the vector field −∇ℓ(A) which gradient flow follows is analytic. Next, per
Propositions 5 and 6 it holds that −∇2ℓ(s) is strictly hyperbolic, satisfies the non-resonance con-
dition of order at least d − 2, and has Q-smoothness of at least ⌊Q2 ⌋ for any Q ∈ N>0. Hence, by
Theorem 3 the vector field −∇ℓ(A) admits a C⌊ d−2

2 ⌋-linearization near s. The proof concludes by
noting that d ≥ 8 hence ⌊d−2

2 ⌋ ≥ 3.

We denote the above linearization by H : V1 → U1, where the neighborhoods V1,U1 ⊆ Rd are such
that s ∈ V1,U1. To set the stage for the rest of the proof, we prove the following proposition that
considers a restriction of H to a smaller domain that satisfies a few additional conditions which we
will require later:
Proposition 8. There exists r1 > 0 which satisfies the following:

1. r1 ≤ 1
2d

2. For any A ∈ Br1(s) it holds that

|λmin(∇2ℓ(A))| ≤ 2|λ−|
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3. H|Br1
(s) is Lipschitz and there exist r2 ∈ (0, r1) and r3 > 0 such that H−1|Br3

(s) is
Lipschitz and it holds that

H[Br2(s)] ⊆ Br3(s) ⊆ H[Br1(s)]

Proof. We show there exist three non empty intervals of the form (0, bi] for i ∈ [3], such that
if r1 ∈ (0, bi] then it satisfies the corresponding requirement above. This would imply that the
minimal upper limit r1 := min{b1, b2, b3} satisfies all requirements. The first condition is trivial,
with b1 = 1

2d . Next, since ∇ℓ(A) is analytic it holds that ∇2ℓ(A) is symmetric for any A ∈ Rd.
Since λ− < 0, by the continuity of the eigenvalues of ∇2ℓ(A) around s there exists b2 > 0 such that
the second requirement is satisfied for all (0, b2]. Lastly, since H : V1 → U1 is C3 and since V1,U1

are neighborhoods of s, we can invoke Lemma 29 which states that there exists b3 > 0 such that for
any b ∈ (0, b3] the third and fourth requirements are satisfied.

D.3.4 MOVEMENT TOWARDS THE SADDLE s

Having established key properties of the loss landscape, we are ready to begin the dynamical analysis
of the gradient flow trajectories over time. We first give a simple bound on the magnitude of the
entries of A(t):
Lemma 12. Suppose we initialize at A(0) ∈ I0 and at Aref (0), and evolve A(t) and Aref (t)
according to Equation (28). For any t ≥ 0 and any j ∈ [d] it holds that

Aj(t), A
ref
j (t) ∈ [−3, 3]

Proof. First, we have shown in Lemma 6 that the initialization I0 guarantees all points encountered
by gradient flow have loss no larger than 2P

m . Assume on the contrary that there exist t ≥ 0 and
j ∈ [d] for which

Aj(t) /∈ [−3, 3]

Since L − 1 is even, we obtain that aj(t)L−1 ≥ 3L−1 > 3 and that any k ∈ [d], k ̸= j satisfies
ak(t)

L−1 ≥ 0. Hence, we obtain that

ℓ(A(t)) =
2P

m

(
(1−

d∑
k=1

ak(t)
L−1)2 + (1−

d∑
k=1

ak(t))
2

)
≥ 2P

m
(1−

d∑
k=1

ak(t)
L−1)2 ≥

≥ 2P

m
(3− 1)2 >

2P

m

in contradiction to Lemma 23. The proof is identical when we consider the reference trajectory.

The above yields the following useful corollary:
Corollary 3. There exists N > 0 such if we initialize at A(0) ∈ I0 and at Aref (0), and evolve
A(t) and Aref (t) according to Equation (28) then for any t ≥ 0 the functions −∇ℓ(A(t)) and
−∇ℓ(Aref (t)) are N -Lipschitz.

Proof. As shown in Lemma 12, all points encountered by gradient flow are contained in the compact
set [−3, 3]d. The claim thus follows from the fact that ℓ(A) is analytic.

We continue to prove the following lemma which analyzes the trajectories when initializing in an
interval of points on the line W1 (Equation (16)):
Lemma 13. Let a1, a2 ∈ [− 1

d ,
4
d ] \ {s} such that a1 ̸= a2. Suppose we initialize at A1(0) = a1 ·1d

and A2(0) = a2 · 1d, and evolve A1(t) and A2(t) according to Equation (28). It holds that:

• There exist functions a1, a2 : R≥0 → R such that

A1(t) = a1(t) · 1d, A2(t) = a2(t) · 1d

• For any t ≥ 0 it holds that a2(t) < a1(t) ⇐⇒ a2 < a1
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• For any r > 0 there exists t1 ≥ 0 such that for any t ≥ t1 it holds that A1(t), A2(t) ∈
Br(s)

Proof. When initializing at A(0) = a · 1d and evolving A(t) according to the gradient flow dynam-
ics, all entries evolve according to the same dynamics and therefore must stay equal throughout the
optimization. Concretely, all entries obey the following dynamics:

ȧ(t) =
2P

m

(
(L− 1)(1− d · a(t)L−1)a(t)L−2 + (1− d · a(t))

)
Hence, the first claim holds. Rewriting the above in terms of Lemma 8, we have

ȧ(t) = −1

d
f

′
(a(t))

In Lemmas 7 and 8, we showed that the above expression is positive for a(t) ∈ [− 1
d , s) and equals

zero at s. We now show that the above expression is negative for a(t) ∈ (s, 4d ] - indeed, since d ≥ 8
we have that

−1

d
f

′
(
4

d
) =

2P

m

(
(L− 1)(1− d · (4

d
)L−1)(

4

d
)L−2 + (1− d · (4

d
))

)
≤

≤ 2P

m

(
(L− 1)(

4

d
)L−2 − 3

)
≤ 2P

m

(
L− 1

1.5L−2
(
4

5 1
3

)L−2

︸ ︷︷ ︸
=:h(L)

−3

)
≤ 2P

m

(
0.75− 3

)
< 0

where the second to last inequality stems from the fact that h(L) is decreasing for L ≥ 4, that
h(4) = 0.75, and that L ≥ 7. Next, we also have for any a ∈ (s, 4d ] that

−1

d
f

′′
(a) =

2P

m

(
−(L− 1)(2L− 3)d · a2L−4 + (L− 1)(L− 2)aL−3 − d

)
≤

≤ 2P

m

(
−d+ (L− 1)(L− 2)aL−3

)
≤ 2P

m

(
−d+ (L− 1)(L− 2)(

4

d
)L−3

)
≤

≤ 2P

m

(
−d+ (L− 1)(L− 2)

1.5L−2
(
4

5 1
3

)L−3

︸ ︷︷ ︸
=:g(L)

)
≤ 2P

m
(−d+ 15

8
) < 0

where the second to last inequality stems from the fact that g(L) is decreasing for L ≥ 7, that
h(4) = 15

8 , and that L ≥ 7. Therefore, since − 1
df

′
(s) = 0 and from monotonicity we obtain that

− 1
df

′
(a(t)) is negative for a(t) ∈ (s, 4d ]. We continue by noting that per Lemma 31, trajectories of

the same system of ODEs with different initalizations must never meet, hence by continuity it must
hold that a2(t) < a1(t) ⇐⇒ a2 < a1 for all t ≥ 0. Finally, since s is a critical point in the interval
and since a1(t), a2(t) evolve monotonically (increase if initialized < s and decrease otherwise), we
get by Lemma 31 that a1(t) and a2(t) cannot reach s in any finite time. However, since s is the
unique critical point in the interval, a1(t) and a2(t) must converge to s as t → ∞. Hence, there
exists some time t1 ≥ 0 such that for any t ≥ t1 the entries of both A1(t) and A2(t) are within
Br(s).

We use AZ(t) and A−(t) to denote the trajectories generated by initializing at 0d and − 1
d · 1d

respectively and evolving according to Equation (28). Additionally, for any r > 0 we use t1(r) ≥ 0
to denote the minimal time which satisfies

AZ(t1(r)) ∈ Br(s)

Note this means that for r ∈ (0, s) we have AZ(t1(r)) = r√
d
· 1d + s.

We denote the following projections of the trajectory A(t) and the reference trajectory Aref (t),
which will be used in the rest of the proof:
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Definition 9. Suppose we initialize at A(0) ∈ I0 and at Aref (0), and evolve A(t) and Aref (t)
according to Equation (28). For any t ≥ 0, we denote the projections of A(t) and Aref (t) to the
subspace W1 using

β1(t) · 1d, βref1 (t) · 1d

where β1(t), β
ref
1 (t) ∈ R. Additionally, we denote the projections of A(t) and Aref (t) to the

subspace W2 using

β2(t) · v(t), βref2 (t) · vref (t)

where β2(t), β
ref
2 (t) ∈ R and v(t),vref (t) ∈ W2 are unit vectors. Per Equation (16), W1 and W2

are orthogonal and span Rd, hence we may write

A(t) = β1(t) · 1d + β2(t) · v(t)
Aref (t) = βref1 (t) · 1d + βref2 (t) · vref (t)

Remark 3. Per Equation (16), W1 and W2 are orthogonal therefore since (β1(t) · 1d)⊤(β2(t) ·
v(t)) = 0 and (βref1 (t) · 1d)⊤(β2(t)ref · vref (t)) = 0, we obtain

Dist(A(t),W1) = ∥β2(t) · v(t)∥ = |β2(t)|
Dist(Aref (t),W1) = ∥βref2 (t) · vref (t)∥ = |βref2 (t)|

and

Dist(A(t),W2) = ∥β1(t) · 1d∥ =
√
d|β1(t)|

Dist(Aref (t),W2) = ∥βref1 (t) · 1d∥ =
√
d|βref1 (t)|

Before proving the main claim of this section, we introduce another condition on the initialization
which we denote I3:
Definition 10. Let r > 0. We use I3(r) to denote the following subset of I0:

I3(r) :=
{
A ∈ I0 : α ≤

min{r, ∥AZ
(
t1(r)

)
−A−(t1(r))∥2}

6d
exp(−N · t1(r)), ζd ≤

1

2

}
for N of Corollary 3 and for AZ(t), A−(t) and t1(r) of Lemma 13.

We are now ready to prove the main claim of this section, which states that under the above on
the initalization, both the original and reference trajectories must enter a sufficiently small sphere
around s and furthermore they arrive at points that are sufficiently faraway from W1:
Proposition 9. Let r ∈ (0, s). Suppose we initialize at A(0) ∈ I3( r4 ) and at Aref (0), and evolve
A(t) and Aref (t) according to Equation (28). There exist constants D+(r), D−(r) > 0 such that:

• A
(
t1(

r
4 )
)
, Aref

(
t1(

r
4 )
)
∈ B r

2
(s)

• |β2
(
t1(

r
4 )
)
|, |βref2

(
t1(

r
4 )
)
| ∈ [α ·D−(r), α ·D+(r)]

Proof. Consider the trajectories AZ(t) and A−(t) introduced in Lemma 13. Per Lemma 13, for any
time t ≥ 0 and any index j ∈ [d] we have

a−j (t) < aZj (t) < s

We begin by showing that for A(0) ∈ I3( r4 ), the distance between AZ
(
t1(

r
4 )
)

and A
(
t1(

r
4 )
)

is at
most r

24 . First note that per Lemma 13, AZ(t) never leaves Bs(s) ⊆ [−3, 3]d. Thus per Corollary 3,
both AZ(t) and A(t) are always contained in a compact domain where the vector field −∇ℓ(A) is
N -Lipschitz. Therefore, we can invoke Lemma 30 which results in the following:

∥AZ
(
t1(

r

4
)
)
−A
(
t1(

r

4
)
)
∥2 ≤ ∥AZ(0)−A(0)∥2 · exp(N · t1(

r

4
)) =

= ∥A(0)∥2 · exp(N · t1(
r

4
)) ≤ α · d · exp(N · t1(

r

4
))
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Per Definition 10, α satisfies

α ≤
min{ r4 , ∥A

Z
(
t1(

r
4 )
)
−A−(t1( r4 ))∥2}

6d
exp(−N · t1(

r

4
))

Hence, we obtain that

∥AZ
(
t1(

r

4
)
)
−A
(
t1(

r

4
)
)
∥2 ≤

≤
min{ r4 , ∥A

Z
(
t1(

r
4 )
)
−A−(t1( r4 ))∥2}

6d
exp(−N · t1(

r

4
)) · d · exp(N · t1(

r

4
)) =

=
min{ r4 , ∥A

Z
(
t1(

r
4 )
)
−A−(t1( r4 ))∥2}

6
≤ r

24

Therefore, using the triangle inequality we obtain

∥A
(
t1(

r

4
)
)
−s∥2 ≤ ∥AZ

(
t1(

r

4
)
)
−s∥2 + ∥A

(
t1(

r

4
)
)
−AZ

(
t1(

r

4
)
)
∥2 ≤ r

4
+

r

24
≤ r

2

Hence, A(t1) ∈ B r
2
(s). Next, by Remark 3 we obtain that

|β2
(
t1(

r

4
)
)
| = Dist

(
A
(
t1(

r

4
)
)
,W1

)
By Lemma 13 we have AZ

(
t1(

r
4 )
)
∈ W1, hence

|β2
(
t1(

r

4
)
)
| ≤ ∥AZ

(
t1(

r

4
)
)
−A
(
t1(

r

4
)
)
∥2 ≤ α · d · exp(N · t1(

r

4
))

Thus, denoting D+(r) := d · exp(N · t1( r4 )) we get the first part of the second claim. We now show
that β1

(
t1(

r
4 )
)
∈ (− 1

d , s); Per Lemma 13, we get by definition of t1 that

∥AZ
(
t1(

r

4
)
)
−s∥2 =

r

4

and so since ∥AZ
(
t1(

r
4 )
)
−A
(
t1(

r
4 )
)
∥2 ≤ r

24 and r < s it must hold that β1
(
t1(

r
4 )
)
< s. Since

∥AZ
(
t1(

r
4 )
)
−A
(
t1(

r
4 )
)
∥2 ≤ ∥AZ(t1( r

4 ))−A
−(t1( r

4 ))∥2

6 , it must hold that

β1
(
t1(

r

4
)
)
> a−

(
t1(

r

4
)
)

where A−(t1( r4 ))= a−
(
t1(

r
4 )
)
·1d. Note that by Lemma 13 we obtain

β1
(
t1(

r

4
)
)
> a−

(
t1(

r

4
)
)
> −1

d

as a−(t) is monotonically increasing. Therefore by Lemma 13 and by continuity, there must exist
some point a ∈ (− 1

d , β1
(
t1(

r
4 )
)
) such that if we initializeAa(0) = a·1d and evolveAa(t) according

to the gradient flow dynamics, then it holds that

Aa
(
t1(

r

4
)
)
= β1

(
t1(

r

4
)
)
·1d

Per Lemma 13, Aa(t) never leaves [−3, 3]d where the vector field −∇ℓ(A) is N -Lipschitz. Thus,
invoking Lemma 30 we obtain

|β2
(
t1(

r

4
)
)
| = ∥β2

(
t1(

r

4
)
)
·v
(
t1(

r

4
)
)
∥2 =

= ∥β2
(
t1(

r

4
)
)
·v
(
t1(

r

4
)
)
+β1

(
t1(

r

4
)
)
·1d − β2

(
t1(

r

4
)
)
·v
(
t1(

r

4
)
)
∥2 =

= ∥A
(
t1(

r

4
)
)
−Aa

(
t1(

r

4
)
)
∥ ≥ ∥A(0)−Aa(0)∥ · exp(−N · t1(

r

4
))

As Aa(0) ∈ W1, we can lower bound the right hand side by the distance between A(0) and W1 and
obtain

|β2
(
t1(

r

4
)
)
| ≥ Dist(A(0),W1) · exp(−N · t1(

r

4
))
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Next, observe that ζd ≤ 1
2 since A(0) ∈ I3( r4 ), hence

ζ1 −
∑d
k=1 ζk
d

≥ 1− d− 1

d
− 1

2d
=

1

2d
Therefore,

Dist(A(0),W1) =

√√√√ d∑
k=1

(α · ζk −
∑d
k=1 α · ζk
d

)2 =

= α

√√√√ d∑
k=1

(ζk −
∑d
k=1 ζk
d

)2 ≥ α · |ζ1 −
∑d
k=1 ζk
d

| ≥ α · 1

2d

Hence, we meet the second part of the second claim with D−(r) defined as

D−(r) :=
1

2d
· exp(−N · t1(

r

4
)) > 0

Note that the proof for the reference case is identical.

We note the following remark which deals with the value of points in a sufficiently small sphere
around s:
Remark 4. Let µ > 0. The objective ℓ is continuous and ℓ(s) > 0 there exists r(µ) > 0 such that
any A ∈ Br(µ)(s) satisfies

ℓ(A) ≤ (1 +
µ

4
) · ℓ(s)

We conclude this section by proving the following corollary, which states that when A(0) ∈ I3, a
set of additional properties are satisfied:
Corollary 4. Let µ > 0. Consider r̃(µ) := min{r2, r(µ)} for the respective r2 and r(µ) of
Proposition 8 and Remark 4. Suppose we initialize at A(0) ∈ I3( r̃4 ) and at Aref (0), and evolve
A(t) and Aref (t) according to Equation (28). There exist constants D+(µ), D−(µ) > 0 such that:

• A
(
t1(

r̃(µ)
4 )
)
, Aref

(
t1(

r̃(µ)
4 )
)
∈ B r2

2
(s)

• |β2
(
t1(

r̃(µ)
4 )
)
|, |βref2

(
t1(

r̃(µ)
4 )
)
| ∈ [α ·D−(µ), α ·D+(µ)]

• ℓ
(
A
(
t1(

r̃(µ)
4 )
))
, ℓ

(
Aref

(
t1(

r̃(µ)
4 )
))

≤ (1 + µ
4 )ℓ(s)

Proof. We consider the constants D+(µ) := D+(r̃(µ)) and D−(µ) := D−(r̃(µ)) from Proposi-
tion 9. Per Proposition 9 and since A(0) ∈ I3( r̃(µ)4 ), we have that:

• A
(
t1(

r̃(µ)
4 )
)
, Aref

(
t1(

r̃(µ)
4 )
)
∈ B r̃(µ)

2
(s)

• |β2
(
t1(

r̃(µ)
4 )
)
|, |βref2

(
t1(

r̃(µ)
4 )
)
| ∈ [α ·D−(µ), α ·D+(µ)]

As r̃(µ) ≤ r2, r(µ), we immediately obtain that

A
(
t1(

r̃(µ)

4
)
)
, Aref

(
t1(

r̃(µ)

4
)
)
∈ B r2

2
(s)

and

A
(
t1(

r̃(µ)

4
)
)
, Aref

(
t1(

r̃(µ)

4
)
)
∈ B r(µ)

2
(s)

Finally, recall Remark 4 which combined with the latter argument results in

ℓ

(
A
(
t1(

r̃(µ)

4
)
))
, ℓ

(
Aref

(
t1(

r̃(µ)

4
)
))

≤ (1 +
µ

4
)ℓ(s)

as required.
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D.3.5 ESCAPE FROM THE SADDLE s

In the previous section, we showed that the gradient flow trajectories must reach a sufficiently small
sphere around s. Our goal in this section is showing that not only do both trajectories escape it, but
they also do it fast enough13. To begin this section, we prove the following three lemmas regarding
the diffeomorphism H from Proposition 7. The following lemma proves that W1 is mapped into
itself under H:
Lemma 14. Let A ∈ Br2(s) \ {s} and denote Ã := H(A). If A ∈ W1 then Ã ∈ W1.

Proof. SinceA ∈ W1 there exists a ∈ Br2(s) such thatA = a ·1d. Per Proposition 8 and Lemma 8,
it holds that r2 < r1 ≤ 1

2d and s ∈ [ 1d ,
3
d ]. Thus we obtain that a ∈ [0, 4d ]. Assume on the contrary

that Ã /∈ W1. On the one hand, if we initialize at A(0) = a · 1d and evolve A(t) according to
Equation (28), then per Lemma 13 A(t) ∈ Br2(s) for all t ≥ 0, and furthermore limt→∞A(t) = s.
By continuity H(A(t)) converges to s as well. On the other hand, if we initialize at Ã(0) = Ã

and evolve Ã(t) according to the linear approximation around s of the gradient flow dynamics (see
Lemma 11), then per Remark 2 the solution Ã(t) diverges away from s (since the projection of Ã to
W2 is not zero). This contradicts our assumption that H is a conjugation (see Definition 5).

The following lemma proves the existence of two points in W1 that are mapped by H to ”opposite
sides” of s:
Lemma 15. There exists a1, a2 ∈ [s − r2

2
√
d
, s + r2

2
√
d
] \ {s} such that there exist ã1 ∈ [s − r3√

d
, s)

and ã2 ∈ (s, s+ r3√
d
] for which either

H(a1 · 1d) = ã1 · 1d, H(a2 · 1d) = ã2 · 1d
or

H(a1 · 1d) = ã2 · 1d, H(a2 · 1d) = ã1 · 1d

Proof. Consider a1 = s− r2
4
√
d

and a2 = s+ r2
4
√
d

. Both a1 · 1d and a2 · 1d are within W1 ∩Br2(s)
and so by Proposition 8 and Lemma 14 it holds thatH(a1 ·1d), H(a2 ·1d) ∈ W1∩Br3(s). Thus we
can denote H(a1 · 1d) = ã1 · 1d and (a2 · 1d) = ã2 · 1d for some ã1, ã2 ∈ [s− r3√

d
, s+ r3√

d
]. ã1, ã2

are distinct and different than s since a1, a2 ̸= s are distinct and since H is a homeomorphism
with H(s) = s. Assume WLOG that ã1 < ã2 (otherwise we flip the indices). Assume on the
contrary that ã1, ã2 > s (the case where ã1, ã2 < s is symmetric). Per Remark 2, if we initialize
at Ã(0) = ã2 · 1d and evolve Ã(t) according to the linear approximation around s of the gradient
flow dynamics, then our trajectory (which converges to s) must reach ã1 · 1d after some finite time
t2, i.e.we obtain Ã(t2) = ã1 · 1d. Thus we obtain that

H−1(Ã(t2)) = H−1(ã1 · 1d) = H−1(H(a1 · 1d)) = a1 · 1d
Hence, per Proposition 7 if we initialize at A(0) = a2 ·1d and evolve A(t) according to the gradient
flow dynamics, we would get that

A(t2) = H−1(Ã(t2)) = a1 · 1d
The proof concludes by noting that the above is a contradiction to Lemma 13.

The following lemma proves that W1 is mapped into itself under H−1:

Lemma 16. Let Ã ∈ Br3(s) \ {s} and denote A := H−1(Ã). If Ã ∈ W1 then A ∈ W1.

Proof. Since Ã ∈ W1 ∩ Br3(s) there exists ã ∈ [s − r3, s + r3] \ {s} such that Ã = ã · 1d.
Assume WLOG that ã ∈ [s − r3, s) (the opposite case is symmetric). Per Lemma 15, there exists
a′ ∈ [s− r2

2
√
d
, s+ r2

2
√
d
] \ {s} such that there exists ã′ ∈ [s− r3√

d
, s) for which

H(a′ · 1d) = ã′ · 1d
13recall that the divergence between the two trajectories depends on the convergence time achieved by gra-

dient flow.
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Assume that ã ≤ ã′. By Lemma 11, if we initialize at Ã(0) = Ã and evolve Ã(t) according to the
linear approximation around s of the gradient flow dynamics, then our trajectory (which converges
to s) must reach ã′ · 1d after some finite time t2, i.e.we obtain Ã(t2) = ã′ · 1d. Thus we obtain that

H−1(Ã(t2)) = H−1(ã′ · 1d) = H−1(H(a′ · 1d)) = a′ · 1d

Hence, per Proposition 7 if we initialize at A(0) = A = H−1(Ã) and evolve A(t) according to the
gradient flow dynamics, we would get that

A(t2) = H−1(Ã(t2)) = a′ · 1d

Invoking Lemma 3 we conclude that A ∈ W1. Assume that ã > ã′. By Lemma 11, if we initialize
at Ã′(0) = Ã′ and evolve Ã′(t) according to the linear approximation around s of the gradient flow
dynamics, then our trajectory (which converges to s) must reach ã · 1d after some finite time t2,
i.e.we obtain Ã′(t2) = ã · 1d = Ã. On the one hand, note that H−1(Ã) = A. On the other hand, if
we initialize at A′(0) = a′ ·1d and evolve A′(t) according to the gradient flow dynamics (defined in
Equation (24)), we get by Proposition 7 that A′(t2) = H−1(Ã′(t2)). Thus, A′(t2) = A. The proof
concludes by invoking Lemma 13 which states that A′(t) ∈ W1 for any t ≥ 0.

The following two lemmas give bounds on the original dynamics in terms of the linearized ones:

Lemma 17. Let A ∈ Br2(s) \ {s}. It holds that

Dist(A,W1) ≤ G̃ · Dist(H(A),W1)

where G̃ is the Lipschitz coefficient of H−1|Br3
(s).

Proof. First note that per Proposition 8, H−1|Br3
(s) is indeed Lipschitz. Let G̃ > 0 be its Lipschitz

coefficient. Next, by definition of the Dist measure (Equation (15)) we have that

Dist(H(A),W1) = min
Ã∈W1

∥H(A)− Ã∥2

Since A ∈ Br2(s), it holds by Proposition 8 that H(A) ∈ Br3(s). Thus, since Br3(s) is a ball it
must hold that

min
Ã∈W1

∥H(A)− Ã∥2 = min
Ã∈W1∩Br3

(s)
∥H(A)− Ã∥2

As H is onto Br3(s), by Proposition 8 there exists A′ ∈ Br1(s) such that

H(A′) ∈ argmin
Ã∈W1∩Br3 (s)

∥H(A)− Ã∥2

Hence by the Lipschitz property of of H−1 we obtain

min
Ã∈W1∩Br3

(s)
∥H(A)− Ã∥2 = ∥H(A)−H(A′)∥2 ≥

≥ 1

G̃
∥H−1(H(A))−H−1(H(A′))∥2 =

1

G̃
∥A−A′∥2

Since A′ = H−1(Ã) for some Ã ∈ W1 ∩Br3(s), it holds by Lemma 16 that A′ ∈ W1. Thus,

1

G̃
∥A−A′∥2 ≥ 1

G̃
min

A′′∈W1

∥A−A′′∥2 =
1

G̃
· Dist(A,W1)

Combining the above inequalities and multiplying by G̃ we obtain overall that

G̃ · Dist(H(A),W1) ≥ |A−A′∥2 ≥ Dist(A,W1)

as required.
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Lemma 18. Let A ∈ Br1(s). It holds that

Dist(H(A),W1) ≤ G · Dist(A,W1)

where G is the Lipschitz coefficient of H|Br1
(s).

Proof. First note that per Proposition 8, H|Br1
(s) is indeed Lipschitz. Let G > 0 be its Lipschitz

coefficient . Next, by definition of the Dist measure we have that

Dist(A,W1) = min
A′∈W1

∥A−A′∥2

Since A ∈ Br1(s) and Br1(s) is a ball, it must hold that

min
A′∈W1

∥A−A′∥2 = min
A′∈W1∩Br1

(s)
∥A−A′∥2

By the Lipschitz property of H we obtain

min
A′∈W1∩Br1

(s)
∥A−A′∥2 ≥ min

A′∈W1∩Br1
(s)

1

G
∥H(A)−H(A′)∥2 ≥ Dist(H(A),W1)

where the last inequality follows from Lemma 14. Multiplying by G gives the result.

Before proving the main claims of this section, we introduce another condition on the initialization
which we denote I4:

Definition 11. Let µ > 0. We denote G′ := max{1, G, G̃} for G̃ and G from Lemmas 17 and 18.
We use I4(µ) to denote the following subset of I0:

I4(µ) :=
{
A ∈ I0 : α ≤ r3

4max{2, exp(−2λ−)} ·G′2
√
dD+(µ)

}
For r3, λ− and D+ from Proposition 8, Lemma 9, , and Corollary 4 respectively.

In the next two propositions, we bound the time it takes to escape the sphere around s under the lin-
earized dynamics, and prove an additional claim that will be utilized later to show that the trajectory
never returns to a certain sphere around s.

We introduce notation which will be used in both propositions; Let µ > 0. Suppose we initialize
at A(0) ∈ I3( r̃(µ)4 ) ∩ I4(µ) (for r̃ of Corollary 4) and at Aref (0), and evolve A(t) and Aref (t)

according to Equation (28). Suppose we initialize Ã(0) = H

(
A
(
t1(

r̃(µ)
4 )
))

and at Ãref (0) =

H

(
Aref

(
t1(

r̃(µ)
4 )
))

(for t1 of Lemma 13), and evolve Ã(t) and Ãref (t) according to the linearized

dynamics (see Lemma 11). For any time t ≥ 0, denote the representations of Ã(t) and Ãref (t) with
the orthogonal subspaces W1 and W2 to be

Ã(t) = β̃1(t) · 1d + β̃2(t) · ṽ(t)

and

Ãref (t) = β̃ref1 (t) · 1d + β̃ref2 (t) · ṽref (t)

where ṽ(t), ṽref (t) ∈ W2 are unit vectors.

The following proposition give quantitative bounds on the rate of exponential escape from s of
trajectories under the lineaarized dynamics:

Proposition 10. There exist times t2(µ), t
ref
2 (µ) ≥ 2 for which it holds

• |β̃2
(
t2(µ)

)
|, |β̃ref2

(
t2(µ)

)
| = r3

2
√
d
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• For G′ := max{1, G, G̃} it holds that

t2(µ), t
ref
2 (µ) ∈

[
− 1

λ−
ln
( r3

4G′2
√
dαD+(µ)

)
,− 1

λ−
ln
( G′2r3

2
√
dαD−(µ)

)]
• For any t ∈ [0, t2(µ)] it holds that Ã(t) ∈ Br3(s)

• For any t ∈ [0, tref2 (µ)] it holds that Ãref (t) ∈ Br3(s)

Proof. We prove the argument for Ã (the proof is identical for Ãref ). Recall Corollary 4 which
states that

Dist
(
A
(
t1(

r̃(µ)

4
)
)
,W1

)
= |β2

(
t1(

r̃(µ)

4
)
)
| ∈ [α ·D−(µ), α ·D+(µ)]

Thus, applying Lemmas 17 and 18 we obtain

α ·D−(µ)

G̃
≤ Dist(Ã(0),W1) = |β̃2(0)| ≤ G · α ·D+(µ)

Per Lemma 11, for any t ≥ 0 the solution at time t to the linear dynamics initialized at Ã(0) is given
by (

exp(−t · λ+)(β̃1(0)− s) + s

)
1d + (exp(−t · λ−) · β̃2(0))ṽ(0)

As noted in Remark 2, the coefficient |β̃1(t) − s| tends to zero as t grows, while the coefficient
|β̃2(t)| tends to ∞ as t grows. We first bound the time t2(µ) for which |β̃2

(
t2(µ)

)
| = r3

2
√
d

. Since
A(0) ∈ I4(µ), it holds that

max{2, exp(−2λ−)} ≤ r3

4G′2
√
dαD+(µ)

Therefore since λ− < 0 (by Lemma 10) we obtain the following positive time t−:

t− := − 1

λ−
ln(

r3

4G′2
√
dαD+(µ)

) ≥ − 1

λ−
ln(exp(−2λ−)) = 2

Thus, at time t− the solution to the linear dynamics satisfies the following:

Dist(Ã(t−),W1) = |β̃2(t−)| = |β̃2(0)| · exp(−t− · λ−) ≤ G ·D+(µ) · α · exp(−t− · λ−) =

= G ·D+(µ) · α · exp(λ−
λ−

ln(
r3

4G′2
√
dαD+(µ)

)) =
G ·D+(µ) · α · r3
4G′2

√
dαD+(µ)

≤ r3

4G′
√
d
≤ r3

4
√
d

where the last two inequalities stem from the fact that G′ ≥ G, 1. Hence, t− is a lower bound on
t2(µ). On the other hand, note that

G′2 · r3
2
√
dαD−(µ)

≥ r3

4G′2
√
dαD+(µ)

and so since λ− < 0 we obtain the following positive time t+:

t+ := − 1

λ−
ln(

G′2 · r3
2
√
dαD−(µ)

) ≥ − 1

λ−
ln(

r3

4G′2
√
dαD+(µ)

) = t−

Thus, at time t+ the solution to the linear dynamics statisfies the following:

|β̃2(t+)| = |β̃2(0)| · exp(−t+ · λ−) ≥
α ·D−(µ)

G̃
· exp(−t+ · λ−) =

=
α ·D−(µ)

G̃
· exp(λ−

λ−
ln(

G′2 · r3
2
√
dαD−(µ)

)) =

=
α ·D−(µ)

G̃
· G′2 · r3
2
√
dαD−(µ)

≥ G′ · r3
2
√
d

≥ r3

2
√
d
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where the last two inequalities stem from the fact that G′ ≥ G̃, 1. Hence, t+ is an upper bound on
t2(µ). Next, we show that |β̃1(t−) − s| ≤ r3

2
√
d

. This will allow us to claim by monotonicity that

Ã(t2
(
µ)
)
∈ Br3(s), since then we’ll have the following:

∥Ã(t2
(
µ)
)
−s∥2 = ∥β̃1

(
t2(µ)

)
·1d + β̃2

(
t2(µ)

)
·v
(
t2(µ)

)
−s∥2 =

= ∥(β̃1
(
t2(µ)

)
−s) · 1d∥2 + ∥β̃2

(
t2(µ)

)
·v
(
t2(µ)

)
∥2 ≤

≤ r3

2
√
d
·
√
d+

r3

2
√
d
· 1 ≤ r3

Since Ã(0) ∈ Br3(s) it holds that |β̃1(0) − s| ≤ r3√
d

. Hence, since λ+

λ−
< −1 (by Lemma 10) it

holds that

|β̃1(t−)− s| = | exp(−λ+ · t−)(β̃1(0)− s) + s− s| ≤

≤ |β̃1(0)− s| · exp(−λ+ · t−) ≤

≤ r3√
d
·
(

r3

4G′2
√
dαD+(µ)

) λ+
λ−

≤ r3

2
√
d

where the last inequality stems from the fact that 2 ≤ r3
4G′2

√
dαD+(µ)

. Finally, since under the linear

dynamics |β̃2(t)| monotonically grows and |β̃1(t)| monotonically tends to s, it must hold that for
any t ∈ [0, t2(µ)] we have Ã(t) ∈ Br3(s).

The next proposition shows that β̃2(t) must be larger than some constant throughout a time interval
of length 1 before t2(µ):

Proposition 11. For any τ ∈ [0, 1] it holds that

|β̃2
(
t2(µ)− τ

)
|, |β̃ref2

(
t2(µ)− τ

)
| = r3

2
√
d
· exp(λ− · τ)

Proof. We prove the argument for Ã (the proof is identical for Ãref ). In Proposition 10 we’ve
established that t2(µ) ≥ 2. Thus, per Lemma 11, for any τ ∈ [0, 1] the solution at the positive time
t2(µ)− τ ≥ 1 to the linear dynamics initialized at Ã(0) is given by(

exp(−(t2(µ)− τ) · λ+)(β̃1(0)− s) + s

)
1d + (exp(−(t2(µ)− τ) · λ−) · β̃2(0))ṽ(0)

Hence, since |β̃2
(
t2(µ)

)
| = r3

2
√
d

we obtain that

|β̃2
(
t2(µ)− τ

)
| = | exp(−(t2(µ)− τ) · λ−) · β̃2(0)| =

= | exp(−t2(µ) · λ−) · β̃2(0)| · exp(λ− · τ) =

= |β̃2
(
t2(µ)

)
| · exp(λ− · τ) = r3

2
√
d
· exp(λ− · τ)

The above established that there exists a time which is O(ln( 1
α )) where at least one of the linearized

trajectories is at a constant distant from W1. We complete this section by proving the following
corollary, which states that the corresponding non linear dynamics trajectory must also be at a con-
stant distance from W1 during a time interval of length 1. This will eventually allow us to claim that
the trajectory must remain trapped within a set where the objective ℓ satistfies satisfies the PL condi-
tion (see Definition 13), which in turn ensures a rapid convergence to a global minimum (discussed
in the next section):
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Corollary 5. Let µ > 0. Suppose we initialize at A(0) ∈ I3( r̃(µ)4 ) ∩ I4(µ) (for r̃ of Corollary 4)
and atAref (0), and evolveA(t) andAref (t) according to Equation (28). For any τ ∈ [0, 1] it holds
that

|β2
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
| = Dist

(
A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
,W1

)
≥ r3 · exp(λ−)

2G ·
√
d

and

|βref2

(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)
| = Dist

(
Aref

(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)
,W1

)
≥ r3 · exp(λ−)

2G ·
√
d

Proof. We prove the argument for A (the proof is identical for Aref ). In Proposition 11 we have
shown that for any τ ∈ [0, 1] it holds that Ã

(
t2(µ) − τ

)
∈ Br3(s), and so the mapping H is a

conjugation to the original dynamics. Therefore since we’ve initialized Ã(0) at H
(
A
(
t1(

r̃(µ)
4 )
))

,

it must hold that for any τ ∈ [0, 1]

H−1

(
Ã
(
t2(µ)− τ

))
= A

(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
Since H−1[Br3 ] ⊆ Br1 we obtain that A

(
t1(

r̃(µ)
4 ) + t2(µ) − τ

)
∈ Br1 , and thus by Lemma 18 we

obtain

Dist(A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
,W1) ≥

Dist(Ã
(
t2(µ)− τ

)
,W1)

G

Note that by orthgonoality |β̃2
(
t2(µ) − τ

)
| = dist(Ã

(
t2(µ) − τ

)
,W1), hence plugging Proposi-

tion 11 we receive

Dist(A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
,W1) ≥

|β̃2
(
t2(µ)− τ

)
|

G
=
r3 · exp(λ− · τ)

2G ·
√
d

≥ r3 · exp(λ−)
2G ·

√
d

where the last inequality is due to λ− < 0. The proof is complete by observing that
Dist(A

(
t1(

r̃(µ)
4 ) + t2(µ)− τ

)
,W1) = |β2

(
t1(

r̃(µ)
4 ) + t2(µ)− τ

)
|.

D.3.6 CONVERGENCE TO A GLOBAL MINIMUM

We begin this section by proving the following corollary regarding the difference between different
coordinates of the points reached by the gradient flow trajectories. We will later that this ensures the
objective satisfies the PL condition (Definition 13).

Corollary 6. Let µ > 0. Suppose we initialize at A(0) ∈ I3( r̃(µ)4 ) ∩ I4(µ) (for r̃ of Corollary 4)
and atAref (0), and evolveA(t) andAref (t) according to Equation (28). For any τ ∈ [0, 1] it holds
that there exist i, j, iref , jref ∈ [d] such that

|ai
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
−aj

(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
| ≥ r3 · exp(λ−)

2G · d1.5
and

|aref
iref

(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)
−aref

jref

(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)
| ≥ r3 · exp(λ−)

2G · d1.5

Proof. The claim follows from invoking Lemma 32 and plugging the lower bound on |β2| and |βref2 |
provided in Corollary 5.

We continue by proving that ℓ satisfies the PL condition (Definition 13) on the subset of points
Diff(b)C (Equation (18)):
Lemma 19. Let b > 0. ℓ|Diff(b)C∩[−3,3]d satisfies the PL condition with PL coefficient µ =

1
2 min

{
2d, ((L−1)̃b)2

4 , ( b̂

b̂+2
)2
}

, for b̃ := ( b2 )
L−2 and b̂ := ( b6 )

L−2.
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Proof. Let A ∈ Diff(b)C ∩ [−3, 3]d. Recalling the definition of Diff(b)C (Equation (18)) there exist
i, j ∈ [d] such that |ai − aj | ≥ b. Since ai ̸= aj , at least one is non-zero. Assume WLOG that
aj ̸= 0. Hence, since 0 < L− 2 ∈ Nodd we get per proposition 17 that

|aL−2
i − aL−2

j | ≥ (
b

2
)L−2 =: b̃

|1− aL−2
i

aL−2
j

| ≥ (
b

6
)L−2 =: b̂

Denote ress := 1−
∑d
k=1 ak and resl := 1−

∑d
k=1 a

L−1
k . If ress = 0, then it holds that

∥∇ℓ(A)∥2 =

d∑
k=1

(L− 1)2(aL−2
k )2res2l = (∗)

By the triangle inequality, either |aL−2
i | ≥ b̃

2 or |aL−2
j | ≥ b̃

2 . In either case,

(∗) ≥ (L− 1)2
b̃2

4
res2l =

((L− 1)̃b)2

4
(
1

2
res2l +

1

2
res2s) =

((L− 1)̃b)2

4
ℓ(A)

i.e., the PL condition is satisfied with µ = 1
2 · ((L−1)̃b)2

4 . If resl = 0, then it holds that

∥∇ℓ(A)∥2 =

d∑
k=1

res2s = dres2s = 2d(
1

2
res2l +

1

2
res2s) = 2dℓ(A)

i.e.the PL condition is satisfied with µ = 1
2 · 2d. Assume resl, ress ̸= 0 and denote χ :=

−ress
(L−1)resl

̸= 0. For any k ∈ [d] we have

∇ℓ(A)k = (L− 1)aL−2
k resl + ress = (L− 1)aL−2

k resl − (L− 1)resl · χ = (L− 1)(aL−2
k − χ)resl

or equivalently

∇ℓ(A)k = (L− 1)aL−2
k resl + ress = −(L− 1)aL−2

k

ress
(L− 1)χ

+ ress = (1−
aL−2
k

χ
)ress

Squaring the above identities we obtain

∇ℓ(A)2k = (L− 1)2(aL−2
k − χ)2res2l = (1−

aL−2
k

χ
)2res2s

By the triangle inequality

|aL−2
i − χ| ≥ b̃

2
or

|aL−2
j − χ| ≥ b̃

2

Therefore, if res2l ≥ res2s we get that

∥∇ℓ(A)∥2 =

d∑
k=1

(L− 1)2(aL−2
k − χ)2res2l ≥

((L− 1)̃b)2

4
res2l ≥

≥ ((L− 1)̃b)2

4
(
1

2
res2l +

1

2
res2s) =

((L− 1)̃b)2

4
ℓ(A)

i.e.the PL condition is satisfied with µ = 1
2
((L−1)̃b)2

4 . On the other hand if res2l < res2s, then by
proposition 18

|1− aL−2
i

χ
| ≥ b̂

b̂+ 2
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or

|1−
aL−2
j

χ
| ≥ b̂

b̂+ 2

and therefore

∥∇ℓ(A)∥2 =

d∑
k=1

(1−
aL−2
k

χ
)2res2s ≥ (

b̂

b̂+ 2
)2res2s ≥

≥ (
b̂

b̂+ 2
)2(

1

2
res2l +

1

2
res2s) = (

b̂

b̂+ 2
)2ℓ(A)

i.e. the PL condition is satisfied with µ = 1
2 (

b̂

b̂+2
)2. Overall, we get that whenever A ∈ Diff(b)C ∩

[−3, 3]d, the PL condition is satisfied with µ = 1
2 min

{
2d, ((L−1)̃b)2

4 , ( b̂

b̂+2
)2
}

, as required.

The above results in the following corollary regarding the PL condition satisfied by ℓ at a certain set
of points reached by the gradient flow trajectories:

Corollary 7. Let µ > 0. Suppose we initialize at A(0) ∈ I3( r̃(µ)4 ) ∩ I4(µ) (for r̃ of Corollary 4)
and atAref (0), and evolveA(t) andAref (t) according to Equation (28). For any τ ∈ [0, 1] it holds
that ℓ satisfies the PL condition (Definition 13) at the points

A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
and

Aref
(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)
with PL coefficient

µ1 :=
1

2
min

{
2d,

((L− 1)̃b)2

4
, (

b̂

b̂+ 2
)2
}

for

b̃ := (
r3 · exp(λ−)
4G · d1.5

)L−2, b̂ := (
r3 · exp(λ−)
12G · d1.5

)L−2

Proof. The claim follows from invoking Lemma 19 and plugging the bound on the coordinate dif-
ference provided in Corollary 6.

For the rest of the proof, we let µ = µ1 from Corollary 7. We are now ready to prove the following
proposition, which states that at time t1(

r̃(µ1)
4 ) + t2(µ1), the trajectory is at a point whose value

improves upon the value of ℓ at s by a constant:

Proposition 12. Consider µ1 from Corollary 7. Suppose we initialize atA(0) ∈ I3( r̃(µ1)
4 )∩I4(µ1)

(for r̃ of Corollary 4) and at Aref (0), and evolve A(t) and Aref (t) according to Equation (28). it
holds that

ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ min{ℓ(s)

2
,
3µ1 · ℓ(s)

4
}

and

ℓ(s)− ℓ

(
Aref

(
t1(

r̃(µ1)

4
) + tref2 (µ1)

))
≥ min{ℓ(s)

2
,
3µ1 · ℓ(s)

4
}
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Proof. We prove the argument for A (the proof is identical for Aref ). First, suppose that

ℓ

(
A
(
t1(

r̃(µ1)
4 ) + t2(µ1)

))
≤ ℓ(s)

2 . Then it holds that

ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ ℓ(s)− ℓ(s)

2
=
ℓ(s)

2
≥ min{ℓ(s)

2
,
3µ1 · ℓ(s)

4
}

Next, suppose that ℓ
(
A
(
t1(

r̃(µ1)
4 ) + t2(µ1)

))
> ℓ(s)

2 . Thus per Lemma 23, for any τ ∈ [0, 1] it

holds that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)− τ

))
≥ ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
>
ℓ(s)

2

Next, per Corollary 7 for any τ ∈ [0, 1] it also holds that ℓ satisfies the PL condition in the point
A
(
t1(

r̃(µ1)
4 ) + t2(µ1)− τ

)
with PL coefficient µ1. Thus, by Lemma 33 it holds that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)− 1

))
−ℓ
(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥

≥ 2(t1(
r̃(µ1)

4
) + t2(µ1)− t1(

r̃(µ1)

4
)− t2(µ1) + 1) · µ1 ·

ℓ(s)

2
= µ1 · ℓ(s)

On the other hand, recall that by Corollary 4 and since gradient flow is non-increasing we have that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)− 1

))
≤ ℓ

(
A
(
t1(

r̃(µ1)

4
)
))

≤ (1 +
µ1

4
)ℓ(s)

Thus, we obtain the following:

(1 +
µ1

4
)ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ µ1 · ℓ(s)

Reorganizing thus yields

ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ 3µ1 · ℓ(s)

4

as required.

We continue to prove the following proposition, which states that after time t1(
r̃(µ1)

4 ) + t2(µ1), the
points reached by the gradient flow trajectory are ones where ℓ satisfies the PL condition with a
certain PL coefficient:

Proposition 13. Consider µ1 from Corollary 7. Suppose we initialize atA(0) ∈ I3( r̃(µ1)
4 )∩I4(µ1)

(for r̃ of Corollary 4) and at Aref (0), and evolve A(t) and Aref (t) according to Equation (28).
There exists ν > 0 such that for any time t it holds that:

• If t ≥ t1(
r̃(µ1)

4 ) + t2(µ1) then A(t) ∈ Diff(ν)C .

• If t ≥ t1(
r̃(µ1)

4 ) + tref2 (µ1) then Aref (t) ∈ Diff(ν)C .

Additionally, it holds that ℓ satistfies the PL condition at Diff(ν)C with coefficient µ2 for

µ2 :=
1

2
min

{
2d,

((L− 1)ν̃)2

4
, (

ν̂

ν̂ + 2
)2
}

where

ν̃ := (
ν

2
)L−2, ν̂ := (

ν

6
)L−2
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Proof. We prove the argument for A (the proof is identical for Aref ). Let t ≥ t1(
r̃(µ1)

4 )+ tref2 (µ1).
Denote for any ψ ≥ 0 the function

f(ψ) := min
A∈Diff(ψ)∩[−3,3]d

ℓ(A)

for Diff(ψ) defined in Equation (17). Per Lemma 8 and since s ∈ [−3, 3]d it holds that
ℓ(s) = min

A∈W1

ℓ(A) = min
A∈W1∩[−3,3]d

ℓ(A) = min
A∈Diff(0)∩[−3,3]d

ℓ(A) = f(0)

Invoking Lemma 34, it holds that f is right side continuous in 0. Hence by continuity, we obtain
that there exists ν such that for any ψ ∈ [0, ν] it holds that

f(ψ) ≥ f(0)− 1

2
min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
= ℓ(s)− 1

2
min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
>

> ℓ(s)−min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
On the other hand, per Proposition 12 and since the objective is non-increasing under gradient flow
(see Lemma 23), we obtain the following:

ℓ(s)− ℓ
(
A(t)

)
≥ ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ min{ℓ(s)

2
,
3µ1 · ℓ(s)

4
}

Rearranging we thus obtain

f(ψ) > ℓ(s)−min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
≥ ℓ
(
A(t)

)
Note that per Lemma 34, f is non increasing w.r.t ψ, thus it must hold that A(t) ̸∈ Diff(ψ) (since
it is in [−3, 3]d). As this holds for any ψ ∈ [0, ν], we obtain that A(t) ∈ Diff(ν)C . Hence, the
argument follows from Lemma 19.

The final proposition of this section proves that the gradient flow trajectory converges to a global
minimum Â2:

Proposition 14. Consider µ1 from Corollary 7. Suppose we initialize atA(0) ∈ I3( r̃(µ1)
4 )∩I4(µ1)

(for r̃ of Corollary 4) and evolve A(t) according to Equation (28). There exists Â2 ∈ Rd such that

lim
t→∞

A(t) = Â2

and ℓ(Â2) = 0

Proof. Per Corollary 7, there exists ν > 0 such that for any t ≥ t1(
r̃(µ1)

4 ) + t2(µ1) it holds that
A(t) ∈ Diff(ν)C where ℓ satisfies the PL condition with coefficient µ2 (defined in Corollary 7).
Next, note that per Lemma 12 and Corollary 3, A(t) is always contained in [−3, 3]d, where ℓ’s
gradient is N Lipschitz. Therefore, the claim follows from Lemma 26.

D.3.7 OVERALL DIVERGENCE FROM REFERENCE TRAJECORY

In this section we show that one can choose a set of initializations such that the divergence between
Â2 and some point on the reference trajectory is arbitrarily small. This shows that Â2 must not
recover the teacher (per Lemma 4). We begin by proving the following lemma which gives explicit
times at which the gradient flow trajectories reach points of arbitrary small value:
Lemma 20. Let η2 ∈ (0,min{1, 2Pm }). Consider µ1 from Corollary 7. Suppose we initialize at
A(0) ∈ I3( r̃(µ1)

4 ) ∩ I4(µ1) (for r̃ of Corollary 4) and evolve A(t) according to Equation (28).
Denote t∗2(µ1) := min{t2(µ1), t

ref
2 (µ1)}. Denote the time t3(η2) ≥ 0 to be

t3(η2) := −
ln( m2P η2)

2µ2
− 1

λ−
ln(

G′2r3

2
√
dαD−(µ1)

) +
1

λ−
ln(

r3

4G′2
√
dαD+(µ1)

)

It holds that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2)

))
≤ η2
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Proof. First, note that since λ− < 0 < G′ and 0 < D−(µ1) < D+(µ1) we obtain that

t3(η2) = −
ln( m2P η2)

2µ2
+

1

λ−
ln(

D−(µ1)

2G′4D+(µ1)
) ≥ −

ln( m2P η2)

2µ2

The right term is positive as 0 < m
2P η2 < 1 and µ2 > 0. Next per Proposition 10 it holds that

|t2(µ1)− tref2 (µ1)| ≤ − 1

λ−
ln
( G′2r3

2
√
dαD−(µ)

)
+

1

λ−
ln
( r3

4G′2
√
dαD+(µ)

)
=

=
1

λ−
ln(

D−(µ1)

2G′4D+(µ1)
)

which results in

t1(
r̃(µ1)

4
) + t∗2(µ1) + t3(η2) ≥ t1(

r̃(µ1)

4
) + t2(µ1)−

ln( m2P η2)

2µ2

Hence, per Lemma 23 we obtain that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2)

))
≤ ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)−

ln( m2P η2)

2µ2

))
Per Proposition 13 there exists ν > 0 such that for any t ≥ t1(

r̃(µ1)
4 ) + t2(µ1) it holds that A(t) ∈

Diff(ν)C where ℓ satisfies the PL condition with coefficient µ2 (defined in Corollary 7). Thus, per
Lemma 25 it holds that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)−

ln( m2P η2)

2µ2

))
≤ ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
· exp(2µ2 ·

ln( m2P η2)

2µ2
) ≤

≤ ℓ(A(0)) · m
2P

η2

where the second to last inequality stems from Lemma 23. The proof follows by noting that at
initialization ℓ’s value is no more than 2P

m .

We continue to the following lemma which proves that there times at which the distance between
the gradient flow trajectory and Â2 (defined in Proposition 14) is arbitrarily small:

Lemma 21 (Distance between gradient flow trajectory and Â2). Let δ ∈ (0, 1). Consider µ1 from
Corollary 7. Suppose we initialize at A(0) ∈ I3( r̃(µ1)

4 ) ∩ I4(µ1) (for r̃ of Corollary 4). Denote
t∗2(µ1) := min{t2(µ1), t

ref
2 (µ1)}. Then there exists η2,δ > 0 such that

∥Â2 −A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤ δ

Proof. Denote A∗ :=

{
A ∈ Rd : ℓ(A) = 0

}
. Per Corollary 7, there exists µ2 > 0 such that for any

t ≥ t1(
r̃(µ1)

4 )+ t2(µ1) it holds that ℓ satisfies the PL condition inA(t) with PL coefficient µ2. Next,
note that per Lemma 12 and Corollary 3 it holds that ℓ’s gradient is N Lipschitz in A(t). Therefore
by Lemma 26 for any t ≥ 0 it holds that

∥Â2 −A
(
t1(

r̃(µ1)

4
) + t2(µ1) + t

)
∥2 ≤

√
N

µ2
Dist

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1) + t

)
,A∗

)
Additionally, note that since ℓ is continuous and non-negative, when considering its restriction to
[−3, 3]d we obtain that its 1 sub-level set is compact. Therefore we obtain by Lemma 36 that there
exists η2,δ ∈ (0,min{1, 2Pm }) such that for any A ∈ [−3, 3]d if ℓ(A) ≤ η2,δ then Dist(A,A∗) ≤√

µ2

N δ. It was shown in Lemma 20 that

t1(
r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ) ≥ t1(

r̃(µ1)

4
) + t2(µ1)
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and so we obtain that

∥Â2 −A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤

√
N

µ2
Dist

(
A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
,A∗

)
It was also shown that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

))
≤ η2,δ

and so we obtain

∥Â2 −A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤

√
N

µ2

µ2

N
δ = δ

as required.

Before proving the last proposition of this section, we introduce another condition on the initializa-
tion which we denote I5:
Definition 12. Let δ, η > 0. We use I5(δ, η) to denote the following subset of I0:

I5(δ, η) :=
{
A ∈ I0 : (1− ζ2) ≤

δ(
G′2r3

2
√
dD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)
4 ) + t3(η)

)) · α
}

For r3, D−, G′ and µ1 from Proposition 8, Corollaries 4 and 7, , and Definition 11 respectively.

We proceed by proving the following proposition which upper bounds the divergence between A(t)
and Aref (t):
Proposition 15. Let δ > 0. Consider µ1 from Corollary 7. Suppose we initialize at A(0) ∈
I3( r̃(µ1)

4 ) ∩ I4(µ1) ∩ I5( δ2 , η2,δ) (for η2,δ of Lemma 21) and at Aref (0), and evolve A(t) and
Aref (t) according to Equation (28). Denote t∗2(µ1) := min{t2(µ1), t

ref
2 (µ1)}. It holds that

∥A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤ δ

2

for η2,δ described in Lemma 21.

Proof. Per Lemma 12 and Corollary 3 for any t ≥ 0 it holds that A(t), Aref (t) are contained in
[−3, 3]d, where ℓ’s gradient is N Lipschitz . Thus per Lemma 30 it holds that

∥A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤

≤ ∥A
(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)
∥2 · exp(N · t3(η2,δ))

Next, since t∗2(µ1) ≤ t2(µ1), t
ref
2 (µ1) we obtain by Proposition 10 that for any t ∈

[t1(
r̃(µ1)

4 ), t1(
r̃(µ1)

4 ) + t∗2(µ1)] it holds that

H
(
A(t)

)
, H
(
Aref (t)

)
∈ Br3(s)

Invoking Proposition 8, the above results in

A(t), Aref (t) ∈ Br1(s)

By definitions of r1 and Br1(s) (Proposition 8), the above yields the following for any t ∈
[t1(

r̃(µ1)
4 ), t1(

r̃(µ1)
4 ) + t∗2(µ1)] and k ∈ [0, 1]:

|λmin

(
∇2ℓ

(
k ·A(t) + (1− k) ·Aref (t)

))
| ≤ 2|λ−|
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Next, it holds that λmin(∇2ℓ(A)) = −λmax(−∇2ℓ(A)) for any A ∈ Rd. Therefore, invoking
Lemma 35 and plugging the above we obtain that

∥A
(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)
∥2 ≤

≤ exp

(∫ t∗2(µ1)

0

2|λ−|dτ
)
·∥A
(
t1(

r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)
∥2 =

= exp(2t∗2(µ1)|λ−|) · ∥A
(
t1(

r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)
∥2

Note that λ− < 0 and so |λ−| = −λ−. Thus, recalling Proposition 10 we upper bound t∗2(µ1) and
obtain that

∥A
(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)
∥2 ≤

≤ exp

(
− 2

λ−
ln
( G′2r3

2
√
dαD−(µ1)

)
|λ−|

)
·∥A
(
t1(

r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)
∥2 =

=

(
G′2r3

2
√
dαD−(µ1)

)2

·∥A
(
t1(

r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)
∥2

Applying Lemma 30 once more, we obtain that

∥A
(
t1(

r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)
∥2 ≤ ∥A(0)−Aref (0)∥2 · exp(N · t1(

r̃(µ1)

4
))

Finally, by Equation (30) and Definition 4 we have at initalization that

∥A(0)−Aref (0)∥2 = |a2(0)− aref2 (0)| = α · (1− ζ2)

Altogether we obtain the following bound on the divergence:

∥A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤

≤ α · (1− ζ2)

(
G′2r3

2
√
dαD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)

4
) + t3(η2,δ)

))
The proof concludes by recalling that the initialization satisfies A(0) ∈ I5( δ2 , η2,δ) and so since
α > 0 we can rewrite and obtain that

α · (1− ζ2) ≤
δ
2(

G′2r3
2
√
dαD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)
4 ) + t3(η2,δ)

))
and so

α · (1− ζ2)

(
G′2r3

2
√
dαD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)

4
) + t3(η2,δ)

))
≤ δ

2

We finish this section by proving the following corollary bounding the distance between Â2 (the
point to which the gradient flow trajecory converges to) and Aref

(
t1(

r̃(µ1)
4 ) + t∗2(µ1) + t3(η2,δ)

)
, a

point which by Lemma 4 is far away from the teacher:

Corollary 8. Let δ > 0. Consider µ1 from Corollary 7. Suppose we initialize atA(0) ∈ I3( r̃(µ1)
4 )∩

I4(µ1)∩I5( δ2 , η2,δ) (for η2,δ of Lemma 21) and atAref (0), and evolveA(t) andAref (t) according
to Equation (28). Denote t∗2(µ1) := min{t2(µ1), t

ref
2 (µ1)}. It holds that

∥Â2 −Aref
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤ δ

where A(t) converges to Â2 (see Proposition 14).

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Proof. Per Lemma 21, it holds that

∥Â2 −A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤ δ

2

Per Proposition 15, it holds that

∥A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤ δ

2

The claim thus follows from the triangle inequality.

Let I2(δ2) be the initialization subset defined above, i.e.

I2(δ2) := I3(
r̃(µ1)

4
) ∩ I4(µ1) ∩ I5(

δ2
2
, η2,δ2)

for δ2 of Lemma 4. Invoking the lemma we obtain that for any L
′ ≥ L+ 2 it holds that

GenL′(Â2) ≥
1

2
min{0.1, 1/(9d) · (1− (0.6)1/(L−1))

which concludes our proof of the fact that gradient flow under S2 converges to a non-generalizing
solution when initialized at I2(δ).

D.4 INITIALIZATION SUBSETS INTERSECT

In Proposition 4 we showed that when initializing at I1(ϵ) gradient flow converges to a point Â1

which satisfies GenL′ (Â1) ≤ ϵ. In Corollary 8 we showed that when initializing at I2(δ2) gradient
flow converges to a point Â2 which satisfies GenL′ (Â2) ≥ 1

2 min{0.1, 1/(9d) · (1− (1/2)1/(L−1)).

In this section we show that not only do the initialization subsets I1(ϵ) and I2(δ2) intersect but
also that their intersection contains an open subset. For convenience of the reader, we rewrite the
full requirements as they appear in the statements of Sections D.1 to D.3 and state their respective
arguments. The base initialization set (Equation (30)) we consider is

I0 =

{
α · (ζ1, . . . , ζd)⊤ ∈ Rd : α ∈ (0,

1

2d
), 1 = ζ1 > ζ2 > · · · > ζd > 0

}
I1(ϵ) (Definition 3) was defined as

I1(ϵ) =
{
A ∈ I0 : ∀j ∈ {2, . . . , d}. α ≤ (

1− (1− η1,δ1)
L−1 − η1,δ1

√
n
P

d− 1
)

1
L−1

1

ζj
(1− ζL−3

j )
1

L−3

}
for η1,δ1 of Remark 1. I3( r̃(µ1)

4 ) (Definition 10) was defined as

I3(
r̃(µ1)

4
) :=

{
A ∈ I0 : α ≤

min{ r̃(µ1)
4 , ∥AZ

(
t1(

r̃(µ1)
4 )

)
−A−(t1( r̃(µ1)

4 )
)
∥2}

6d
e−N ·t1( r̃(µ1)

4 ), ζd ≤
1

2

}
for r̃(·) and µ1 of Corollaries 4 and 7 respectively. I4(µ1) (Definition 11) was defined as

I4(µ1) =

{
A ∈ I0 : α ≤ r3

4max{2, exp(−2λ−)} ·G′2
√
dD+(µ1)

}
I5(δ2, η2,δ2) (Definition 12) was defined as

I5(δ2, η2,δ2) =
{
A ∈ I0 : (1− ζ2) ≤

δ2(
G′2r3

2
√
dD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)
4 ) + t3(η2,δ2)

)) · α
}

for η2,δ2 of Lemma 21. We begin by observing the following simplication:

I1(ϵ) ∩ I0 = I0 ∩
{
A ∈ I0 : α ≤ (

1− (1− η1,δ1)
L−1 − η1,δ1

√
n
P

d− 1
)

1
L−1

1

ζ2
(1− ζL−3

2 )
1

L−3

}
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since the right hand side is monotonically decreasing in ζ and since ζ2 > ζj for any j ∈ {3, . . . d}.
Next, we also require that 1

2 ≥ ζ3. Note that this requirement satisfies the requirement of I3 on the
magnitude of ζd (since ζ3 > ζ4 > · · · > ζd). Moreover, note that I3 and I4 impose upper bounds on
α which are not related to ζ2, . . . , ζd. Therefore, there exists some α∗ > 0 such that if α ∈ (0, α∗)
then all of these conditions are satisfied. Moving on to the conditions that involve α and ζ2 we first
observe that there exists constants S, T > 0 such that

α ≤ S

ζ2
(1− ζL−3

2 )
1

L−3

is equivalent to the condition from I1 and

(1− ζ2) ≤ Tα

is equivalent to the condition from I5. Invoking Lemma 37 we obtain that there exist constants
q1, w1 ∈ (0, 1) and q2, w2 ∈ ( 12 , 1) such that taking α ∈ (q1, w1) and ζ2 ∈ (q2, w2) satisfies the two
conditions involving α and ζ2. The above discussion is summarized in the following proposition:

Proposition 16. For any ϵ > 0 there exist constants q1, w1 ∈ (0, 1) and q2, w2 ∈ ( 12 , 1) such that
the set {

α · (1, ζ2, ..., ζd)⊤ : (α, ζ2) ∈ (q1, w1)× (q2, w2),
1

2
≥ ζ3... > ζd

}
is contained in the intersection of initialization subsets given by

I1(ϵ) ∩ I2(δ2)

Now that we have characterized a set of initializations which satisfy all our requirements, we will
show that this set contains an open subset.

Lemma 22. The set of initializations satisfying all our requirements, namely{
α · (1, ζ2, ..., ζd)⊤ : (α, ζ2) ∈ (q1, w1)× (q2, w2),

1

2
≥ ζ3... > ζd

}
contains an open set, namely a set of the form (a1, b1)× (a2, b2)× ...× (ad, bd).

Proof. We begin by restricting ζ3, . . . , ζd by requiring that for 3 ≤ j ≤ d, ζj ∈ [ej , fj ] where the
closed intervals {[ej , fj ]}2≤j≤d satisfy

1

2
> f2 > e2 > f3 > e3 > · · · > fd > ed > 0

We can restrict α further, by requiring that α ∈ (a1, b1), where a1, b1 are chosen such that for all
2 ≤ j ≤ d we have

a1fj > b1ej

We now claim that for all 2 ≤ j ≤ d

(b1ej , a1fj) ⊆
⋂

α∈(a1,b1)

[αej , αfj ]

Indeed, for any α ∈ (a1, b1) we have b1ej > αej and a1fj < αfj . It follows that we can take
aj = b1ej , bj = a1fj and obtain that the set (a1, b1)× (a2, b2)× ...× (ad, bd) is contained within

{α(1, ζ2, . . . , ζd) : (α, ζ2) ∈ (q1, w1)× (q2, w2),
1

2
> ζ3 > · · · > ζd}

as required.
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D.5 AUXILIARY ARGUMENTS

Lemma 23. Let f : Rd → R be some differentiable function. Suppose we optimize over f by
initializing x(0) := x0 for some x0 ∈ Rd and updating using gradient flow, i.e.:

ẋ(t) :=
d

dt
x(t) = −∇f(x(t))

Then the objective is non-increasing w.r.t time, i.e. for any t ≥ 0 it holds that

d

dt
f(x(t)) ≤ 0

Proof. Applying the chain rule, we obtain the following:

d

dt
f(x(t)) = ∇f(x(t))⊤ d

dt
x(t) = f(x(t))⊤(−f(x(t))) = −∥f(x(t))∥22 ≤ 0

Lemma 24. Let f : Rd → R be some continuously differentiable function, which is also coercive,
namely

lim
∥x∥→∞

f(x) = ∞

Suppose we optimize over f by initializing x(0) := x0 for some x0 ∈ Rd and updating using
gradient flow, i.e.:

ẋ(t) :=
d

dt
x(t) = −∇f(x(t)) (31)

Then there exists a global solution to the above ODE, namely a curve x(t) which satisfies the above
equation for all t ≥ 0.

Proof. By Lemma 23 and the coercivity of f , the trajectories of gradient flow cannot escape from
some compact set K := K(x0). Because f is continuously differentiable ∇f has some finite Lip-
schitz constant on K. Existence of the solution for all t ≥ 0 now follows from the Picard–Lindelöf
theorem (see Teschl (2024)).

Theorem 4. Let V ⊆ Rd be an open set. Let f : V → R be a non-negative differentiable function
satisfying the following conditions:

• The set X∗ := {x ∈ V : f(x) = 0} is not empty.

• There exists µ > 0 such that for any x ∈ V it holds that

∥∇f(x)∥22 ≥ 2µf(x)

• There exists M > 0 such that ∇f(x) is M -Lipschitz in V .

Suppose we optimize over f by initializing x(0) := x0 for some x0 ∈ V and evolving via gradient
flow, i.e. via the update rule

ẋ(t) :=
d

dt
x(t) = −∇f(x(t))

Assume the set V is not escaped, i.e. for any time t ≥ 0 it holds that x(t) ∈ V . Then it holds that∫ ∞

0

∥ẋ(t)∥2dt =
∫ ∞

0

∥∇f(x(t))∥2dt ≤

√
M

µ
Dist(x0, X

∗)

Proof. The theorem is a restatement of theorem 9 in Gupta et al. (2021).

Lemma 25. Let V ⊆ Rd be an open set. Let f : V → R be a non-negative differentiable function
satisfying the following conditions:
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• The set x∗ := {x ∈ V : f(x) = 0} is not empty.

• PL condition - there exists µ > 0 such that for any x ∈ V it holds that

∥∇f(x)∥2 ≥ 2µf(x)

Suppose we optimize over f by initializing x(0) := x0 for some x0 ∈ V and evolving via gradient
flow, i.e. via the update rule

ẋ(t) :=
d

dt
x(t) = −∇f(x(t))

Assume the set V is not escaped, i.e. for any time t ≥ 0 it holds that x(t) ∈ V . Then for any t ≥ 0 it
holds that

f(x(t)) ≤ f(x(0)) · exp(−2µ · t)

Namely, it holds that

lim
t→∞

f(x(t)) = 0

Proof. Let t ≥ 0. By the chain rule, it holds that

d

dt
f(x(t)) = ∇f(x(t))⊤ d

dt
x(t) = f(x(t))⊤(−f(x(t))) = −∥f(x(t))∥22

By the PL condition and since V is not escaped, we have that

d

dt
f(x(t)) = −∥∇f(x(t))∥22 ≤ −2µf(x(t))

Therefore, by Grönwall’s inequality (Gronwall (1919)) we have that

f(x(t)) ≤ f(x(0)) · exp
(∫ t

0

−2µdτ

)
= f(x(0)) · exp(−2µ · t)

Taking the limit as t→ ∞ completes the proof.

Definition 13. Let V ⊆ Rd be an open set. Let f : V → R be a differentiable function. We say that
f satisfies the Polyak-Lojasiewicz condition with coefficient µ > 0 at x ∈ V

∥∇f(x)∥22 ≥ 2µ(f(x)− min
y∈Rd

f(y))

If the above holds for all x ∈ V we say that f satisfies the PL condition in V .

Lemma 26. Let V ⊆ Rd be an open set. Let f : V → R be a non-negative differentiable function
satisfying the following conditions:

• The set X∗ := {x ∈ V : f(x) = 0} is not empty.

• f satisfies the PL condition with coefficient µ > 0 (see Definition 13).

• Lipschitz gradient - there exists M > 0 such that ∇f(x) is M -Lipschitz in V .

Suppose we optimize over f by initializing x(0) := x0 for some x0 ∈ V and evolving via gradient
flow, i.e. via the update rule

ẋ(t) :=
d

dt
x(t) = −∇f(x(t))

Assume the set V is not escaped, i.e. for any time t ≥ 0 it holds that x(t) ∈ V . Then the limit
limt→∞ x(t) = x∗ exists and satisfies f(x∗) = 0 and

∥x∗ − x0∥2 ≤

√
M

µ
Dist(x0, X

∗)

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Proof. Let ϵ > 0. By theorem 4, it holds that∫ ∞

0

∥ẋ(τ)∥2dτ ≤

√
M

µ
Dist(x0, X

∗)

which is finite since X∗ is not empty. Hence, there exists t∗ ≥ 0 such that for any t ≥ t∗ it holds
that ∫ ∞

t

∥ẋ(τ)∥2dτ ≤ ϵ

Therefore, for any t2 ≥ t1 ≥ t∗ it holds by the fundamental theorem of calculus and by the triangle
inequality that

∥x(t2)− x(t1)∥2 = ∥x0 +

∫ t2

0

ẋ(τ)dτ − x0 −
∫ t1

0

ẋ(τ)dτ∥2 =

= ∥
∫ t2

t1

ẋ(τ)dτ∥2 ≤
∫ t2

t1

∥ẋ(τ)∥2dτ ≤
∫ ∞

t1

∥ẋ(τ)∥2dτ ≤ ϵ

Thus, the Cauchy convergence criterion is met and so the limit limt→∞ x(t) = x∗ exists. Plugging
f ’s continuity and lemma 25 yields the following

f(x∗) = f( lim
t→∞

x(t)) = lim
t→∞

f(x(t)) = 0

Finally, by continuity and by the triangle inequality it holds that

∥x∗ − x0∥2 = ∥x0 +

∫ ∞

0

ẋ(τ)dτ − x0∥2 = ∥
∫ ∞

0

ẋ(τ)dτ∥2 ≤

≤
∫ ∞

0

∥ẋ(t)∥2 ≤

√
M

µ
Dist(x0, X

∗)

as required.

Lemma 27. Let a, b ∈ R. An eigendecomposition of the matrix (a− b)Id + b1d×d is the following:

• The eigenvector 1d with the eigenvalue a+ (d− 1)b.

• For j ∈ {2, . . . , d} the eigenvector e1 − ej with the eigenvalue a− b.

Proof. First, it holds that

[(a− b)Id + b1d×d]1d = (a− b)1d + b · d1d = (a+ (d− 1)b)1d

hence 1d is an eigenvector with the eigenvalue a+ (d− 1)b. Next, note that for any j ∈ {2, . . . , d}
we have

[(a− b)Id + b1d×d](e1 − ej) = (a− b)e1 + b1d − (a− b)ej − b1d = (a− b)(e1 − ej)

hence e1 − ej is an eigenvector with the eigenvalue a − b. Finally, note that the set {1d, e1 −
e2, . . . , e1 − ed} is linearly independent and thus spans Rd. Therefore, the above eigenvectors and
eigenvalues constitute and eigendecomposition of (a− b)Id + b1d×d.

Lemma 28. Let W ∈ Rd×d be a symmetric matrix and b ∈ Rd be a vector. The solution of the
linear dynamical system

ẏ(t) = −W (y(t)− b)

is given by

y(t) = exp(−W )(y(0)− b) = Q exp(−t · Λ)Q⊤(y(0)− b) + b

where W = QΛQ⊤ is any orthogonal eigendecomposition of W .

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Proof. Using the change of variables z(t) = y(t)− b, the given system simplifies to

ż(t) = −Wz(t)

whose solution is given by

z(t) = exp(−t ·W )z(0)

Reversing the change of variables and reorganizing yields

y(t) = exp(−t ·W )(y(0)− b) + b

Let W = QΛQ⊤ be an orthogonal eigendecomposition of the symmetric W . Then we have by the
definition of matrix exponential that

y(t) = Q exp(−t · Λ)Q⊤(y(0)− b) + b

as required.

Lemma 29. Let x0 ∈ Rd. Let V1,U1 ⊆ Rd be neighborhoods of x0. Let H : V1 → U1 be a C3

diffeomorphism. There exists r > 0 such that for any r1 ∈ (0, r] there exist r2 ∈ (0, r1) and r3 > 0
for which

• H[Br2(s)] ⊆ Br3(s) ⊆ H[Br1(s)]

• H|Br1
(s) is Lipschitz

• H−1|Br3 (s)
is Lipschitz

Proof. V1 and U1 are neighborhoods of x0 and so there exist r
′
, r

′′
> 0 for which Br′ (x0) ⊆ V1

and Br′′ (x0) =: U2 ⊆ U1. Hence, by H’s continuity there exists some small enough r > 0 for
which Br(x0) ⊆ V1 is mapped by H to H[Br(x0)] ⊆ U2. Fix r1 ∈ (0, r]. Then it holds that
Br1(x0) satisfies

Br1(x0) ⊆ Br(x0) ⊆ V1

and is mapped by H to

H[Br1(x0)] ⊆ H[Br(x0)] ⊆ U2

Since Br1(x0) is a compact ball and since H is C3, we obtain that H is Lipschitz over Br1(x0),
i.e. H|Br1

(x0)
is Lipschitz. Similarly, we obtain that H−1 is Lipschitz over U2, i.e. H−1|U2

is

Lipschitz. Therefore since H[Br1(x0)] ⊆ U2 we obtain that H−1|H[Br1
(x0)]

is Lipschitz. Next,

note that for any r2 ∈ (0, r1) the compact ball Br2(x0) satisfies H[Br2(x0)] ⊆ H[Br1(x0)].
Hence, by taking a small enough r2 we can guarantee by H’s continuity that there exists some
r3 > 0 for which Br3(x0) satisfies

H[Br2(x0)] ⊆ Br3(x0) ⊆ H[Br1(x0)]

Since H−1|H[Br1 (x0)]
is Lipschitz and Br3(x0) ⊆ H[Br1(x0)] we obtain that H−1|Br3 (x0)

is
Lipschitz.

Lemma 30. Let f : Rd → Rd be a vector field and let B ⊆ Rd be a bounded and compact space.
Suppose f is N -Lipschitz within B for some constant N > 0. Consider the following system of
ODEs:

ẋ(t) = f(x(t))

Consider two initialization points x1(0),x2(0) ∈ B. Suppose we evolve x1(t),x2(t) according to
the above system. If for any t ≥ 0 it holds that x1(t),x2(t) ∈ B, then

∥x1(0)− x2(0)∥2 · exp(−N · t) ≤ ∥x1(t)− x2(t)∥2 ≤ ∥x1(0)− x2(0)∥2 · exp(N · t)
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Proof. Let t ≥ 0. Applying the chain rule, we obtain the following:

d

dt
∥x1(t)− x2(t)∥2 =

d

dt

√(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

)
=

=
1

2∥x1(t)− x2(t)∥2
d

dt

(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

)
=

=
2

2∥x1(t)− x2(t)∥2
·
(
x1(t)− x2(t)

)⊤ d

dt

(
x1(t)− x2(t)

)
=

=
1

∥x1(t)− x2(t)∥2
·
(
x1(t)− x2(t)

)⊤(
f(x1(t))− f(x2(t))

)
Thus, applying the Cauchy Schwarz inequality we obtain

d

dt
∥x1(t)− x2(t)∥2 ≤ 1

∥x1(t)− x2(t)∥2
· ∥x1(t)− x2(t)∥2 · ∥f(x1(t))− f(x2(t))∥2 =

= ∥f(x1(t))− f(x2(t))∥2
f is N -Lipschitz within B, and so since x1(t),x2(t) ∈ B we obtain

d

dt
∥x1(t)− x2(t)∥2 ≤ ∥f(x1(t))− f(x2(t))∥2 ≤ N · ∥x1(t)− x2(t)∥2

Finally, plugging Grönwall’s inequality (Gronwall (1919)) results in

∥x1(t)− x2(t)∥2 ≤ ∥x1(0)− x2(0)∥2 · exp(N · t)
Next, consider the following system of ODEs which we coin the reversal of f :

ẋ(t) = −f(x(t))
Consider the initialization points x1(0) = x1(t) and x2(0) = x2(t). Suppose we evolve
x1(t),x2(t) according to the reversal of f . Then it holds that for any time t ∈ [0, t] and any
i ∈ [2] we have

xi(t) = xi(t− t)

hence xi(t) ∈ B. As Lipschitz continuity is invariant to sign, −f is N -Lipschitz within B. There-
fore, we can apply the above claim on the reversal of f , and obtain that

∥x1(0)− x2(0)∥2 = ∥x1(t)− x2(t)∥2 ≤ ∥x1(0)− x2(0)∥2 · exp(N · t) =
= ∥x1(t)− x2(t)∥2 · exp(N · t)

The proof concludes by rearranging of the left and right hand side.

Lemma 31 (ODE solutions do not cross). Let f : Rd → Rd be a Lipschitz continuous vector field.
Consider the following system of ODEs:

ẋ(t) = f(x(t))

Consider two initialization points x1(0),x2(0) ∈ Rd. Suppose we evolve x1(t),x2(t) according to
the above system. If x1(0) ̸= x2(0) then for any t ∈ R it holds that x1(t) ̸= x2(t)

Proof. The argument follows from the Picard–Lindelöf existence and uniqueness theorem, which
states that for a given initialization x(0), there exists a unique solution x(t) to the ODE system

ẋ(t) = f(x(t))

Lemma 32. Let x ∈ Rd. Denote x’s representation with the orthogonal subspaces W1 and W2 to
be

x = β1 · 1d + β2 · v
where v ∈ W2 is a unit vector. There exist i, j ∈ [d] such that

|xi − xj | ≥
|β2|
d
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Proof. Denote v’s representation with the basis vectors of W2 to be

v =

d∑
k=2

λk(e1 − ek) =


∑d
k=2 λk
−λ2
. . .
−λd


where λ2, . . . , λd ∈ R. Denote Λ := (λ2, . . . , λd)

⊤ ∈ Rd−1. As v is a unit vector, it holds that

1 = ∥v∥22 = (

d∑
k=2

λk)
2 +

d∑
k=2

(−λk)2 = (

d∑
k=2

λk)
2 +

d∑
k=2

λ2k

Hence,

1− (

d∑
k=2

λk)
2 =

d∑
k=2

λ2k

Applying the Cauchy-Schwartz inequality we obtain the following:

(

d∑
k=2

λk)
2 = (

d∑
k=2

1 · λk)2 = ⟨1d−1,Λ⟩ ≤ ∥1d−1∥22 · ∥Λ∥2 = (d− 1)

d∑
k=2

λ2k

Therefore, we obtain that

d∑
k=2

λ2k = 1− (

d∑
k=2

λk)
2 ≥ 1− (d− 1)

d∑
k=2

λ2k =⇒ d

d∑
k=2

λ2k ≥ 1 =⇒
d∑
k=2

λ2k ≥ 1

d

Therefore, there exists i∗ ∈ {2, . . . , d} for which λ2i∗ ≥ 1
d(d−1) and thus |λi∗ | ≥ 1√

d(d−1)
. If there

exists j ∈ {2, . . . d} for which λj has a distinct sign than λi∗ , then it holds that

|vi∗ − vj | = | − λi∗ + λj | ≥ |λi∗ − 0| ≥ 1√
d(d− 1)

Otherwise, all entries of Λ share the same sign, and so it holds that for any j ∈ {2, . . . , d}

|v1 − vj | = |
d∑
k=2

λk − (−λj)| =
d∑
k=2

|λk|+ |λj | ≥ |λi∗ | ≥
1√

d(d− 1)

Therefore, there must exist i, j ∈ [d] for which |vi − vj | ≥ 1√
d(d−1)

, resulting in the following:

|xi − xj | = |β1 + β2 · vi − β1 − β2 · vj | = |β2| · |vi − vj | ≥
|β2|√
d(d− 1)

Proposition 17. Let x, y ∈ [−s, s] for some s > 0 such that |x − y| ≥ b for some b > 0. Then for
any k ∈ Nodd it holds that |xk − yk| ≥ ( b2 )

k. Additionally, if y ̸= 0 then |1− xk

yk
| ≥ ( b2s )

k.

Proof. Suppose WLOG that x ≥ y. By the triangle inequality it holds that max{|x|, |y|} ≥ b
2 . If

x ≥ 0 ≥ y, then since k ∈ Nodd it holds that

|xk − yk| = |x|k + |y|k ≥ (
b

2
)k

Now suppose that x, y ≥ 0. Then we have that

|xk − yk| = xk − yk ≥ (y + b)k − yk ≥ bk ≥ (
b

2
)k
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The case of x, y ≤ 0 is identical. As for the second inequality, If y ̸= 0, we get

|1− xk

yk
| = |y

k − xk

yk
| = |xk − yk|

|yk|
≥

( b2 )
k

|yk|

Since y ∈ [−s, s] we get that |yk| ≤ sk and so

( b2 )
k

|yk|
≥ (

b

2s
)k

Proposition 18. Let x, y, z ∈ R such that y, x.z ̸= 0, and let b̂ > 0. If |1 − x
y | ≥ b̂ then either

|1− x
z | ≥

b̂

b̂+2
or |1− y

z | ≥
b̂

b̂+2
.

Proof. Assume to the contrary that both |1− x
z | <

b̂

b̂+2
and |1− y

z | <
b̂

b̂+2
. This implies that

0 < 1− b̂

b̂+ 2
≤ x

z
,
y

z
< 1 +

b̂

b̂+ 2

Hence, we get that

1

b̂+ 1
=

2

2b̂+ 2
=
b̂+ 2− b̂

b̂+ 2 + b̂
=

1− b̂

b̂+2

1 + b̂

b̂+2

<
x
z
y
z

=
x

y
<

1 + b̂

b̂+2

1− b̂

b̂+2

=
b̂+ 2 + b̂

b̂+ 2− b̂
=

2b̂+ 2

2
= b̂+ 1

rearranging we obtain

−b̂ < −b̂
b̂+ 1

=
1

b̂+ 1
− 1 <

x

y
− 1 < b̂

which implies |xy − 1| < b̂ , contradicting our assumption.

Lemma 33. Let f : Rd → R be a differentiable function. Consider the gradient flow dynamics
induced by f , namely:

ẋ(t) = −∇f(x(t))

Initialized at some x0 ∈ Rd. Let t1 < t2 be times such that

{x(t) : t ∈ [t1, t2]} ⊆ {z ∈ Rd : f(z) ≥ min
y∈Rd

(f(y)) + c}

for some c ≥ 0 and f satisfies the PL condition with some coefficient µ > 0 in {x(t) : t ∈ [t1, t2]}.
Then

f
(
x(t1)

)
−f
(
x(t2)

)
≥ 2(t2 − t1) · µ · c

Proof. By the fundamental theorem for line integrals we have

f
(
x(t1)

)
−f
(
x(t2)

)
= −

∫ t2

t1

⟨∇f(x(τ)), ẋ(τ)⟩dτ =

∫ t2

t1

∥∇f(x(τ))∥2dτ

applying the PL condition and Equation (31) we get the required result.

Lemma 34. Let g : Rd → R be a continuous function and let r > 0 and let B be a compact set
such that 0d ∈ B. For any ψ ≥ 0 denote the minimum value of g over Diff(ψ) ∩B as

f(ψ) := min
x∈Diff(ψ)∩B

g(x)

It holds that f is right side continuous in ψ = 0.
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Proof. Recalling the definition of Diff(ψ) (Equation (17)), we have that for any ψ ≥ 0 the set
Diff(ψ) ∩ B is compact, thus f(ψ) is properly defined for any ψ ≥ 0 (as by continuity g attains a
minimum over the set). Next, note that f is non-increasing since for any ψ2 ≥ ψ1 ≥ 0 it holds that

Diff(ψ1) ∩B ⊆ Diff(ψ2) ∩B =⇒ f(ψ1) = min
x∈Diff(ψ1)∩B

g(x) ≥ min
x∈Diff(ψ2)∩B

g(x) = f(ψ2)

Let {ψn}∞n=1 be a non-increasing sequence of non-negative reals for which

lim
n→∞

ψn = 0

As f is non-increasing, the sequence {f(ψn)}∞n=1 is monotonically non-decreasing and upper
bounded by f(0). Hence, the limit R := limn→∞ f(ψn) exists and satisfies R ≤ f(0). For
any ψ ≥ 0 we let xψ be a minimizer of g over Diff(ψ) ∩B, i.e.

xψ ∈ argmin
x∈Diff(ψ)∩B

g(x)

The set B is compact and so the sequence {xψn
}∞n=1 has a convergent subsequence {xψnk

}∞k=1.
Denote its limit

lim
k→∞

xψnk
=: x∗ ∈ Br(0d)

Assume on the contrary that x∗ ̸∈ Diff(0). Hence by definition of Diff(0) it holds that

ψ̃ := max
i,j∈[d]

|x∗i − x∗j | > 0

However, since limn→∞ ψn = 0 there exists k̃ ∈ N such that for any k ∈ N such that k ≥ k̃ it holds
that ψnk

≤ ψ̃
2 and thus

xψnk
∈ Diff(ψnk

) ⊆ Diff(
ψ̃

2
) ∧ x∗ /∈ Diff(

ψ̃

2
)

This results in limk→∞ xψnk
̸= x∗ in contradiction. Therefore we obtain x∗ ∈ Diff(0) ∩B. By g’s

continuity and f ’s definition we thus obtain the following

lim
k→∞

g(xψnk
) = g( lim

k→∞
xψnk

) = g(x∗) ≥ f(0)

Per xψ’s definition and since limn→∞ f(ψn) = R we also obtain

lim
k→∞

g(xψnk
) = lim

k→∞
f(ψnk

) = R

i.e.,R ≥ f(0). Overall we obtain thatR ≤ f(0) ≤ R, henceR = f(0). The above result is satisfied
for any sequence {ψn}∞n=1, hence limψ→0+ f(ψ) = f(0) as required.

Lemma 35. Let f : Rd → Rd be a C1 and Lipschitz vector field. Consider the system of ODEs
given by

ẋ(t) = f(x(t))

Consider two initialization points x1(0),x2(0) ∈ Rd. For any t ≥ 0 we use λmax(t) to denote the
maximum over the line segment between x1(t) and x2(t) of the maximal eigenvalue of the jacobian
of f , i.e.

λmax(t) := max
k∈[0,1]

λmax

(
∇f
(
k · x1(t) + (1− k) · x2(t)

))
For any t ≥ 0 it holds that

∥x1(t)− x2(t)∥2 ≤ exp

(∫ t

0

λmax(τ)dτ

)
·∥x1(0)− x2(0)∥2
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Proof. First note that since f is Lipschitz, λmax(t) is defined for any t ≥ 0. Next, if x1(0) = x2(0)
then the trajectories coincide and so the claim trivially follows. Suppose x1(0) ̸= x2(0). By
definition, we have that

d

dt
(x1(t)− x2(t)) = f

(
x1(t)

)
−f
(
x2(t)

)
As f is C1, we obtain by the mean value theorem (see Sahoo and Riedel (1998)) that there exists
k ∈ [0, 1] for which

f
(
x1(t)

)
−f
(
x2(t)

)
= ∇f

(
k · x1(t) + (1− k) · x2(t)

)(
x1(t)− x2(t)

)
Additionally, by the chain rule we also have

d

dt
∥x1(t)− x2(t)∥2 =

d

dt

√(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

)
=

=
1

2∥x1(t)− x2(t)∥2
d

dt

(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

)
=

=
2

2∥x1(t)− x2(t)∥2
·
(
x1(t)− x2(t)

)⊤ d

dt

(
x1(t)− x2(t)

)
=

=
1

∥x1(t)− x2(t)∥2
·
(
x1(t)− x2(t)

)⊤(
f
(
x1(t)

)
−f
(
x2(t)

))
Plugging the above yields

d

dt
∥x1(t)− x2(t)∥2 =

(
x1(t)− x2(t)

)⊤∇f(k · x1(t) + (1− k) · x2(t)
)(
x1(t)− x2(t)

)
∥x1(t)− x2(t)∥2

=

= ∥x1(t)− x2(t)∥2 ·
(
x1(t)− x2(t)

)⊤∇f(k · x1(t) + (1− k) · x2(t)
)(
x1(t)− x2(t)

)(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

) = (∗)

The right term is bound by the Rayleigh quotient (see Horn and Johnson (1985)), and so the above
can be bound by

(∗) ≤ ∥x1(t)− x2(t)∥2 · λmax
(
∇f
(
k · x1(t) + (1− k) · x2(t)

))
≤ ∥x1(t)− x2(t)∥2 · λmax(t)

where the last inequality stems from λmax(t)’s definition. Dividing both sides by ∥x1(t)− x2(t)∥2
and integrating w.r.t time yields the following

ln(∥x1(t)− x2(t)∥2)− ln(∥x1(0)− x2(0)∥2) =
∫ t

0

d
dτ ∥x1(τ)− x2(τ)∥2
∥x1(τ)− x2(τ)∥2

dτ ≤
∫ t

0

λmax(τ)dτ

Reorganizing the inequality and taking exponents yields

∥x1(t)− x2(t)∥2 ≤ exp

(∫ t

0

λmax(τ)dτ + ln(∥x1(0)− x2(0)∥2)
)
=

= exp

(∫ t

0

λmax(τ)dτ

)
·∥x1(0)− x2(0)∥2

as required.

Lemma 36. Let f : Rd → R be a continuous non-negative function with minx∈Rd f(x) = 0.
Denote X∗ := {x ∈ Rd : f(x) = 0}. Suppose that the 1 sub-level set of f defined as L1(f) :=
{x ∈ Rd : f(x) ≤ 1} is compact. Then for any δ > 0 there exists η > 0 such that for any x ∈ Rd if
f(x) ≤ η then Dist(x, X∗) ≤ δ.

Proof. Assume on the contrary that there exists δ > 0 such that for any ϵ > 0 there exists xη ∈ Rd
for which f(xη) ≤ δ and Dist(xη, X∗) > δ. Consider the sequence {x 1

n
}∞n=1. For any n ∈ N it

holds that f(x 1
n
) ≤ 1

n and Dist(x 1
n
, X∗) > δ, therefore it holds that

lim
n→∞

f(x 1
n
) = 0
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The sub-level set L1(f) is compact and satisfies x 1
n
∈ L1(f) for any n ∈ N, hence the sequence

{x 1
n
}∞n=1 is bounded. Therefore, the sequence has a convergent subsequence {x 1

nk

}∞k=1 with some
limit x∗ := limk→∞ xnk

. By f ’s continuity we get that

f(x∗) = f( lim
k→∞

xnk
) = lim

k→∞
f(xnk

) = lim
n→∞

f(xn) = 0

i.e., x∗ ∈ X∗. This is a contradiction since all x 1
n

must remain at distance at least δ from x∗ on the
one hand, and x 1

nk

converges to x∗ on the other hand.

Lemma 37. Let T, S > 0, n ∈ N and x∗ ∈ (0, 1). There exist q1, w1 ∈ (0, x∗) and q2, w2 ∈ ( 12 , 1)
such that for any x ∈ (q1, w1) and y ∈ (q2, w2) it holds that

1− y ≤ Tx

and

x ≤ S

y
(1− yn)

1
n

Proof. First note that since T > 0, the first requirement is equivalent to having
1− y

T
≤ x

Let y ∈ (0, 1). It holds that

lim
y→1−

S

y
(1− yn)

1
n = lim

y→1−

S

y

(
(1− y)

n−1∑
i=0

yi
) 1

n= S · n 1
n · lim

y→1−
(1− y)

1
n = 0

Therefore, there exists y′ ∈ (0, 1) such that for any y ∈ [y′, 1) it holds that

S

y
(1− yn)

1
n ≤ x∗

On the other hand, it also holds that

S
y+1
2

(
1− (y+1

2 )n
) 1

n

1−y
T

=
2TS

y + 1
·
(
(1− y+1

2 )
∑n−1
i=0 (

y+1
2 )i

) 1
n

1− y
=

=
2TS

(∑n−1
i=0 (

y+1
2 )i

) 1
n

y + 1
· (1

2
)

1
n · (1− y)

1
n

1− y

Hence, taking the limit as y → 1− we obtain that

lim
y→1−

S
y+1
2

(
1− (y+1

2 )n
) 1

n

1−y
T

= lim
y→1−

2TS
(∑n−1

i=0 (
y+1
2 )i

) 1
n

y + 1
· (1

2
)

1
n · (1− y)

1
n

1− y
=

= TS · n 1
n · (1

2
)

1
n · lim

y→1−

1

(1− y)
n−1
n

= ∞

Therefore, there exists y′′ ∈ (0, 1) such that for any y ∈ [y′′, 1) it holds that

S
y+1
2

(
1− (y+1

2 )n
) 1

n

1−y
T

> 2

and so 1−y
T < S

y+1
2

(
1 − (y+1

2 )n
) 1

n . Thus, setting y∗ = max{ 1
2 , y

′, y′′} we obtain that the interval(
1−y∗
T , S

y∗+1
2

(
1 − (y

∗+1
2 )n

) 1
n

)
is not empty and upper bounded by x∗. Additionally, for any y ∈

(y∗, y
∗+1
2 ) the following holds:

y∗ < y =⇒ 1− y∗

T
>

1− y

T
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y∗ + 1

2
> y =⇒ S

y∗+1
2

(
1− (

y∗ + 1

2
)n
) 1

n<
S

y
(1− yn)

1
n

Hence the interval
(

1−y∗
T , S

y∗+1
2

(
1 − (y

∗+1
2 )n

) 1
n

)
is contained within the interval

(
1−y
T , Sy (1 −

(yn)
1
n

)
. Noting that y

∗+1
2 < 1, we complete the proof by setting

q1 =
1− y∗

T
, w1 =

S
y∗+1

2

(
1− (

y∗ + 1

2
)n
) 1

n

q2 = y∗, w2 =
y∗ + 1

2

E EXTENSIONS OF THEOREM 1

In this appendix, we outline extensions of Theorem 1 (Section 3.2) to settings in which: (i) the
teacher SSM is of arbitrary dimension d∗ ≥ 2; (ii) the input and output matrices of the teacher SSM
vary; (iii) the input and output matrices of the student SSM are learned (as opposed to being fixed
throughout training); and (iv) the training set S varies. We also account for limitations of the above
extensions.

Teacher of arbitrary dimension. For any d∗ ≥ 2, consider the following parameter assignments
for the teacher SSM:

A∗ =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ Rd
∗,d∗ , B∗ =



1√
d−1
d∗−1√
d−1
d∗−1

...√
d−1
d∗−1


∈ Rd

∗,1 , C∗ =



1√
d−1
d∗−1√
d−1
d∗−1

...√
d−1
d∗−1



⊤

∈ R1,d∗ .

In this setting, the mapping ϕ(A∗,B∗,C∗)(·) realized by the teacher SSM is the same as it is in the
setting defined by Equation (33) (where the teacher has dimension d∗ = 2). Accordingly, Theorem 1
and its proof apply as is to the current setting.

Varying teacher input and output matrices. Given any teacher SSM (A∗, B∗, C∗) with which
Theorem 1 holds (including a high dimensional teacher as described above), a similar result holds
with the teacher SSM (A∗, α1B

∗, α2C
∗), where α1, α2 ∈ R ̸=0 are arbitrary. Indeed, if we likewise

scale the values of the (fixed) student parametersB and C, i.e. we replaceB by α1B and C by α2C,
then for every sequence x:

ϕ(A∗,α1B∗,α2C∗)(x) = α1α2ϕ(A∗,B∗,C∗)(x)

and likewise:
ϕ(A,α1B,α2C)(x) = α1α2ϕ(A,B,C)(x) .

The training loss and its derivatives thus scale by a positive factor, and so do generalization errors
(Definition 1). Accordingly, the proof of Theorem 1 carries through.

Learned student input and output matrices. Below we outline a modification of Theorem 1 that
accounts for a setting in which the input and output matrices of the student SSM are learned. Suppose
these input and output matrices—B and C, respectively—are learned with a learning rate (step size)
that may be different from the learning rate of the student’s state transition matrix A. Formally,
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suppose the optimization trajectory (A(·), B(·), C(·)) is governed by the following dynamics:

Ȧ(t) = − ∂

∂A
ℓ(A(t), B(t), C(t);S)

Ḃ(t) = −η · ∂

∂B
ℓ(A(t), B(t), C(t);S)

Ċ(t) = −η · ∂

∂C
ℓ(A(t), B(t), C(t);S)

, t ∈ R≥0 , (32)

where η > 0 represents the ratio between the learning rate of B and C, and the learning rate of A.
Consider a trajectory induced by Equation (32), and a corresponding trajectory that emanates from
the same initialization, but where only A is learned (or equivalently, where η in Equation (32) is
replaced by zero). Arguments similar to those used in the proof of Theorem 1 can be used to show
that the divergence between these two trajectories is upper bounded by a quantity that depends on η,
and in particular tends to zero as η does. Accordingly, if η is sufficiently small, generalization errors
attained whenA,B andC are learned jointly (i.e., when optimization is governed by Equation (32)),
are close to those attained when only A is learned. Theorem 1—which applies to a setting where
onlyA is learned—thus translates to a result that applies to a setting whereB andC are also learned.

Varying training set. Theorem 1 proves existence of a specific training set S under which gradient
flow converges to a generalizing solution. As we show below, one can extend this result to a much
larger class of training sets.
Theorem 5. Consider the teacher SSM given by

A∗ =

(
a∗ 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
. (33)

Suppose we learn the transition matrix A of the student SSM via gradient flow, and its input and
output matrices B(·) and C(·) are fixed at 1d and 1⊤

d , respectively. Let S = {(xi, yi)}ni=1 be
a training set such that (x(i), y(i)) ∈ Rκ × R, where for all i ∈ [n] the last two entries of x(i)

equal zero, and the rest are positive. Then, for any κ′ ∈ N and ϵ, δ > 0, there exists a time
T := T (ϵ, δ) > 0 and an open set I := I(ϵ, δ) such that gradient flow initialized in I satisfies:

ℓ(A(T )) < δ and GenL′ (A(T )) < ϵ .

Proof. Consider the point A0 = (a0, 0, , , ., 0) where 0 < a0 < a∗. We will first show that if we
initialize at A0, gradient flow will converge to (a∗, 0, , , ., 0), and therefore achieve perfect general-
ization. Indeed, writing 3 in terms of the entries of A we get:

ℓ(A(t)) =
1

n

n∑
i=1

κ−1∑
l=2

(a∗)lx
(i)
κ−l −

κ−1∑
l=2

 d∑
j=1

aj(t)
l

x
(i)
κ−l

2

The derivative of ℓ(A(t)) with respect to ap is therefore:

∂ℓ

∂ap
= − 2

n

n∑
i=1

κ−1∑
l=2

(a∗)lx
(i)
κ−l −

κ−1∑
l=2

 d∑
j=1

alj

x
(i)
κ−l

(κ−1∑
l=2

l al−1
p x

(i)
κ−l

)

For j > 2, aj(0) = 0 and thus ȧj(0) = − ∂ℓ
∂aj

(0) = 0. Therefore for all j > 2, aj(t) = 0 for all
t > 0. Hence it suffices to show that a1(t) converges to a∗ as t→ ∞. To see this, note that because
aj(t) = 0 for all t > 0 the dynamics simplify to

ȧ1(t) = − ∂ℓ

∂a1
(t) =

2

n

n∑
i=1

(
κ−1∑
l=2

x
(i)
κ−l((a

∗)l − a1(t)
l)

)(
κ−1∑
l=2

l a1(t)
l−1x

(i)
κ−l

)
For all i ∈ [n], at t = 0 it holds that(

κ−1∑
l=2

x
(i)
L−l((a

∗)l − a1(t)
l)

)
> 0
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Additionally, by the positivity of the (non zero) entries of x(i), any of the above terms equals zero
if and only if a1 = a∗ (in which case the derivative vanishes). Therefore they must remain positive
for all t > 0. The term (

κ−1∑
l=2

l a1(t)
l−1x

(i)
κ−l

)
is likewise positive by a similar argument. It follows that a1(t) is monotonically increasing and
bounded from above, thus it converges. Furthermore, the limit must be a point where the derivative
vanishes, and therefore it must equal a∗.

Because A(t) converges to (a∗, ...., 0) when initialized at A0 , for any ϵ, δ > 0 there exists T :=
T (ϵ, δ) > 0 such that ℓ(A(T )) < ϵ

2 , Genκ′ (A(T )) < δ
2 . Now by the continuity of ℓ, Genκ′ and

by Lemma 30, there exists an open set I := I(ϵ, δ) such that, if we initialize gradient flow from
Ã(0) ∈ I, resulting in the trajectory Ã(t), we get that ∥A(T )− Ã(T )∥2 is sufficiently small to
ensure that

ℓ(Ã(T )) < δ

GenL′ (Ã(T )) < ϵ

as required.

Limitations. While the abovedescribed extensions of Theorem 1 broaden its scope, they still entail
limitations which are important to acknowledge. In general, Theorem 1 is an existence result, and
even under the extensions above, it applies to specific settings. More specifically, it does not account
for: large initializations and large learning rates (forA(·), and even more so forB(·) andC(·)); many
values for the teacher parameters (A∗, B∗, C∗); non-diagonal SSMs; and more. Further extending
Theorem 1 is regarded as an important direction for future research.

F FURTHER EXPERIMENTS

F.1 DYNAMICAL CHARACTERIZATION

In Section 4.1 we provided experiments that corroborate the implication of the dynamical character-
ization presented in Section 3.1 and demonstrate the implicit bias to greedy low rank learning of the
state transition matrix A under some, but not all, choices of training sequences. In this appendix we
report additional experiments, including other settings, that demonstrate this phenomenon. Figure 3
extends the experiments reported in Figure 2 to longer training sequences. Figures 4 to 6 showcase
similar experiments to the ones in Figure 2, where the training sequences are labeled by teachers of
higher ranks. Figures 7 and 8 report the results achieved with different random seeds in the settings
of Figures 2 and 3, respectively. A classical continuous surrogate for the matrix rank is the effective
rank (Roy and Vetterli, 2007). Figures 9 to 15 present the effective rank of the transition matrix A
throughout optimization in the settings of Figures 2 to 8, respectively, underlining the low effective
rank caused by greedy low rank learning. Finally, Figures 16 to 19 report the values of γ(0)(t) (as
defined in Proposition 1) observed during optimization in the settings of Figures 2, 3, 7, and 8, re-
spectively, showcasing that larger absolute values of γ(0)(t) do not correspond to greedy low rank
learning, whereas lower absolute values do.

F.2 CLEAN-LABEL POISONING

In Section 4.2 we provided experiments which corroborate our theory in Section 3.2 and emphasize
the potential generalization failures SSMs are susceptible to when adding special training sequences.
In this appendix we report additional experiments demonstrating this phenomenon. Table 3 demon-
strates clean-label poisoning of SSMs in the same settings as the ones in Table 1, except that the
sequences used to train the models were longer.

G IMPLEMENTATION DETAILS

This appendix provides implementation details omitted from Sections 4 and F. Code for reproducing
all of our experiments will be made publicly available.
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Figure 3: Demonstration of the dynamical characterization derived in Proposition 1—optimization of an SSM,
trained individually or as part of a non-linear neural network, implicitly induces greedy learning of the (diago-
nal) entries of the state transition matrix A under some, but not all, choices of training sequences. This figure
is identical to Figure 2, except that the sequences used to train the models were longer, namely, of sequence
length 10 as opposed to 6. For further details see Figure 2 as well as Section G.1.
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Figure 4: Demonstration of the dynamical characterization derived in Proposition 1—optimization of an indi-
vidually trained SSM implicitly induces greedy learning of the (diagonal) entries of the state transition matrix A
under some, but not all, choices of training sequences. First two plots (left) and last two plots are identical to
the first two plots in Figures 2 and 3 respectively, except that the teacher used to label the training sequences is
of dimension d∗ = 2 (as opposed to d∗ = 1). For further details see Figures 2 and 3 as well as Section G.1.

G.1 DYNAMICAL CHARACTERIZATION

In this Appendix we provide implementation details for the experiments provided in Sections 4.1
and F.1. All experiments were implemented using Keras (Chollet et al., 2015) and were carried out
using a single Nvidia RTX 2080 Ti GPU.

G.1.1 STANDALONE SSM

Models. In the experiments reported in Figures 2, 3, 7, and 8 where a standalone SSM was trained,
we used a teacher SSM model of dimension d∗ = 1 that was set with the parameters

A∗ = 1 , B∗ = 1 , C∗ = 1

We used student SSM models that were trained end to end (i.e. B(·) and C(·) were not fixed). The
student models had dimension d = 10 in the original experiments (Figures 2 and 7), and dimension
d = 20 in the experiments with longer sequences (Figures 3 and 8).

Next, we detail the models used in the experiments with teachers of higher ranks (Figures 4 to 6).
In the experiments reported in Figure 4 we used a teacher SSM model of dimension 2 that was set
with the parameters

A∗ =

(
0.99 0
0 0.8

)
, B∗ = (1 1)

⊤
, C∗ = (1 1)

In the experiments reported in Figure 5 we used a teacher SSM model of dimension 3 that was set
with the parameters

A∗ =

(
0.99 0 0
0 0.8 0
0 0 0.5

)
, B∗ = (1 1 1)

⊤
, C∗ = (1 1 1)

In the experiments reported in Figure 6 we used a teacher SSM model of dimension 3 that was set
with the parameters

A∗ =

0.99 0 0 0
0 0.8 0 0
0 0 0.5 0
0 0 0 0.3

 , B∗ = (1 1 1 1)
⊤

, C∗ = (1 1 1 1)
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Figure 5: Demonstration of the dynamical characterization derived in Proposition 1. This figure is identical to
Figure 4 except that the teacher used to label the training sequences is of dimension d∗ = 3. For further details
see Figure 4 and Section G.1.
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Figure 6: Demonstration of the dynamical characterization derived in Proposition 1. This figure is identical to
Figure 4 except that the teacher used to label the training sequences is of dimension d∗ = 4. For further details
see Figure 4 and Section G.1.

We used student SSM models whose input and output matrices B(·) and C(·) were fixed at 1d and
1⊤
d respectively (due to computational limitations). The student models had dimension d = 10 in

the experiments of shorter sequence length and dimension d = 20 in the experiments of longer
sequence length.

Data. In all experiments we used the respective teachers to generate the labels for training se-
quences. Additionally, we used training sequences of one of two types (”baseline” vs. ”special”),
where each type had designated indices of non-zero entries. Table 4 specifies which non-zero in-
dices were present in each sequence type for each experiment. Training sequences of both types had
their non-zero entries sampled i.i.d from N (0, 1). Table 5 specifies how many training sequences of
each type were used in each experiment.

Initialization. In all experiments we initialized the student’s A, B and C parameter matrices in a
manner that was inspired by the initialization set I of Theorem 1.

To initialize (the diagonal) A in each experiment we first sampled d i.i.d entries from N (0,sd A),
took their absolute values and then arranged them in descending order. Then, we set the second
entry to have the first entry’s value minus a constant diff. This was done to reflect the near zero
initialization on the one hand and the proximity to the reference trajectory on the other hand. In the
experiments reported in Figures 5 and 6 we naturally extended this procedure by setting the third
entry to have the first entry’s value minus 1.01 · diff in both experiments, and the fourth entry to
have the first entry’s value minus 1.05 · diff in the latter. Table 6 report the values of sd A and
diff used in each experiment.

To initialize B in each experiment we first sampled d i.i.d entries from N (0,sd B C), took their
absolute values and then arranged them in descending order. Then, we set the second entry to have
the first entry’s value minus a constant diff. This was done to reflect the near zero initialization
on the one hand and the proximity to the reference trajectory on the other hand. In the experiments
reported in Figures 5 and 6 we naturally extended this procedure by setting the third entry to have
the first entry’s value minus 1.01 · diff in both experiments, and the fourth entry to have the first
entry’s value minus 1.05 · diff in the latter. To initialize C we followed the same procedure,
without modifying the second to potentially fourth entries. Note that in the experiments reported
in Figures 4 to 6 the input and output matrices B(·) and C(·) were not trained. Table 6 report the
values of sd B C used in each experiment.

Optimization. In all of the experiments we trained using the empirical mean squared error as a loss
function and optimized over full batches of the training sets. In order to facilitate more efficient
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Figure 7: Demonstration of the dynamical characterization derived in Proposition 1. This figure is identical to
Figure 2 except that a different random seed was used.
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Figure 8: Demonstration of the dynamical characterization derived in Proposition 1. This figure is identical to
Figure 3 except that a different random seed was used.

experimentation in the experiments where a standalone SSM is trained, we optimized using gradient
descent with an adaptive learning rate scheme, where at each iteration a base learning rate is divided
by the square root of an exponential moving average of squared gradient norms (see appendix D.2
in Razin et al. (2022) for more details). We used a weighted average coefficient of β = 0.8 and a
softening constant of 10−6. Note that only the learning rate (step size) is affected by this scheme,
not the direction of movement. Comparisons between the adaptive scheme and optimization with a
fixed learning rate showed no significant difference in terms of the dynamics, while run times of the
former were considerably shorter. Table 7 specifies the base learning rate used in each experiment.

G.1.2 SSM IN A NON-LINEAR NEURAL NETWORK

Models. In the experiments reported in Figures 2, 3, 7, and 8 where an SSM was trained as a part of
a non-linear neural network, we used neural networks comprised of an SSM module whose output
was fed to a 2 hidden layers MLP module. Overall, the models used realize the following function:

Dout · σ
(
Dhidden · σ(Din · ϕA,B,C(x))

)
where dh ∈ N is the hidden MLP width, Din ∈ Rdh×1, Dhidden ∈ Rdh×dh and Dout ∈ R1×dh are
the MLP’s parameter matrices, σ(x) := max{0, x} is the MLP’s activation function and ϕA,B,C(x)
is the output of an SSM with the parameter matrices A,B,C. All teacher models used had SSM
modules of dimension d∗ = 1 that were set with the parameters

A∗ = 1 , B∗ = 1 , C∗ = 1

The teacher models in Figures 2 and 7 had hidden MLP width of d∗h = 15 while the teacher models
in Figures 3 and 8 had hidden MLP width of d∗h = 25. In both cases, the teacher models had MLP
modules that were set with the following parameter matrices:

D∗
in = 1d∗h , D∗

hidden = Id∗h , D∗
out =

1

2
· 1⊤

d∗h

We trained all of the SSM and MLP parameter matrices of our student models. The student models
in Figures 2 and 7 had SSM dimension of d = 10 and hidden MLP width of dh = 15, while the
student models in Figures 3 and 8 had SSM dimension of d = 20 and hidden MLP width of dh = 25.

Data. Data for the experiments were generated in the same manner as in Section G.1.1. Table 4
specifies which non-zero indices were present in each sequence type for each experiment. Training
sequences of both types had their non-zero entries sampled i.i.d from N (0, 1). Table 5 specifies how
many training sequences of each type were used in each experiment.
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Figure 9: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A—introduction of special sequences to the tranining set results in significantly larger effective
rank, in compliance with the disruption of greedy low rank learning. Each plot shows the effective rank of A
during the training process reported in Figure 2.
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Figure 10: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 7.

Initialization. In all experiments we initialized the student’s A, B and C parameter matrices identi-
cally to the standalone SSM experiments (Section G.1.1). Table 6 report the values of sd A, sd B C
and diff used in each experiment.

To initialize the MLP layers, we initialized all parameter matrices by sampling i.i.d values from
N (0,sd D). We used sd D = 0.03 in the original experiments (Figures 2 and 7) and sd D = 0.1
in the experiments with longer sequences (Figures 3 and 8).

Optimization. To speed up the optimization we trained using the default Keras implementation of
Adam (Kingma, 2014) with its default hyperparameters. Table 7 report the base learning rates used
in each of the experiments.

G.2 CLEAN-LABEL POISONING

In this Appendix we provide implementation details for the experiments provided in Sections 4.2
and F.2. All synthetic experiments were implemented using Keras (Chollet et al., 2015) and were
carried out using a single Nvidia RTX 2080 Ti GPU. The real-world experiments reported in Table 2
were implemented using PyTorch (Paszke et al., 2019) and were carried out using a cluster of 8
Nvidia RTX 2080 Ti GPUs.

G.2.1 SSM PER THEOREM 1

The main goal of the experiments in the first poisoning setting (standalone SSM per Theorem 1) was
to approximate the solution to the system of ODEs induced by gradient flow (Equation (4)) in order
to demonstrate the results of Theorem 1. To do so we employed the use of the odeint function
of SciPy (Virtanen et al., 2020) which is a numerical solver for systems of ODEs based on lsoda
from the FORTRAN library odepack (Hindmarsh, 1983). odeint’s arguments are the initial point
in parameter space A(0), the timestamps at which the solution is required, and a function which
specifies the system by intaking a timestamp t and a point in parameter space A and outputting the
derivative in time t at A. odeint outputs a set of numerical approximations for the solution of the
system at the required timestamps.

Models. We use teacher and student models according to the setting described in Section 3.2. We
used a teacher SSM of dimension d∗ = 2 that was set with the parameters

A∗ =

(
1 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
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Figure 11: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 3.
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Figure 12: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 8.

We used student SSM models whose input and output matrices B(·) and C(·) were fixed at 1d and
1⊤
d respectively. The student models had dimension d = 10 in the original poisoning experiments

(Table 1), and dimension d = 20 when training over longer sequences (Table 3).

Data. In all experiments we used the respective teachers to generate the labels for all training
sequences. We trained using 5 ”baseline” sequences of the form x · e1 ∈ Rk and a single ”special”
sequence of the form x · ek−1 ∈ Rk. Given some positive scalar P we determined the ”baseline”
sequences by first sampling 5 i.i.d values from N (0, 1), and then scaling them such that their sum
of squares is equal P . The single ”special sequence” was set with x =

√
P . This is done to satisfy

a technical requirement of Theorem 1 (See Section D for details on this requirement). The reported
results use P = 10, and we saw similar results qualitatively when using other positive values for
P and other amounts of ”baseline” and ”special” sequences. The relevant experiments reported in
Tables 1 and 3 were trained using sequences of lengths 7 and 9 respectively.

Initialization. We initialized the student’s diagonal matrix A in a manner that was inspired by
the initialization set I of Theorem 1. In each experiment we first sampled d i.i.d entries from
N (0,sd A) and then arranged them in descending order. We then set the second entry to have the
first’s value minus a constant diff. This was done to reflect the near zero initialization on the one
hand and the proximity to the reference trajectory on the other hand. Table 8 reports the values of
sd A and diff used in each experiment.

Optimization. We input odeint a custom function which computes −∇ℓ(A) (Equation (4)) given
the point A to be used for derivative computations. Table 9 reports the timestamps simulated in each
experiment. All experiments reached training loss values of less than 10−5 and stable generalization
errors.

Generalization evaluation. In the first poisoning setting (standalone SSM per Theorem 1) general-
ization errors were measured via impulse responses of length 40 as defined in Definition 1, divided
by the ℓ∞ norm of the teacher’s length 40 impulse response (this normalization is chosen so that the
zero mapping has generalization error 1).

G.2.2 SSM BEYOND THEOREM 1

Models. We used the same teacher models as described in Section G.1.1. We used student SSM
models that were trained end to end (i.e. B(·) and C(·) were not fixed). The student models had
dimension d = 10 in the original poisoning experiments (Table 1), and dimension d = 20 in the
experiments with longer sequences (Table 3).
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Figure 13: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 4.

0.0 0.5 1.0 1.5 2.0
Iteration ×104

0.0

2.5

5.0

7.5

Ef
fe

ct
iv

e 
ra

nk

SSM length 6,
without special sequences

0 2 4
Iteration ×103

0

5

10

Ef
fe

ct
iv

e 
ra

nk
SSM length 6,

with special sequences

0 2 4
Iteration ×103

0

5

10

15

Ef
fe

ct
iv

e 
ra

nk

SSM length 10,
without special sequences

0 1 2 3 4
Iteration ×103

0

10

20

Ef
fe

ct
iv

e 
ra

nk

SSM length 10,
with special sequences

Figure 14: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 5.

Data. Data for the experiments were generated in the same manner as in Section G.1.1. Table 10
specifies which non-zero indices were present in each sequence type for each experiment. Training
sequences of both types had their non-zero entries sampled i.i.d from N (0, 1). Table 11 specifies
how many training sequences of each type were used in each experiment.

Initialization. To speed up optimization we modified the initialized employed in Section G.1.1
by adding a small constant of 10−1 to all entries of A and B at initialization. This modification
showed no significant differences in terms of the generalization error achieved by the models when
compared to without it, while run times of the former were considerably shorter. Table 12 report the
values of sd A, sd B C and diff used in each experiment.

Optimization. We followed a training scheme identical to Section G.1.1. Table 13 report the base
learning rates used in each of the experiments.

We optimized all models to reach a training loss under 0.01. To verify the generalization errors
we report were stable, we trained for additional iterations after reaching sub 0.01 training loss. We
trained the standalone SSM models for 1500 more iterations, and the models with additional layers
for 5000 more iterations.

Generalization evaluation. Generalization errors were measured via impulse responses of length
40 as defined in Definition 1, divided by the ℓ∞ norm of the teacher’s length 40 impulse response
(such that the zero mapping has error of one). The same evaluation procedures were used in both
the original experiments (Table 1) and in the longer experiments (Table 3).

G.2.3 SSM IN NON-LINEAR NEURAL NETWORK

Models. We used the same teacher models as described in Section G.1.2. We used student SSM
models that were trained end to end (i.e. B(·) and C(·) were not fixed). The student models had
dimension d = 10 in the original poisoning experiments (Table 1), and dimension d = 20 in the
experiments with longer sequences (Table 3).

Data. The data used is identical to that of Section G.2.2. Table 11 specify how many training
sequences of each type were used in each experiment.

Initialization. We initialized the student models identically to Section G.1.2. To speed up optimiza-
tion we modified the initialized employed in Section G.1.2 by adding a small constant of 10−3 to
all entries of A and B at initialization. This modification showed no significant differences in terms
of the generalization error achieved by the models when compared to without it, while run times of
the former were considerably shorter. Table 12 report the values of sd A, sd B C and diff used
in each experiment.
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Figure 15: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 6.
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Figure 16: Evolution of γ(0)(t) (as defined in Proposition 1) during training. Each plot shows the values of
γ(0)(t) during optimization in the setting of Figure 2. As can be seen, in compliance with our interpretation of
Proposition 1, larger absolute values of γ(0)(t) do not correspond to greedy low rank learning, whereas lower
absolute values do.

Optimization. We followed a training scheme identical to Section G.1.2. Table 13 report the base
learning rates used in each of the experiments.

We optimized all models to reach a training loss under 0.01. To verify the generalization errors
we report were stable, we trained for additional iterations after reaching sub 0.01 training loss. We
trained the standalone SSM models for 1500 more iterations, and the models with additional layers
for 5000 more iterations.

Generalization evaluation. Generalization errors were measured via the root mean square error
of a held-out test set of 2000 correctly labeled sequences of length 40, divided by the ℓ2 norm of
the teacher’s outputs vector (such that the zero mapping has error of one). The same evaluation
procedures were used in both the original experiments (Table 1) and in the longer experiments
(Table 3).

G.2.4 SSM IN REAL-WORLD SETTING

The SSM-based S4 neural network adheres to the implementation provided in https://github.
com/state-spaces/s4, utilizing the “minimalist S4” configuration available in s4d.py and
s4.py. In all experiments, the S4 neural network had four layers with a hidden dimension
of 256. For the poisoning process, we adapted the Gradient Matching method provided in https:
//github.com/JonasGeiping/poisoning-gradient-matching. The adaptation in-
volved: reshaping the MNIST image input into a sequence format compatible with the S4 architec-
ture; and introducing regularization that encourages the last elements of an injected noise sequence
to be relatively large.14 Following this adaptation, apart from varying the number of target test in-
stances and the percentage of poisonous examples, all hyperparameters were kept at their default
values.

14Regularization comprised weight decay of 28− i applied to the noise entries corresponding to the ith row
of an input image, where i ∈ [28] (recall that MNIST images are of size 28× 28).
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Figure 17: Evolution of γ(0)(t) (as defined in Proposition 1) during training. This figure is identical to Figure 16
except that the setting considered is that of Figure 7.
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Figure 18: Evolution of γ(0)(t) (as defined in Proposition 1) during training. This figure is identical to Figure 16
except that the setting considered is that of Figure 3.

0.00 0.25 0.50 0.75 1.00
Iteration ×104

0.05

0.00

0.05

Ga
m

m
a 

m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

Ga
m

m
a 

m
ag

ni
tu

de

SSM,
with special sequences

0 1 2 3
Iteration ×104

0.05

0.00

0.05

Ga
m

m
a 

m
ag

ni
tu

de
SSM + MLP,

without special sequences

0.0 0.5 1.0 1.5 2.0
Iteration ×104

50

25

0

25

Ga
m

m
a 

m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 19: Evolution of γ(0)(t) (as defined in Proposition 1) during training. This figure is identical to Figure 16
except that the setting considered is that of Figure 8.

Table 3: Demonstration of clean-label poisoning of SSMs. The table is identical to Table 1, except that the
sequences used to train the models were longer, namely, of sequence length 10 as opposed to 6. Notice that
across all settings, special training sequences significantly deteriorate generalization. For further details see
Table 1 as well as Section G.2.

Setting Without special sequences With special sequences

SSM per Theorem 1 7.34× 10−3 3.51× 10−2

SSM beyond Theorem 1 1.22× 10−1 1.2
SSM in non-linear neural network 4.67× 10−2 8.93× 10−2

Table 4: Types of sequences used in dynamics experiments (Figures 2 to 8). Last two columns (right) indicate
the non-zero indices for each sequence type.

Setting Length Baseline indices Special indices
SSM / SSM + MLP (Figures 2 and 7) 6 1, 2 5, 6
SSM / SSM + MLP longer (Figures 3 and 8) 10 1, 2, . . . , 7 9, 10
SSM higher rank (Figures 4 to 6) 6 1, 2 5
SSM higher rank longer (Figures 4 to 6) 10 1, 2, . . . , 7 9

Table 5: Amount of sequences of each type used in dynamics experiments (Figures 2 to 8).

Setting Baseline amount Special amount
SSM (Figures 2, 3, 7, and 8) 8 10
SSM + MLP (Figures 2, 3, 7, and 8) 20 20
SSM higher rank (Figures 4 to 6) 8 10

75



4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Table 6: Values of sd A, sd B C and diff used in the dynamics experiments (Figures 2 to 8).

Setting sd A sd B C diff

SSM (Figures 2 and 7) 10−2 10−2 0.05× exp
(
20 · log10(sd A)

)
SSM longer (Figures 3 and 8) 10−3 5× 10−2 0.05× exp

(
20 · log10(sd A)

)
SSM + MLP (Figure 7) 10−2 10−2 0.05× exp

(
0.5 · log10(sd A)

)
SSM + MLP longer (Figure 8) 10−3 10−3 0.05× exp

(
2 · log10(sd A)

)
SSM higher rank (Figures 4 to 6) 10−2 − 0.05× exp

(
2 · log10(sd A)

)
SSM higher rank longer (Figures 4 to 6) 10−2 − 0.05× exp

(
3 · log10(sd A)

)
Table 7: Base learning rates used in dynamics experiments (Figures 2 to 8). Last two columns (right) indicate
the base learning rate used in the experiments without the addition of ”special” sequences and with their addition
respectively.

Setting W/o special sequences W/ special sequences
SSM (Figures 2 and 7) 0.01 0.01
SSM longer (Figures 3 and 8) 0.01 0.01
SSM + MLP (Figures 2 and 7) 0.01 0.001
SSM + MLP longer (Figures 3 and 8) 0.01 5× 10−5

SSM higher rank (Figures 4 to 6) 0.01 0.001
SSM higher rank longer (Figures 4 to 6) 0.001 0.001

Table 8: Values of sd A and diff used in the experiments of the first poisoning setting (Tables 1 and 3).

Setting sd A diff

SSM per Theorem 1 (Table 1) 10−3 0.05× exp
(
5 · log10(sd A)

)
SSM per Theorem 1 longer (Table 3) 5× 10−3 0.05× exp

(
10 · log10(sd A)

)
Table 9: Timestamps simulated for the experiments of the first poisoning setting (Tables 1 and 3). The
timestamps used for each experiment are the endpoints of intervals obtained by evenly partitioning the range
(0,last timestamp) into timestamp amount segments.

Setting last timestamp timestamp amount

SSM per Theorem 1 (Table 1) w/o special 1011 1000
SSM per Theorem 1 (Table 1) w/ special 104 1000
SSM per Theorem 1 longer (Table 3) w/o special 1012 10000
SSM per Theorem 1 longer (Table 3) w/ special 106 1000

Table 10: Types of sequences used in the experiments of the second and third poisoning settings (Tables 1
and 3). Last two columns (right) indicate the non-zero indices for each sequence type.

Setting Length Baseline indices Special indices

2nd and 3rd settings of Table 1 6 1, 2 5
2nd and 3rd settings of Table 3 10 1, 2, . . . , 7 9

Table 11: Amount of sequences of each type used in in the experiments of the second and third poisoning
settings (Tables 1 and 3).

Setting Baseline amount Special amount
SSM beyond Theorem 1 (Tables 1 and 3) 8 10
SSM in non-linear NN (Tables 1 and 3) 20 20
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Table 12: Values of sd A, sd B C and diff used in the experiments of the second and third poisoning settings
(Tables 1 and 3).

Setting sd A sd B C diff

SSM beyond Theorem 1 (Table 1) 10−3 10−3 0.05× exp
(
5 · log10(sd A)

)
SSM beyond Theorem 1 longer (Table 3) 10−2 10−3 0.05× exp

(
3 · log10(sd A)

)
SSM in non-linear NN (Table 1) 10−2 10−2 0.05× exp

(
0.5 · log10(sd A)

)
SSM in non-linear NN longer (Table 3) 10−3 10−3 0.05× exp

(
2 · log10(sd A)

)

Table 13: Base learning rates used in the experiments of the second and third poisoning settings (Tables 1
and 3). Last two columns (right) indicate the base learning rate used in the experiments without the addition of
”special” sequences and with their addition respectively.

Setting W/o special sequences W/ special sequences
SSM beyond Theorem 1 (Table 1) 0.01 0.01
SSM beyond Theorem 1 longer (Table 3) 0.001 0.001
SSM in non-linear NN (Table 1) 0.01 0.01
SSM in non-linear NN longer (Table 3) 0.01 5× 10−5
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