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Abstract

Dense Interspecies Face Embedding (DIFE) is a new direction for understand-
ing faces of various animals by extracting common features among animal faces
including human face. There are three main obstacles for interspecies face under-
standing: (1) lack of animal data compared to human, (2) ambiguous connection
between faces of various animals, and (3) extreme shape and style variance. To
cope with the lack of data, we utilize multi-teacher knowledge distillation of CSE
and StyleGAN2 requiring no additional data or label. Then we synthesize pseudo
pair images through the latent space exploration of StyleGAN2 to find implicit
associations between different animal faces. Finally, we introduce the semantic
matching loss to overcome the problem of extreme shape differences between
species. To quantitatively evaluate our method over possible previous methodolo-
gies like unsupervised keypoint detection, we perform interspecies facial keypoint
transfer on MAFL and AP-10K. Furthermore, the results of other applications like
interspecies face image manipulation and dense keypoint transfer are provided.
The code is available at https://github.com/kingsj0405/dife.

1 Introduction

Face understanding is a longstanding research topic in computer vision, and there have been extensive
studies and applications such as face recognition, facial expression estimation, face photo manipula-
tion, and virtual humans [6, 47, 4, 51, 3]. The vast majority of successful works on faces have focused
on human faces due to its practical implication for a variety of applications and the accessibility to
a large amount of annotated data. There have been few attempts for understanding faces of other
animal species to facilitate more applications such as ecological research, pet identification, and
farm automation [14, 34, 12]. However, the task of understanding animal faces is more challenging
than that for the human face due to the lack of sufficient data with annotations. In the literature
on full-body understanding, joint learning of interspecies data has been studied as a remedy by
transferring the knowledge of well-annotated domain such as human to other species [33, 26, 27].
However, the existing approaches are focused on full-body data, therefore their performance on facial
data is limited.

In this work, we are interested in the problem of learning the representation of interspecies facial
semantics, which is a common representation shared across interspecies facial data. Learning such
representation allows us to extend face understanding beyond the human face, as it enables discovering
facial semantics of other species without enough annotations through transferring knowledge from
well-annotated human data. As many animal species share similar face geometry, the representation
can also benefit from learning multiple species jointly. Since sharing photos of animals through social
networks has become more popular, learning the interspecies face representation can be used for
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(a) Dense Interspecies Face Embedding (DIFE) (b) Applications of DIFE

Figure 1: (a) Dense Interspecies Face Embedding (DIFE) is a representation that contains common
characteristics of faces of various species embedded to pixels in the feature space. (b) DIFE allows
us to find visual correspondence across multiple face domain, so we can transfer facial keypoints
between animals or generate different animal faces with the same posture.

various applications. For instance, one can search animal photos using a photo of human face as a
query to find animal faces with similar pose. An animal face animation can be synthesized by using
that of a human as a template, which can be useful for media production.

To achieve our goal, we propose to learn Dense Interspecies Face Embedding (DIFE) as shown in
Fig. 1(a). Our approach is inspired by CSE [27], which was proposed to learn continuous surface
embedding (CSE) of full-body shared across interspecies data. While the interspecies embedding in
[27] is promising, it is difficult to use it for faces as the embedding in the facial region is too coarse
to discriminate facial landmarks accurately. To overcome this problem, we propose a multi-teacher
knowledge distillation method for learning DIFE. Our key idea is to enforce a student network to learn
a fine-grained interspecies facial embedding from two teacher networks: CSE and StyleGAN2 [19].
Since the CSE has a useful representation of interspecies data, we use it as a teacher to have the
student network learn a common embedding space shared in multiple species. For a fine-grained
face embedding, we simultaneously exploit StyleGAN2 as the secondary teacher. StyleGAN2 is
originally trained to generate high-quality face images [19]. Recent studies have demonstrated that
the features of StyleGAN2 have abundant information on facial attributes such as postures and
expressions [13, 36, 37]. Thus, the goal of our knowledge distillation is to transfer such information
to the student network for learning fine-grained facial semantics for multiple species.

To further improve the performance of DIFE, we propose a data augmentation method to synthesize
pseudo-paired images, and the semantic matching loss to enhance the semantic correspondence
between images. For the data augmentation, we synthesize images, where the face poses of the
synthesized images are similar to that of input images using StyleGAN2. This can be achieved in
our framework as DIFE is tied to the latent features of multiple StyleGAN2 networks in different
domains. Thus, DIFE of the input image can be used as a face geometry condition for the latent space
exploration of StyleGAN2 to generate images for both intra- and inter-domain pairs. In addition,
inspired by [39], a semantic matching loss is proposed to use the pseudo-paired data to enforce the
DIFE to learn pixel-level fine-grained matching.

We demonstrate the effectiveness of our method on the cross-domain keypoint transfer task using
interspecies data such as people, dogs, cats, and wild animals in MAFL [50] and AP-10K [45]. We
evaluate our method on both sparse and dense keypoint transfers. In addition, we apply our method
for an image editing task of overlaying a virtual object on various animal faces.

Our contribution can be summarized as follows:

• We present a cross-domain face understanding study that considers not only human faces
but also the faces of animals. Our approach makes it possible to avoid tedious and expensive
animal data collection through domain adaptation, setting the stage for a variety of cross-
domain applications.

• We present a novel multi-teacher knowledge distillation paradigm that extracts and combines
the information from models with different architectures and data domains. Our framework
is designed to learn continuous face embedding across interspecies data from CSE and
fine-grained face embedding from StyleGAN2. Combining the knowledge from the two,
our method learns dense interspecies face embedding (DIFE).

2



• We further introduce a method for synthesizing paired data for learning the semantic
matching using the latent space exploration of StyleGAN2. With the novel approach, we
can refine the representation of our face embedding for semantic correspondence between
various instances and species.

2 Related Works

2.1 Domain-specific Face Understanding

We first review works that aimed to identify the visual correspondence between various instances
and scenes within one data category, human or animal. For faces, detecting facial landmarks such
as the eyes and the nose has been studied extensively to find correspondences between subjects.
Initial works [38, 24, 46, 49, 43, 5] find facial landmarks using facial landmark annotations in a fully
supervised way. Regarding animal faces, Yang et al. [44] detected sheep facial landmarks based on 6
annotated keypoints. Although most works show impressive results under extreme conditions, the
lack of annotated animal data limits the application compared to human faces.

Recently, there have been active researches [40, 48, 15, 39, 16, 7, 17] on finding landmarks from
a collection of images in an unsupervised way, which is applicable to various domains, including
human body, face, etc. This stream of works relies on the fact that landmarks are spatially equivariant
to the transformation. Some works learn landmarks by comparing warped images with the original
ones [40, 48], and others cast the problem into a conditional image generation using video frames
depicting the same instances in different poses [15, 16]. The most related work to our method is
DVE [39] in that they consider not only equivariance between the same instances but also intra-
category variations. All of aforementioned methods can detect landmarks within the same object
categories, but the landmarks are not convertible between different object categories (e.g. humans
and cats).

2.2 Interspecies Understanding

There are studies that aim to discover the relationship between animal species, whose structures are
related but geometrically diverse. To the best of our knowledge, [32] is the only work that conducted
semantic matching between animal faces. Animal facial landmark detector is trained by transferring
the knowledge from the pre-trained human landmark detector. The network is finetuned using horses
and sheep data with 5 keypoints annotations. In comparison, we propose an unsupervised approach
for interspecies facial semantic matching with the higher granularity of the keypoints.

Closely relevant to our work is the stream of works in [33, 26, 27], as they find the relationship of
body poses between animals. Sanakoyeu et al. [33] transfers the knowledge of the human body to
the chimpanzee using DensePose [10]. The CSE [26] utilizes the manually annotated 3D meshes
of each category and continuous surface embedding to relate several animal categories flexibly. In
the following work [27], they utilize the cycle-consistency between meshes and images to further
the performance. Although they show impressive results on the complete body, they have difficulty
in achieving a fine-level sharpness on faces, making it impossible to discern different parts of faces.
While our work also takes the advantage of CSE [27] to detect interspecies correspondences, we
improve the accuracy of facial correspondence with the help of the latent features of StyleGAN2 [19]
without additional annotations.

2.3 StyleGAN2 Utilization

Our work is also related to StyleGAN utilization works in that we use features of pretrained Style-
GAN2 [19] to obtain fine-grained facial features. StyleGANs [18, 19] show highly photo-realistic
results in the unconditional image generation problem with the power of well disentangled latent
spaces. There have been abundant works to exploit the pre-trained StyleGAN for various tasks,
including image manipulation [41, 13, 37, 35], 3D reconstruction [30], image segmentation [22, 2],
and semantic matching [31].

Because StyleGAN2 has plenty of face geometry many works try to extract the information with
knowledge distillation [2, 29, 41]. Labels4Free [2] and Segmentation in style [29] utilizes the feature
of StyleGAN2 to train segmentation model in unsupervised manner. In StyleGAN2 distillation [41],
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Figure 2: (a) Our encoder learns the cross domain association and the geometry of face with the
responses and the intermediate feature from CSE and multiple StyleGAN2’s. The converters for
each domain is necessary to generate the domain-specific embeddings which is compatible with
the intermediate features of StyleGAN2s. (b) The pseudo pair data of different domains can be
synthesized with the domain-specific embedding and the latent exploration of StyleGAN2. The
semantic matching loss is utilized to overcome the shape difference between faces of different species.

they generate images and labels with StyleGAN2 generator and face attribute classifier, and image
manipulation model is trained with synthesized data. However we can tell no studies have used
StyleGAN models learned in different data domains at the same time, while our work learns the
relationship between separate StyleGAN2 models, which have different data domains.

3 Method

Let xd ∈ RH×W×3 denote an image of a face in a domain d ∈ {0, 1, ..., D − 1}, where H and W
are the height and the width of the image and D denote the number of domains. The goal of our task
is to obtain a dense interspecies face embedding E ∈ RH′×W ′×n of the image xd through an encoder
Φ, which is described as E = Φ(xd). Here, n is the embedding dimension for dense interspecies face
embedding. To train the encoder Φ in an unsupervised manner, we propose two training approaches:
the multi-teacher knowledge distillation, and the semantic matching through pseudo-paired data
synthesis. Since all images and labels are synthesized by the teacher models whose training data are
not suitable for our task, the training can be considered as an unsupervised learning. In the following,
we describe our dense interspecies face embedding (DIFE) and its training in detail.

3.1 Multi-Teacher Knowledge Distillation

Fig. 2(a) illustrates the overview of the multi-teacher knowledge distillation on multiple domains
consisting of humans, dogs, and cats. Desirable properties of the interspecies face embedding are
two folds. First, the representation is shared by various face images of different domains. Faces in
multiple domains should have similar embeddings if their geometry is similar. Second, the embedding
contains fine-grained details of facial semantics, so that different parts of a face are distinguishable.

To learn such properties, we first train DIFE by distilling knowledge from CSE [27]. As the
representation of CSE has high-quality co-embeddings of diverse animal species, we exploit it to
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learn a common space for cross-domain faces. Specifically, we optimize a knowledge distillation loss
that minimizes the distance between the DIFE and the CSE embedding of the same input. Formally,
the loss is described as

Ld
K1 =

∑∥∥Cd − Φ(xd)
∥∥

2
, (1)

where Cd is the CSE embedding of xd. Note that xd is an image synthesized by StyleGAN2 described
as dotted arrow in Fig. 2(a).

Although the above loss enforces our embedding to learn a shared space for multiple domains of
faces, the representation of CSE is coarse in the region of the face since it is originally learned to
distinguish different parts of a full body. To further learn fine-grained details of faces, we add another
knowledge distillation loss using the features of StyleGAN2. Specifically, we exploit the semantic
information of faces extracted from a pre-trained StyleGAN2 to enhance the representation of DIFE.
Using synthetic images generated by the StyleGAN2 as input, we minimize the distance between the
embedding of the input and its corresponding StyleGAN2 feature map, which is formulated as

Ld
K2 =

∑∥∥Fd −Dd
∥∥

2
, (2)

where Fd is the StyleGAN2 feature map, and Dd is the domain-specific embedding of xd for the
domain d. Since the dimension of DIFE is different from that of StyleGAN2 and each feature of
StyleGAN2s is in the different domain, we convert DIFE to a domain-specific embedding using
a domain converter Ψd, as follows: Dd = Ψd(Ed). When learning from multiple domains, we
optimize LK1 =

∑D
d Ld

K1 and LK2 =
∑D

d Ld
K2 for all of the domains.

3.2 Semantic Matching

Pseudo-paired data synthesis. Fig. 2(b) shows how to synthesize pseudo-paired data xd′
, which

has the identical face geometry with the original image xd. The paired domain d′ can be different
from the original domain d. From a given human face image xd generated by StyleGAN2, we
first extract DIFE using the encoder Φ. Then, with the domain converter Ψd′

, we transform the
interspecies embedding into a domain-specific embedding Dd′

. In Fig. 2(b), we convert DIFE into
the dog-specific embedding. Note that the domain-specific embedding lies in the similar vector space
with StyleGAN2, since the domain converter is trained by the StyleGAN2 knowledge distillation.
Finally, we synthesize a pseudo-paired image xd′

by feeding the domain-specific embedding Dd′
to

StyleGAN2. Rather than directly feeding the embedding, we introduce a latent space exploration
method, which generates more realistic images by adjusting the latent space of the domain-specific
embeddings into the natural image manifold.

In the latent space exploration, given a domain-specific embedding Dd′
, the goal is to find a latent

code wd′ ∈ Wd′
, which satisfies the following two conditions. Here, Wd′

is a latent space of
StyleGAN2 trained on the data domain d′. First, the pseudo-paired data xd′

generated from the found
latent code wd′

should have the same face geometry with the original image xd. This is achieved by
finding wd′

with small difference between the StyleGAN2 feature Fd′
(wd′

) that is generated from
wd′

, and the domain-specific embedding Dd′
. Second, the pseudo-paired data needs to be realistic

and natural. To this end, following [1], we take the mean of latent codes w̄, and enforce our latent
code to be similar to w̄. w̄ is calculated by sampling 4096 latent codes. With the regularization, the
generated image looks natural by locating the latent code in the realistic image manifold. Finally, the
latent code wd′

is found by optimizing the following equation:

wd′
= arg min

w∈Wd′

[∥∥∥Fd′
(w)−Dd′

∥∥∥
2

+ ‖w − w̄‖2

]
. (3)

Here, the feature map Fd′
(w) is extracted from StyleGAN2 by feeding the latent code w to optimize.

After the optimization, the pseudo-paired data xd′
is synthesized by StyleGAN2 with wd′

.

Semantic matching loss. The purpose of the semantic matching loss is to boost the matching
performance of DIFE at pixel level with the synthesized pseudo-paired data. The pixel location u ∈ Ω
on 2D cartesian coordinate system Ω = {0, 1, ...,H ′ − 1} × {0, 1, ...,W ′ − 1} is used to explain
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the loss. Theoretically, the pixel embedding Ed
u at location u in DIFE of the original image has the

same semantic meaning with the corresponding pixel embedding Ed′

u of the pseudo-paired image.
However, the shape difference between different domains makes it infeasible to exactly match the
pixel locations. For example, the eyes of the original image xd and the eyes of the pseudo-paired data
xd′

in Fig. 2(b) do not perfectly match. To alleviate this issue, we introduce a soft distance measure
similar to [39]. Intuitively, we compare the embedding from a pixel on the original image to the
weighted embedding of a small region on the pseudo-paired image, as described as the contour in
Fig. 2(b). We find the region to compare based on the similarity σ(Ed,Ed′

, ui, uj) between the pixel
embeddings as:

σ(Ed,Ed′
, ui, uj) =

Ed
ui
·Ed′

uj∥∥Ed
ui

∥∥∥∥∥Ed′
uj

∥∥∥ , (4)

where ui and uj are the pixel coordinates of Ed and Ed′
, respectively. Finally, the semantic matching

loss Ld,d′

M is defined as follows:

Ld,d′

M =
∑
ui∈Ω

∥∥∥∥∥∥ui −
∑
uj∈Ω

σ(Ed,Ed′
, ui, uj)uj

∥∥∥∥∥∥
2

. (5)

When learning from multiple domains, we optimize intra semantic matching loss LM1 =
∑D

d L
d,d
M

and inter semantic matching loss LM2 =
∑D

d

∑D
d′ 6=d L

d,d′

M for all permutations of the domains.

3.3 Training Objective

We can formulate our final training objective with hyper-parameters as:

L = λ1 · LK1 + λ2 · LK2 + λ3 · LM1 + λ4 · LM2. (6)

The matching losses LM1 and LM2 cannot be applied in the early stage of training, since the domain-
specific embedding is different from the features of StyleGAN2s. Therefore, we first impose LK1 and
LK2 on the encoder and domain converter, and after initialization, we start to generate pseudo-paired
data and utilize semantic matching losses LM1 and LM2.

4 Experiments

4.1 Interspecies Keypoint Transfer

Given an image in the source domain with keypoints, the goal of interspecies keypoint transfer is
to find the corresponding locations of the keypoints on another image in the target domain. We
mainly evaluate our method on this task to demonstrate that our embedding is not only a high quality
representation of cross-domain faces, but also beneficial for knowledge transfer to unlabeled domains.
The task is basically achieved by finding the pixel-level correspondence between the embeddings of
the source and the target images. The performance is quantitatively evaluated by calculating the error
between the positions of the transferred keypoints and their corresponding ground truth. We further
describe mathematical formulations of the evaluation in detail in the supplementary material.

Datasets. At the training time, DIFE is trained with synthetic images and their target labels
generated by pre-trained CSE and StyleGAN2 networks. We use four datasets for evaluation:
MAFL [50], AP-10K [45], WFLW [42] and AnimalWeb [20]. The MAFL is a dataset of human
faces that is composed of 20k images. The test set of MAFL excluding the shared images with the
training set of CelebA is used (400 images). The AP-10K dataset is composed of 10k images of
various animal species which is split into three disjoint subsets, i.e., train, validation, and test sets,
with the ratio of 7:1:2 per animal species. As the images contain the full-body of animals, we crop
the region of their faces by computing the bounding box using facial landmarks in the dataset. For the
evaluation, we make pairs of two different species by randomly selecting images from each domain.
As a result, we collect 100 pairs of humans and dogs, 89 pairs of human and cats, 47 pairs of humans
and wild animals, and 89 pairs of dogs and cats. The same preprocessing is applied to WFLW and
AnimalWeb to evaluate our method on more dense keypoint annotations including the mouth.
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Table 1: Quantitative results of interspecies keypoint transfer on MAFL and AP-10K. The pixel
error is obtained by calculating the euclidean distance between the ground truth and the transferred
keypoints. * indicates that the model is trained by the authors of this paper, as the pre-trained weights
are not provided. † indicates that the data domains for the learning and the evaluation do not match.

Method Pixel Error
Human+Dog Human+Cat Dog+Cat Human+Dog+Cat Human+Wild †

CSE 19.00 18.15 8.00 15.20 17.69
DVE* 17.78 17.40 6.75 14.34 15.58
CATs 14.78 17.63 8.47 13.67 14.05
Ours(DIFE) 11.73 11.00 6.51 13.16 10.37

Source

CSE

DVE

CATs

Ours

Figure 3: Qualitative results of interspecies keypoint transfer on MAFL and AP-10K.

Implementation details. We pre-train CSE with DensePose-COCO [23] and DensePose-LVIS [11],
which are the datasets for full-body keypoints of human and animal respectively. StyleGAN2 is
pre-trained with FFHQ [19] for human and AFHQ [9] for animals. DIFE encoder uses the hourglass
network [28] for a fair comparison with DVE [39], and the domain converter consists of three
consecutive 7× 7 conv layers. We use Adam optimizer [21] with the learning rate of 10−3, batch size
of 12, and max training step of 1M with early stopping. The lambda values for each loss functions
are fixed to λ1 = 10−2, λ2 = 100, λ3 = 10−2, and λ4 = 10−2 in all experiments. All experiments
are carried out on one NVIDIA Titan XP.

Baselines. We compare our method with three baselines: CSE [27], DVE [39] and CATs [8]. Even
though CSE is originally learned for full-body embeddings of interspecies data, we compare to the
method to demonstrate the effectiveness of our method on face images. DVE is an unsupervised
learning approach for learning pixel-level facial embeddings, which is designed for human faces
in the original work. For the comparison, we train the method with interspecies data. Both the
training set of AP-10K and synthesized images of StyleGAN2 were used, and the latter is selected for
better performance. We implemented the baselines using the original source code available on their
websites with the default hyperparameters. CATs is the state-of-the-art for finding visual semantic
correspondence. We use the pre-trained model from the original paper trained on SPair-71k [25] that
contains annotations including the landmarks of dogs, cats, and other animals.

Quantitative results. Table 1 presents the quantitative results of CSE, DVE, and DIFE on humans,
dogs, cats, and wild animals showing that our method achieves better performance in all data domains.
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Table 2: The interspecies keypoint transfer on WFLW [42] and AnimalWeb [20].

Human+Dog Human+Cat Dog+Cat Human+Wild

CSE 14.43 14.95 16.85 16.08
DVE 14.16 13.28 13.40 15.74
CATs 20.84 18.84 19.35 22.20
Ours 12.01 12.84 11.70 14.03

As can be seen in the table, transferring between human and other animals is more challenging due
to the larger shape differences between faces of human and animals. Compared to other baselines,
DIFE makes a significant improvement with the help of the semantic loss. The errors in all methods
are lower for Dog+Cat, with DIFE performing better than other baselines. We have also tested a
challenging case of the keypoint transfer between three domains by training the models at once with
human, dogs, and cats, in which DIFE also outperforms other baselines. For the Human+Wild case,
we utilized the model that was trained with human+cat, because it was difficult to train with human
and wild animals due to the extreme shape and style variance. Since the wild animal domain includes
animals that resemble cats, such as tigers, lions, and cheetahs, using our model trained with human
and cats performed reasonably, showing that our method is applicable for out-of-domain cases. Our
method also outperforms the CATs which indicates the applicability of our method to discovering
landmarks in unlabeled animal domains.

Table 2 shows the quantitative result of the interspecies keypoint transfer on WFLW [42] and
AnimalWeb [20] with 9 landmarks including the corners of the eye and mouth. Our method shows
the best performance compared to previous methods on every domain pair.

Qualitative results. Fig. 3 shows some qualitative results of the keypoint transfer. As expected,
CSE has difficulty in finely distinguishing different parts of faces as it has limited face prior for
animals due to the sparse annotation of DensePose-LVIS. While DVE tends to recognize the eyes
and the noses to some extent, it does not properly overcome the shape difference, showing some
mismatches. DIFE, with its ability to understand cross-domain association and face embedding, can
figure out exact visual correspondence on interspecies faces. More visualizations of the interspecies
keypoint transfer including the results on WFLW and AnimalWeb can be found in the appendix.

Fig. 4 visualizes the embeddings of different methods. CSE shows similar values across domains,
but less distinction between different parts of a face. On the other hand, StyleGAN2 features exhibit
distinctiveness between different parts of a face, but corresponding parts between different domains
show a large difference in values, making it difficult to align between different domains. DIFE makes
the best of both worlds, showing distinctive values within a face, while having similar values between
corresponding face parts between different domains.

Image Embedding of 
CSE

Features of 
StyleGAN2 DIFE

Figure 4: Visualization of embeddings

Layer5 Layer7 Layer9

Image

Coarse Fine

Features of 
StyleGAN2

Figure 5: Visualization of features of StyleGAN2
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Table 3: Ablation study on losses

LK1 LK2 LM1 LM2 Pixel Error

X 19.33
X X 13.59
X X X X 11.73

X X X 17.45
X X X -
X X X 13.03
X X X 12.22

Table 4: Quantitative results of choosing layers of
StyleGAN2 for the knowledge distillation.

Layer Number nd Pixel Error

Layer5 512 13.80
Layer7 512 11.73
Layer9 256 14.78

Figure 6: The result of image manipulation Figure 7: The face parsing results based on DIFE

4.2 Ablation Study

The effect of loss functions. Table 3 shows an ablation study to verify the role of each loss. Pixel
errors are reduced by adding each loss, and any absence of a loss leads to the performance drop. As
we cannot synthesize pseudo-paired data without the knowledge distillation of StyleGAN2, the result
for the absence of LK2 is not provided. The absence of LK1 leads to a large performance drop of
DIFE, and we find that the role of knowledge distillation of CSE is essential in the early stages of
learning. The semantic matching loss also helps to increase the performance by learning more fine
visual correspondence across the data domains.

Which layer in StyleGAN2 is good for the knowledge distillation? Table 4 shows the result of
selecting a different layer of StyleGAN2 for acquiring the features. Fig. 5 shows that the features
from the higher layer is more fine-grained but domain-specific, which makes the domain converter
to become confused. Also, because the dimension of the domain-specific embedding follows the
dimension of StyleGAN2 features nd, selecting the ninth layer limits the representation power of the
domain embedding. On the other hand, the feature from the lower layer is easy for the knowledge
distillation with the abundant representation power with large nd, but the information about the
face is limited because of its coarseness. With this ablation study, we selected the seventh layer of
StyleGAN2 to learn face prior of each data domain.

4.3 Applications

Image manipulation. Fig. 6 presents image manipulation examples based on DIFE. Putting objects
like glasses and masks requires the positions of face parts, and the result shows that DIFE finds exact
locations to put the objects onto the images, even on animal faces.

Interspecies face parsing Fig. 7 shows the results of interspecies face parsing based on DIFE.
Following the segmentation in style [29], we use k-means clustering by DIFE for unsupervised face
parsing. The eye, nose, mouth, and hairy parts are discovered with a simple method which means
DIFE has proper semantic information for the interspecies face.

Dense keypoint transfer. Although DIFE extracts embeddings from all pixels, we cannot accu-
rately evaluate all visual correspondences due to the lack of annotations. However, we can figure out
more dense visual correspondence qualitatively by transferring generated grid keypoints . In Fig. 8,
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Figure 8: The result of dense keypoint transfer

Origin

Intra

Inter

Figure 9: The examples of pseudo pair data

the result of transferring dense keypoints from a human source to another human, dog, cat, and wild
animal targets can be found.

Pseudo-paired data synthesis. Fig. 9 shows examples of pseudo-paired data with various data
domains and postures. Given original images, we perform pseudo-paired data synthesis on the
intra-domain and the inter-domain. We can see that the generated paired images are in similar poses
with the original ones, while having minor texture variations.

5 Conclusion

In this paper, we introduced a study for extracting common features from faces of several species,
including humans, as a dense embedding. In this process, we presented a mechanism for extracting
and learning desired information from separate teacher models, even though the teacher models
have different architectures and data domains. Furthermore, we proposed a new data augmentation
technique with a latent space exploration of StyleGAN2 and the semantic matching loss to overcome
the extreme shape difference between species. Various experiments and applications were offered
for the evaluation, and our approach has been shown to be superior to other baselines. For the
future research directions, we need to deal with multiple animals more than three domains efficiently,
which is not focused on this paper due to the absence of pre-trained StyleGAN2. A research on
the generalization method for the out-of-domain data is needed to address the situation where data
cannot be obtained or the animal species is unknown. Our method is dependent on the performance
of pre-trained CSE and StyleGAN2. Lastly, there are typical face understanding failure cases like
occlusion or dark illumination. As the first work to tackle the difficult problem of interspecies face
embedding, more follow-up studies are necessary to overcome current limitations. Nevertheless, we
believe that this work has set the stage for a new research topic of cross-domain study for interspecies
face understanding.

6 Broader Impact.

This study aims to understand the interspecies face, which can be potentially extended to various
applications. For example, our method can assist to find lost pets, check the health status of farm
animals through analyzing the facial expressions. Identifying wild animals for ecological experiments
is another expected application of our method. Moreover, the proposed method can potentially be
extended to the automatic motion capture, that can be used in the film production or content creation
for AR/VR. We note that the studies using DIFE could potentially violate the personal privacy or
animal rights. The studies extending DIFE should carefully consider the above potential misuses, and
bring positive impacts to the society.
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