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Abstract

Large Language Models (LLMs) have demon-001
strated exceptional capabilities across diverse002
natural language processing (NLP) tasks. The003
release of open-source LLMs like LLaMA and004
Qwen has triggered the development of numer-005
ous fine-tuned models tailored for various tasks006
and languages. In this paper, we explore an im-007
portant question: is it possible to combine these008
specialized models to create a unified model009
with multi-task and multi-lingual capabilities.010
We introduces Hierarchical Iterative Merging011
(Hi-Merging), a training-free method for uni-012
fying multiple specialized LLMs into a sin-013
gle model. Specifically, Hi-Merging employs014
model-wise and layer-wise pruning and scaling,015
guided by contribution analysis, to mitigate pa-016
rameter conflicts. Extensive experiments on En-017
glish and Chinese datasets, covering multiple-018
choice and question-answering tasks, validate019
Hi-Merging across three paradigms: multilin-020
gual merging, multi-task merging, and multi-021
lingual multi-task merging. The results demon-022
strate that Hi-Merging consistently outperforms023
existing merging techniques and surpasses the024
performance of models fine-tuned on combined025
datasets in most scenarios. Code is available at026
this anonymous link1.027

1 Introduction028

Large Language Models (LLMs) have revolu-029

tionized Natural Language Processing (NLP) by030

demonstrating unprecedented capabilities in cap-031

turing and utilizing world knowledge (Zhao et al.,032

2024). Recent advances in architecture design and033

training methodologies have enabled models like034

GPT-4 (OpenAI, 2023) to engage in human-like035

dialogue and solve real-world problems, enabling036

breakthroughs in healthcare, education, and scien-037

tific research.038

With the advent of open-source large language039

models (LLMs) like LLaMA-3 (Dubey et al., 2024)040

1https://anonymous.4open.science/r/hi-merging

and Qwen (Yang et al., 2024a), significant re- 041

search efforts have been dedicated to fine-tuning 042

these models for specific tasks, domains, and lan- 043

guages. As a result, Hugging Face2 now hosts 044

over one million specialized LLMs across various 045

languages and tasks, and this number continues 046

to grow rapidly. These models represent a vast 047

repository of task-specific and language-specific 048

expertise, ranging from Chinese medical appli- 049

cations (Chen et al., 2023) to English financial 050

question and answering (Cheng et al., 2024). A 051

natural question arises: is it possible to combine 052

these language-specific and task-specific fine-tuned 053

LLMs into a single unified model with broad ca- 054

pabilities, including multi-lingual and multi-task 055

functionalities? If achievable, the deployment of 056

such a unified model could perform multiple tasks 057

that currently require multiple LLMs, thereby sig- 058

nificantly enhancing the application of LLMs. One 059

potential solution is to gather all fine-tuning data 060

and retrain the LLMs from scratch. However, this 061

approach has three significant disadvantages: 1) 062

the availability of fine-tuning data, as the models 063

are often public but the data is not; 2) retraining 064

large LLMs requires substantial computational re- 065

sources; and 3) balancing the training data from 066

different tasks and languages to achieve overall 067

optimal performance is a non-trivial challenge. 068

Based on the above considerations, model merg- 069

ing (Yang et al., 2024b) emerges as a promising 070

solution for unifying multiple specialized models 071

while preserving their individual capabilities. How- 072

ever, current model merging methods face two fun- 073

damental challenges. First, interference between 074

merged models can arise from noise introduced by 075

data bias (Tsuchiya, 2018) or the training process, 076

such as overfitting, impairs the merged model’s gen- 077

eralization. Second, models trained independently 078

follow distinct optimization trajectories, leading 079

2https://huggingface.co/
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Figure 1: Illustration of three paradigms for our LLM merging: merging models that specialize in different languages
(left), merging models that excel at different tasks (middle), and merging models that exhibit expertise in both
different languages and different tasks (left). Through such merging, a single model can inherit the combined
capabilities of both original models, enabling broader applicability and enhanced performance.

to different knowledge alignments in their parame-080

ter spaces (Ilharco et al., 2023). These misaligned081

parameters become incompatible for direct combi-082

nation without additional training.083

To address these challenges, we propose Hi-084

Merging, a Hierarchical Iterative Merging method.085

It first applies model-wise pruning and scaling to086

the delta vectors (parameter differences between087

fine-tuned models and the foundation model) to088

eliminate noisy parameters introduced during fine-089

tuning. Then, we apply layer-wise pruning and090

scaling iteratively for the knowledge misalignment,091

starting from the most conflicted layers. To identify092

the severity of layer-wise conflicts, we develop con-093

tribution analysis - a method that quantifies each094

layer’s contribution by measuring how adding or095

removing specific layers affects model capabilities.096

By analyzing how our contribution metrics change097

before and after a pre-merging process, we can098

identify potential conflicts, thereby guiding our it-099

erative optimization process to resolve parameter100

incompatibilities without additional training sys-101

tematically.102

Our contributions can be summarized as follows:103

• We pioneer the use of model merging to enhance104

LLMs’ multilingual and multi-task capabilities105

without additional training.106

• We propose Hi-Merging, a hierarchical iterative107

approach that effectively reduces the interference108

of noise and knowledge alignment conflicts dur-109

ing model merging.110

• Extensive experiments on four datasets demon-111

strate the effectiveness of Hi-Merging under three112

merging paradigms: multilingual merging, multi- 113

task merging, and multilingual multi-task merg- 114

ing, consistently achieving superior performance 115

across all settings. 116

2 Preliminary for LLM Merging 117

In this section, we detail notations and introduce 118

existing model (LLM) merging solutions as the 119

preliminary. 120

Model merging aims to combine multiple mod- 121

els with distinct capabilities as a single model, 122

which has all the strengths of these models. In 123

this paper, we user two-model merging for illus- 124

tration: Given models MA and MB with parame- 125

ters θA and θB , both fine-tuned from a foundation 126

model MF with parameters θF for tasks tA and 127

tB respectively, model merging aims to combine 128

them into a single model Mmerge with parameters 129

θmerge that preserves capabilities for both tasks. 130

Typical model merging strategies include 131

weighted averaging and delta vector-based merging. 132

The former combines model parameters through a 133

weighted sum (Wortsman et al., 2022): 134

θmerge =
∑

m∈{A,B}

ωmθm (1) 135

where ωm is the weight to balance different capabil- 136

ities constrained to
∑

m∈{A,B} ωm = 1, ωm > 0. 137

And m ∈ {A,B} is the model identifier. 138

The second strategy merges models based on 139

delta vectors, the parameter differences between 140

fine-tuned models and their foundation model, 141
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which can be mathematically defined as:142

δm = θm − θF (2)143

Delta vectors δm defined in Equation (2) reveal144

model-specific updates from the foundation model,145

enabling a delta-weighted merging strategy (Il-146

harco et al., 2023):147

θmerge = θF +
∑

m∈{A,B}

ωmδm (3)148

where ωm > 0. Note that both strategies, illus-149

trated in Equation (1) and Equation (3), can be eas-150

ily extended to multiple model merging scenarios151

by expanding the model list {A,B}.152

3 Method153

In this section, we introduce the proposed method,154

which consists of two major components: (1)155

model-wise pruning and scaling that removes noisy156

and redundant parameters and moderate excessive157

ones and (2) layer-wise pruning and scaling iter-158

ating on conflicted layers to address knowledge159

misalignment issues.160

3.1 Model-wise Pruning and Scaling161

This section introduces two operations to process162

delta vectors: pruning and scaling.163

During the fine-tuning, models can accumulate164

noisy parameters and learn sharp parameters for the165

specific fine-tuning task. We introduce the pruning166

and scaling operations to tackle these two problems,167

respectively, which are controlled by the following168

hyperparameters:169

• Pruning Threshold (p): This parameter speci-170

fies the proportion of the delta vector that should171

be preserved. By retaining the largest p percent-172

age of the vector’s components and rendering173

the remaining (1 − p) to zero, the pruning op-174

eration can eliminates trivial parameter updates175

(data-specific noise) while preserving meaningful176

task-specific knowledge.177

• Scaling Factor (s): This factor controls the mag-178

nitude of the delta vector. With this parame-179

ter, the scaling operation contributes to address-180

ing over-aggressive parameters by scaling down181

sharp updates, which may result from the overfit-182

ting during fine-tuning. The pruning does not ap-183

ply to large parameter changes as they likely en-184

code essential knowledge. The scaling provides185

a way to moderate their excessive influence.186
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Figure 2: The accuracy of the fine-tuned Qwen2-7B-
Instruct on the MedQA dataset after the model-wise
pruning and scaling process with different combinations
of the pruning threshold p and the scaling factor s.

With these hyperparameters, the pruning and scal- 187

ing cooperatively process the delta vectors in a 188

complementary manner: pruning eliminates negli- 189

gible parameter changes while scaling moderates 190

the significant ones. Note that both p and s con- 191

strained to [0, 1]. 192

We empirically validate the effectiveness of the 193

pruning and scaling operations by iterating p and 194

s from [0.1, 1]. The result is visualized in Fig- 195

ure 2. We can find that the individual model 196

can maintain or even improve performance with 197

appropriate pruning and scaling. For example, 198

p = 0.1, s = 0.9 (preserving 10% of parameters 199

and scaling all delta values with 0.9) can defeat the 200

original model (p = 1, s = 1). This finding sup- 201

ports our idea of conducting model-wise pruning 202

and scaling to overcome noisy and radical parame- 203

ter updates. 204

Next, we introduce the model-wise pruning and 205

scaling details. Specifically, the delta vector (de- 206

fined in Equation (2)) for a given LLM Mm can 207

be defined as δm = [δm,1, δm,2, . . . , δm,N ], where 208

m ∈ {A,B} is the model identifier and N indi- 209

cates the size of trainable parameters. 210

The pruning operation Topp retains the ⌈p ·N⌉ 211

elements of δm with the largest absolute value and 212

zeros out the rest, resulting in δ̃m: 213

δ̃m = Topp(δm) (4) 214

In detail, the n-th component of δ̃m is: 215

δ̃m,n =

{
δm,n, if n ∈ {π(1), π(2), . . . , π(⌈p ·N⌉)}
0, otherwise

(5) 216
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where π(n) represents the index of the n-th largest217

component of δm in absolute value, such that:218 ∣∣δm,π(1)

∣∣ ≥ ∣∣δm,π(2)

∣∣ ≥ · · · ≥
∣∣δm,π(N)

∣∣ (6)219

The scaling operation adjusts the magnitude of220

the pruned delta vector δ̃m by multiplying it with221

the scaling factor s ∈ [0, 1] as sδ̃m.222

Regarding the different setting of p and s for223

each model, the model-wise pruning and scaling224

can be compactly expressed as:225

δ̂m = sm · Toppm (δm) = smδ̃m (7)226

where δ̂m represents the delta vector after the227

model-wise pruning and scaling.228

Through model-wise processing with pruning229

and scaling, we effectively identify noisy and exces-230

sive parameter updates from the fine-tuning, main-231

taining and moderating the key knowledge about232

the fine-tuning task for the subsequent merging.233

3.2 Layer-wise Pruning and Scaling234

In this section, we conduct the layer-wise model235

merging with pruning and scaling operations with236

a novel contribution analysis method to measure237

the parameter conflict.238

3.2.1 Contribution Analysis239

Directly merging the model-wise processed delta240

vectors {δ̂m}m∈{A,B} as in Equation 1 or Equa-241

tion 3 will encounter the weight misalignment prob-242

lem, which is overlooked by existing methods.243

To investigate potential conflicts when merging244

a specific layer, we measure its contribution by245

calculating the performance difference before and246

after the merge. Precisely, we assess the merging247

contribution from two directions:248

• Deletion Impact (α): To estimate this impact,249

we first construct a merged model MG that250

merges all layers using the merging process men-251

tioned in Equation (1) or Equation (3). Then, we252

calculate the performance degradation caused by253

removing the delta vector for a specific layer.254

• Addition Impact (β): This impact is measured255

by the performance improvement of adding the256

delta vector for a specific layer to the pre-trained257

foundation model MF .258

These impacts can be mathematically repre-259

sented as:260

αl
m1,m2 =Ptm1(θm2 − δ̂

l
m2)− Ptm1(θm2) (8)261

βl
m1,m2 =Ptm1(θ̂F + δlm2)− Ptm1(θF ) (9)262
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① 

Figure 3: The demonstration of different conflict elimi-
nation strategies for three pre-merging conditions.

where m1 ∈ {A,B} is the task capability identifier 263

and m2 ∈ {A,B,G} is the model identifier. We 264

investigate the layer-wise contribution so that l is 265

the layer index. δ̂
l
m2 is the delta vector for Mm2 at 266

layer l. Ptm1(·) represents the performance metric 267

on the task tm1. For example, BLEU-4 (Papineni 268

et al., 2002) score for the QA task. 269

We sum up two impacts as the overall contribu- 270

tion: 271

clm1,m2 = αl
m1,m2 + βl

m1,m2 (10) 272

3.2.2 Iterative Conflict Elimination 273

The contribution analysis method defined in Equa- 274

tion (8)-(10) provides a solution to measure the 275

importance of merging specific layers. We can then 276

define the conflict resulted by model Mm(m ∈ 277

{A,B}) within the layer l of the merged model as: 278

γlm = clm,m − clm,G (11) 279

In this formula, we set the capability identifier 280

m1 = m as we expect the merged model can 281

maintain the performance of Mm on tm. We can 282

then identify the most severe conflicting layers 283

that impair the fine-tuned performance by sorting 284

Γl =
∑

m∈{A,B} γ
l
m. 285

To mitigate the parameter misalignment, we it- 286

eratively merge the most conflicting layers (with 287

the largest Γl). Specifically, to process a specific 288

layer, there are three types of conflict as illustrated 289

in Figure 3: 290

1. Severe Conflict: γlA > 0 and γlB > 0, indicat- 291

ing both capabilities are impaired by the merg- 292

ing. In such cases, only the delta vector with 293

a larger contribution is retained, e.g., dropping 294

δ̂
l
B in the figure. Namely, δ̂

l
B is set to zero. 295
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2. Partial Conflict: γlA ∗ γlB < 0, i.e., one of the296

delta vectors leads to the parameter misalign-297

ment. The solution for this case is to prune and298

scale the conflict delta vector again, as we de-299

fined in Section 3.1. For example, in Figure 3,300

the overfitting on tA (γlA < 0 and γlB > 0)301

leads to the degradation of the ability for tB . As302

a result, we prune and scale δ̂
l
A again as3:303

δ̂
l
A = sA · ToppA(δ̂

l
A), (12)304

3. Mutual Enhancement: If γlA ≤ 0 and γlB ≤ 0,305

the merging process improves for both capa-306

bilities. In this case, no further adjustment is307

necessary for this layer.308

After resolving the conflicts of all layers, the pa-309

rameters of the final merged model Mmerge is:310

θmerge = θF + δ̂A + δ̂B (13)311

4 Experiments312

In this section, we conduct comprehensive experi-313

ments to evaluate the effectiveness of Hi-Merging314

on multilingual multi-task merging problems by315

answering following research questions (RQ):316

• RQ1: How does Hi-Merging compare with base-317

lines on merging LLMs for different languages?318

• RQ2: How do these methods perform for merg-319

ing LLMs for different tasks?320

• RQ3: Are these methods applicable to combine321

LLMs on different taks and languages?322

• RQ4: Is Hi-Merging able to merge open-source323

models from the Hugging Face?324

4.1 Experimental Settings325

4.1.1 Datasets326

We select four datasets listed in Table 1 that cover327

multilingual multi-task capabilities, including En-328

glish and Chinese languages, with multiple-choice329

question answering (MCQA) and open-domain330

question answering (QA) tasks.331

4.1.2 Baselines332

In our experiments, we compare Hi-Merging333

with weighted averaging (Model Soups (Worts-334

man et al., 2022)) and delta vector-based meth-335

ods (Arithmetic (Ilharco et al., 2023), TIES-336

Merging (Yadav et al., 2023), DARE (Yu et al.,337

2024), DELLA (Deep et al., 2024), and Model338

Breadcrumbs (Davari and Belilovsky, 2024)), as339

3We use the same notation δ̂
l

A for clarity.

Table 1: The brief description and statistics of the four
datasets (MedQA (Jin et al., 2020), CMExam (Liu
et al., 2023), HealthCareMagic (Li et al., 2023), and
cMedQA2) (Zhang et al., 2018) used for fine-tuning.

Name Task Language Train Validation Test

MedQA MCQA English 10,000 400 400
CMExam MCQA Chinese 50,000 4,000 4,000
HealthCareMagic QA English 30,000 1,000 1,000
cMedQA2 QA Chinese 30,000 1,000 1,000

well as the multilingual and multi-task models fine- 340

tuned on combined datasets. Details of these base- 341

lines are in Appendix A.1.1. 342

4.1.3 Implementation Details 343

We use Qwen2-7B-Instruct as foundation model- 344

swith results for other foundation models presented 345

in Appendix A.2. For fine-tuning, we employ 346

LLaMA-Factory 4 with LoRA (rank=8, alpha=16, 347

dropout=0.01) and a batch size of 64. The learn- 348

ing rate is 1.0−4 with cosine decay and warm-up. 349

LLM merging is performed using mergekit 5. For 350

hyperparameter tuning, both p and s in model-wise 351

processing range from 0.1 to 1.0 with a step of 0.1. 352

In layer-wise processing, the pruning threshold p 353

and scaling factor s are successively set to half of 354

their model-wise values. 355

4.1.4 Evaluation Metrics 356

For the MCQA task, accuracy is employed to mea- 357

sure the proportion of correct answers (Devlin et al., 358

2019).For the QA task, we use BLEU-4 (Papineni 359

et al., 2002) to evaluate the precision of the genera- 360

tion, and ROUGE-1,2,L (Lin, 2004) to assess the 361

overlap and coherence with the ground truth. The 362

averaged performance across all metrics is reported 363

as “Avg.”. Additionally, we report the relative im- 364

provement over the foundation model. 365

4.2 Multilingual Merging (RQ1) 366

We first verify the effectiveness of Hi-Merging on 367

multilingual LLM merging. Here, we merge mod- 368

els trained on datasets in different languages (En- 369

glish and Chinese) but for the same task type (QA 370

in Table 2 and MCQA results in Table 3). 371

With the foundation model Qwen2-7B- 372

Instruct (Yang et al., 2024a), we observe more 373

moderate performance degradation with our 374

method, while Llama3-8B-Instruct (Dubey et al., 375

2024) exhibits persistent conflicts (results in 376

4https://github.com/hiyouga/LLaMA-Factory
5https://github.com/arcee-ai/mergekit
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Table 2: Performance comparison of merging methods for multilingual QA using Qwen2-7B-Instruct.

Types Methods L1 (HealthCareMagic) L2 (cMedQA2) Avg. Impr.
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l

Pre-trained Qwen2-7B-Instruct 30.1209 26.3524 5.3280 15.7451 1.7090 14.1527 1.7822 9.0934 13.0355 -

Fine-tuned
Model A (L1) 35.5717 30.2512 8.9044 20.3625 3.7609 19.1370 3.1364 15.1441 17.0335 +30.66%
Model B (L2) 24.8587 24.9841 4.1492 15.1967 4.4159 21.2210 4.0680 17.4600 14.5442 +11.57%
Multilingual 35.7637 29.9781 8.6687 20.1184 3.7660 20.9869 3.7784 16.8850 17.4932 +34.19%

Merged

Model Soups 33.2627 28.8258 7.5487 18.9459 4.6801 21.5564 4.0502 17.5380 17.0510 +30.80%
Task Arithmetic 33.0398 28.7169 7.5726 18.9600 4.7181 21.4108 4.0503 17.6772 17.0182 +30.55%
TIES 33.6571 29.0496 7.7769 19.1503 4.3751 20.8551 3.7518 17.1978 16.9767 +30.23%
DARE 33.3031 28.9575 7.8222 19.1702 4.7578 21.0865 3.8996 17.2488 17.0307 +30.64%
DARE+TIES 26.8091 26.0330 5.2307 16.5201 4.2456 20.6276 3.7531 17.1445 15.0455 +15.41%
Model Breadcrumbs 34.3247 29.4403 8.1518 19.6443 4.4092 20.9365 3.8138 17.1378 17.2323 +32.19%
DELLA 33.4207 28.9234 7.6728 18.9674 4.6827 21.1596 4.0709 17.4775 17.0469 +30.77%
DELLA+TIES 27.2331 26.1723 5.4339 16.6009 4.7130 21.2275 4.2944 17.7694 15.4306 +18.37%
Hi-Merging (Ours) 35.9500 29.9826 8.8738 20.3844 4.7009 21.1752 3.9704 17.2361 17.78 +36.42%

Note: (1) Model A is fine-tuned on HealthCareMagic (L1: English), Model B is fine-tuned on cMedQA2 (L2: Chinese),
Multilingual model is fine-tuned on both datasets; (2) Merged models are obtained by merging Model A and B; (3) The overall
best result is marked in bold and the best merging result is underlined.

Table 3: Performance comparison of merging methods
for multilingual MCQA using Qwen2-7B-Instruct.

Types Methods L1
(MedQA)

L2
(CMExam) Avg. Impr.

Pre-trained
Qwen2-7B-Instruct 51.4062 74.6217 63.0140 -
Yi-1.5-9B 46.8185 58.6499 52.7342 -16.31%
Baichuan2-7B 6.4415 7.1439 6.7927 -89.22%

Fine-tuned
Model A (L1) 59.1406 83.7771 71.4589 +13.40%
Model B (L2) 54.4531 88.6171 71.5351 +13.52%
Multilingual 60.0781 88.2246 74.1514 +17.67%

Merged

Model Soups 59.6094 88.6926 74.1510 +17.67%
Task Arithmetic 59.5312 88.7681 74.1497 +17.67%
TIES 59.0625 88.7832 73.9229 +17.31%
DARE 58.6719 88.6926 73.6823 +16.93%
DARE + TIES 58.9063 88.6021 73.7542 +17.04%
Model Breadcrumbs 58.8281 88.6322 73.7302 +17.00%
DELLA 58.9844 88.7681 73.8763 +17.24%
DELLA + TIES 58.2812 88.7530 73.5171 +16.67%
Hi-Merging (Ours) 61.0156 88.6501 74.8329 +18.76%

Note: (1) Model A is fine-tuned on MedQA (L1: English).
Model B is fine-tuned on CMExam (L2: Chinese), Multilin-
gual model is fine-tuned on both datasets. (2) Merged models
are obtained by merging Model A and B. (3) The overall best
result is in bold and the best merging result is underlined.

Appendix A.2). This difference stems from the377

capability gap of foundation models. Qwen2’s378

stronger language ability enables more structured379

parameter updates, where new knowledge aligns380

better. In contrast, weaker foundation models lead381

to dispersed parameter updates and knowledge382

misalignment. In addition, we investigate the383

impact of different training sample sizes on LLM384

merging in Appendix A.3.385

Baselines like Model Soups and Task Arithmetic386

that combine models without considering noises387

and conflicts achieve relatively stable average per-388

formance. Methods that reduce conflicts, such as389

TIES and DARE, occasionally achieve the best390

results on individual metrics by discarding delta391

vectors. However, their average performance needs392

more systematic processing strategies. In contrast, 393

our Hi-Merging method, with hierarchical pruning 394

and scaling approach, not only achieves the best 395

average performance but attains optimal results in 396

about half of the individual metrics. 397

4.3 Multi-task Merging (RQ2) 398

For multi-task merging, we combine models 399

trained on the same task but in different languages 400

(e.g., English MCQA with Chinese MCQA), as 401

shown in Table 4. The results show that merged 402

models consistently outperform their individual 403

fine-tuned counterparts, with many merging meth- 404

ods even surpassing multi-task fine-tuned mod- 405

els. Notably, our Hi-Merging approach achieves 406

a 1.84% relative improvement over the multi-task 407

fine-tuned model. We attribute this success to three 408

factors. 1) During multi-task fine-tuning with lim- 409

ited data (compared to pre-training), tasks can in- 410

terfere with each other due to the “seesaw effect”. 411

In contrast, model merging allows parameters to be 412

optimized independently before integration, avoid- 413

ing such interference. 2) Since both models are 414

fine-tuned from the same foundation model, their 415

parameter updates tend to follow similar optimiza- 416

tion trajectories, making successful merging more 417

likely. 3) The inherent sparsity of large language 418

models provides sufficient parameter space to ac- 419

commodate multi-task knowledge from both mod- 420

els without significant conflicts. 421

4.4 Multilingual Multi-task Merging (RQ3) 422

For multilingual multi-task merging, we com- 423

bine models trained on completely different tasks 424

and languages. Specifically, we merge a model 425
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Table 4: Performance comparison of merging methods for multi-task learning.

Types Methods
L1 (English) L2 (Chinese)

Avg. Impr.T1 (MedQA) T2 (HealthCareMagic) T1 (CMExam) T2 (cMedQA2)

Accuracy BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l Accuracy BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l

Pre-trained Qwen2-7B-Instruct 51.4062 30.1209 26.3524 5.3280 15.7451 74.6217 1.7090 14.1527 1.7822 9.0934 23.0312 -

Fine-tuned Model A (T1) 59.1406 34.6533 28.7482 6.9168 17.9525 88.6171 2.8064 16.8617 2.5603 12.0561 27.0313 +17.36%
Model B (T2) 53.0469 35.5717 30.2512 8.9044 20.3625 81.5670 4.4159 21.2210 4.0680 17.4600 27.6869 +20.21%
Multi-task 59.2188 35.6009 30.2101 9.1375 20.4645 88.6926 3.7790 20.5919 3.8096 16.9265 28.8431 +25.23%

Merged Model Soups 58.5156 36.4411 30.5654 9.1754 20.4259 88.8285 4.3912 21.0216 4.0040 17.2843 29.0653 +26.19%
Task Arithmetic 58.5938 36.3290 30.6624 9.1945 20.5406 88.7983 4.3018 20.6467 3.7496 16.9995 29.0493 +26.13%
TIES 60.4688 35.7851 30.3243 9.0310 20.3723 88.6171 4.5434 21.5629 4.1910 17.4909 29.1996 +26.78%
DARE 58.4375 36.5802 30.5488 9.0818 20.3945 88.7681 4.5487 21.3255 3.8403 17.4471 29.0865 +26.29%
DARE+TIES 59.3750 35.7062 30.1950 8.7840 20.0878 88.8285 4.1587 21.1291 3.8124 17.2868 28.9361 +25.63%
Model Breadcrumbs 57.8906 36.4620 30.2173 8.7845 20.0169 88.8889 4.4472 21.2492 3.8931 17.2846 28.9128 +25.53%
DELLA 58.5938 36.3494 30.1715 8.8125 20.1879 88.8134 4.3718 21.0226 3.9300 17.3403 28.9818 +25.83%
DELLA+TIES 59.5312 36.0774 30.4743 9.1151 20.4599 88.6021 4.3202 21.2269 4.0164 17.3779 29.0115 +25.96%
Hi-Merging (Ours) 60.5469 36.4926 30.5467 9.1231 20.3523 88.9795 4.6781 21.5367 4.2165 17.5038 29.2673 +27.07%

Note: (1) Model A is fine-tuned on English datasets (T1: MedQA or HealthCareMagic), Model B is fine-tuned on Chinese
datasets (T2: CMExam or cMedQA2), Multi-task models are fine-tuned on datasets with the same language; (2) Merged models
are obtained by merging Model A and B; (3) The overall best result is marked in bold and the best merging result is underlined.

Table 5: Performance comparison of merging methods for multilingual multi-task learning.

Types Methods
T1, L1

(MedQA)
T2, L2

(cMedQA2)
T1, L2

(CMExam)
T2, L1

(HealthCareMagic) Avg. Impr.

Accuracy BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l Accuracy BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l

Pre-trained Qwen2-7B-Instruct 51.4062 1.709 14.1527 1.7822 9.0934 74.6217 30.1209 26.3524 5.328 15.7451 23.0312 -

Fine-tuned Model A (T1) 59.1406 2.8064 16.8617 2.5603 12.0561 88.6171 34.6713 28.4279 6.6122 18.1117 26.9865 +17.17%
Model B (T2) 54.4922 4.4159 21.221 4.068 17.46 79.6875 35.5717 30.2512 8.9044 20.3625 27.6434 +20.03%
Multilingual Multi-task 60.7812 3.8473 20.8741 4.0434 16.9525 88.9795 35.7429 30.1735 8.9153 20.3902 29.0700 +26.22%

Merged Model Soups 58.3584 4.6592 21.2316 4.0559 17.3805 88.6322 36.1765 30.7169 9.2702 20.5227 29.1004 +26.35%
Task Arithmetic 58.0469 4.6682 21.2618 4.0984 17.4231 88.7379 36.1222 30.2256 8.757 20.1357 28.9477 +25.69%
TIES 59.6094 4.3764 21.0083 3.9002 17.4194 88.7228 35.7708 30.5143 8.8994 20.3487 29.0570 +26.16%
DARE 57.8906 4.5671 21.1856 3.9549 17.2328 88.6322 35.8639 30.1489 8.815 20.1025 28.8394 +25.22%
DARE+TIES 58.75 4.4929 21.3194 4.0824 17.4826 88.5568 34.8223 29.7597 8.3004 19.7624 28.7329 +24.76%
Model Breadcrumbs 57.1094 4.7217 21.4192 4.1477 17.4182 88.6021 36.4961 30.3911 9.0696 20.4108 28.9786 +25.82%
DELLA 58.0469 4.8065 21.5135 4.1356 17.4962 88.6167 36.0159 30.3747 9.0414 20.3929 29.0440 +26.11%
DELLA+TIES 59.0625 4.4854 20.9954 4.0491 17.563 88.6624 35.0176 29.9666 8.658 20.1406 28.8601 +25.31%
Hi-Merging (Ours) 60.2344 4.7743 21.1954 4.1749 17.3991 88.7983 36.5223 30.3932 8.7882 20.1619 29.2442 +27.02%

Note: (1) Model A is fine-tuned on MCQA datasets (T1: MedQA or CMExam), Model B is fine-tuned on QA datasets (T2:
cMedQA2 or HealthCareMagic); (2) Merged models are obtained by merging Model A and B; (3) The overall best result is
marked in bold and the best merging result is underlined.

trained for MCQA in one language (Model A:426

MedQA in English or CMExam in Chinese) with427

another model trained for QA in the opposite lan-428

guage (Model B: cMedQA2 in Chinese or Health-429

CareMagic in English), as illustrated in Table 5.430

An intriguing phenomenon observed in our ex-431

periments is that multilingual multi-task fine-tuning432

tends to predominantly affect QA task performance,433

while model merging methods typically signifi-434

cantly impact MCQA task performance. We at-435

tribute this to two key factors. First, the QA task436

requires free-form text generation, demanding a437

more complex representation space than the rela-438

tively constrained choice selection in the MCQA439

task. Therefore, this complexity makes QA perfor-440

mance more vulnerable to degradation during joint441

fine-tuning. Second, model merging directly com-442

bines model parameters. Since MCQA tasks need443

exact boundaries for classification, these bound-444

aries are more easily disrupted during the merging445

process, making MCQA performance more vulner-446

able to merging operations.447

4.5 Open-source LLM Merging (RQ4) 448

To validate the generality of our merging ap- 449

proach, we conduct experiments using two open- 450

source medical models from Hugging Face: 451

Echelon-AI/Med-Qwen2-7B 6, fine-tuned on En- 452

glish datasets for tasks such as medical QA and 453

information retrieval (IR), and shtdbb/qwen2-7b- 454

med 7, fine-tuned on Chinese datasets for dialogue 455

generation. Both models are derived from Qwen2- 456

7B-Instruct. Figure 4 illustrates the performance 457

comparison across 12 medical datasets, with met- 458

rics normalized for better visualization. 459

Our approach demonstrates robust performance 460

across the task spectrum. In 7 out of 12 datasets, 461

Hi-Merging achieves the best performance among 462

all models, with only two datasets showing appar- 463

ent degradation compared to the better-performing 464

individual model. These results demonstrate Hi- 465

6https://huggingface.co/Echelon-AI/
Med-Qwen2-7B

7https://huggingface.co/shtdbb/qwen2-7b-med

7

https://huggingface.co/Echelon-AI/Med-Qwen2-7B
https://huggingface.co/Echelon-AI/Med-Qwen2-7B
https://huggingface.co/shtdbb/qwen2-7b-med
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Figure 4: Performance of Hi-Merging on two open-
source medical models, Echelon-AI/Med-Qwen2-7B
and shtdbb/qwen2-7b-med, which are fine-tuned from
the foundation model Qwen/Qwen2-7B-Instruct.

Merging’s ability to effectively fuse medical knowl-466

edge while maintaining or enhancing performance467

across diverse languages and tasks. Detailed imple-468

mentation setup and unprocessed numerical results469

can be found in Appendix A.1.2 and A.4.470

5 Related Works471

5.1 Multilingual Task-Oriented LLMs472

Multilingual tasks in NLP encompass a broad473

range of challenges, including machine transla-474

tion (Wang et al., 2022), multilingual text sum-475

marization (Gambhir and Gupta, 2017), and sen-476

timent analysis (Dashtipour et al., 2016) etc. Re-477

cently, LLMs have greatly contributed to advancing478

multilingual tasks by leveraging massive amounts479

of multilingual data (Brown et al., 2020; Devlin480

et al., 2019; Xue et al., 2021). Despite their success,481

LLMs struggle with multilingual limitations due482

to imbalanced pre-training data, resulting in bet-483

ter performance for high-resource languages over484

low-resource ones.485

To enhance multilingual capabilities, LLMs em-486

ploy continual training on specific languages, as487

seen in models like Chinese-LLaMA (Cui et al.,488

2023) and EuroLLM (Martins et al., 2024). Ad-489

ditionally, supervised fine-tuning techniques, such490

as LoRA in Chinese-Alpaca (Cui et al., 2023) and491

incorporating translation tasks in XGLM-7B (Li492

et al., 2024), further improve multilingual under-493

standing. However, LLMs are usually enhanced494

for one language at a time, resulting in multiple495

isolated models.496

5.2 Model Merging 497

Model merging aims to integrate knowledge from 498

multiple fine-tuned models into a single one. These 499

methods are categorized into two types: weighted- 500

based merging and interference mitigation. 501

Weighted-based merging focuses on combin- 502

ing model parameters effectively. This includes 503

simple techniques like parameter averaging, such 504

as Model Soups (Wortsman et al., 2022), Fisher- 505

weighted merging (Matena and Raffel, 2022) and 506

RegMean (Jin et al., 2023). While computation- 507

ally efficient, these methods often miss conflict- 508

ing parameter updates, leading to performance 509

degradation. Therefore, Task Arithmetic (Ilharco 510

et al., 2023) proposes manipulating delta vectors. 511

AdaMerging (Yang et al., 2024c) and evolutionary 512

algorithms (Akiba et al., 2024) optimize merging 513

coefficients and blend diverse models, respectively. 514

Interference mitigation techniques aim to re- 515

duce parameter conflicts based on the over- 516

parameterization and sparsity of LLM. DARE (Yu 517

et al., 2024) and SparseGPT (Frantar and Alistarh, 518

2023) show high LLM performance despite sig- 519

nificant parameter pruning. DELLA (Deep et al., 520

2024) introduces MAGPRUNE for selective prun- 521

ing and parameter rescaling. TALL-masks (Wang 522

et al., 2024) isolate task-specific parameters to mini- 523

mize interference. However, these techniques focus 524

mainly on individual parameter-level operations 525

without considering the structural relationships and 526

knowledge dependencies across model layers. 527

6 Conclusion 528

In this paper, we proposed Hi-Merging, a novel 529

approach for merging LLMs for multilingual multi- 530

task learning. Hi-Merging leverages model-wise 531

and layer-wise pruning and scaling strategy to min- 532

imize the conflict between fine-tuned models’ delta 533

vectors. The model-wise process eliminates the 534

fine-tuning noise and overfitting parameters of the 535

original models. Then, the layer-wise process ana- 536

lyzes the contribution of each layer’s delta vector 537

to the fine-tuning performance, reducing the inter- 538

ference of conflicts in several key layers. Exten- 539

sive experiments on the MCQA and QA datasets 540

demonstrated that Hi-Merging outperforms tradi- 541

tional merging techniques and even surpasses mod- 542

els trained on multiple datasets. Future work will 543

explore finer-grained conflict analysis strategies. 544
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7 Limitations545

While our proposed Hi-Merging method demon-546

strates promising results, several limitations should547

be acknowledged. First, our evaluation is currently548

limited to two task types (MCQA and QA) and549

two languages (English and Chinese). The effec-550

tiveness of Hi-Merging on a broader range of NLP551

tasks and language families remains to be investi-552

gated.553

Second, our method focuses on merging models554

fine-tuned from the same foundation model. The555

applicability and performance of Hi-Merging when556

merging models from different architectural fami-557

lies or pre-training approaches is yet to be explored.558

This limitation becomes particularly relevant as the559

field continues to see diverse model architectures560

and training paradigms.561

Finally, our current implementation assumes rel-562

atively balanced task importance. The method563

might need adaptation for scenarios where certain564

tasks or languages should be prioritized over oth-565

ers, potentially requiring a more flexible weighting566

mechanism in the merging process.567
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A Appendix786

A.1 Experimental Settings787

A.1.1 Baselines788

In our experiments, we compare it against a com-789

prehensive set of baseline methods, including tra-790

ditional weighted averaging techniques and state-791

of-the-art approaches specifically developed for792

fine-tuned models.793

• Multilingual Multi-task Training This ap-794

proach trains a single model on the combined795

datasets of multiple languages simultaneously,796

without distinguishing between tasks.797

• Model Soups (Wortsman et al., 2022) Uniform798

Soup is a simple merging method where the pa-799

rameters of the fine-tuned models are averaged800

based on their importance.801

• Task Arithmetic (Ilharco et al., 2023) This802

method performs arithmetic operations on the803

parameter differences between the pre-trained804

and fine-tuned models.805

• TIES (Yadav et al., 2023) The Task Interference806

Elimination Strategy (TIES) minimize negative807

transfer and task interference by pruning redun-808

dant parameters and using a chosen sign to deter-809

mine parameter update directions.810

• DARE (Yu et al., 2024) Delta Alignment for Ro-811

bust Ensemble (DARE) reduces the interference812

across tasks by randomly drop the delta vectors.813

• Model Breadcrumbs (Davari and Belilovsky,814

2024) This approach tracks and prunes maxima815

and minima in delta vectors to retain critical task-816

specific features.817

• DELLA (Deep et al., 2024) DELLA follows 818

DARE and assign drop rates to delta vectors ac- 819

cording to their absolute values, improving per- 820

formance stability. 821

A.1.2 Implementation Details 822

Our experimental environment consisted of a Cen- 823

tOS Linux 7 operation system with Python 3.12.4 824

and CUDA 12.2. All model training and inference 825

operations were implemented using PyTorch 2.4.0. 826

The hardware setup included 8 Tesla V100 GPUs, 827

each equipped with 32GB of memory, enabling 828

efficient parallel processing of large-scale models. 829

For model adaptation, we applied LoRA to all 830

linear networks in the model. The learning rate 831

schedule was carefully designed with a 100-step 832

warm-up phase followed by cosine decay, which 833

helped achieve stable convergence while maintain- 834

ing optimal model performance. This configuration 835

proved effective in balancing training efficiency 836

and model quality across both multilingual and 837

multi-task scenarios. 838

In addition to Qwen2-7B-Instruct, we also exper- 839

imented with other foundation models including 840

Llama-3-8B-Instruct (results shown in A.2). How- 841

ever, Qwen2-7B-Instruct demonstrated more con- 842

sistent performance, particularly in handling both 843

English and Chinese tasks, making it the preferred 844

choice for our main experiments. 845

For visualization in Figure 4, we normalized the 846

performance metrics to facilitate clear comparisons. 847

The performance values of the models on each 848

dataset represent the average of the QA task metrics 849

(BLEU-4, ROUGE-1, ROUGE-2, and ROUGE- 850

L). We scaled the pre-trained Qwen2-7B-Instruct’s 851

performance to 20 and the better-performing fine- 852

tuned model’s performance to 80 for each task. The 853

performance values of the other fine-tuned model 854

and our merged model were then proportionally 855

adjusted within this range to maintain their relative 856

differences. 857

A.2 Multilingual Merging 858

We further conduct experiments on Llama-3-8B- 859

Instruct, as presented in Table 6 and 7. The results 860

in Table 7 show that the performance of merged 861

models based on Llama-3-8B-Instruct is generally 862

inferior to that of the pre-merged fine-tuned models. 863

This indicates that the effectiveness of the merging 864

process is strongly influenced by the quality of the 865

foundation models. 866

The observed degradation in performance can 867
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Table 6: Performance comparison of merging methods
for multilingual MCQA using Llama-3-8B-Instruct.

Types Methods L1 (MedQA) L2 (CMExam) Avg.

Pre-trained
Llama-3-8B-Instruct 57.9733 17.2821 37.6277
GLM-4-9B 54.7656 69.5194 62.1425
Gemma-2-9B 14.2583 2.7698 8.5141

Fine-tuned
Model A (L1) 60.4688 52.2706 56.3697
Model B (L2) 60.3906 60.5525 61.0575
Multilingual 62.8906 61.0356 61.9631

Merged

Model Soups 61.2500 61.0507 61.1504
Task Arithmetic 61.2500 61.8750 61.5625
TIES 61.7188 61.3225 61.5207
DARE 61.5625 61.3678 61.4652
DARE + TIES 60.9375 59.4656 60.2016
Model Breadcrumbs 61.0156 60.4318 60.7237
DELLA 60.8594 60.7186 60.7890
DELLA + TIES 61.9531 61.3527 61.6529
Hi-Merging (Ours) 62.2656 61.0757 61.6707

Note: (1) Model A is fine-tuned on MedQA (L1: English).
Model B is fine-tuned on CMExam (L2: Chinese), Multilin-
gual model is fine-tuned on both datasets. (2) Merged models
are obtained by merging Model A and B. (3) The overall best
result is in bold and the best merging result is underlined.

be attributed to several factors. First, weaker foun-868

dation models, such as Llama-3-8B-Instruct, tend869

to produce delta vectors with more dispersed and870

less coherent parameter distributions during fine-871

tuning. These delta vectors often carry noisy or872

conflicting information, which makes the merging873

process prone to parameter conflicts. Second, the874

weaker representational capacity of these models875

limits their ability to encode robust and semanti-876

cally aligned knowledge, further exacerbating the877

challenges of merging.878

In contrast, stronger foundation models, such as879

Qwen2-7B-Instruct, exhibit fewer conflicts during880

merging and demonstrate consistent performance881

improvements across tasks and languages. This882

is because their fine-tuned delta vectors are more883

compact and carry knowledge that is better aligned884

with the foundation model’s semantic space, mak-885

ing the integration process more effective.886

A.3 Number of training samples887

We examine the impact of varying the number of888

training samples on the conflict during model merg-889

ing, as shown in Figure 5. In the experiment, we890

use two QA datasets, HealthCareMagic (English)891

and cMedQA2 (Chinese), sampling 10k, 20k, 30k,892

40k, and 50k training examples from each to pro-893

duce a series of fine-tuned models, five per dataset.894

This setup evaluates how the number of training895

samples influences both individual model perfor-896

mance and compatibility during merging. The x-897

axis of Figure 5 represents the number of training898

samples, while the y-axis denotes the average per-899

formance metrics, including BLEU-4, ROUGE-1, 900

ROUGE-2, and ROUGE-L. 901

However, Figures 5b and 5c show that merged 902

models through either Model Soups or Task Arith- 903

metic suffer from performance drops driven by the 904

increasing size of training sample as further train- 905

ing leads to conflicting highly specialized models. 906

Figure 5d shows the opposite: our method retains 907

performance trends in line with fine-tuned models 908

and addresses conflicts to retain improving perfor- 909

mance through larger training sets. 910

These results highlight the robustness of our 911

method in resolving merging conflicts, ensuring 912

that the merged models retain the strengths of indi- 913

vidual models while achieving stable and superior 914

performance across training sample sizes. 915

A.4 Open Source LLM Merging 916

Table 8 presents the detailed numerical results for 917

all models across the 12 medical datasets. The 918

datasets cover a wide range of medical tasks and 919

languages, allowing us to comprehensively evalu- 920

ate the models’ capabilities and the effectiveness 921

of our merging approach. 922
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Table 7: Performance comparison of merging methods for multilingual QA using Llama-3-8B-Instruct.

Types Methods L1 (HealthCareMagic) L2 (cMedQA2) Avg. Impr.
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Pre-trained Llama-3-8B-Instruct 16.3118 21.6011 3.1389 10.8666 0.0225 0.4710 0.0211 0.2343 6.5834 -

Fine-tuned
Model A (L1) 36.0325 30.4111 9.2743 20.7236 0.0185 0.1288 0.0025 0.0841 12.0844 +83.5%
Model B (L2) 3.9950 7.7673 0.9267 4.6358 3.0638 20.4016 3.4178 16.3067 7.5643 +14.9%
Multilingual 35.6154 30.5447 9.2156 20.4271 3.0250 20.3136 3.4964 16.0911 17.3411 +163.5%

Merged

Model Soups 32.1199 28.2278 6.3715 18.2456 3.3256 19.5499 2.8670 15.4688 15.7720 +139.5%
Task Arithmetic 31.6679 27.7646 6.0354 18.0448 3.3805 19.6475 2.9507 15.4806 15.6215 +137.2%
TIES 32.1494 28.0527 6.7440 18.2913 3.2238 19.5369 2.8854 15.2112 15.7618 +139.4%
DARE 25.9679 25.6716 4.5173 16.3803 3.5337 20.8586 3.1736 16.6716 14.5968 +121.7%
DARE+TIES 26.6707 25.9106 5.2031 16.5525 3.2236 19.8564 2.9963 15.5967 14.5012 +120.2%
Model Breadcrumbs 26.9844 26.1004 4.7037 16.3247 3.3307 20.7442 3.3069 16.2874 14.7228 +123.6%
DELLA 25.6313 25.6792 4.5522 16.1313 3.6612 20.9176 3.3286 16.7355 14.5796 +121.4%
DELLA+TIES 27.1246 26.0186 5.3163 16.6170 3.3433 19.9122 3.0848 15.9942 14.6764 +122.9%
Hi-Merging (Ours) 33.5960 28.4141 7.2167 18.8804 3.1967 19.8207 2.9509 15.7833 16.2324 +146.5%

Note: (1) Model A is fine-tuned on HealthCareMagic (L1: English), Model B is fine-tuned on cMedQA2 (L2: Chinese),
Multilingual model is fine-tuned on both datasets; (2) Merged models are obtained by merging Model A and B; (3) The overall
best result is marked in bold and the best merging result is underlined.
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(d) Our method

Figure 5: Impact of training sample size on model merging conflicts. Blue and orange lines represent the average
performance metrics for HealthCareMagic and cMedQA2, respectively.

Table 8: Numerical performance of Hi-Merging on two open-source models, Echelon-AI/Med-Qwen2-7B and
shtdbb/qwen2-7b-med.

Models MedQA MediQA Medical Flashcards Health Advice Pubmed WikiDoc WikiDoc Patient CORD 19 iCliniq HealthCareMagic ChatMed MedChatZH

Qwen2-7B-Instruct 37.3868 17.3595 22.7668 2.8205 5.7994 17.6217 18.785 39.1748 19.3292 28.7051 9.9138 8.0654
Echelon-AI/Med-Qwen2-7B 64.2862 32.052 41.1081 97.7523 92.9898 20.7237 26.9203 40.7167 26.5593 30.3212 15.1218 9.2714
shtdbb/qwen2-7b-med 40.1598 27.1442 29.85 4.096 11.5017 20.5808 21.1528 41.2026 27.332 33.3678 19.4513 11.2665
Hi-Merging (Ours) 64.9011 31.9421 45.1714 97.755 92.1692 21.0211 26.3293 40.9803 28.7816 31.6779 19.8074 11.2958
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