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Abstract

Large Language Models (LLMs) have demon-
strated exceptional capabilities across diverse
natural language processing (NLP) tasks. The
release of open-source LLMs like LLaMA and
Qwen has triggered the development of numer-
ous fine-tuned models tailored for various tasks
and languages. In this paper, we explore an im-
portant question: is it possible to combine these
specialized models to create a unified model
with multi-task and multi-lingual capabilities.
We introduces Hierarchical Iterative Merging
(Hi-Merging), a training-free method for uni-
fying multiple specialized LLMs into a sin-
gle model. Specifically, Hi-Merging employs
model-wise and layer-wise pruning and scaling,
guided by contribution analysis, to mitigate pa-
rameter conflicts. Extensive experiments on En-
glish and Chinese datasets, covering multiple-
choice and question-answering tasks, validate
Hi-Merging across three paradigms: multilin-
gual merging, multi-task merging, and multi-
lingual multi-task merging. The results demon-
strate that Hi-Merging consistently outperforms
existing merging techniques and surpasses the
performance of models fine-tuned on combined
datasets in most scenarios. Code is available at
this anonymous link'.

1 Introduction

Large Language Models (LLMs) have revolu-
tionized Natural Language Processing (NLP) by
demonstrating unprecedented capabilities in cap-
turing and utilizing world knowledge (Zhao et al.,
2024). Recent advances in architecture design and
training methodologies have enabled models like
GPT-4 (OpenAl, 2023) to engage in human-like
dialogue and solve real-world problems, enabling
breakthroughs in healthcare, education, and scien-
tific research.

With the advent of open-source large language
models (LLMs) like LLaMA-3 (Dubey et al., 2024)
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and Qwen (Yang et al., 2024a), significant re-
search efforts have been dedicated to fine-tuning
these models for specific tasks, domains, and lan-
guages. As a result, Hugging Face? now hosts
over one million specialized LLMs across various
languages and tasks, and this number continues
to grow rapidly. These models represent a vast
repository of task-specific and language-specific
expertise, ranging from Chinese medical appli-
cations (Chen et al., 2023) to English financial
question and answering (Cheng et al., 2024). A
natural question arises: is it possible to combine
these language-specific and task-specific fine-tuned
LLMs into a single unified model with broad ca-
pabilities, including multi-lingual and multi-task
functionalities? If achievable, the deployment of
such a unified model could perform multiple tasks
that currently require multiple LLMs, thereby sig-
nificantly enhancing the application of LLMs. One
potential solution is to gather all fine-tuning data
and retrain the LLMs from scratch. However, this
approach has three significant disadvantages: 1)
the availability of fine-tuning data, as the models
are often public but the data is not; 2) retraining
large LLMs requires substantial computational re-
sources; and 3) balancing the training data from
different tasks and languages to achieve overall
optimal performance is a non-trivial challenge.
Based on the above considerations, model merg-
ing (Yang et al., 2024b) emerges as a promising
solution for unifying multiple specialized models
while preserving their individual capabilities. How-
ever, current model merging methods face two fun-
damental challenges. First, interference between
merged models can arise from noise introduced by
data bias (Tsuchiya, 2018) or the training process,
such as overfitting, impairs the merged model’s gen-
eralization. Second, models trained independently
follow distinct optimization trajectories, leading

2https://huggingface.co/
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Figure 1: Illustration of three paradigms for our LLM merging: merging models that specialize in different languages
(left), merging models that excel at different tasks (middle), and merging models that exhibit expertise in both
different languages and different tasks (left). Through such merging, a single model can inherit the combined
capabilities of both original models, enabling broader applicability and enhanced performance.

to different knowledge alignments in their parame-

ter spaces (Ilharco et al., 2023). These misaligned

parameters become incompatible for direct combi-
nation without additional training.

To address these challenges, we propose Hi-
Merging, a Hierarchical Iterative Merging method.
It first applies model-wise pruning and scaling to
the delta vectors (parameter differences between
fine-tuned models and the foundation model) to
eliminate noisy parameters introduced during fine-
tuning. Then, we apply layer-wise pruning and
scaling iteratively for the knowledge misalignment,
starting from the most conflicted layers. To identify
the severity of layer-wise conflicts, we develop con-
tribution analysis - a method that quantifies each
layer’s contribution by measuring how adding or
removing specific layers affects model capabilities.
By analyzing how our contribution metrics change
before and after a pre-merging process, we can
identify potential conflicts, thereby guiding our it-
erative optimization process to resolve parameter
incompatibilities without additional training sys-
tematically.

Our contributions can be summarized as follows:
* We pioneer the use of model merging to enhance

LLMs’ multilingual and multi-task capabilities

without additional training.

* We propose Hi-Merging, a hierarchical iterative
approach that effectively reduces the interference
of noise and knowledge alignment conflicts dur-
ing model merging.

» Extensive experiments on four datasets demon-
strate the effectiveness of Hi-Merging under three

merging paradigms: multilingual merging, multi-
task merging, and multilingual multi-task merg-
ing, consistently achieving superior performance
across all settings.

2 Preliminary for LLM Merging

In this section, we detail notations and introduce
existing model (LLM) merging solutions as the
preliminary.

Model merging aims to combine multiple mod-
els with distinct capabilities as a single model,
which has all the strengths of these models. In
this paper, we user two-model merging for illus-
tration: Given models M 4 and M p with parame-
ters @ 4 and @ g, both fine-tuned from a foundation
model M with parameters 0 for tasks ¢4 and
tp respectively, model merging aims to combine
them into a single model M ,erge With parameters
O erge that preserves capabilities for both tasks.

Typical model merging strategies include
weighted averaging and delta vector-based merging.
The former combines model parameters through a
weighted sum (Wortsman et al., 2022):

> wmbm (1)

me{A,B}

0 merge —

where wy, is the weight to balance different capabil-
ities constrained t0 3, c o4 gy wm = 1w, > 0.
And m € {A, B} is the model identifier.

The second strategy merges models based on
delta vectors, the parameter differences between
fine-tuned models and their foundation model,



which can be mathematically defined as:
6m =0, — 9F (2

Delta vectors §,,, defined in Equation (2) reveal
model-specific updates from the foundation model,
enabling a delta-weighted merging strategy (ll-
harco et al., 2023):

Bmerge =0r+ Z WinOm 3
me{A,B}

where w,, > 0. Note that both strategies, illus-
trated in Equation (1) and Equation (3), can be eas-
ily extended to multiple model merging scenarios
by expanding the model list { A, B}.

3 Method

In this section, we introduce the proposed method,
which consists of two major components: (1)
model-wise pruning and scaling that removes noisy
and redundant parameters and moderate excessive
ones and (2) layer-wise pruning and scaling iter-
ating on conflicted layers to address knowledge
misalignment issues.

3.1 Model-wise Pruning and Scaling

This section introduces two operations to process

delta vectors: pruning and scaling.

During the fine-tuning, models can accumulate
noisy parameters and learn sharp parameters for the
specific fine-tuning task. We introduce the pruning
and scaling operations to tackle these two problems,
respectively, which are controlled by the following
hyperparameters:

* Pruning Threshold (p): This parameter speci-
fies the proportion of the delta vector that should
be preserved. By retaining the largest p percent-
age of the vector’s components and rendering
the remaining (1 — p) to zero, the pruning op-
eration can eliminates trivial parameter updates
(data-specific noise) while preserving meaningful
task-specific knowledge.

¢ Scaling Factor (s): This factor controls the mag-
nitude of the delta vector. With this parame-
ter, the scaling operation contributes to address-
ing over-aggressive parameters by scaling down
sharp updates, which may result from the overfit-
ting during fine-tuning. The pruning does not ap-
ply to large parameter changes as they likely en-
code essential knowledge. The scaling provides
a way to moderate their excessive influence.

Scaling factor s
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Figure 2: The accuracy of the fine-tuned Qwen2-7B-
Instruct on the MedQA dataset after the model-wise
pruning and scaling process with different combinations
of the pruning threshold p and the scaling factor s.

With these hyperparameters, the pruning and scal-
ing cooperatively process the delta vectors in a
complementary manner: pruning eliminates negli-
gible parameter changes while scaling moderates
the significant ones. Note that both p and s con-
strained to [0, 1].

We empirically validate the effectiveness of the
pruning and scaling operations by iterating p and
s from [0.1,1]. The result is visualized in Fig-
ure 2. We can find that the individual model
can maintain or even improve performance with
appropriate pruning and scaling. For example,
p = 0.1,s = 0.9 (preserving 10% of parameters
and scaling all delta values with 0.9) can defeat the
original model (p = 1,s = 1). This finding sup-
ports our idea of conducting model-wise pruning
and scaling to overcome noisy and radical parame-
ter updates.

Next, we introduce the model-wise pruning and
scaling details. Specifically, the delta vector (de-
fined in Equation (2)) for a given LLM M,, can
be defined as &,, = [0p,1,0m,2, - - - , Om N, Where
m € {A, B} is the model identifier and N indi-
cates the size of trainable parameters.

The pruning operation Top, retains the [p - N|
elements of d,,, with the largest absolute value and
zeros out the rest, resulting in Oum:

0m = Top,(dm) 4)
In detail, the n-th component of O iS:

. Omm, fne{r),n2),....,7([p-N])}
o 0, otherwise
)



where 7 (n) represents the index of the n-th largest
component of §,,, in absolute value, such that:

’(Smﬂr(l)’ > |5m,7r(2)| > 2> lémﬂr(N)’ (6)

The scaling operation adjusts the magnitude of
the pruned delta vector Om by multiplying it with
the scaling factor s € [0,1] as 50,,.

Regarding the different setting of p and s for
each model, the model-wise pruning and scaling
can be compactly expressed as:

Sm =Sm - TOppm (6m) = 5m0m (7

where 8., represents the delta vector after the
model-wise pruning and scaling.

Through model-wise processing with pruning
and scaling, we effectively identify noisy and exces-
sive parameter updates from the fine-tuning, main-
taining and moderating the key knowledge about
the fine-tuning task for the subsequent merging.

3.2 Layer-wise Pruning and Scaling

In this section, we conduct the layer-wise model
merging with pruning and scaling operations with
a novel contribution analysis method to measure
the parameter conflict.

3.2.1 Contribution Analysis

Directly merging the model-wise processed delta

vectors {Sm}me{ 4,8} as in Equation 1 or Equa-

tion 3 will encounter the weight misalignment prob-
lem, which is overlooked by existing methods.
To investigate potential conflicts when merging

a specific layer, we measure its contribution by

calculating the performance difference before and

after the merge. Precisely, we assess the merging
contribution from two directions:

* Deletion Impact («): To estimate this impact,
we first construct a merged model M that
merges all layers using the merging process men-
tioned in Equation (1) or Equation (3). Then, we
calculate the performance degradation caused by
removing the delta vector for a specific layer.

« Addition Impact (/3): This impact is measured
by the performance improvement of adding the
delta vector for a specific layer to the pre-trained
foundation model M.

These impacts can be mathematically repre-
sented as:

ol
Ot m2 =Pt (Omz — 8,9) — P, (Om2)  (8)
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Figure 3: The demonstration of different conflict elimi-
nation strategies for three pre-merging conditions.

where m1 € {A, B} is the task capability identifier
and mg € {A, B, G} is the model identifier. We
investigate the layer-wise contribution so that [ is

the layer index. 5;2 is the delta vector for M,,,5 at
layer . Py, , (-) represents the performance metric
on the task ¢,,1. For example, BLEU-4 (Papineni
et al., 2002) score for the QA task.

We sum up two impacts as the overall contribu-
tion:

[ _ 1 l
le,m2 - aml,mZ + Bml,m2 (10)

3.2.2 Iterative Conflict Elimination

The contribution analysis method defined in Equa-
tion (8)-(10) provides a solution to measure the
importance of merging specific layers. We can then
define the conflict resulted by model M,,(m €
{A, B}) within the layer [ of the merged model as:

Yoo = Chom — g (11)

In this formula, we set the capability identifier

ml = m as we expect the merged model can

maintain the performance of M,, on t,,. We can

then identify the most severe conflicting layers
that impair the fine-tuned performance by sorting

Il = ZmE{A,B} ’ﬁn
To mitigate the parameter misalignment, we it-

eratively merge the most conflicting layers (with

the largest T''). Specifically, to process a specific
layer, there are three types of conflict as illustrated

in Figure 3:

1. Severe Contflict: 7/, > 0 and % > 0, indicat-
ing both capabilities are impaired by the merg-
ing. In such cases, only the delta vector with
a larger contribution is retained, e.g., dropping

ol . ol .
d ; in the figure. Namely, 0 5 is set to zero.



2. Partial Conflict: 7, * 7}, < 0, i.e., one of the
delta vectors leads to the parameter misalign-
ment. The solution for this case is to prune and
scale the conflict delta vector again, as we de-
fined in Section 3.1. For example, in Figure 3,
the overfitting on ¢4 ('yf4 < 0 and 753 > 0)
leads to the degradation of the ability for ¢t 5. As

Al .
a result, we prune and scale & , again as®:

8y =sa-Top,,(8y), (12

3. Mutual Enhancement: If 7f4 < 0and 753 <0,
the merging process improves for both capa-
bilities. In this case, no further adjustment is
necessary for this layer.

After resolving the conflicts of all layers, the pa-

rameters of the final merged model M,,¢;gc is:

Gmerge = GF + SA + SB (13)

4 Experiments

In this section, we conduct comprehensive experi-

ments to evaluate the effectiveness of Hi-Merging

on multilingual multi-task merging problems by

answering following research questions (RQ):

* RQ1: How does Hi-Merging compare with base-
lines on merging LLMs for different languages?

* RQ2: How do these methods perform for merg-
ing LLMs for different tasks?

* RQ3: Are these methods applicable to combine
LLMs on different taks and languages?

* RQ4: Is Hi-Merging able to merge open-source
models from the Hugging Face?

4.1 Experimental Settings
4.1.1 Datasets

We select four datasets listed in Table 1 that cover
multilingual multi-task capabilities, including En-
glish and Chinese languages, with multiple-choice
question answering (MCQA) and open-domain
question answering (QA) tasks.

4.1.2 Baselines

In our experiments, we compare Hi-Merging
with weighted averaging (Model Soups (Worts-
man et al., 2022)) and delta vector-based meth-
ods (Arithmetic (Ilharco et al.,, 2023), TIES-
Merging (Yadav et al., 2023), DARE (Yu et al.,
2024), DELLA (Deep et al., 2024), and Model
Breadcrumbs (Davari and Belilovsky, 2024)), as

.4l .
3We use the same notation § 4 for clarity.

Table 1: The brief description and statistics of the four
datasets (MedQA (Jin et al., 2020), CMExam (Liu
et al., 2023), HealthCareMagic (Li et al., 2023), and
cMedQAZ2) (Zhang et al., 2018) used for fine-tuning.

Name Task Language Train Validation Test
MedQA MCQA English 10,000 400 400

CMExam MCQA Chinese 50,000 4,000 4,000
HealthCareMagic QA English 30,000 1,000 1,000
cMedQA2 QA Chinese 30,000 1,000 1,000

well as the multilingual and multi-task models fine-
tuned on combined datasets. Details of these base-
lines are in Appendix A.1.1.

4.1.3 Implementation Details

We use Qwen2-7B-Instruct as foundation model-
swith results for other foundation models presented
in Appendix A.2. For fine-tuning, we employ
LLaMA-Factory * with LoRA (rank=8, alpha=16,
dropout=0.01) and a batch size of 64. The learn-
ing rate is 1.0~* with cosine decay and warm-up.
LLM merging is performed using mergekit 3. For
hyperparameter tuning, both p and s in model-wise
processing range from 0.1 to 1.0 with a step of 0.1.
In layer-wise processing, the pruning threshold p
and scaling factor s are successively set to half of
their model-wise values.

4.1.4 Evaluation Metrics

For the MCQA task, accuracy is employed to mea-
sure the proportion of correct answers (Devlin et al.,
2019).For the QA task, we use BLEU-4 (Papineni
et al., 2002) to evaluate the precision of the genera-
tion, and ROUGE-1,2,LL (Lin, 2004) to assess the
overlap and coherence with the ground truth. The
averaged performance across all metrics is reported
as “Avg.”. Additionally, we report the relative im-
provement over the foundation model.

4.2 Multilingual Merging (RQ1)

We first verify the effectiveness of Hi-Merging on
multilingual LLM merging. Here, we merge mod-
els trained on datasets in different languages (En-
glish and Chinese) but for the same task type (QA
in Table 2 and MCQA results in Table 3).

With the foundation model Qwen2-7B-
Instruct (Yang et al., 2024a), we observe more
moderate performance degradation with our
method, while Llama3-8B-Instruct (Dubey et al.,
2024) exhibits persistent conflicts (results in

4https: //github.com/hiyouga/LLaMA-Factory
Shttps://github.com/arcee-ai/mergekit
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Table 2: Performance comparison of merging methods for multilingual QA using Qwen2-7B-Instruct.

L1 (HealthCareMagic)

Types ‘ Methods

‘ L2 (cMedQA2) ‘ Avg. ‘ Impr.

BLEU-4 ROUGE-1 ROUGE-2 ROUGE-I ‘ BLEU-4 ROUGE-1

ROUGE-2 ROUGE- |

Pre-trained ‘ Qwen2-7B-Instruct | 30.1209  26.3524 5.3280 15.7451 ‘ 1.7090 14.1527 1.7822 9.0934 ‘ 13.0355 -
Model A (L1) 355717  30.2512 8.9044 20.3625 3.7609 19.1370 3.1364 15.1441 | 17.0335 | +30.66%

Fine-tuned | Model B (L2) 24.8587  24.9841 4.1492 15.1967 4.4159 21.2210 4.0680 17.4600 | 14.5442 | +11.57%
Multilingual 357637  29.9781 8.6687 20.1184 3.7660 20.9869 3.7784 16.8850 | 17.4932 | +34.19%
Model Soups 33.2627  28.8258 7.5487 18.9459 4.6801 21.5564 4.0502 17.5380 | 17.0510 | +30.80%
Task Arithmetic 33.0398  28.7169 7.5726 18.9600 4.7181 21.4108 4.0503 17.6772 | 17.0182 | +30.55%
TIES 33.6571  29.0496 7.7769 19.1503 4.3751 20.8551 3.7518 17.1978 | 16.9767 | +30.23%
DARE 33.3031  28.9575 7.8222 19.1702 4.7578 21.0865 3.8996 17.2488 | 17.0307 | +30.64%

Merged DARE+TIES 26.8091  26.0330 5.2307 16.5201 4.2456 20.6276 3.7531 17.1445 | 15.0455 | +15.41%
Model Breadcrumbs | 34.3247  29.4403 8.1518 19.6443 4.4092 20.9365 3.8138 17.1378 | 17.2323 | +32.19%
DELLA 33.4207  28.9234 7.6728 18.9674 4.6827 21.1596 4.0709 17.4775 | 17.0469 | +30.77%
DELLA+TIES 27.2331 26.1723 5.4339 16.6009 4.7130 21.2275 4.2944 17.7694 15.4306 | +18.37%
Hi-Merging (Ours) | 35.9500  29.9826 8.8738 20.3844 4.7009 21.1752 3.9704 17.2361 17.78 | +36.42%

Note: (1) Model A is fine-tuned on HealthCareMagic (L1: English), Model B is fine-tuned on cMedQA2 (L2: Chinese),
Multilingual model is fine-tuned on both datasets; (2) Merged models are obtained by merging Model A and B; (3) The overall
best result is marked in bold and the best merging result is underlined.

Table 3: Performance comparison of merging methods
for multilingual MCQA using Qwen2-7B-Instruct.

L1 L2

Types Methods (MedQA) (CMExam) Avg. Impr.
Qwen?2-7B-Instruct 51.4062 74.6217 63.0140 -
Pre-trained  Yi-1.5-9B 46.8185 58.6499 527342 -16.31%
Baichuan2-7B 6.4415 7.1439 6.7927  -89.22%
Model A (L1) 59.1406 83.7771 71.4589  +13.40%
Fine-tuned Model B (L2) 54.4531 88.6171 715351  +13.52%
Multilingual 60.0781 88.2246  74.1514 +17.67%
Model Soups 59.6094 88.6926 741510  +17.67%
Task Arithmetic 59.5312 88.7681 74.1497  +17.67%
TIES 59.0625 88.7832  73.9229 +17.31%
DARE 58.6719 88.6926 73.6823  +16.93%
Merged DARE + TIES 58.9063 88.6021 73.7542  +17.04%
Model Breadcrumbs ~ 58.8281 88.6322 73.7302  +17.00%
DELLA 58.9844 88.7681 73.8763  +17.24%
DELLA + TIES 58.2812 88.7530  73.5171 +16.67%
Hi-Merging (Ours) 61.0156 88.6501 74.8329 +18.76%

Note: (1) Model A is fine-tuned on MedQA (L1: English).
Model B is fine-tuned on CMExam (L2: Chinese), Multilin-
gual model is fine-tuned on both datasets. (2) Merged models
are obtained by merging Model A and B. (3) The overall best
result is in bold and the best merging result is underlined.

Appendix A.2). This difference stems from the
capability gap of foundation models. Qwen2’s
stronger language ability enables more structured
parameter updates, where new knowledge aligns
better. In contrast, weaker foundation models lead
to dispersed parameter updates and knowledge
misalignment. In addition, we investigate the
impact of different training sample sizes on LLM
merging in Appendix A.3.

Baselines like Model Soups and Task Arithmetic
that combine models without considering noises
and conflicts achieve relatively stable average per-
formance. Methods that reduce conflicts, such as
TIES and DARE, occasionally achieve the best
results on individual metrics by discarding delta
vectors. However, their average performance needs

more systematic processing strategies. In contrast,
our Hi-Merging method, with hierarchical pruning
and scaling approach, not only achieves the best
average performance but attains optimal results in
about half of the individual metrics.

4.3 Multi-task Merging (RQ2)

For multi-task merging, we combine models
trained on the same task but in different languages
(e.g., English MCQA with Chinese MCQA), as
shown in Table 4. The results show that merged
models consistently outperform their individual
fine-tuned counterparts, with many merging meth-
ods even surpassing multi-task fine-tuned mod-
els. Notably, our Hi-Merging approach achieves
a 1.84% relative improvement over the multi-task
fine-tuned model. We attribute this success to three
factors. 1) During multi-task fine-tuning with lim-
ited data (compared to pre-training), tasks can in-
terfere with each other due to the “seesaw effect”.
In contrast, model merging allows parameters to be
optimized independently before integration, avoid-
ing such interference. 2) Since both models are
fine-tuned from the same foundation model, their
parameter updates tend to follow similar optimiza-
tion trajectories, making successful merging more
likely. 3) The inherent sparsity of large language
models provides sufficient parameter space to ac-
commodate multi-task knowledge from both mod-
els without significant conflicts.

4.4 Multilingual Multi-task Merging (RQ3)

For multilingual multi-task merging, we com-
bine models trained on completely different tasks
and languages. Specifically, we merge a model



Table 4: Performance comparison of merging methods for multi-task learning.

| L1 (English) | L2 (Chinese) | |
Types | Methods | T1 (MedQa) | T2 (HealthCareMagic) | T1 (CMExam) | T2 (cMedQA2) | Ave | Impr

| | Accuracy |BLEU-4 ROUGE-1 ROUGE-2 ROUGE-| Accuracy | BLEU-4 ROUGE-1 ROUGE-2 ROUGE- | |
Pre-trained | Qwen2-7B-Tnstruct | 514062 | 30.1209  26.3524 53280 157451 | 746217 | 17090  14.1527 17822 9.0934 | 23.0312 |

Fine-tuned | Model A (T1) 50.1406 | 34.6533 287482 69168  17.9525 88.6171 28064 168617 25603 120561 | 27.0313 | +17.36%

Model B (T2) 53.0469 | 355717 302512 89044 203625 81.5670 44159 212210 40680 174600 | 27.6869 | +20.21%

Multi-task 502188 | 35.6009 302101  9.1375  20.4645 88.6926 37790 205919 3.8096 169265 | 28.8431 | +25.23%

Merged | Model Soups 585156 | 364411 305654  9.1754  20.4259 88.8285 43912 210216 40040  17.2843 | 29.0653 | +26.19%

Task Arithmetic 585938 | 36.3290  30.6624  9.1945  20.5406 88.7983 43018 206467 37496 169995 | 29.0493 | +26.13%

TIES 604688 | 357851 303243 9.0310  20.3723 88.6171 45434 215629 41910 174909 | 29.1996 | +26.78%

DARE 584375 | 36.5802 305488  9.0818  20.3945 88.7681 45487 213255 3.8403 174471 | 29.0865 | +26.29%

DARE+TIES 59.3750 | 357062 30.1950 87840  20.0878 88.8285 41587 211291 38124 17.2868 | 28.9361 | +25.63%

Model Breadcrumbs | 57.8906 | 36.4620 302173 87845  20.0169 88.8889 44472 212492 3.8931 172846 | 289128 | +25.53%

DELLA 58.5938 | 363494  30.1715 88125  20.1879 88.8134 43718 210226 39300 173403 | 289818 | +25.83%

DELLA+TIES 59.5312 | 360774 304743 9.1151 204599 88.6021 43202 212269 40164 173779 | 29.0115 | +25.96%

Hi-Merging (Ours) 60.5469 | 364926 305467  9.1231  20.3523 88.9795 46781 215367 42165 175038 | 29.2673 | +27.07%

Note: (1) Model A is fine-tuned on English datasets (T1: MedQA or HealthCareMagic), Model B is fine-tuned on Chinese
datasets (T2: CMExam or cMedQA?2), Multi-task models are fine-tuned on datasets with the same language; (2) Merged models
are obtained by merging Model A and B; (3) The overall best result is marked in bold and the best merging result is underlined.

Table 5: Performance comparison of merging methods for multilingual multi-task learning.

T1,L1 T2,L2 T1,L2 T2,L1
Types Methods (MedQA) (cMedQA2) (CMExam) (HealthCareMagic) Avg. Impr.

| | Accuracy | BLEU-4 ROUGE-1 ROUGE-2 ROUGE-l | Accuracy | BLEU-4 ROUGE-1 ROUGE-2 ROUGE- | |

Pre-trained | Qwen2-7B-Instruct | 514062 | 1709  14.1527 17822 9.0934 | 746217 | 30.1209 263524 5.328 157451 | 23.0312 |

Fine-tuned | Model A (T1) 59.1406 | 2.8064 168617 25603 120561 | 88.6171 | 34.6713 284279 66122  18.1117 | 269865 | +17.17%
Model B (T2) 544922 | 44159  21.221 4.068 17.46 79.6875 | 355717 302512 89044 203625 | 27.6434 | +20.03%
Multilingual Multi-task | 60.7812 | 3.8473 208741 40434 169525 | 88.9795 | 357429 30.1735 89153 203902 | 29.0700 | +26.22%

Merged | Model Soups 58.3584 | 4.6592  21.2316 40559  17.3805 | 88.6322 | 361765 307169  9.2702  20.5227 | 29.1004 | +26.35%
Task Arithmetic 58.0469 | 4.6682  21.2618 40984 174231 | 887379 | 36.1222  30.2256 8757 20.1357 | 28.9477 | +25.69%
TIES 50.6094 | 43764  21.0083 39002 174194 | 887228 | 357708 305143  8.8994 203487 | 29.0570 | +26.16%
DARE 57.8906 | 45671  21.1856  3.9549  17.2328 | 88.6322 | 358639  30.1489 8815 20.1025 | 28.8394 | +25.22%
DARE+TIES 5875 | 44929 213194 40824 174826 | 885568 | 34.8223 297597 83004 197624 | 287329 | +24.76%
Model Breadcrumbs 571094 | 47217 214192 41477 174182 | 886021 | 364961 303911  9.0696 204108 | 28.9786 | +25.82%
DELLA 58.0469 | 4.8065 215135 41356 174962 | 88.6167 | 360159 303747  9.0414 203929 |29.0440 | +26.11%
DELLA+TIES 50.0625 | 44854 209954  4.0491 17.563 | 88.6624 | 350176  29.9666 8.658  20.1406 | 28.8601 | +2531%
Hi-Merging (Ours) 60.2344 | 47743 211954 41749  17.3991 | 887983 | 36.5223 303932 87882  20.1619 | 29.2442 | +27.02%

Note: (1) Model A is fine-tuned on MCQA datasets (T1: MedQA or CMExam), Model B is fine-tuned on QA datasets (T2:
cMedQA2 or HealthCareMagic); (2) Merged models are obtained by merging Model A and B; (3) The overall best result is
marked in bold and the best merging result is underlined.

trained for MCQA in one language (Model A: 4.5 Open-source LLM Merging (RQ4)
MedQA in English or CMExam in Chinese) with
another model trained for QA in the opposite lan-
guage (Model B: cMedQAZ2 in Chinese or Health-
CareMagic in English), as illustrated in Table 5.

An intriguing phenomenon observed in our ex-
periments is that multilingual multi-task fine-tuning
tends to predominantly affect QA task performance,
while model merging methods typically signifi-
cantly impact MCQA task performance. We at-
tribute this to two key factors. First, the QA task
requires free-form text generation, demanding a
more complex representation space than the rela-
tively constrained choice selection in the MCQA
task. Therefore, this complexity makes QA perfor-
mance more vulnerable to degradation during joint
fine-tuning. Second, model merging directly com-
bines model parameters. Since MCQA tasks need
exact boundaries for classification, these bound-
aries are more easily disrupted during the merging —(————————

) https://huggingface.co/Echelon-AI/

process, making MCQA performance more vulner-  yeq-quen2-78
able to merging operations. "https://huggingface.co/shtdbb/qwen2-7b-med

To validate the generality of our merging ap-
proach, we conduct experiments using two open-
source medical models from Hugging Face:
Echelon-Al/Med-Qwen2-7B ©, fine-tuned on En-
glish datasets for tasks such as medical QA and
information retrieval (IR), and shtdbb/qwen2-7b-
med 7, fine-tuned on Chinese datasets for dialogue
generation. Both models are derived from Qwen?2-
7B-Instruct. Figure 4 illustrates the performance
comparison across 12 medical datasets, with met-
rics normalized for better visualization.

Our approach demonstrates robust performance
across the task spectrum. In 7 out of 12 datasets,
Hi-Merging achieves the best performance among
all models, with only two datasets showing appar-
ent degradation compared to the better-performing
individual model. These results demonstrate Hi-


https://huggingface.co/Echelon-AI/Med-Qwen2-7B
https://huggingface.co/Echelon-AI/Med-Qwen2-7B
https://huggingface.co/shtdbb/qwen2-7b-med

Qwen2-7B-Instruct
—— Echelon-Al/Med-Qwen2-7B
—— shtdbb/qwen2-7b-med

Health Advice —— Hi-Merging

Pubmed Medical Flashcards

WikiDoc MediQA

100

WikiDoc Pati

MedQA

CORD 19 MedChatZH

iCliniq ChatMed

HealthCareMagic

Figure 4: Performance of Hi-Merging on two open-
source medical models, Echelon-Al/Med-Qwen2-7B
and shtdbb/qwen2-7b-med, which are fine-tuned from
the foundation model Qwen/Qwen2-7B-Instruct.

Merging’s ability to effectively fuse medical knowl-
edge while maintaining or enhancing performance
across diverse languages and tasks. Detailed imple-
mentation setup and unprocessed numerical results
can be found in Appendix A.1.2 and A 4.

5 Related Works
5.1 Multilingual Task-Oriented LL.Ms

Multilingual tasks in NLP encompass a broad
range of challenges, including machine transla-
tion (Wang et al., 2022), multilingual text sum-
marization (Gambhir and Gupta, 2017), and sen-
timent analysis (Dashtipour et al., 2016) etc. Re-
cently, LLMs have greatly contributed to advancing
multilingual tasks by leveraging massive amounts
of multilingual data (Brown et al., 2020; Devlin
etal., 2019; Xue et al., 2021). Despite their success,
LLMs struggle with multilingual limitations due
to imbalanced pre-training data, resulting in bet-
ter performance for high-resource languages over
low-resource ones.

To enhance multilingual capabilities, LLMs em-
ploy continual training on specific languages, as
seen in models like Chinese-LLaMA (Cui et al.,
2023) and EuroLLM (Martins et al., 2024). Ad-
ditionally, supervised fine-tuning techniques, such
as LoRA in Chinese-Alpaca (Cui et al., 2023) and
incorporating translation tasks in XGLM-7B (Li
et al., 2024), further improve multilingual under-
standing. However, LLMs are usually enhanced
for one language at a time, resulting in multiple
isolated models.

5.2 Model Merging

Model merging aims to integrate knowledge from
multiple fine-tuned models into a single one. These
methods are categorized into two types: weighted-
based merging and interference mitigation.

Weighted-based merging focuses on combin-
ing model parameters effectively. This includes
simple techniques like parameter averaging, such
as Model Soups (Wortsman et al., 2022), Fisher-
weighted merging (Matena and Raffel, 2022) and
RegMean (Jin et al., 2023). While computation-
ally efficient, these methods often miss conflict-
ing parameter updates, leading to performance
degradation. Therefore, Task Arithmetic (Ilharco
et al., 2023) proposes manipulating delta vectors.
AdaMerging (Yang et al., 2024¢) and evolutionary
algorithms (Akiba et al., 2024) optimize merging
coefficients and blend diverse models, respectively.

Interference mitigation techniques aim to re-
duce parameter conflicts based on the over-
parameterization and sparsity of LLM. DARE (Yu
et al., 2024) and SparseGPT (Frantar and Alistarh,
2023) show high LLM performance despite sig-
nificant parameter pruning. DELLA (Deep et al.,
2024) introduces MAGPRUNE for selective prun-
ing and parameter rescaling. TALL-masks (Wang
et al., 2024) isolate task-specific parameters to mini-
mize interference. However, these techniques focus
mainly on individual parameter-level operations
without considering the structural relationships and
knowledge dependencies across model layers.

6 Conclusion

In this paper, we proposed Hi-Merging, a novel
approach for merging LLMs for multilingual multi-
task learning. Hi-Merging leverages model-wise
and layer-wise pruning and scaling strategy to min-
imize the conflict between fine-tuned models’ delta
vectors. The model-wise process eliminates the
fine-tuning noise and overfitting parameters of the
original models. Then, the layer-wise process ana-
lyzes the contribution of each layer’s delta vector
to the fine-tuning performance, reducing the inter-
ference of conflicts in several key layers. Exten-
sive experiments on the MCQA and QA datasets
demonstrated that Hi-Merging outperforms tradi-
tional merging techniques and even surpasses mod-
els trained on multiple datasets. Future work will
explore finer-grained conflict analysis strategies.



7 Limitations

While our proposed Hi-Merging method demon-
strates promising results, several limitations should
be acknowledged. First, our evaluation is currently
limited to two task types (MCQA and QA) and
two languages (English and Chinese). The effec-
tiveness of Hi-Merging on a broader range of NLP
tasks and language families remains to be investi-
gated.

Second, our method focuses on merging models
fine-tuned from the same foundation model. The
applicability and performance of Hi-Merging when
merging models from different architectural fami-
lies or pre-training approaches is yet to be explored.
This limitation becomes particularly relevant as the
field continues to see diverse model architectures
and training paradigms.

Finally, our current implementation assumes rel-
atively balanced task importance. The method
might need adaptation for scenarios where certain
tasks or languages should be prioritized over oth-
ers, potentially requiring a more flexible weighting
mechanism in the merging process.
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A Appendix

A.1 Experimental Settings
A.1.1 Baselines

In our experiments, we compare it against a com-

prehensive set of baseline methods, including tra-

ditional weighted averaging techniques and state-
of-the-art approaches specifically developed for
fine-tuned models.

e Multilingual Multi-task Training This ap-
proach trains a single model on the combined
datasets of multiple languages simultaneously,
without distinguishing between tasks.

* Model Soups (Wortsman et al., 2022) Uniform
Soup is a simple merging method where the pa-
rameters of the fine-tuned models are averaged
based on their importance.

e Task Arithmetic (Ilharco et al., 2023) This
method performs arithmetic operations on the
parameter differences between the pre-trained
and fine-tuned models.

* TIES (Yadav et al., 2023) The Task Interference
Elimination Strategy (TIES) minimize negative
transfer and task interference by pruning redun-
dant parameters and using a chosen sign to deter-
mine parameter update directions.

* DARE (Yu et al., 2024) Delta Alignment for Ro-
bust Ensemble (DARE) reduces the interference
across tasks by randomly drop the delta vectors.

* Model Breadcrumbs (Davari and Belilovsky,
2024) This approach tracks and prunes maxima
and minima in delta vectors to retain critical task-
specific features.
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* DELLA (Deep et al., 2024) DELLA follows
DARE and assign drop rates to delta vectors ac-
cording to their absolute values, improving per-
formance stability.

A.1.2 Implementation Details

Our experimental environment consisted of a Cen-
tOS Linux 7 operation system with Python 3.12.4
and CUDA 12.2. All model training and inference
operations were implemented using PyTorch 2.4.0.
The hardware setup included 8 Tesla V100 GPUs,
each equipped with 32GB of memory, enabling
efficient parallel processing of large-scale models.

For model adaptation, we applied LoRA to all
linear networks in the model. The learning rate
schedule was carefully designed with a 100-step
warm-up phase followed by cosine decay, which
helped achieve stable convergence while maintain-
ing optimal model performance. This configuration
proved effective in balancing training efficiency
and model quality across both multilingual and
multi-task scenarios.

In addition to Qwen2-7B-Instruct, we also exper-
imented with other foundation models including
Llama-3-8B-Instruct (results shown in A.2). How-
ever, Qwen2-7B-Instruct demonstrated more con-
sistent performance, particularly in handling both
English and Chinese tasks, making it the preferred
choice for our main experiments.

For visualization in Figure 4, we normalized the
performance metrics to facilitate clear comparisons.
The performance values of the models on each
dataset represent the average of the QA task metrics
(BLEU-4, ROUGE-1, ROUGE-2, and ROUGE-
L). We scaled the pre-trained Qwen2-7B-Instruct’s
performance to 20 and the better-performing fine-
tuned model’s performance to 80 for each task. The
performance values of the other fine-tuned model
and our merged model were then proportionally
adjusted within this range to maintain their relative
differences.

A.2 Multilingual Merging

We further conduct experiments on Llama-3-8B-
Instruct, as presented in Table 6 and 7. The results
in Table 7 show that the performance of merged
models based on Llama-3-8B-Instruct is generally
inferior to that of the pre-merged fine-tuned models.
This indicates that the effectiveness of the merging
process is strongly influenced by the quality of the
foundation models.

The observed degradation in performance can
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Table 6: Performance comparison of merging methods
for multilingual MCQA using Llama-3-8B-Instruct.

Types Methods L1 (MedQA) L2 (CMExam) Avg.
Llama-3-8B-Instruct 57.9733 17.2821 37.6277
Pre-trained GLM-4-9B 54.7656 69.5194 62.1425
Gemma-2-9B 14.2583 2.7698 8.5141
Model A (L1) 60.4688 52.2706 56.3697
Fine-tuned Model B (L2) 60.3906 60.5525 61.0575
Multilingual 62.8906 61.0356 61.9631
Model Soups 61.2500 61.0507 61.1504
Task Arithmetic 61.2500 61.8750 61.5625
TIES 61.7188 61.3225 61.5207
DARE 61.5625 61.3678 61.4652
Merged DARE + TIES 60.9375 59.4656 60.2016
Model Breadcrumbs 61.0156 60.4318 60.7237
DELLA 60.8594 60.7186 60.7890
DELLA + TIES 61.9531 61.3527 61.6529

Hi-Merging (Ours) 62.2656 61.0757 61.6707

Note: (1) Model A is fine-tuned on MedQA (L1: English).
Model B is fine-tuned on CMExam (L2: Chinese), Multilin-
gual model is fine-tuned on both datasets. (2) Merged models
are obtained by merging Model A and B. (3) The overall best
result is in bold and the best merging result is underlined.

be attributed to several factors. First, weaker foun-
dation models, such as Llama-3-8B-Instruct, tend
to produce delta vectors with more dispersed and
less coherent parameter distributions during fine-
tuning. These delta vectors often carry noisy or
conflicting information, which makes the merging
process prone to parameter conflicts. Second, the
weaker representational capacity of these models
limits their ability to encode robust and semanti-
cally aligned knowledge, further exacerbating the
challenges of merging.

In contrast, stronger foundation models, such as
Qwen?2-7B-Instruct, exhibit fewer conflicts during
merging and demonstrate consistent performance
improvements across tasks and languages. This
is because their fine-tuned delta vectors are more
compact and carry knowledge that is better aligned
with the foundation model’s semantic space, mak-
ing the integration process more effective.

A.3 Number of training samples

We examine the impact of varying the number of
training samples on the conflict during model merg-
ing, as shown in Figure 5. In the experiment, we
use two QA datasets, HealthCareMagic (English)
and cMedQA2 (Chinese), sampling 10k, 20k, 30k,
40k, and 50k training examples from each to pro-
duce a series of fine-tuned models, five per dataset.
This setup evaluates how the number of training
samples influences both individual model perfor-
mance and compatibility during merging. The x-
axis of Figure 5 represents the number of training
samples, while the y-axis denotes the average per-
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formance metrics, including BLEU-4, ROUGE-1,
ROUGE-2, and ROUGE-L.

However, Figures 5b and 5c show that merged
models through either Model Soups or Task Arith-
metic suffer from performance drops driven by the
increasing size of training sample as further train-
ing leads to conflicting highly specialized models.
Figure 5d shows the opposite: our method retains
performance trends in line with fine-tuned models
and addresses conflicts to retain improving perfor-
mance through larger training sets.

These results highlight the robustness of our
method in resolving merging conflicts, ensuring
that the merged models retain the strengths of indi-
vidual models while achieving stable and superior
performance across training sample sizes.

A.4 Open Source LLM Merging

Table 8 presents the detailed numerical results for
all models across the 12 medical datasets. The
datasets cover a wide range of medical tasks and
languages, allowing us to comprehensively evalu-
ate the models’ capabilities and the effectiveness
of our merging approach.



Table 7: Performance comparison of merging methods for multilingual QA using Llama-3-8B-Instruct.

Types | Methods | L1 (HealthCareMagic) L2 (cMedQA2) | Ave, | Tmpr.
| | BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L | BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L | |
Pre-trained | Llama-3-8B-Instruct | 163118  21.6011  3.1389 108666 | 0.0225 04710 0.0211 02343 | 65834 | -
Model A (L1) 360325 304111 92743 207236 | 00185  0.1288 0.0025 0.0841 | 12.0844 | +83.5%
Fine-tuned | Model B (L2) 39950 77673 0.9267 46358 | 3.0638 204016 34178 163067 | 7.5643 | +14.9%
Multilingual 356154 305447 92156 204271 | 3.0250 203136  3.4964  16.0911 | 17.3411 | +163.5%
Model Soups 321199 282278 63715 182456 | 3.3256  19.5499 28670 154688 | 15.7720 | +139.5%
Task Arithmetic 316679 277646 60354 18.0448 | 33805  19.6475  2.9507 15.4806 | 15.6215 | +137.2%
TIES 321494 280527 67440 182913 | 32238 195369  2.8854 152112 | 157618 | +139.4%
DARE 259679 256716 45173 163803 | 3.5337 208586  3.1736  16.6716 | 14.5968 | +121.7%
Merged | DARE+TIES 266707 259106 52031 165525 | 3.2236  19.8564 29963 155967 | 14.5012 | +120.2%
Model Breadcrumbs | 26.9844  26.1004 47037 163247 | 33307 207442 33069  16.2874 | 147228 | +123.6%
DELLA 256313 256792 45522 16.1313 | 3.6612 209176  3.3286  16.7355 | 14.5796 | +121.4%
DELLA+TIES 27.1246 260186 53163 166170 | 33433 199122  3.0848 159942 | 14.6764 | +122.9%
Hi-Merging (Ours) | 33.5960 284141 72167  18.8804 | 3.1967  19.8207 29509 157833 | 16.2324 | +146.5%

Note: (1) Model A is fine-tuned on HealthCareMagic (L1: English), Model B is fine-tuned on cMedQA2 (L2: Chinese),
Multilingual model is fine-tuned on both datasets; (2) Merged models are obtained by merging Model A and B; (3) The overall
best result is marked in bold and the best merging result is underlined.

25 25 25 25
—=— HealthCareMagic —— HealthCareMagic —=— HealthCareMagic —=— HealthCareMagic
cMedQA2 cMedQA2 cMedQA2 cMedQA2
24 24 24 24
23 23 \ 23 23
22 22 22 \/\ 22
21 21 21 21
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Training Samples (k) Training Samples (k) Training Samples (k) Training Samples (k)
(a) Fine-tuned models (b) Model Soups (c) Task Arithmetic (d) Our method

Figure 5: Impact of training sample size on model merging conflicts. Blue and orange lines represent the average
performance metrics for HealthCareMagic and cMedQA2, respectively.

Table 8: Numerical performance of Hi-Merging on two open-source models, Echelon-Al/Med-Qwen2-7B and
shtdbb/qwen2-7b-med.

Models MedQA MediQA Medical Flashcards Health Advice Pubmed WikiDoc WikiDoc Patient CORD 19 iCliniq HealthCareMagic ChatMed MedChatZH
Qwen2-7B-Instruct 37.3868  17.3595 22.7668 2.8205 5.7994 17.6217 18.785 39.1748  19.3292 28.7051 9.9138 8.0654
Echelon-Al/Med-Qwen2-7B 642862  32.052 41.1081 97.7523 92,9898  20.7237 26.9203 40.7167  26.5593 30.3212 15.1218 9.2714
shtdbb/qwen2-7b-med 40.1598  27.1442 29.85 4.096 11.5017  20.5808 21.1528 41.2026 27.332 33.3678 19.4513 11.2665
Hi-Merging (Ours) 64.9011  31.9421 45.1714 97.755 92,1692  21.0211 26.3293 40.9803  28.7816 31.6779 19.8074 11.2958
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