Deploying User-Friendly Software:
Six Recommendations to Make Single-Cell Foundation Models More Usable

For Scientific Discovery

Izumi Ando ' > Hassaan Maan “ 343 Kieran R. Campbell “ ' 24678

Abstract

Foundation models have become ubiquitous in
computational biology research. These models
take large-scale biological data such as DNA se-
quences or quantified single-cell RNA molecule
counts as input, and learn high-dimensional em-
beddings that capture patterns in the data through
self-supervised training, which are then used for
a variety of downstream tasks. Despite their great
promise, we found that single-cell foundation
models were difficult to install and run, and lacked
adequate documentation. To alleviate these prob-
lems, we propose six recommendations for better
development and deployment of these foundation
models to enable ease of use by both computa-
tional and non-computational expert end-users, as
well as a framework for improving the state of
open-source software maintenance in computa-
tional biology as a whole.

1. Background

Foundation models are a family of machine learning mod-
els that are trained on a vast amount of data, through self-
supervised learning (Shwartz-Ziv & LeCun, 2023). From
large language models capable of generating text based on
prompts, to models trained on specific types of scientific
data, foundation models have been developed in various con-

*#Jointly supervised this work ' Lunenfeld-Tanenbaum Research
Institute, Toronto, ON, Canada 2Department of Computer Science,
University of Toronto, Toronto, ON, Canada *Peter Munk Car-
diac Centre, University Health Network, Toronto, ON, Canada
4 Vector Institute, Toronto, ON, Canada >Department of Med-
ical Biophysics, University of Toronto, Toronto, ON, Canada
®Department of Molecular Genetics, University of Toronto,
Toronto, Canada "Department of Statistical Sciences, University
of Toronto, Toronto, ON, Canada ®Ontario Institute for Cancer
Research, Toronto, ON, Canada. Correspondence to: Kieran R.
Campbell <kierancampbell @lunenfeld.ca>.

Proceedings of the ICML 2025 Workshop on Championing Open-
source Development in Machine Learning (CODEML ’25). Copy-
right 2025 by the author(s).

texts to enhance research in fields including but not limited
to material science, biology, and medicine (Pyzer-Knapp
et al., 2025; Cui et al., 2025; Khan et al., 2025). In compu-
tational biology specifically, foundation models are often
trained on data such as DNA and protein sequences (Guo
et al., 2025). The rise of single-cell technologies in the
2010s such as single-cell RNA sequencing (scRNA-seq)
(Hong & Park, 2020) has also led to a focus in foundation
model development in this field as well (Szatata et al., 2024).
These models are developed with high hopes of contributing
to expediting drug development and biological discovery,
as well as creating an all-in-one tool for processing and
analyzing high-throughput single-cell data (Szatata et al.,
2024; Cui et al., 2024).

However, through analyzing the GitHub repositories and
using the implemented software, we found that single-cell
foundation models commonly present installation and us-
ability challenges. More specifically, with the speed of
innovation often outpacing the discussion and acceptance
of ideal development practices, the foundation models had
installation and dependency issues, challenges with running
and resource management, and were often not maintained
after publication. In this paper, we outline the results of our
analysis of single-cell foundation model software (Section
2), and discuss practical solutions developers of these mod-
els can adopt to address common issues faced by end-users
(Section 3). This paper focuses on single-cell foundation
models, but we expect the recommendations to be transfer-
able across biological domains.

2. The current landscape of single-cell
foundation model software

We investigated single-cell foundation models for a bench-
marking study that was orthogonal to this work. Through
our attempts to install and run these models, we observed
functionality and maintenance issues. We summarize our
findings in key concerns with respect to the foundation
model software. These observations serve as the basis of
our rationale for the proposed guidelines.

Deploying User-Friendly Single-Cell Foundation Models

2.1. Installation from requirements. txt files being
insufficient

Many models are designed to be installed via a
requirements.txt or setup.py file. However, this
is often not sufficient, as some dependencies cannot be
properly installed or have conflicts. This is due to many
factors, but a major one is the dynamic nature of dependen-
cies. Python libraries are not static, and as they are updated
their usability with other libraries can break. Inputting de-
pendencies, either constrained or unconstrained, in static
files with no build tests such as requirements.txt or
setup.py, exposes the model to this failure case.

When these issues arise, the workarounds are time consum-
ing and do not follow a straightforward process. For exam-
ple, a user could first run a pip install using the file
in a new virtual environment, check the installed packages,
and manually install packages that were left out. Otherwise,
the user could manually install all of the dependencies, one
by one, with specific version ranges based on trial and error.

2.2. Unresolvable dependency conflicts

Some models contained unresolvable dependency conflicts
within their own dependency version ranges. Other models
triggered dependency conflicts between the dependencies of
the model and the underlying software in the compute sys-
tem, such as high performance computing (HPC) clusters.

These dependency conflicts are difficult for users to navigate,
especially if they are unfamiliar with the libraries needed
by the foundation model code. If the dependencies are
unresolvable based on user trial and error, this leaves the end-
user in a precarious situation, where they have to contact and
await response of the code-base authors and maintainers.

2.3. Inactive maintenance of the source code

Many single-cell foundation models are not actively main-
tained post-publication, in the sense that the main branch of
the repository has not been updated for several months or
years. We observed GitHub Issues posted on these reposito-
ries that have not been addressed. Issues such as dependency
conflicts and overall installation problems are prevalent, and
if these issues are not addressed, the foundation models are
essentially uninstallable for end-users.

2.4. Ambiguous minimum requirements for compute
resources

Running single-cell foundation models requires significant
computational resources, especially if the models are being
fine-tuned, which is required for many of their analyses
(Theodoris et al., 2023; Cui et al., 2024). Each founda-
tion model requires a different amount of compute, and the

amount of compute also differs based on the tasks that the
foundation models are being used for. However, neither
the minimum requirements nor a general estimate for the
computational cost across tasks were documented for any
of the single-cell foundation models we tested.

Experimenting with different resource configurations to de-
termine the optimal setup can be very costly for end-users
of these models, especially if they are fine-tuning, which
requires a high amount of compute and GPU resources.

2.5. Lack of code documentation

Many of the single-cell foundation models have complex
functions and classes with many arguments, but lack com-
prehensive documentation. Although details of some func-
tions and classes might be outlined in tutorials (for exam-
ple, in Jupyter notebooks), these will not cover a sufficient
amount of the code-base. If end-users need to use functions
that are not documented in the tutorials and more compre-
hensive documentation does not exist, they will be left to
their own devices to work through the code. This can be a
time consuming and error-prone process.

2.6. Lack of implementation of development and
deployment best-practices

We documented our investigation of single-cell foundation
models and determined if they follow standard coding best
practices, such as package-based deployment, containeriza-
tion, continuous integration (CI), and documentation. We
found that the majority of the single-cell foundation models
did not follow these best practices (Table 1), and this anal-
ysis serves as the groundwork and rationale for our recom-
mendations which follow. We outline the selection criteria
for these models and investigation details in Appendix A.

3. Recommendations for single-cell foundation
model software developers

Based on the concerns raised in our analysis of software
(Section 2), we have devised six recommendations for
single-cell foundation model developers to make these mod-
els more usable. We organized the recommendations into
three different categories — installation, maintenance, and
documentation — corresponding to the process each recom-
mendation aims to improve.

For each recommendation, we provide an overview (high-
level description), implementation details (how method de-
velopers might go about incorporating these recommen-
dations), and the impact on end-users (why these recom-
mendations would be beneficial to end-users of single-cell
foundation models). The latter is especially important, as
these recommendations were formulated specifically with
end-users of these methods in mind, many of whom might

Deploying User-Friendly Single-Cell Foundation Models

R3: Continuous integration

B =
Travis Cl @ 17
- LI \-169

R2: Python package on PyPI

@ python ‘

\ /

R4: Installation issues tracking
E
O PyTorch E

R1: Containerization \

GitHub =5
/ R6: Standalone documentation

X

& mm -

e ~—d
R5: Resource testing
— Read theDocs

Figure 1. Overview of recommendations for single-cell foundation model software development. Each of the recommendations are
further outlined, with respective rationale and impact on end-users of the models, in Section 3. The specific tools recommended in the
figure are further characterized, with links and documentation, in Appendix B.

Table 1. Implementation of typical best practices in single-cell
foundation model software (as of May 2025). Container: whether
a Docker/Apptainer or similar container image with the foundation
model is provided. Python Pkg: whether the foundation model
and associated code is written as a python package. CI: whether
continuous integration is practiced based on GitHub Actions or
similar tools. Docs: whether standalone documentation is available
for the model.

MODEL CONTAINER PYTHON PKG CI Docs
SCBERT X X X X
GENEFORMER X X X 4
UCE X X Vv X
SCGPT X 4 X 4
SCFOUNDATION X X X X
SCLONG X X X X
CELLPLM X 4 X X
SCIMILARITY Vv N4 X Vv
TGPT X X X X
CELLLM Vv X X X
GENECOMPASS X X X X
GENEPT X X X X
TOTAL 2/12 3/12 1/12 3/12

not have strong computational expertise to navigate the is-
sues outlined in Section 2. Links to specific recommended
software and tools can be found in Appendix B.

3.1. Foundation model installation

3.1.1. RECOMMENDATION 1: DEPLOYING THE MODEL
IN A CONTAINER

Overview: Containerizing the foundation model envi-
ronment is potentially a one-size-fits-all solution for the
machine-dependent dependency conflicts that arise when
users attempt to install foundation models within the limi-
tations of conda or virtual environments, because properly

containerized software will run regardless of the underlying
dependencies and environments in the user’s machine.

Implementation: Providing Docker and Apptainer con-
tainer images as an alternative installation method should
be standard practice when deploying single-cell foundation
models, as well as any foundation model expected to be
used in a context with multiple programming languages.

Impact on end-users: Fully containerized models that do
not require installation of several packages to behave appro-
priately with underlying dependencies will allow for easier
and more reproducible installation across systems. This is
especially true for HPC systems, which often have a high
variation in their underlying operating systems and libraries,
and are a typical choice for scientific computing.

3.1.2. RECOMMENDATION 2: DEPLOYING THE MODEL
AS A PYTHON PACKAGE

Overview: Many single-cell foundation models are de-
ployed with a requirements.txt or setup.py file
for installation, which are suboptimal as outlined in Section
2. Thus, deploying foundation models as a Python package
on PyPI would be a beneficial design choice.

Implementation: Deploying foundation models and their
associated code for tasks such as fine-tuning, as a Python
package on PyPI, and allowing installation via pip. Creation
of python packages can be done using several frameworks,
including the Poetry python package manager.

Impact on end-users: Managing dependencies is easier
when all dependencies of the foundation model can be han-
dled with a single pip call from PyPI. Furthermore, version
control and resolving dependency conflicts is much easier
with a validated python package compared to a repository.

Deploying User-Friendly Single-Cell Foundation Models

3.2. Foundation model maintenance

3.2.1. RECOMMENDATION 3: CONTINUOUS
INTEGRATION OF FOUNDATION MODEL
SOFTWARE

Overview: Frequently used software will often receive feed-
back from users requesting new features or fixes for issues
that arise. These frequent changes can cause software to
break. To make sure only safe changes are being deployed,
developers should practice continuous integration (CI).

Implementation: By using CI systems such as GitHub
Actions or Travis CI, every time an update is made to the
main software repository, tests to make sure the software is
building as a whole and functioning as intended are triggered
automatically, and the results of these tests are publicly
displayed on the repository to indicate to both developers
and users that the software is installable. Additionally, with
GitHub Actions, the build tests can be configured to be run
on different operating systems to make sure they are usable
across different HPC systems.

Impact on end-users: Single-cell foundation model soft-
ware that has CI leads to better guarantees for end-users
installing them on diverse platforms. Further, common
workflows in single-cell such as cell-type annotation can be
made more robust by having tests associated with them that
need to be passed through CI. This leads to higher confi-
dence from end-users of the models that the associated code
is error-free and will generalize to novel datasets.

3.2.2. RECOMMENDATION 4: SET UP A FORUM FOR
DEPENDENCY AND INSTALLATION ISSUES

Overview: Installing foundation models that are neither
containerized nor wrapped as a Python package can be a
challenging task. In a case where neither of the two above
solutions can be provided, a low-effort solution could be to
provide a forum-like platform to list dependency version
combinations that have worked or failed for various users.

Implementation: The most common forum associated with
code challenges is GitHub Issues. However, having several
distinct issues for dependency challenges is not an opti-
mal setup. Techniques to track dependency issues, based
on packages, operating systems, and underlying libraries,
should be utilized. The most simple version of this would be
a pinned GitHub Issues thread that tracks current conflicts
and aims to address them based on distinct pull requests and
interaction of end-users and developers.

Impact on end-users: This setup is especially helpful when
certain version ranges of packages are not available in their
compute environment and the user must find alternative ver-
sions that are compatible with the rest of the dependencies.
In general, if dependency issues and system conflicts are

tracked in a methodical and centralized manner, this will
lead to quicker solutions and allow end-users to determine
if their systems may be currently incompatible and what
dependencies are causing issues with their installations.

3.3. Foundation model documentation

3.3.1. RECOMMENDATION 5: EXPLICITLY LISTING
COMPUTE RESOURCE REQUIREMENTS

Overview: Adding explicit compute, memory, and GPU
requirements for zero-shot inference, fine-tuning and down-
stream analyses of single-cell foundation model methods.

Implementation: Developers should test the minimum re-
quirements of compute resources such as memory, number
of GPUs, number of CPUs allocated per task, and time al-
lowance needed to successfully run the foundation model,
and clearly indicate these numbers in the documentation
along with guidelines for calculating any adjustments the
user would need to make depending on their use case.

Impact on end-users: The amount of resources required
to run foundation models are not obvious, yet rarely doc-
umented. Many researchers use public HPC systems, or
work with a limited allowance of a private system such as
Google Cloud Platform, with restrictions on resource usage.
Thus, when attempting to run the foundation models with
different resource requirements, they are at risk of wasting
time, money, and energy. Explicitly stating the compute
requirements is a preventive measure for resource waste.

3.3.2. RECOMMENDATION 6: INCLUDE
COMPREHENSIVE STANDALONE DOCUMENTATION

Overview: Detailed documentation with instructions on
how to use the software as well as sample code with sample
datasets should always be included with high code base
coverage. This documentation should be standalone, and
not simply part of the repository README, as they are not
designed for tutorials and code APIs.

Implementation: We recommend using Read the Docs,
which is a platform that can host documentation that inte-
grates with GitHub. It provides a framework for developers
to organize their documentation, as well as built-in function-
ality such as search and navigation.

Impact on end-users: Comprehensive standalone documen-
tation allows end-users to search APIs to resolve their issues
and questions in a succinct and self-contained manner. This
avoids scattered documentation across multiple READMEs
and notebook pages in a repository, which is often difficult
to navigate and may lead to attrition in the processes of
installing and running the single-cell foundation models.

Deploying User-Friendly Single-Cell Foundation Models

4. Discussion

Due to competition within respective academic fields, there
is great incentive to publish with speed. As a consequence,
software may not be developed with high standards for qual-
ity, reproducibility, and usability. This phenomenon, along
with its repercussions of reduced reproducibility are widely
acknowledged (Leprevost et al., 2014; Ziemann et al., 2023).
Identifying specific issues and devising practical recommen-
dations as we have done in this work is only the first step
to making tangible improvements. Future directions of our
work include but are not limited to: 1) Collecting feedback
on these recommendations from foundation model users
and developers, 2) Creating a website to guide new devel-
opers who are trying to implement the recommendations
and to showcase successful implementation cases, 3) Au-
tomating the implementation of the six recommendations
using large language models, and 4) Raising awareness and
encouraging more academic developers to implement these
recommendations. Furthermore, in Appendices C and D,
we outline work related to our recommendations, existing
solutions to the concerns we raise, and discuss our own pro-
posal for a more sustainable computational biology research
ecosystem.

Impact Statement

This paper presents work whose goal is to advance the fields
of Machine Learning and Computation Biology. Devel-
opment of single-cell foundation models is a major and
growing research direction in the field of Computational
Biology. However, we highlight that the software for these
models is often not in a state that best enables usability
and uptake, especially by non-computational experts, which
comprise a significant amount of end-users, such as those
from biology and medicine backgrounds. These issues can
also hamper reproducibility of analyses with these models.

As foundation models often need a very high amount of
compute and data resources to train and validate, it is imper-
ative that the Computational Biology and Machine Learning
communities work towards more user-friendly software, that
will enable better benchmarking of these models to deter-
mine their true efficacy, and usage by experts from different
domains to help solve their pressing challenges. From a
societal perspective, development of single-cell and other
biological foundation models adherent to the guidelines
outlined in the paper will advance research in key disease
settings with significant human burden (e.g. cancer, cardio-
vascular disease, neuro-degenerative diseases), in a more
reproducible and robust manner, than compared to software
that is poorly documented and difficult to install and run.

References

Artaza, H., Chue Hong, N., Corpas, M., Corpuz, A., Hooft,
R., Jimenez, R. C., Leskosek, B., Olivier, B. G., Stourac,
J., Svobodova Varekovd, R., Van Parys, T., and Vaughan,
D. Top 10 metrics for life science software good practices.
F1000Res., 5:2000, August 2016.

Bai, D., Mo, S., Zhang, R., Luo, Y., Gao, J., Yang, J. P,
Wu, Q., Singh, D., Rahmani, H., Amariuta, T., Grotjahn,
D., Zhong, S., Lewis, N., Wang, W., Ideker, T., Xie, P,,
and Xing, E. ScLong: A billion-parameter foundation
model for capturing long-range gene context in single-cell
transcriptomics. bioRxiv, November 2024.

Barker, M., Chue Hong, N. P, Katz, D. S., Lamprecht, A.-L.,
Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro,
L. J., Gruenpeter, M., Martinez, P. A., and Honeyman,
T. Introducing the FAIR principles for research software.
Sci. Data, 9(1):622, October 2022.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card,
D., Castellon, R., Chatterji, N., Chen, A., Creel, K.,
Davis, J. Q., Demszky, D., Donahue, C., Doumbouya,
M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh,
K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel,

Deploying User-Friendly Single-Cell Foundation Models

K., Goodman, N., Grossman, S., Guha, N., Hashimoto,
T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu,
K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P.,
Karamcheti, S., Keeling, G., Khani, F., Khattab, O., Koh,
P. W, Krass, M., Krishna, R., Kuditipudi, R., Kumar, A.,
Ladhak, F,, Lee, M., Lee, T., Leskovec, J., Levent, 1., Li,
X. L., Li, X., Ma, T., Malik, A., Manning, C. D., Mirchan-
dani, S., Mitchell, E., Munyikwa, Z., Nair, S., Narayan,
A., Narayanan, D., Newman, B., Nie, A., Niebles, J. C.,
Nilforoshan, H., Nyarko, J., Ogut, G., Orr, L., Papadim-
itriou, 1., Park, J. S., Piech, C., Portelance, E., Potts, C.,
Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani,
Y., Ruiz, C., Ryan, J., Ré, C., Sadigh, D., Sagawa, S., San-
thanam, K., Shih, A., Srinivasan, K., Tamkin, A., Taori,
R., Thomas, A. W., Tramer, F., Wang, R. E., Wang, W.,
Wu, B., Wu, J., Wu, Y., Xie, S. M., Yasunaga, M., You, J.,
Zaharia, M., Zhang, M., Zhang, T., Zhang, X., Zhang, Y.,
Zheng, L., Zhou, K., and Liang, P. On the opportunities
and risks of foundation models. arXiv [cs.LG], August
2021.

Chan Zuckerberg Initiative. = CZI — essential open
source software for science, a. URL https://
chanzuckerberg.com/eoss/.

Chan Zuckerberg Initiative. Early
CZI's Al-powered cell models, b.
https://chanzuckerberg.com/blog/
ai-cell-models-platform-release/.

access to
URL

Chen, Y. and Zou, J. Simple and effective embedding model
for single-cell biology built from ChatGPT. Nat. Biomed.
Eng., 9(4):483-493, April 2025.

Clyburne-Sherin, A., Fei, X., and Green, S. A. Computa-
tional reproducibility via containers in social psychology.
Meta-Psychology, 3, 2019.

Cui, H., Wang, C., Maan, H., Pang, K., Luo, F., Duan,
N., and Wang, B. scGPT: toward building a foundation
model for single-cell multi-omics using generative Al. 21
(8):1470-1480, 2024. ISSN 1548-7105. doi: 10.1038/
s41592-024-02201-0. URL https://www.nature.
com/articles/s41592-024-02201-0. Pub-
lisher: Nature Publishing Group.

Cui, H., Tejada-Lapuerta, A., Brbi¢, M., Saez-Rodriguez,
J., Cristea, S., Goodarzi, H., Lotfollahi, M., Theis,
F. J., and Wang, B. Towards multimodal founda-
tion models in molecular cell biology. 640(8059):
623-633, 2025. ISSN 1476-4687. doi: 10.1038/
s41586-025-08710-y. URL https://www.nature.
com/articles/s41586-025-08710-y. Pub-
lisher: Nature Publishing Group.

Eustace, S. and contributors, T. P. Poetry: Python pack-
aging and dependency management made easy, 2025.

URL https://python-poetry.org. If you use
this software, please cite it using the metadata from this
file.

Guo, F, Guan, R, Li, Y., Liu, Q., Wang, X., Yang, C.,
and Wang, J. Foundation models in bioinformatics. 12
(4):nwaf028, 2025. ISSN 2095-5138. doi: 10.1093/
nsr/nwaf028. URL https://doi.org/10.1093/
nsr/nwaf028.

Hao, M., Gong, J., Zeng, X., Liu, C., Guo, Y., Cheng, X.,
Wang, T., Ma, J., Zhang, X., and Song, L. Large-scale
foundation model on single-cell transcriptomics. Nat.
Methods, 21(8):1481-1491, August 2024.

Heimberg, G., Kuo, T., DePianto, D. J., Salem, O., Heigl,
T., Diamant, N., Scalia, G., Biancalani, T., Turley, S. J.,
Rock, J. R., Corrada Bravo, H., Kaminker, J., Vander Hei-
den, J. A., and Regev, A. A cell atlas foundation model
for scalable search of similar human cells. Nature, 638
(8052):1085-1094, February 2025.

Helical Team. helicalai/helical: v1.1.0, Novem-
ber 2024. URL https://doi.org/10.5281/
zenodo.13135902.

Hong, T. H. and Park, W.-Y. Single-cell ge-
nomics technology: perspectives. 52(9):1407-
1408, 2020. ISSN 2092-6413. doi: 10.1038/

s12276-020-00495-6. URL https://www.nature.
com/articles/s12276-020-00495-6. Pub-
lisher: Nature Publishing Group.

Jiménez, R. C., Kuzak, M., Alhamdoosh, M., Barker, M.,
Batut, B., Borg, M., Capella-Gutierrez, S., Chue Hong,
N., Cook, M., Corpas, M., Flannery, M., Garcia, L.,
Gelpi, J. L., Gladman, S., Goble, C., Gonzélez Ferreiro,
M., Gonzalez-Beltran, A., Griffin, P. C., Griining, B.,
Hagberg, J., Holub, P., Hooft, R., Ison, J., Katz, D. S.,
Leskosek, B., Lopez Gémez, F., Oliveira, L. J., Mellor,
D., Mosbergen, R., Mulder, N., Perez-Riverol, Y., Pergl,
R., Pichler, H., Pope, B., Sanz, F., Schneider, M. V., Stod-
den, V., Suchecki, R., Svobodova Varekova, R., Talvik,
H.-A., Todorov, L., Treloar, A., Tyagi, S., van Gompel,
M., Vaughan, D., Via, A., Wang, X., Watson-Haigh, N. S.,
and Crouch, S. Four simple recommendations to encour-
age best practices in research software. FI1000Res., 6:
876, June 2017.

Khan, W., Leem, S., See, K. B., Wong, J. K., Zhang, S., and
Fang, R. A comprehensive survey of foundation models
in medicine, 2025. URL http://arxiv.org/abs/
2406.10729.

Leprevost, F. d. V., Barbosa, V. C., Francisco, E. L.,
Perez-Riverol, Y., and Carvalho, P. C. On best practices
in the development of bioinformatics software. 5, 2014.

https://chanzuckerberg.com/eoss/
https://chanzuckerberg.com/eoss/
https://chanzuckerberg.com/blog/ai-cell-models-platform-release/
https://chanzuckerberg.com/blog/ai-cell-models-platform-release/
https://www.nature.com/articles/s41592-024-02201-0
https://www.nature.com/articles/s41592-024-02201-0
https://www.nature.com/articles/s41586-025-08710-y
https://www.nature.com/articles/s41586-025-08710-y
https://python-poetry.org
https://doi.org/10.1093/nsr/nwaf028
https://doi.org/10.1093/nsr/nwaf028
https://doi.org/10.5281/zenodo.13135902
https://doi.org/10.5281/zenodo.13135902
https://www.nature.com/articles/s12276-020-00495-6
https://www.nature.com/articles/s12276-020-00495-6
http://arxiv.org/abs/2406.10729
http://arxiv.org/abs/2406.10729

Deploying User-Friendly Single-Cell Foundation Models

ISSN 1664-8021. doi: 10.3389/fgene.2014.00199.
URL https://www.frontiersin.orghttps:
//www.frontiersin.org/journals/
genetics/articles/10.3389/fgene.2014.
00199/full. Publisher: Frontiers.

Liu, T, Li, K., Wang, Y., Li, H., and Zhao, H. Evaluating the
utilities of foundation models in single-cell data analysis.
bioRxivorg, December 2024.

Pyzer-Knapp, E. O., Manica, M., Staar, P., Morin,
L., Ruch, P, Laino, T., Smith, J. R., and Curi-
oni, A. Foundation models for materials discov-
ery — current state and future directions. 11(1):
1-10, 2025. ISSN 2057-3960. doi: 10.1038/

s41524-025-01538-0. URL https://www.nature.

com/articles/s41524-025-01538-0.
lisher: Nature Publishing Group.

Pub-

Rosen, Y., Roohani, Y., Agrawal, A., Samotorcan, L.,
Consortium, T. S., Quake, S. R., and Leskovec,
J. Universal cell embeddings: A foundation
model for cell biology. pp. 2023-11, 2023. URL
https://www.biorxiv.org/content/10.
1101/2023.11.28.568918.abstract. Pub-
lisher: Cold Spring Harbor Laboratory.

Shen, H., Liu, J., Hu, J., Shen, X., Zhang, C., Wu, D., Feng,
M., Yang, M,, Li, Y., Yang, Y., Wang, W., Zhang, Q.,
Yang, J., Chen, K., and Li, X. Generative pretraining
from large-scale transcriptomes for single-cell decipher-
ing. iScience, 26(5):106536, May 2023.

Shwartz-Ziv, R. and LeCun, Y. To compress or not to
compress- self-supervised learning and information the-
ory: A review, 2023. URL http://arxiv.org/
abs/2304.09355.

Szalata, A., Hrovatin, K., Becker, S., Tejada-Lapuerta, A.,
Cui, H., Wang, B., and Theis, F. J. Transformers in
single-cell omics: a review and new perspectives. 21
(8):1430-1443, 2024. ISSN 1548-7105. doi: 10.1038/
s41592-024-02353-z. URL https://www.nature.
com/articles/s41592-024-02353~-z. Pub-
lisher: Nature Publishing Group.

Theodoris, C. V., Xiao, L., Chopra, A., Chaffin, M. D.,
Al Sayed, Z. R., Hill, M. C., Mantineo, H., Brydon,
E. M., Zeng, Z., Liu, X. S., and Ellinor, P. T. Trans-
fer learning enables predictions in network biology. 618
(7965):616-624, 2023. ISSN 1476-4687. doi: 10.1038/
s41586-023-06139-9. URL https://www.nature.
com/articles/s41586-023-06139-09. Pub-
lisher: Nature Publishing Group.

Wen, H., Tang, W., Dai, X., Ding, J., Jin, W., Xie, Y., and
Tang, J. CellPLM: Pre-training of cell language model
beyond single cells. bioRxiv, October 2023.

Yang, F., Wang, W., Wang, F., Fang, Y., Tang, D., Huang, J.,
Lu, H., and Yao, J. scBERT as a large-scale pretrained
deep language model for cell type annotation of single-
cell RNA-seq data. Nat. Mach. Intell., 4(10):852-866,
September 2022.

Yang, X., Liu, G., Feng, G., Bu, D., Wang, P, Jiang, J.,
Chen, S., Yang, Q., Miao, H., Zhang, Y., Man, Z., Liang,
Z., Wang, Z., Li, Y, Li, Z., Liu, Y., Tian, Y., Liu, W.,
Li, C., Li, A., Dong, J., Hu, Z., Fang, C., Cui, L., Deng,
Z., Jiang, H., Cui, W., Zhang, J., Yang, Z., Li, H., He,
X., Zhong, L., Zhou, J., Wang, Z., Long, Q., Xu, P,
X-Compass Consortium, Wang, H., Meng, Z., Wang,
X., Wang, Y., Wang, Y., Zhang, S., Guo, J., Zhao, Y.,
Zhou, Y., Li, F, Liu, J., Chen, Y., Yang, G., and Li, X.
GeneCompass: deciphering universal gene regulatory
mechanisms with a knowledge-informed cross-species
foundation model. Cell Res., 34(12):830-845, December
2024.

Zhao, S., Zhang, J., and Nie, Z. Large-scale cell representa-
tion learning via divide-and-conquer contrastive learning.
arXiv [cs.CE], June 2023.

Ziemann, M., Poulain, P., and Bora, A. The five pillars
of computational reproducibility: bioinformatics and be-
yond. 24(6):bbad375, 2023. ISSN 1467-5463. doi:
10.1093/bib/bbad375. URL https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC10591307/.

https://www.frontiersin.orghttps://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2014.00199/full
https://www.frontiersin.orghttps://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2014.00199/full
https://www.frontiersin.orghttps://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2014.00199/full
https://www.frontiersin.orghttps://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2014.00199/full
https://www.nature.com/articles/s41524-025-01538-0
https://www.nature.com/articles/s41524-025-01538-0
https://www.biorxiv.org/content/10.1101/2023.11.28.568918.abstract
https://www.biorxiv.org/content/10.1101/2023.11.28.568918.abstract
http://arxiv.org/abs/2304.09355
http://arxiv.org/abs/2304.09355
https://www.nature.com/articles/s41592-024-02353-z
https://www.nature.com/articles/s41592-024-02353-z
https://www.nature.com/articles/s41586-023-06139-9
https://www.nature.com/articles/s41586-023-06139-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591307/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591307/

Deploying User-Friendly Single-Cell Foundation Models

A. Selection criteria for single-cell foundation models and survey details

The term “foundation model” does not have a strict and well-agreed upon definition in the computational biology community,
but for the selection of the models in our analysis, we use the definition from Bommasani et al. (2021):

A foundation model is any model that is trained on broad data (generally using self-supervision at scale) that can
be adapted (e.g., fine-tuned) to a wide range of downstream tasks...

Given this criteria, we selected the following models that meet the following two requirements:

1. Training on a large amount of data in a self-supervised manner, or using models that have trained on a large corpus of
data in a similar manner (e.g. ChatGPT)

2. Aim to learn representations that are useful for a variety of downstream tasks in single-cell analysis
This led us to include the following models into our analysis:

* scBERT (Yang et al., 2022)

¢ Geneformer (Theodoris et al., 2023)

* Universal Cell Embeddings (UCE) (Rosen et al., 2023)

¢ scGPT (Cui et al., 2024)

¢ scFoundation (Hao et al., 2024)

* scLong (Bai et al., 2024)

e CellPLM (Wen et al., 2023)

¢ SCimilarity (Heimberg et al., 2025)

* tGPT (Shen et al., 2023)

e CellLM (Zhao et al., 2023)

* GeneCompass (Yang et al., 2024)

¢ GenePT (Chen & Zou, 2025)
While we did our best to accommodate models that fit the outlined criteria, we understand that this is not an exhaustive list,
and that the landscape of single-cell foundation models is constantly evolving. For searching, we used a combination of the

models outlined in Liu et al. (2024), and search terms encompassing the previously outlined criteria for the definition of
single-cell foundation models.

For the criteria indicated in Table 1, we searched the model code and repositories in the following manner:

1. Container: For containerization, we located the GitHub repository of each model, and went through the README
and any associated links (such as further documentation) to determine if Docker, Apptainer, or similar containerization
solutions were present.

2. Python Pkg: Similar to containerization, we determined if a python package was released by going through the GitHub
repository of each model, including the READMEs.

3. CI: For continuous integration, we determined if any badges relevant to continuous integration (e.g. Travis CI) were
present in the code repository and/or if GitHub integrated CI such as precommit or GitHub Actions were present in the
repository.

4. Docs: To determine if standalone documentation was present, we went through the GitHub repositories of the models,
including the READMESs, and other subsections such as the ‘About’ portion, where documentation links are typically
found.

Deploying User-Friendly Single-Cell Foundation Models

B. Details and links for tools outlined in recommendations

Trademark notice: All product names, logos, and brands shown in Figure 1 are trademarks or registered trademarks of
their respective owners and are used here for identification purposes only. Use of these names, logos, and brands does not
imply endorsement. All rights reserved.

We compile a list of resources we outlined for development best-practices, as well as a short description of their usage,
sorted based on the specific recommendation. We include additional resources here for a more comprehensive list.

B.1. Recommendation 1

Docker: Docker is an all-in-one tool for containerizing software, applications, and associated workflows. https:
//docs.docker.com/

Apptainer: Formerly known as Singularity, is an alternative containerization tool that is often better compatible with HPC
systems. https://apptainer.org/

B.2. Recommendation 2

Python packages guide: A dedicated guide from the Python Software Foundation on creating and deploying python
packages. https://packaging.python.org/en/latest/tutorials/packaging-projects/

PyPI: The Python Package Index - a repository for developers to upload python packages such that they can be easily
installed via Pip. https://pypi.org/

Poetry: An all-in-one method for managing dependencies and creating and publishing python packages (Eustace &
contributors, 2025), with cross operating system compatibility, including Windows, Linux, and macOS. https://
python-poetry.org/

B.3. Recommendation 3

Github Actions: A GitHub compatible tool for continuous integration and development. Can be used for build tests across
platforms (e.g. different python versions) and operating systems, automatic testing on pushes to certain branches, and more.
Free up to a usage limit. https://github.com/features/actions

Travis CI: A continuous integration tool that aims to simplify syntax, and has several powerful integrations. https:
//www.travis—ci.com/product/

Jenkins: An open-source and free platform for continuous integration and development, but requires self-hosting. https:
//www.jenkins.io/
B.4. Recommendation 4

GitHub Issues: A tool integrated within GitHub to track and manage Issues, including dependency and installation problems.
Issues can be sorted based on importance and type, and can be interlinked. https://docs.github.com/en/issues

GitLab Issues: Similar to GitHub Issues, but focused on developers that use GitLab and integrates easily with many
associated tools. https://docs.gitlab.com/user/project/issues/

Jira: Enterprise-level tool for project management, which includes tracking software issues and bugs. https://www.
atlassian.com/software/jira
B.5. Recommendation 5

NVIDIA-smi: Tool from NVIDIA to monitor GPU usage, GPU memory allocation, power usage, and other GPU-related
factors. https://docs.nvidia.com/deploy/nvidia—-smi/index.html

Torch Profiler: A built-in PyTorch tool/API that allows for tracing of code execution and determining memory usage and
time allocation. https://docs.pytorch.org/docs/stable/profiler.html

psutil library: A comprehensive library for tracking CPU usage, memory usage, disk input/output, and more. Generally

https://docs.docker.com/
https://docs.docker.com/
https://apptainer.org/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://pypi.org/
https://python-poetry.org/
https://python-poetry.org/
https://github.com/features/actions
https://www.travis-ci.com/product/
https://www.travis-ci.com/product/
https://www.jenkins.io/
https://www.jenkins.io/
https://docs.github.com/en/issues
https://docs.gitlab.com/user/project/issues/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://docs.nvidia.com/deploy/nvidia-smi/index.html
https://docs.pytorch.org/docs/stable/profiler.html

Deploying User-Friendly Single-Cell Foundation Models

applicable to monitoring many different types of processes. https://github.com/giampaclo/psutil

Weights and Biases (Wandb): A toolkit and framework for monitoring deep-learning experiments and training runs, that is
also able to monitor system memory and GPU utilization. https://wandb.ai/wandb_fc/articles/reports/
Monitor-Improve-GPU-Usage-for-Model-Training—--VmlldzolNDQzNjM3

B.6. Recommendation 6

Read the Docs: A tool for hosting code API and tutorial documentation that is generated by methods such as Mkdocs
(https://www.mkdocs.org/) and Sphinx (https://www.sphinx—-doc.org/en/master/). Supports sev-
eral important features, such as search, GitHub integration, automatic documentation building and updating, and more.
https://docs.readthedocs.com/platform/stable/index.html

GitHub Pages: An alternative to Read the Docs for hosting documentation, but lacks key features such as search which
would have to be added in manually. https://pages.github.com/

10

https://github.com/giampaolo/psutil
https://wandb.ai/wandb_fc/articles/reports/Monitor-Improve-GPU-Usage-for-Model-Training--Vmlldzo1NDQzNjM3
https://wandb.ai/wandb_fc/articles/reports/Monitor-Improve-GPU-Usage-for-Model-Training--Vmlldzo1NDQzNjM3
https://www.mkdocs.org/
https://www.sphinx-doc.org/en/master/
https://docs.readthedocs.com/platform/stable/index.html
https://pages.github.com/

Deploying User-Friendly Single-Cell Foundation Models

C. Current solutions and related work addressing software issues in computational biology

The following Appendix section summarizes related work in terms of publications and guidelines that aim to address
challenges in computational scientific software development (Table 2), specifically focused on computational biology, as
well as services that aim to aide researchers in developing, deploying, and using computational tools (Table 3).

Table 2. Summary of Related Work and Recommendations for Scientific Software Development and Deployment

Work

Category

Details

Strengths

Limitations

5 Pillars of Computational
Reproducibility (Ziemann
et al., 2023)

Paper

An article that provides a frame-
work to make computational re-
search more reproducible.

General, adaptable to many
fields and generations of
technology.

Not focused on founda-
tion model research, which
presents several of its own
distinct challenges.

FAIR Biomedical Research
Software (FAIR-BioRS)
Guidelines https:
//github.com/
FAIR-BioRS/Docs

Guidelines

Biomedical research software-
focused guidelines for improving
accessibility, find-ability, interoper-
ability, and re-usability.

Based on FAIR4RS soft-
ware principles (Barker
et al., 2022), which are a
grounded set of general
principles for research
software.

Not specific to single-cell
foundation models, and
since the guidelines are
older, are not specific to the
challenges of foundation
model software in general.

ELIXIR Group Four sim-
ple recommendations to en-
courage best practices in
research software (Jiménez
etal., 2017)

Guidelines

Four general recommendations
to make research software more
reusable, transparent, and discover-
able.

Strong set of generally appli-
cable guidelines for develop-
ers.

Lacks detail on key aspects
of reproducibility and re-
usability, such as continuous
integration, and is overall
very general and not at all
specific to foundation model
software.

ELIXIR Group Top 10 met-
rics for life science software
good practices (Artaza et al.,
2016)

Guidelines

10 key recommendations for life sci-
ence based software, which include
version control, automated testing,
and documentation.

A strong set of metrics and
indicators of good software,
which extend quite far into
the development (not just de-
ployment) realm, including
code reviews and licensing.
Quite a few recommenda-
tions overlap with our work,
which is sensible given that
good software practice does
not necessarily need novel
frameworks

Not specific to machine
learning and deep learning
libraries, which present
unique challenges and need
additional ~ recommenda-
tions on factors such as
resource usage and the
need for containerization
when foundation models
are integrated into larger
single-cell and bioinformat-
ics workflows.

11

https://github.com/FAIR-BioRS/Docs
https://github.com/FAIR-BioRS/Docs
https://github.com/FAIR-BioRS/Docs

Deploying User-Friendly Single-Cell Foundation Models

Table 3. Summary of Solutions to Improve Scientific Software Reproducibility and Accessibility

Solution Category Details Strengths Limitations

Essential Open Source Soft- Grants Grant by the Chan Zuckerberg Ini- Flexible solution to make —

ware for Science tiative to fund initiatives to make better open-source practices
open source software more sustain- more sustainable.
able (Chan Zuckerberg Initiative, a).

Helical Services Python package that wraps biologi- Easy to use and contains Restricted to foundation
cal foundation models in a uniform representative models in the ~ models at the moment.
interface (Helical Team, 2024). field.

Code Ocean Services Platform that hosts a wide range of =~ Makes software accessible ~ Some user tiers are not free.
bioinformatics software in a ready to non-computational scien-
to use state (Clyburne-Sherin et al., tists.

2019).

Garden Services A platform which hosts Al models Centralized support for Restricted to AI models.
in a containerized environment to al- many models, provides a
low researchers to run them within ~ good framework for model
a limited GPU allowance without development in general,
having to install and set up in their ~ makes models more accessi-
own machine. Also provides guid- ble in general.
ance for developers to publish their
model on the platform https://
thegardens.ai/.

Platform for Cell Models Services A platform currently under develop- Makes models more accessi- Restricted to AI models.

ment by the Chan Zuckerberg Initia-
tive that will contain documentation,
datasets, and Google Colab tutorials
to provide easy access to curated Al
models (Chan Zuckerberg Initiative,
b).

ble in general.

12

https://thegardens.ai/
https://thegardens.ai/

Deploying User-Friendly Single-Cell Foundation Models

D. Establishing a centralized software maintenance organization

The solutions listed in Appendix C are impactful and effective in their own niches. However, to create a solution that takes a
more holistic viewpoint to improve the state of code maintenance in computational biology, the following three aspects
should be addressed:

1. Acknowledge and work around the established norms and systems of academic research.
2. Set incentives for those contributing to the initiative.

3. Promote the initiative with the goal of making it a go-to solution.

bl

A potential solution that has yet to be explored is creating an organization that solely focuses on taking over the “maintenance’
role of academic software. The original developers of the software would onboard the staff members to help them navigate
the code and to help with critical decision making, but would retain the credit for the software (Front #1). Funding can be
obtained through grants such as the Essential Open Source Software for Science by the Chan Zuckerberg Initiative (Chan
Zuckerberg Initiative, a), sponsorship from corporations, or even through an affordable subscription model targeting research
institutions (Front #2). Finally, by developing a strong presence in the field by having representatives attend conferences,
investing in high quality digital media output, and getting institutional leaders on board with the organization’s work, the
initiative could become a centralized solution to this issue (Front #3). Figure 2 visualizes the relationships between the
stakeholders in this idea.

Determining the viability of this idea would require further discussion and research regarding the stakeholders in the
system as well as the amount of resources required to set up and maintain such a system. However, it is also important to
propose these ideas as a starting point for discussion in the community, given the observed issues with respect to software
maintenance outlined in this work and others.

maintenance
organization

090

maintenance CO) stack onboarding
support / l/[Naintenancefee
fiil

labs ﬁ ﬁ

software software software

T

user

access

contact support

Figure 2. Rudimentary model of proposed centralized software maintenance system.

13

