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Abstract

A data analyst might worry about generalization if dropping a very small fraction of data
points from a study could change its substantive conclusions. Checking this non-robustness
directly poses a combinatorial optimization problem and is intractable even for simple
models and moderate data sizes. Recently various authors have proposed a diverse set of
approximations to detect this non-robustness. In the present work, we show that, even
in a setting as simple as ordinary least squares (OLS) linear regression, many of these
approximations can fail to detect (true) non-robustness in realistic data arrangements. We
focus on OLS in the present work due its widespread use and since some approximations
work only for OLS. Across our synthetic and real-world data sets, we find that a simple
recursive greedy algorithm is the sole algorithm that does not fail any of our tests and also
that it can be orders of magnitude faster to run than some competitors.

1 Introduction

Researchers typically run a data analysis with the goal of applying any conclusions in the future. For instance,
economists run randomized controlled trials (RCTs) of microcredit with a particular set of people at a
particular time. If the resulting data analysis shows that microcredit increases business profit, a policymaker
might distribute microcredit to people in the future, on the assumption that microcredit will help these
people too. We might worry whether this assumption is warranted if we could drop a very small fraction of
people from the original trial and instead conclude that microcredit decreases business profit. As a concrete
example, Broderick et al. (2020) show that it is possible to drop 15 households out of over 16,500 in an
influential microcredit RCT and change the result to a statistically significant conclusion of the opposite sign.

In many cases, then, it behooves us to check: can we find a small fraction of data that, if dropped, would
change the conclusion of the analysis? A brute force approach to answering this question enumerates every
possible small data subset and re-runs the analysis a combinatorially large number of times. E.g., suppose we
might be concerned if dropping 0.1% of our data could change our conclusions. Running

(16500
16
)

1-second-long
data analyses would take over 1046 years.
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Given these computational challenges, researchers have suggested various approximations instead. Broderick
et al. (2020) suggest using an approximation based on instantiating continuous weights on the data points
and differentiating with respect to these weights. The authors use this approximation to identify small data
subsets that, when dropped, change conclusions in multiple landmark papers in economics (e.g. Angelucci
& De Giorgi, 2009; Finkelstein et al., 2012). In follow-up work focused on OLS, Kuschnig et al. (2021)
introduced two additional ideas for finding the worst-case data subset: (1) approximating the impact of
removing a group of points by the sum of the impacts of exactly removing individual data points and (2)
greedily removing one data point at a time. Moitra & Rohatgi (2023); Freund & Hopkins (2023) provide
additional approximations that are specific to OLS.

Recently, scientists and social scientists have used some of these approximations to assess the robustness of
important findings in econometrics (Martinez, 2022), epidemiology (Di & Xu, 2022), and the social sciences
(Davies et al., 2024; Burton & Roach, 2023). Given the deployment of these approximations in practice,
we ask when and how they can fail in realistic data analyses—to alert practitioners and motivate further
approximation development. Previous works have identified particular instances of failure modes, without a
comparison of failures across approximation methods (Broderick et al., 2020; Nguyen et al., 2024). Other
works have illustrated failure modes in adversarial constructions or settings where a large fraction of the data
(≥ 1%) needed to be removed (Moitra & Rohatgi, 2023; Freund & Hopkins, 2023; Kuschnig et al., 2021).

In the present work, we systematically explore whether approximations can detect if there exists a very
small fraction (< 1%) of data that, if dropped, can change conclusions. In other words, we ask whether
approximations can detect a particular form of non-robustness in a data analysis. We focus on natural data
settings with no adversary. In order to include the approximations of Moitra & Rohatgi (2023); Freund
& Hopkins (2023) in our comparison, we focus on linear regression fit with OLS. Before the present work
and contemporaneous work by Hu et al. (2024), there had not been studies systematically characterizing
non-adversarial failure modes of approximations for this form of robustness or studies comparing the prominent
existing approximations.

In many aspects, Hu et al. (2024) and our present work are complementary. While Hu et al. (2024) focus
on exact recovery of the most influential data subset with cardinality at most equal to a stated value, we
focus on finding whether there exists a small subset of data that, if dropped, could change substantive
conclusions. Given our different focuses, Hu et al. (2024) find it useful to separate masking into two
phenomena: amplification and cancellation. Meanwhile, we find it useful to point out failure modes due to
poor conditioning of the bulk of data. Hu et al. (2024)’s theory assumes a particular data-generating process
[their Equation 7]; while we don’t make this assumption, we instead need to take a limit of an outlier data
point’s position to derive our results (Proposition 4.3).

Both Hu et al. (2024) and our work focus on OLS for theory and illustration of failure modes. While linear
regression is less common in engineering disciplines, Castro Torres & Akbaritabar (2024) demonstrate that,
as recently as 2022, (often well) over half of all papers reporting any methods in Medical and Health Sciences,
Agricultural Sciences, Social Sciences, and the Humanities used linear regression. Indeed, most of the applied
papers cited in the discussion above use linear regression (Angelucci & De Giorgi, 2009; Finkelstein et al.,
2012; Martinez, 2022; Davies et al., 2024; Burton & Roach, 2023). We suspect OLS is the most common form
of linear regression used in practice.

In the present work, we identify failures to detect (true) non-robustness in approximations from Broderick
et al. (2020), Kuschnig et al. (2021), Moitra & Rohatgi (2023), and Freund & Hopkins (2023). We are able
to identify failures even in linear regression with a single covariate and an intercept term. In contrast to
the two works most similar to our own (Kuschnig et al., 2021; Hu et al., 2024), we compare to three new
OLS-specific approximations developed by Moitra & Rohatgi (2023); Freund & Hopkins (2023), and we
present a theoretical runtime analysis along with an empirical runtime comparison of all methods presented.
Importantly, we present new, targeted illustrations of failure modes, each aimed at revealing a specific factor
contributing to failure (e.g., a point with extremely high leverage and low residual, a small clump of points
far away from the rest of the data).

Across worst-case data-dropping approximations, we conclude that a simple greedy algorithm (suggested
by Kuschnig et al. (2021)) does not fail our accuracy tests (both on synthetic and real-world data), is
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conceptually straightforward, and can offer orders of magnitude savings in running time over the OLS-specific
mathematical programming alternatives.

Code for our work is available at gradientBasedDataDroppingFailureModes, including all scripts for
reproducing the results in this paper.

2 Setup

We first establish notation for OLS analysis paired with worst-case data dropping. The approximations of
Moitra & Rohatgi (2023); Freund & Hopkins (2023) require that the data analysis be linear regression fit
with OLS, and moreover that the data-analysis conclusion be changed if the sign of a regression coefficient
were to change. To include these methods in our comparison, we focus on this case.

In particular, let N be the number of data points. We write the data as d1:N := {dn}N
n=1, where dn :=

(xn, yn) consists of covariates in a column-vector xn ∈ RP and scalar response yn ∈ R. OLS estimates
an unknown column-vector parameter θ ∈ RP by minimizing a sum of squared losses to a linear trend:
θ̂ = arg minθ

∑N
n=1(yn − θ⊤xn)2. We will often (but not always) include an intercept term, in which case we

think of the P th covariate as an all-ones covariate.

We focus on conclusions that would be changed if the direction (i.e., sign) of an estimated effect θ̂p changed.
For example, in “Contradicted and Initially Stronger Effects in Highly Cited Clinical Research,” Ioannidis
(2005) describes two studies that initially concluded hormone therapy reduces coronary artery events in
women—and also two larger studies that instead concluded hormone therapy increases coronary artery events;
due to the change in sign, Ioannidis (2005) counts the first two studies as “contradicted findings.” Similarly,
in Mostly Harmless Econometrics, Angrist & Pischke (2009, end of Section 2.2) describe conflicting regression
analyses that conclude standardized test scores increase or decrease, respectively, with class size. As in
the examples above, the sign of an effect often guides interpretation and decision-making in fields such as
biomedicine or economics. Indeed, (Gelman & Carlin, 2014) argue that Type S (sign) errors (and also Type
M, for magnitude, errors) are more relevant for data analysis practice than conventional Type 1 and 2 errors.

We might be concerned if dropping a small fraction α ∈ (0, 1) of our data changed our substantive conclusions.
The value of α is user-defined. We follow Broderick et al. (2020) and use α = 0.01 (i.e., 1% of the data) as a
default. Broderick et al. (2020) define the Maximum Influence Perturbation as the largest possible change
induced in some quantity of interest by dropping at most 100α% of the data. Since we presently assume
conclusions are made from the sign of θp, our quantity of interest will always be θp. Without loss of generality,
we assume θ̂p > 0, and we ask whether we can change the result to a negative sign.

To write the optimization problem implied by the Maximum Influence Perturbation (Equation (1) below), let
wn represent a weight on the nth data point, and collect a vector of data weights, w := (w1, ..., wN ). Define
θ̂(w) := arg minθ

∑N
n=1 wn(yn −θ⊤xn)2. Setting w = 1N , the all-ones vector of length N , recovers the original

data analysis, and setting wn to zero corresponds to dropping the nth point. We collect all weightings that
correspond to dropping at most 100α% of the data in Wα := {w ∈ {0, 1}N :

∑N
n=1(1 − wn) ≤ αN}. Finally,

the Maximum Influence Perturbation for this particular OLS effect-size quantity of interest1 can be written

max
w∈Wα

(
θ̂p(1N ) − θ̂p(w)

)
. (1)

The Most Influential Set is defined to be the set of dropped data corresponding to the maximizing w value.

In principle, one might solve Equation (1) by computing θ̂p(w) for each of the
(

N
⌊αN⌋

)
values within Wα. As

detailed in Section 1, this brute force approach can be computationally prohibitive even for moderate N .

3 Approximations

We next review various approximations to the solution of Equation (1) that are available from the literature.
While many authors have considered approximating dropping a pre-defined (single) subset of data from an

1See Broderick et al. (2020) for a more general definition, including other data analyses and other quantities of interest.
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analysis, we here focus on dropping the worst-case subset of data as in Equation (1); see Appendix A.3 for
further discussion of this distinction and related work. We also provide a systematic comparison of theoretical
running time costs; an empirical comparison of costs appears in our experiments.

3.1 Additive approximations

We start with what we call additive approximations. In particular, additive approximations (a) approximate
the impact (to a quantity of interest) due to dropping a single data point and (b) add up the individual
impacts to approximate the impact of dropping a group of data points.

Approximate Maximum Influence Perturbation (AMIP). Broderick et al. (2020) propose relaxing w
to allow continuous values and replacing the w-specific quantity of interest with a first-order Taylor series
expansion with respect to w around 1N . This approximation applies to more general data analyses and
quantities of interest. In our case (cf. Appendix B.1), this approximation amounts to replacing Equation (1)
with

max
w∈Wα

∑N

n=1
(1 − wn)∂θ̂p(w)

∂wn

∣∣∣
w=1N

. (2)

Let ep denote the pth standard basis vector and X ∈ RN×P denote the design matrix, where N > P and we
assume X is full rank. For OLS with an effect-size quantity of interest, θp, the formula for the influence score
of the nth data point is a product of a leverage-like term and a residual term,

∂θ̂p(w)
∂wn

∣∣∣
w=1N

= e⊤
p (X⊤X)−1xn︸ ︷︷ ︸

leverage-like term

(yn − θ̂(1N )⊤xn)︸ ︷︷ ︸
residual term

. (3)

For a derivation of Equation (3), see Equation (10) in Appendix B.1.

For the quantity of interest θp then, the AMIP approximation replaces Equation (1) with an optimization
problem that can be solved by maximizing a sum of influence scores:

max
w∈Wα

∑N

n=1
(1 − wn)e⊤

p (X⊤X)−1xn(yn − θ̂(1N )⊤xn). (4)

The AMIP algorithm solves Equation (4) by (a) running the original data analysis, (b) computing the
influence scores (Equation (3)), (c) finding the largest ⌊αN⌋ values, and (d) adding up the influence scores
to approximate the impact of dropping the group. The approximate Most Influential Set returned here is
precisely the set of points with the largest ⌊αN⌋ influence scores. The overall cost of running AMIP for a
general data analysis is O(Analysis + N log(αN) + NP 2 + P 3),2 where Analysis represents the cost of the
data analysis. The cost of running OLS is O(NP 2 + P 3). So, for OLS with an effect-size quantity of interest,
the cost of running AMIP is O(NP 2 + P 3 + N log(αN)).

Additive One-Exact. Kuschnig et al. (2021) approximate the change in effect size that results from
dropping a group of data points in OLS by the sum of the impacts of dropping individual points; the idea
may be applied more broadly, for more general losses or quantities of interest. We call this approach Additive
One-Exact. The broad idea is to (a) compute the exact impact of dropping each single data point on the
quantity of interest, (b) find the ⌊αN⌋ data points that, when dropped individually, yield the changes of
largest magnitude in the desired direction, and (c) add up those individual impacts to approximate the
impact of dropping the group. Here, the approximate Most Influential Set returned is the set of ⌊αN⌋ points
that, when dropped individually, yield the changes of largest magnitude in the desired direction. For general
losses, Additive One-Exact can cost N times the cost of a single data analysis and need not be exact for
⌊αN⌋ > 1. In the special case of OLS with an effect-size quantity of interest, Additive One-Exact requires
just a single data analysis but still need not be exact for ⌊αN⌋ > 1.

When we simultaneously consider (a) OLS linear regression and (b) the effect-size quantity of interest, we
observe that Additive One-Exact can be seen as equivalent to another approximation, which we call Additive

2The floor function introduces discrete rounding effects that are negligible in the asymptotic regime; see Appendix B.5 for
more details.
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One-step Newton and define in Appendix B.2. Without the “Additive” descriptor, One-step Newton is a
popular existing approximation that, in the recent machine learning literature, has been used in estimating
the impact of dropping a fixed subset of data (Beirami et al., 2017; Sekhari et al., 2021; Koh et al., 2019;
Ghosh et al., 2020). Additive One-step Newton adds up single-data-point approximations from One-step
Newton; see Appendix B.2 for details. The special case of Additive One-step Newton for logistic regression
was first proposed by Park et al. (2023) in the context of data attribution. We hope that our more general
formula for Additive One-step Newton provides another angle on extending the Additive One-Exact algorithm
to models beyond OLS, to the more general class of differentiable losses.

In the general data analysis setting, the computation of One-Exact scores involves re-running the data
analysis upon dropping each individual point in a data set, a cost that is O(N × Analysis). In the setting of
OLS, we can take advantage of the One-step Newton update in place of re-running the analysis N times (see
Appendix B.2 for more details). Using this rank-one update, the cost of computing One-Exact scores for
N data points becomes O(NP 3 + P 3), or simply O(NP 3). Notice the additional P factor relative to the
O(NP 2) term in the AMIP computation; the improved precision of One-Exact scores over influence scores
comes at the cost of this additional factor of P . Specifically, for Additive One-Exact, the Hessian matrix is
reweighted to account for each dropped data point (see Equation (17) in Appendix B.2 for the equation for
this approximation) while, for AMIP, this reweighting is omitted.

Thus, the general cost of running Additive One-Exact is O(N × Analysis + N log(αN)), and the cost specific
to OLS with an effect size quantity of interest is O(NP 3 + N log(αN)). See Appendix B.4 for more details.

3.2 Greedy approximations

Next we discuss greedy approximations. Greedy approximations iteratively (a) approximate the change (to
the quantity of interest) upon dropping each data point individually, (b) select the point that results in the
biggest approximated change when dropped, and (c) re-run the data analysis without this point (Belsley
et al., 1980, Section 2.1).

Greedy One-Exact. The outlier detection literature has highlighted the combinatorial cost of finding
influential subsets exactly. This literature also describes the masking problem that can arise in additive
approximations of influence: namely, when one outlier hides the impact of another (Belsley et al., 1980;
Atkinson, 1986). To address these issues, Belsley et al. (1980, Section 2.1) suggest to greedily remove one
outlier point at a time in a stepwise procedure. Kuschnig et al. (2021) propose a similar greedy procedure
for approximating the Maximum Influence Perturbation; namely, they iteratively: (a) compute the exact
change (to the quantity of interest) upon dropping each data point individually, (b) select the point that
results in the biggest change when dropped, and (c) re-run the data analysis (Belsley et al., 1980, Section
2.1). In general, Greedy One-Exact requires ⌊αN⌋ times the cost of an additive approximation.

For a general data analysis, Greedy One-Exact involves running N re-runs of a data analysis for ⌊αN⌋
iterations. Thus, the overall cost of running Greedy One-Exact is O(αN2 × Analysis). In the OLS-specific
setting, we can again take advantage of the rank-one update as described for Additive One-Exact. Specifically,
to compute One-step Newton scores for N data points costs O(NP 3); repeated over ⌊αN⌋ iterations, step
(a) costs O(αN2P 3). To find the top One-Exact score ⌊αN⌋ times, step (b) costs O(αN2). One run of OLS
costs O(NP 2 + P 3); performed over ⌊αN⌋ iterations, step (c) costs O(αNP 3).

Thus, for OLS with an effect size quantity of interest, the cost reduces to O(αN2P 3). We find this cost is not
prohibitive in our examples below; see Section 6 for an empirical analysis of running time. See Appendix B.4
for a more detailed description of the asymptotic running time analysis just above.

Greedy AMIP. We define Greedy AMIP analogously to Greedy One-Exact, replacing the exact effect of
removing a point with the influence score approximation. To the best of our knowledge, Greedy AMIP has
not previously been proposed in the literature, for any data analysis or quantity of interest.

For a general data analysis, running Greedy AMIP costs ⌊αN⌋ times the cost of running AMIP. This cost
is O(αN × Analysis + αN2P 2 + αNP 3). Substituting in the cost of OLS, we find that the cost of running
Greedy AMIP for OLS with an effect size quantity of interest is O(αN2P 2 + αNP 3). See Appendix B.4 for
the more detailed description of these results.
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3.3 Approximations specific to Ordinary Least Squares with effect-size quantity of interest

A line of recent works provide mathematical programs that give upper bounds on the size of the Most
Influential Set for settings of OLS where the quantity of interest is an effect size (Moitra & Rohatgi, 2023;
Freund & Hopkins, 2023). Unlike the additive and greedy approximations, these algorithms do not directly
output the approximation of the Maximum Influence Perturbation or the Most Influential Set. Both quantities,
however, are straightforward to obtain from the algorithms, as we describe next.

NetApprox. The NetApprox algorithm of Moitra & Rohatgi (2023) seeks to find the size of the smallest
data subset that, if removed or down-weighted (this algorithm works with fractional data weights), would
zero out the sign of a particular regression coefficient.

In order to use the output of NetApprox for the Maximum Influence Perturbation task, we first obtain
the fractional data-weights, w := (w1, ..., wN ) where wn ∈ [0, 1], computed using NetApprox.3 We set the
Approximate Most Influential Set to be the set of ⌊αN⌋ points that have the smallest weights (i.e., weights
closest to 0) and such that those weights are strictly less than 1.4 We then drop the points in the approximated
Most Influential Set and refit the model to find the approximated Maximum Influence Perturbation (i.e., the
maximum change in the effect size that can be induced by dropping a subset of at most ⌊αN⌋ data points).

In order to make computations tractable, NetApprox works by strategically selecting a “net,” a finite number
of coefficient vector configurations. For every chosen configuration, the algorithm solves a linear program to
determine the minimum number of samples that need to be removed in order to zero out the first regression
coefficient. Running NetApprox involves solving O(P P/2) linear programs; altogether, the runtime for this
algorithm is O(P P/2 · poly(N)).

FH-Gurobi. Freund & Hopkins (2023) provide their own implementations of the mathematical program
introduced in Moitra & Rohatgi (2023). In particular, the authors implement two versions of this mathematical
program: (1) a fractionally-relaxed version, where data weights can take values between 0 and 1 (inclusive),
and (2) an integer-constrained version, where data weights are forced to take on the integers 0 or 1. Both
versions are solved using exact solver methods supported from Gurobi 9.0 onwards (specifically, the authors
note that these methods apply a globally optimal spatial branch-and-bound method that recursively partitions
the feasible region into subdomains). The paper refers to these two mathematical programs as Gurobi, for
the optimization software they were implemented in. For ease of distinguishing this approximation from
the commercial optimization software it was implemented in, we refer to the approximation as FH-Gurobi.
Freund & Hopkins (2023) found that the integer-constrained version of FH-Gurobi showed substantially
worse performance for their task, so the authors recommend running it with a warm start from the rounded
weights obtained using the fractionally-relaxed version.

In the experiments that follow, we compare against two versions of the algorithm Freund & Hopkins (2023)
proposed for the Maximum Influence Perturbation problem. In the first version, which we call FH-Gurobi,
we run the integer-constrained mathematical program and deem the approximate Most Influential Set as the
set of indices with weight 0. If the size of this set is no greater than ⌊αN⌋, we refit OLS upon dropping these
points and deem the difference between the original fit and the new fit to be the approximated Maximum
Influence Perturbation (i.e., the maximum change in the effect size that can be induced by dropping a subset
of at most ⌊αN⌋ data points). If the algorithm sets more than ⌊αN⌋ data weights to 0, then we conclude
that there does not exist such a subset that can be dropped to change conclusions (i.e., the data analysis is
robust). In the second version, which we call FH-Gurobi (warm-start), we first run the fractionally-relaxed
mathematical program, then use those outputs (i.e., the fractional weights) as input to the integer-constrained
mathematical program. We then determine the approximate Most Influential Set and Maximum Influence
Perturbation in the same way as we do for the integer-constrained version.

3The original NetApprox algorithm computes, but does not return, the data weights.
4In all of our experiments, NetApprox returned at least ⌊αN⌋ points with weight strictly less than 1, so the question of how

to handle weights equal to 1 did not arise in practice.
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3.4 Lower bound algorithms

Just as there are algorithms that provide upper bounds on the size of the Most Influential Set, there are
algorithms that provide lower bounds (Moitra & Rohatgi, 2023; Freund & Hopkins, 2023; Rubinstein &
Hopkins, 2025). However, we are not able to easily determine a Most Influential Set using these algorithms, so
we do not compare to these in the sections below. For more details on these algorithms, see Appendix A.6.

4 Failure modes

We start by defining what failure means in the present context, and then we show a range of experiments
demonstrating failures for some of the approximations above.

4.1 What failure means here

We consider the data analyst interested in whether their analysis is robust to dropping a small fraction of
data. With that in mind, we say that an approximation fails if there truly exists a small fraction of data that
we can drop to change the conclusions of the analysis, but the approximation reports that such a data subset
does not exist. For OLS, we expect that analysts are willing to re-run their analysis at least once (after any
of the approximations defined above) with the approximate Most Influential Set dropped, so we are most
concerned about the following type of failure.

Definition 4.1. We say there is a failure with re-run if (a) there exists a small fraction of data that we can
drop to change conclusions and (b) we remove the points suggested by the method and re-run the analysis,
but we do not see an actual change in conclusions upon re-running.

The greedy approximations (Section 3.2) and NetApprox (Section 3.3) already require the analyst to re-run
their analysis with the suggested points dropped. Both FH-Gurobi algorithms also effectively require re-runs;
see Appendix C.3 for a discussion of some subtleties. The additive approximations (Section 3.1), however, do
not inherently require re-runs of the data analysis. Thus, the additive approximations introduce the potential
for an additional type of failure, which we define next.

Definition 4.2. We say there is a failure without re-run if there exists a small fraction of data that we can
drop to change conclusions, but the approximation reports that such a data subset does not exist.

We contrast these notions of failure specific to the problem of data-dropping robustness with alternative
notions. For instance, Moitra & Rohatgi (2023); Freund & Hopkins (2023); Rubinstein & Hopkins (2025);
Hu et al. (2024) are concerned with exact recovery of the set of data points that, if dropped, change the
quantity of interest by the largest amount. However, we note that even if 2 data points out of 10,000 can be
dropped to change conclusions, a practitioner might be similarly worried to hear that 3 data points can be
dropped to change conclusions. Moitra & Rohatgi (2023); Freund & Hopkins (2023); Rubinstein & Hopkins
(2025); Hu et al. (2024) are also concerned with larger α fractions, but we focus on α ≤ 0.01 since small α
fractions are the concern of the present form of robustness (see Section 2). Finally Moitra & Rohatgi (2023)
are concerned with adversarially constructed data configurations, but we focus on data configurations that
could arise naturally in practice.

Our failure modes focus on underestimation of sensitivity; if the data analyst is willing to re-run their analysis
once, any non-robustness found from that re-run is conclusive. So in this case, overestimation (i.e., a false
positive, where the method detects non-robustness when it should not) is not a concern.

4.2 One outlier

We start by considering a case with a single data point far from the bulk of the data. We find experimental
failures in AMIP and FH-Gurobi (without warm start) and support our findings with intuition from theory.
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AMIP Additive 
1Exact

Greedy 
AMIP

Greedy 
1Exact

❌ ✅ ❌ ✅

NetApprox FH-Gurobi FH-Gurobi
(warm-start)

✅ ❌ ✅

AMIP Additive 
1Exact

Greedy 
AMIP

Greedy 
1Exact

❌ ❌ ✅ ✅

NetApprox FH-Gurobi FH-Gurobi
(warm-start)

✅ ❌ ✅

AMIP Additive 
1Exact

Greedy 
AMIP

Greedy 
1Exact

❌ ❌ ✅ ✅

NetApprox FH-Gurobi FH-Gurobi
(warm-start)

✅ ❌ ✅

Figure 1: Our examples: one-outlier (left), Simpson’s paradox (middle), poor conditioning (right). A dashed
line represents the OLS-estimated slope on the entire data set while a solid line represents the slope with
black dots removed. The left plot includes an inset zoomed in on the bulk of the data. The tables display the
performance of the approximations for the corresponding example: a red X indicates a failure with re-run,
and a green check indicates a success.

4.2.1 One outlier experiment

Setup. In realistic data settings, we may have a single data point far from the bulk of the data; this outlier
may arise due to data-entry errors, machine-measurement errors, or heavy tails in both the covariate and
response. To construct the plot in Figure 1 (left), we draw 1,000 red crosses by taking xn ∼ N (0, 1) i.i.d.
and yn = −xn + ϵn with ϵn ∼ N (0, 1) i.i.d. Throughout, we use N (µ, σ2) to denote the normal distribution
with mean µ and variance σ2. The black dot appears at xn = yn = 106. We fit OLS with an intercept. The
OLS-estimated slope on the full data set is nearly 1; after dropping the black point (less than 0.1% of the
data set), the estimate is nearly -1, representing a sign change.

Experimental Results. We summarize the performance with re-run in the left table of Figure 1. When asked
to find the worst-case 0.1% of the data set to drop, Additive One-Exact succeeds because, by construction, it
is exact for removing a single point. AMIP chooses a red cross to drop; it predicts that no sign change will be
achieved, and dropping the chosen point and re-running also does not achieve a sign change. It follows that
AMIP suffers both types of failure (i.e., with and without re-run) in this example. When considering failure
with re-run, there is no distinction between greedy and additive algorithms when ⌊αN⌋ = 1, so Greedy One-
Exact and Greedy AMIP perform the same as their additive counterparts. FH-Gurobi (without warm-start)
fails while both NetApprox and FH-Gurobi (warm-start) succeed in this setting. In this experiment, failures
with and without re-run align for each approximation. We provide more detail on performance in Table 1 in
Appendix C.1.

The leverage of the black-dot point must be near one in order to construct this failure mode; that is, the
black dot must account for most of the variance in the covariance matrix. However, we note that the exact
alignment of the black dot on the line yn = xn is incidental. In our theory next, we prove that we can expect
such failures when the black-dot point is chosen with yn = cxn for any constant c > 0 and sufficiently large
|xn|. We also note that, although Kuschnig et al. (2021) have observed that high-leverage observations can
lead to problems for the AMIP, they do not demonstrate this result in a setting with one outlier or provide
supporting theory.
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4.2.2 One outlier theory

Our theory illustrates why we might expect AMIP to fail in this one-outlier case. In particular, we first
demonstrate why a point far from the bulk of the data might have a low influence score. Second, we
demonstrate why we might expect other data points to have higher influence scores. Together, these facts
suggest why the outlier point might have a lower influence score than central points and thereby not be
chosen for dropping in the approximation, potentially leading to a failure with re-run.

We do not need to assume any data-generating process to prove our results. Rather, we take a single point
increasingly far away from the origin. First, observe that, in linear regression, the influence score factorizes
into two terms: the residual times a leverage-like term (Hampel, 1974); see Appendix C.6 and Equation (3) for
full details. A sufficiently-far outlier will have a very low residual. Meanwhile we show that the leverage-like
term goes to zero as the outlier gets farther away (see Lemma C.2). So a sufficiently-far outlier will have a
vanishingly low influence score. We let this outlier be the first data point in the result in Proposition 4.3
below. If this outlier caused all the other influence scores to become vanishingly low as well, it might still
have the largest influence. We show this collective vanishing behavior need not happen in Example 1 below;
in particular a second data point’s influence score does not vanish.

Before stating our results, we introduce some notation relating to fitting OLS on all data points except the
first point, which we will take to be the outlier. Let X−1 ∈ R(N−1)×P be the design matrix with the first row
deleted, and let y−1 ∈ RN−1 be the response vector with the first entry deleted. Define A−1 := X⊤

−1X−1 and
b−1 := y⊤

−1X−1.
Proposition 4.3. Choose any v ∈ RP with ∥v∥ = 1 and any constant c > 0. Let (x1, y1) = (λv, λc). Let
(xn, yn)N

n=2 be any points in RP × R such that X−1 has rank P . Let θ̂p denote the pth entry of the OLS
estimator, θ̂, fit without an intercept. Then, for all 1 ≤ p ≤ P ,

lim
λ→∞

∂θ̂p(w)
∂w1

∣∣∣
w=1N

= 0, (5) and lim
λ→∞

∂θ̂p(w)
∂w2

∣∣∣
w=1N

= st

(v⊤A−1
−1v)2 , (6)

where s := (v⊤A−1
−1ve⊤

p A−1
−1x2 − e⊤

p A−1
−1vv⊤A−1

−1x2) and t := (y2v⊤A−1
−1v − cv⊤A−1

−1x2 − b−1A−1
−1x2v⊤A−1

−1v +
b−1A−1

−1vv⊤A−1
−1x2).

Equation (5) is the limiting value of the influence score for the first data point (the outlier). And so
Proposition 4.3 tells us that under mild conditions, an extreme outlier has a small influence score. Equation (6)
is the limiting value of influence score of an (arbitrary) other point in the data set, and we see that it converges.
When its limit is not equal to 0, Proposition 4.3 implies that, for extreme enough outliers in the response and
covariate directions, the influence score of the outlier point will be smaller in magnitude than that of another
point in the data set. Note, when P = 1, s is always equal to 0, so the right hand side of Equation (6) is also
0. Next, we give an example (in P > 1) where s, t ̸= 0, and so the righthand side of Equation (6) is nonzero.

Example 1. Consider the data set with X =

λ 0
3 4
5 6

, y =

λ
2
3

. Suppose we are making a decision based on

the sign of the second effect, p = 2. In this setting,

lim
λ→∞

∂θ̂p(w)
∂w2

∣∣∣
w=1N

= st

(v⊤A−1
−1v)2 = 0.0178 > 0. (7)

Proof. We have v =
[
1
0

]
, c = 1, x2 =

[
3
4

]
, y2 = 2. It follows that A−1 =

[
34 42
42 52

]
, s = 1, t = 3, and

(v⊤A−1
−1v)2 = 169.

While these theoretical results are presented without an intercept and our numerical results are fit with an
intercept, we find similar failure modes regardless of the inclusion of the intercept. See Appendix C.2 for a
version of the numerical results fit without an intercept and a more nuanced discussion on the impact of the
intercept term.
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4.3 Multiple outliers

We next identify two realistic cases with multiple outliers far from the bulk of the data such that the additive
approximations and FH-Gurobi (without warm start) fail. We support our empirical findings with theory.
Essentially we see how failure changes if we have a small group of outliers instead of just a single outlier.

4.3.1 Simpson’s paradox

It is common to have (at least) two noisy subpopulations within a single data set; we consider the case where
one subpopulation represents a small fraction of the total. For instance, we might have heterogeneity in the
population that the regression model does not account for; Simpson’s paradox describes the case when the
trend within subpopulations reverses the trend across the full populations.

Setup. In the particular example in Figure 1 (middle), the overall slope (across all the data) has a different
sign than the slope in just the red data or just the black data. To create the illustration in Figure 1 (middle),
we draw 1,000 red crosses with xn ∼ N (0, 0.25) i.i.d., yn = −xn + ϵn, and ϵn ∼ N (0, 1) i.i.d. We draw 10
black dots with xn ∼ N (25, 0.25), yn = −xn + 40 + ϵn i.i.d., and ϵn as before. The OLS-estimated slope on
the full data set is 0.52. Dropping the black dots (1% of the data) yields a slope of -0.99, a sign change.

Experimental results. We summarize the performance with re-run in the middle table of Figure 1. When
asked to find the worst-case 1% (i.e., 10 data points) of the data set to drop, both AMIP and Additive
One-Exact choose some red-cross points and some black-dot points to drop; see Table 2 in Appendix C.1 for
full detail. Both methods predict there will be no sign change (a failure without re-run). Upon removing the
flagged data points and re-running the data analysis, in both cases we find no sign change (a failure with
re-run). At extra computational expense, both greedy methods flag exactly the black-dot data points as the
points to drop, so neither suffers a failure. At the cost of further increasing compute time, NetApprox and
FH-Gurobi (warm-start) both report that a data subset of size 10 exists to flip the sign, while FH-Gurobi
without warm-start fails to report the existence of such a subset.

Discussion. Once we leave the regime of one data point, we see that both additive methods (AMIP, Additive
One-Exact) and FH-Gurobi (without warm start) can fail. We see that errors can arise when we approximate
the change in dropping a group of data points by the sum of the changes of dropping individual data points.
This phenomenon is known more broadly as masking, where one outlier can hide the effect of another (Belsley
et al., 1980; Atkinson, 1986). To overcome masking problems, previous work has noted the success of using
greedy procedures, both in problems of outlier detection (Hadi & Simonoff, 1993; Lawrance, 1995) as well
as in the problem of identifying the Maximum Influence Perturbation (Kuschnig et al., 2021). Although
both of our multi-outlier examples (Simpson’s paradox here and poor conditioning below) demonstrate the
phenomenon of masking, the failure modes we surface are distinct from the simulation studies of Kuschnig
et al. (2021); our examples demonstrate settings where removing a small fraction of the data can lead to
a change in sign of the regression coefficient—a failure of the approximation, according to our definition
in Section 4. The examples in Kuschnig et al. (2021) demonstrate cases where AMIP can misestimate the
change of an effect’s magnitude in the face of masking. But those examples demonstrate neither a failure
without re-run or a failure with re-run. See Appendix A.5 for more discussion on masking.

4.3.2 Poor conditioning

We do not expect that the alignment of data points within the outlier cluster (black dots) in the example
above will be germane to our results. However, recall that the OLS objective is not rotationally invariant
in the two-dimensional space defined by a single covariate and response. So it is a priori possible for the
alignment of the relative trend in the bulk of the data (red crosses) and the trend across the full data to
matter. In particular, we next consider a case where the bulk of the data is ill-conditioned on its own.

Poorly-conditioned data are a common concern to users of OLS regression (Chatterjee & Hadi, 1986). Here,
we adapt an example presented in Moitra & Rohatgi (2023). In the example of Moitra & Rohatgi (2023), the
data points were constructed to lie perfectly along two straight lines (see Figure 7). Moreover, the small
subset of outlier data points lie perfectly along the OLS-estimated slope for the entire data set. The removal
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of the black points causes all variation along covariate space to be lost and the OLS solution to become
ill-defined.

Setup. We alter the adversarial setup of Moitra & Rohatgi (2023) into one that might arise in natural
data settings with no adversary (see Figure 1 (right)). To that end, we add generous amounts of noise to
both red-cross points and black-dot points and translate the black-dot points to no longer lie along the
OLS-estimated slope. We generate the red crosses so as to have poor conditioning; since there is much
more noise around the (zero) trend than variation in the covariates, there is no clear regression solution. In
particular, we generate the 1,000 red crosses with xn ∼ N (0, 0.001) i.i.d., yn = ϵn, and ϵn ∼ N (0, 1) i.i.d.
We draw the 10 black dots as xn ∼ N (−1, 0.01) i.i.d., yn = −xn − 10 − ϵn, and ϵn as before. When we
consider both black dots and red crosses together as a single data set, there is no poor conditioning. The
OLS-estimated slope on the full data set is around 7.40; dropping the black dots (1% of the data) yields a
slope of about -1.04, a sign change.

Experimental results. We summarize the performance with re-run in the right table of Figure 1. We ask
each method whether it is possible to drop at most 1% (10 data points) of the data set and change the sign
of the effect. Both AMIP and Additive One-Exact choose some red crosses and some black dots; see Table 3.
Both methods in turn suffer failures with and without re-run. The greedy methods are more computationally
expensive but succeed. NetApprox and FH-Gurobi (warm-start) both report that a data subset of size 10
exists to flip the sign, while FH-Gurobi without warm-start fails to report the existence of such a subset.

4.3.3 Theory

A common theme in our multi-outlier examples is that, in general, the impacts of data-dropping are non-
additive. Our theory illustrates that, even in a simple setup, data points can mask each other’s impacts. In
particular, our theory shows we can have masking issues even in OLS with just a single covariate and no
intercept, and even between just two outlier data points. The issues in our one-outlier theory (Proposition 4.3)
could be overcome by using a One-Exact method. But our next results show that Additive One-Exact falls
prey to masking issues.

Proposition 4.4. Let λ, c ∈ R. Consider a pair of data points, (x1, y1) = (λ, λ) and (x2, y2) = (λ, λ + c). Let
(xn, yn)N

n=3 be any points in R × R such that at least one of (xn)N
n=3 is non-zero. We apply OLS to the single

covariate x and response y with no intercept; we make a decision based on the sign of the resulting effect size.
As λ → ∞, the Additive One-Exact approximation (Section 3.1) to the change in effect size from dropping
(x1, y1), (x2, y2) tends to zero, while the true change in effect size tends to 1 − (

∑N
n̸=1,2 xnyn/

∑N
n̸=1,2 x2

n).

In the setup of Proposition 4.4, P = 1, and there is no intercept. So the assumption that at least one of
(xn)N

n=3 is non-zero is equivalent to an assumption that the design matrix with the first two points removed
is full rank. That is, the assumption ensures the OLS solution remains well-defined after dropping the first
two data points. See Appendix C.7 for the proof of Proposition 4.4.

Proposition 4.4 tells us that, as a pair of points is taken to infinity together, the sum of their individual impacts
(i.e., the change in effect size from dropping each point individually) always approaches zero, regardless of
what the group impact (i.e., the change in effect size from dropping the pair together) approaches. Indeed,
the impact of dropping the group may result in a substantive change in effect size, information that cannot
be gleaned solely from looking at individual impacts.

While the theory in this section is presented without an intercept term, we find that the exclusion of the
intercept has very little effect on the numerical results presented in Section 4. In particular, we run versions
of the numerical results fit without an intercept term in Appendix C.2 and find little difference.

4.4 Greedy failures

Moitra & Rohatgi (2023, Section 5.1) construct a failure mode of greedy approximations in an adversarial
way. We find it helpful to visualize their (text) construction; see Figure 7 in Appendix C.7.2. We surface
similar adversarial examples where greedy algorithms fail; see Figure 8 and Figure 9. But we have yet to
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Figure 2: Our examples: Single-cell Genomics (left), Ames Housing (middle), Bird Morphometrics (right). A
dashed line represents the OLS-estimated slope on the entire data set while a solid line represents the slope
with black dots removed. We do not plot fitted models for the Bird Morphometrics data since the regression
involved two additional covariate dimensions. The tables display the performance of all approximations for
the corresponding example: a red X indicates a failure with re-run, and a green check indicates a success.

identify realistic, non-adversarial examples of greedy failures beyond the dropping of a single data point.
Furthermore, we were unable to identify any realistic failures of Greedy One-Exact.

5 Examples in real-world data

We next illustrate failures in real-data analyses. We were able to surface failures in real-data analyses for all
but the greedy approximations. We also illustrate various real-data analyses where all methods succeed in
Appendix C.4. In each of the following real-world examples, we know that we can drop less than 1% of the
data and change the sign of the OLS regression coefficient since at least one method successfully identifies
such a set. We check whether all methods do so.

The Single-cell Genomics and Ames Housing data sets demonstrate multi-outlier failure modes, while the
Bird Morphometrics example demonstrates a one-outlier failure mode.

5.1 Single-cell Genomics

Setup. Our first data set is taken from a study on the impact of sensory experiences on gene expression in
the mouse visual cortex (Hrvatin et al., 2018). The data set contains a total of 65,539 points. As is common
in gene expression data, these data are heavily zero-inflated; 99.5% of the Vip gene values (shown on the
x-axis in Figure 2 (left)) are 0, and 97.39% of the Gad1 gene values (shown on the y-axis) are 0. Practitioners
are often interested in the association between two genes. We consider a linear regression (with intercept) of
Gad1 values on Vip values.

This data analysis is not robust to dropping 1% of the data. In particular, there exists a subset of size 172
(0.26% of the data) that, when dropped, can change the sign of the regression coefficient from positive (0.536)
to negative (−0.003). We plot these 172 points as black dots in Figure 2 (left). We plot the remaining points
of the data set as red crosses. Note that, due to zero-inflation, many data points are stacked at (0, 0).

Experimental results. We summarize the performance with re-run in the left table of Figure 2. We ask
each method whether it is possible to drop at most 1% (656 data points) of the data set and change the sign
of the effect. Both AMIP and Additive One-Exact predict there will be no sign change (a failure without
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re-run). Upon removing the flagged worst-case 1% of data points and re-running the data analysis, in both
cases we still find no sign change (a failure with re-run). Both of the greedy methods, however, successfully
identify 172 data points to drop to change the sign, so neither suffers a failure. NetApprox also successfully
identifies such a set. FH-Gurobi returns a set of size 1712 to drop, which is larger than 1% of the data, so it
fails here. Interestingly, FH-Gurobi (warm-start) does successfully identify a set of size 172 points to drop,
but the subset it returns is incorrect in that, when dropped, the regression coefficient is still greater than 0
(it was 0.00150), and thus no sign change is detected. See Table 4 in Appendix C.1 for full details.

5.2 Ames Housing

Setup. The Ames Housing data set provides a comprehensive collection of residential property data from
Ames, Iowa, and is a widely utilized data set for regression modeling exercises (De Cock, 2011). The response
variable here is SalePrice, the final selling price of each home, while the covariates consist of building, land,
and facility characteristics. We perform a one-dimensional linear regression (with intercept) of SalePrice on
the pool area covariate (i.e., the pool area of each property in square feet). The training data set on Kaggle
contained 1,460 points.

This data analysis is not robust to dropping 1% of the data. Dropping 4 out of the 1,460 (0.27%) points
changes the sign of the regression coefficient from positive (182.71) to negative (−15.09). In Figure 2 (middle),
we plot the four points as black dots, and the rest of the data set we plot as red crosses.

Experimental results. We summarize the performance with re-run in the middle table of Figure 2. When
asked if it is possible to drop at most 1% (14 data points) of the data and change the sign, both AMIP and
Additive One-Exact predict that there will be no sign change (a failure without re-run). Upon removing the
flagged worst-case 1% of points and re-running OLS, in both cases we still find no sign change (a failure
with re-run). Both of the greedy methods, however, successfully identify 4 data points to drop to change
the sign, so neither of these greedy methods fails. All of the OLS-specific methods succeed. See Table 5 in
Appendix C.1 for full details.

5.3 Bird Morphometrics

Setup. This data set is taken from an ecological study on the morphometric features of the saltmarsh
sparrow Ammodramus caudacutus (Zuur et al., 2010). Ecologists commonly use linear models to understand
the association between animal features. The outlier in this data set may be a different species, a typing
mistake, or indeed a correct record (Zuur et al., 2010).

The original data set contains 1,295 points. In order for 1 data point to account for roughly 1% of the total,
we sampled 10% of the full data (129 points) uniformly at random without replacement; it happened that our
first random sample retained the outlier point, so we kept this single sample. Then, we ran OLS regression
(with intercept) on the features “head” (head length), “wingcrd” (wing length), and “culmen” (beak length).
Removing just the single black-dot point (0.77% of the data) in Figure 2 (right) is sufficient to change the
sign of the regression coefficient for “head” from negative (−0.69) to positive (0.399). We plot the remainder
of the data set we consider as red crosses.

Experimental results. We summarize the performance with re-run in the right table of Figure 2. When
asked to find the worst-case 1% of the data set to drop, both AMIP and Additive One-Exact succeed, as do
both greedy approximations. NetApprox, however, does not identify the point that, when dropped, changes
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Figure 3: Plot of approximation runtimes on a simulated data set of size N = 75,000. We omit results that
take over one hour to run; in particular, FH-Gurobi (warm-start) takes over one hour on dimension sizes 10
or larger. The plot includes an inset zoomed in on algorithms that run in under 200 seconds (i.e., the greedy
and additive algorithms, as well as particular settings of FH-Gurobi without warm start).

the sign. Similarly, both versions of FH-Gurobi fail here, with each choosing a different subset of 4 points to
drop. Since the subset identified is > 1% of the data, both constitute a failure.5

6 Runtime comparison

We next compare running times across approximations. In addition to being the sole algorithm that did not
fail any of our tests, we find that Greedy One-Exact can be orders of magnitude faster than the OLS-specific
approximations. All experiments were conducted in Python 3 on a personal computer equipped with an
Apple M1 Pro CPU at 3200 MHz and 16 GB of RAM.

Setup. We simulate data sets of size N = 75,000, and we vary dimension P up to P = 50. We choose both
N and P to be larger than those of any data set considered by Broderick et al. (2020) and any data set in
the present paper. Let IP denote the identity matrix of dimension P and 1P denote the the one-vector of
dimension P . We draw samples with xn ∼ N (0, IP ) i.i.d., yn = ⟨xn, 1P ⟩ + ϵn, and ϵn ∼ N (0, IP ) i.i.d.

Results. We show the runtimes of different approximations in Figure 3. The additive algorithms (AMIP and
Additive One-Exact) run the fastest for all dimensions. At dimension P = 50, AMIP runs for 0.03 seconds
and Additive One-Exact for 0.05 seconds. The greedy algorithms are the next fastest. At dimension P = 50,
Greedy AMIP runs for just over a minute (62.84 seconds) and Greedy One-Exact for 75.54 seconds. The third
fastest is FH-Gurobi without warm-start. At P = 50, this algorithm runs for 238.20 seconds, or just under 4
minutes. NetApprox and FH-Gurobi (warm-start) are substantially slower than the other algorithms. At
P = 50, NetApprox runs for 3589.93 seconds (just over 59 minutes). At P = 10, the FH-Gurobi (warm-start)
algorithm is unable to run in under 1 hour; it ran for 3968.39 seconds, or just over 66 minutes. We are unable
to run FH-Gurobi (warm-start) for dimensions much larger than P = 10 in our time budget. Notably, in
the present experiment, Greedy One-Exact can be over 47 times faster (at P = 50) than the OLS-specific
methods.

5When running a 1D version of OLS (fit with an intercept) on the bird morphometrics data set with head length as the sole
predictor, all methods are able to succeed.

14



Published in Transactions on Machine Learning Research (07/2025)

7 Discussion

In the present work, we identify non-adversarial failure modes of approximations to the Maximum Influence
Perturbation. We focus on linear regression fit with ordinary least squares and where the decision is made
based on the sign of an effect. For users interested in the Maximum Influence Perturbation for this case, we
recommend the following: (1) running Greedy One-Exact if the user is willing to incur the computational
expense and (2) that users visualize their data with diagnostic plots (e.g., scatter plots, leverage plots, residual
plots). Our recommendation of Greedy One-Exact agrees with that of Kuschnig et al. (2021), though the
notion of failure guiding our comparison is different.

Across our experiments, we find that Greedy One-Exact is able to successfully detect non-robustness when
faced with both synthetic and real-world data examples. Additionally, we find that it is orders of magnitude
faster than the OLS-specific approximations on plausibly-sized data sets. Our experiments suggest that, for
data sets with N ≤ 75,000 and P ≤ 50, Greedy One-Exact should not take much longer than a minute to
run; we believe this running time cost should not be prohibitive for users. Moreover, Greedy One-Exact is
conceptually straightforward and should be straightforward to implement in practice; unlike NetApprox and
FH-Gurobi, it does not require the use of commercial software that may not be accessible to all users.

Since NetApprox and FH-Gurobi were originally designed to estimate upper bounds on the number of points
that must be removed to induce a sign change in a regression coefficient, it is not surprising that these
algorithms might struggle with identifying a particular small subset of data points to drop to achieve a sign
change. For example, in the bird morphometrics dataset, NetApprox accurately estimates the number of
points that need to be dropped but fails to pinpoint the specific data point whose removal flips the sign. A
similar issue arises with FH-Gurobi (warm-start) on the single-cell genomics data. Additional failure cases
for both FH-Gurobi variants can be attributed to the looseness of the returned upper bounds.

While the additive methods also fail our tests, we note that AMIP can be over 2500 times faster than Greedy
One-Exact in our experiments here with N = 75,000, P = 50. Users with larger problems (in N or P ) and
smaller compute-time budgets may still find it useful to run additive approximations if the Greedy One-Exact
becomes prohibitive in cost. We find that the additive methods (AMIP, Additive One-Exact) tend to fail
in the presence of points with extreme leverage scores, as seen in the scatter plots in Figure 1 and in the
residual-leverage plots in Figure 6. While AMIP may not be able to detect such non-robustness, a simple
visualization of the data certainly would. This finding further highlights the importance of visualizing the
data alongside running data-dropping robustness checks.

Not only is linear regression widely used in practice, but we believe that finding approximation failure modes
in such a simple and intuitive analysis should lead us to suspect failure modes in more complex analyses
until proven otherwise. It remains to investigate how alternative models (beyond low-dimensional linear
regression) might interact with different data arrangements to affect approximation quality. Geometries of
interest include those arising from high-dimensional covariates, generalized linear models (and other cases
with constrained residuals), constrained parameter spaces (e.g., for variance parameters),6 mixed-effect models
(related to Bayesian hierarchies),7 and other more-complex models. Across our synthetic and real-world data
sets, we find that the leverage scores of the black-dot points are extremely large; see Figure 6. High-leverage
points may not have the same impact on an analysis under alternative geometries. Moreover, it remains to
investigate approximation performance for decisions beyond the sign of an OLS-learned effect; for instance,
decisions based on statistical significance or Bayesian posterior means and variances are especially widespread.
Finally, it remains to investigate the speed and accuracy trade-offs in additive and greedy approaches for data
analyses more computationally expensive than the low-dimensional linear regression examples considered
here; there exist many cases where a practitioner is not willing to re-run their data analysis ⌊αN⌋ times.

6This geometry was flagged as challenging in Broderick et al. (2020, Section 4.4.2).
7This geometry was flagged as potentially challenging in Nguyen et al. (2024, Section 6.3).
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A Related works

A.1 Related notions of robustness

In this section, we discuss related notions of robustness and explain why robustness to worst-case data
dropping provides a new and useful check on generalizability. Many tools in statistics, such as p-values
and confidence intervals, are meant to measure the generalizability of sample-based conclusions (Fisher,
1925). Similarly, works on algorithmic stability in the learning theory literature quantify an algorithm’s
generalization error (Bousquet & Elisseeff, 2002). However, these tools rely on an assumption that the
data are drawn independently and identically (i.i.d.) from the underlying target population. In most real
world settings, we cannot assume the population that the samples are drawn from is identical to the target
population. For instance, we might look to apply the conclusions from a specific sample to a slightly different
future population. Departing from the i.i.d. regime, we can no longer rely on the theory behind classical
tools alone to tell us something definitive about the generalizability of sample-based conclusions. Prior works
have also studied the robustness of estimators to gross outliers and adversarially corrupted samples, arbitrary
corruptions of a data-point or small collection of data points (Hampel, 1974; Madry et al., 2018; Liu & Moitra,
2022). The influence function has played a central role in the study of gross outlier sensitivity since the
pioneering work of Hampel (1974). Specific to linear regression, Cook (1977) introduced Cook’s Distance, for
detecting outliers and gross errors. However, conclusions may still fail to generalize in the absence of gross
outliers (Broderick et al., 2020). As these related notions of robustness alone do not provide a comprehensive
check, a data analyst might still worry about generalizability if dropping a very small fraction of the sample
can lead to drastically different conclusions.

A.2 Computational difficulties of determining robustness to worst-case data dropping

An exact computation of the Maximum Influence Perturbation is computationally intractable. A brute force
approach involves enumerating over every possible data subset, which amounts to rerunning

(
N

⌊αN⌋
)

data
analyses, where N is the number of points in the dataset. Inspired by the Maximum Influence Perturbation
problem, Moitra & Rohatgi (2023); Freund & Hopkins (2023); Rubinstein & Hopkins (2025) tackle a slightly
different but related problem, one of finding the minimum number of samples (in a fractional sense) that need
to be removed to zero out a particular regression coefficient. For OLS regression, Moitra & Rohatgi (2023,
Theorem 1.3) shows that there is no No(P ) time algorithm that, given a non-negative integer k, can determine
whether the minimum number of samples that need to be dropped to zero out a regression coefficient is less
than or equal to k.8 More specifically, Moitra & Rohatgi (2023) shows that this problem requires NΩ(P )

time. Although their complexity result applies to the slightly different problem of determining the minimum
number that need to be dropped to change the sign of the regression coefficient, this hardness result also
applies to our problem of determining the existence of a subset of size at most 100α% of the data that can be
dropped to change the sign. Consider the following reduction. Suppose there existed an algorithm that solves
the existence problem in faster than NΩ(P ) computations. Specifically, for some k less than 100α% of the
data, the algorithm determines the existence of a subset of size at most k that can be dropped to change the
sign of the regression coefficient. If such an algorithm were to exist, we could run it for k ∈ [1, ⌊αN⌋] (an
operation that is O(N)) to determine the minimum number of samples required to be dropped to zero out the
regression coefficient. The existence of such an algorithm would contradict Moitra & Rohatgi (2023, Theorem
1.3), which shows that such a task requires at least NΩ(P ) computations. Thus, determining robustness to

8Moitra & Rohatgi (2023) worked with a fractionally relaxed version of this problem, where the weight of a data point can
take on non-integer values. This result precludes the existence of a faster solution in the integer version, as one could use the
integer version to solve the weighted version (up to an approximation) by making several copies of the dataset.
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small-fraction data-dropping is expensive, even in the simple setting of OLS linear regression. This prompts
the need for approximations.

A.3 Approximations to (non-worst-case) data dropping

In this section, we discuss tangential works that use approximations to data dropping in settings where the
subset to drop is known. Since we are concerned with developing algorithms to overcome the combinatorial
problem of searching for some worst-case subset to induce the largest change in a quantity of interest, the
works discussed in this section do not provide a fast way to search for the worst-case data subset to drop.

The idea of using approximations to data dropping goes as far back as Jaeckel (1972) and Hampel (1974), who
introduced the influence function in the context of robust statistics. Shortly after, Cook (1977) introduced
influence measures, such as Cook’s Distance, in the context of detecting outliers and gross errors. Pregibon
(1981) introduced the One-step Newton approximation in the context of logistic regression diagnostics.

As models become increasingly expensive to run and datasets increasingly large, data-dropping approximations
have gained popularity in several areas of machine learning. Many works have developed gradient-based
approximations for cross validation (Beirami et al., 2017; Rad & Maleki, 2020; Giordano et al., 2019;
Stephenson & Broderick, 2020; Ghosh et al., 2020). Works in the data privacy space have used approximations
for deleting user data from models (Guo et al., 2020; Sekhari et al., 2021; Suriyakumar & Wilson, 2022).
Within the model interpretability and data attribution space, methods such as Shapley value estimators
(Ghorbani & Zou, 2019) and datamodels (Ilyas et al., 2022) require retraining the model a large number of
times on different subsets of the data in order to quantify the impact of particular training points on the
model output. In response, several works have proposed using approximations to retraining based on the
influence function (Koh & Liang, 2017; Koh et al., 2019; Park et al., 2023). These gradient-based based
approximations achieve great gains in computation while maintaining comparable accuracy to methods that
rely on model retraining, as shown in Park et al. (2023, Figure 1). While these works (Koh & Liang, 2017;
Koh et al., 2019; Park et al., 2023) investigate the performance of data dropping approximations for the task
of dropping a pre-defined subset, we investigate the performance of data-dropping approximations for the
task of dropping a worst-case data subset. The performance of an approximation may be quite different on
an average-case compared to the worst-case data subset.

A.4 Case Influence Analysis

The case influence analysis literature studies the importance of individual or groups of cases (data points)
on posterior distributions (Bradlow & Zaslavsky, 1997; Carlin & Polson, 1991; Zhu et al., 2012), predictive
distributions (Johnson & Geisser, 1983), and likelihoods (Cook, 1986; Zhu et al., 2007). Like the recent works
on Maximum Influence Perturbation (MIP) (Broderick et al., 2020; Kuschnig et al., 2021), these works use
first-order approximations to avoid re-running a full model; while the broad aim of both lines of work is to
assess the impact of deleting cases on inferential results in a data analysis, there are a handful of notable
distinctions between these works.

Works that develop approximations to the MIP propose algorithms to solve the optimization problem of
searching for the worst-case data subset, i.e. the subset of data whose removal maximally changes some user-
specified inferential quantity. Works in the case influence literature do not present solutions to this worst-case
data-subset search. Rather, the case influence literature focuses on the impact of deleting observations that
are specified in advance. While Zhu et al. (2012, Theorem 2) uses a first-order approximation that appears to
asymptotically treat the case of dropping a non-vanishing proportion of the data, Theorem 2 is proved for a
particular dropped subset, rather than a uniform bound over all subsets of a particular size, a key property
allowing AMIP to approximate the deletion of the worst-case data subset. This is again shown in simulation
studies, where Zhu et al. (2012) work with pre-specified subsets, namely those observations within a group in
a Bayesian hierarchical model, and compares the posterior summary statistics obtained after deleting these
subsets to those on the full data.
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Furthermore, works in case influence typically concern whole-model sensitivity metrics—the likelihood function
(Cook, 1986; Zhu et al., 2007), posterior distribution (Zhu et al., 2012), and predictive distribution (Johnson
& Geisser, 1983), rather than a particular inferential quantity, such as a particular OLS regression coefficient.
Sensitivity of a single regression coefficient is not sufficient to imply sensitivity to more global objects, like the
entire vector of coefficients. Works on approximations to the MIP instead let the analyst specify any inferential
target—often a single quantity that drives a data analysis conclusion, such as the sign or significance of one
OLS coefficient—and asks how fragile that quantity of interest is to worst-case data deletion.

A.5 Masking

We identify cases where masking, a situation where one outlier “hides” the effect of another outlier, can
interfere with finding the Most Influential Set. Masking itself has been a widely studied phenomenon in
the context of multi-outlier detection. Hampel (1974), a foundational text in robust statistics, notes that
masking can make the identification of multiple outliers cumbersome and erroneous (Hampel, 1974, Section
1.4). Belsley et al. (1980, Section 2.1) also discussed the masking phenomenon and proposed a stepwise
procedure for identifying groups of influential outliers. Bendre (1989) noted that masking can change the
results for some common multiple outlier tests. Lawrance (1995) noted that masking can create errors in
common diagnostic quantities, such as Cook’s Distance. In the context of outlier detection, Atkinson (1986)
proposed a solution that is able to mitigate the effects of masking: it is based on a two-step procedure that
first fits subsamples of the data using least median of squares regression, which identifies potential groups
of outliers, then uses single-point influence measures to confirm whether the points identified are indeed
outliers. Gray & Ling (1984) note that the off-diagonal entries of the Hat matrix contain information about
pairwise interaction effects between data points and propose an algorithm that uses this information in an
attempt to overcome masking when identifying influential subsets. Both Lawrance (1995); Chatterjee & Hadi
(1988) examine the the deletion of a pair of cases. Lawrance (1995) focused solely on Cook’s distance as
the quantity of interest, while Chatterjee & Hadi (1988) examines a range of influence measure. The works
find that the degree of masking between two data points is a function of the residuals, the leverages, and
the off-diagonal entries of the Hat matrix. To address masking effects in this work, we consider a stepwise
approach (Greedy AMIP and One-Exact) similar to the one taken in Belsley et al. (1980, Section 2.1) to
overcome a combinatorial problem of searching for a Most Influential Set. The concurrent work of Hu et al.
(2024) present theory on the non-additivity of data-dropping as well, but their focus is on most influential
subset selection as opposed to detecting sensitivity of statistical conclusions to worst-case small-fraction
data dropping. Finally, Kuschnig et al. (2021) compare greedy and additive approximations in context of
worst-case small-fraction data dropping; we build on their work by (1) identifying instances where these
methods result in conclusive failures through the definitions in Section 4, and (2) providing mathematical
insight into these failure modes, as we present in Section 4.

A.6 Lower bound algorithms

Following Broderick et al. (2020), a line of works (Moitra & Rohatgi, 2023; Freund & Hopkins, 2023; Rubinstein
& Hopkins, 2025) provide lower bounds on the number of points that must be removed to zero out a particular
regression coefficient in OLS linear regression. However, these lower bound algorithms (1) do not identify a
Most Influential Set and (2) do not compute an approximation to the Maximum Influence Perturbation, so
we do not compare to these methods in this work.

However, the line of algorithms providing lower bounds can inspire future methodological development for the
Most Influential Set problem in OLS. For example, Freund & Hopkins (2023) introduce a spectral algorithm
that takes a more global approach than those taken by either the additive or greedy approximations. As
another example, Rubinstein & Hopkins (2025) introduce a lower bound algorithm based on analyzing the
error term between the AMIP approximation and the true effect of rerunning an analysis without the dropped
subset. They then provide new ways to upper bound the error term expression, offering mathematical
insight into the error accrued by using influence-functions based approximations to the Maximum Influence
Perturbation. Despite these connections, there is currently no direct way to use these algorithms to identify a
Most Influential Set, so it is not the focus of this paper.
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A.7 Failure modes

Past works have pointed out cases where worst-case data-dropping approximations may perform poorly, but
these works do not define notions of failure within the context of generalization of sample-based conclusions.
We define these notions of failure concretely in Section 4 and then surface examples of failures with respect
to these specific definitions. Whereas previous works have pointed out failures in adversarial examples and in
settings of dropping larger data fractions > 1% (Moitra & Rohatgi, 2023; Freund & Hopkins, 2023), we are
concerned with failures that might arise in natural data settings without an adversary and (for purposes
of generalization) where dropping a surprisingly small fraction of data leads to changes in conclusions.
Certain past works have surfaced failure modes of AMIP in real-world settings without further investigations.
Specifically, Broderick et al. (2020, Section 4.3) and Nguyen et al. (2024, Section 6.2) point to settings where
the approximation performs poorly on a study on microcredit (Angelucci & De Giorgi, 2009). Broderick
et al. (2020, Section 4.3) points out a failure of the AMIP in a setting where the quantity of interest is a
hypervariance parameter in a hierarchical model. Here, AMIP approximates a positive effect while the actual
refit gives a negative effect. This failure mode has another layer of distinction from our problem, as it points
to a failure that may arise due to a constrained parameter space. Nguyen et al. (2024, Section 6.2) point
out a setting where the approximations perform poorly for a component of a hierarchical model fitted with
MCMC; in particular, they identify a setting where the confidence interval for AMIP undercovers. Finally,
for the same microcredit study, Kuschnig et al. (2021); Moitra & Rohatgi (2023); Freund & Hopkins (2023)
compare the performance of different approximation algorithms but not within the context of the failure
definitions laid out in Section 4.

B Approximation supplementals

B.1 AMIP supplementals

Broderick et al. (2020) consider a linear approximation to dropping data that can be used in any setting
where the loss function f(dn; θ) is twice continuously differentiable in θ. They define a quantity-of-interest,
ϕ(θ, w), to be a scalar related to the conclusion of a data analysis, which one is concerned about observing a
change in upon dropping a very small fraction of data. Common quantities of interest in a data analysis
include the sign or significance of a regression coefficient.

Specifically, they linearize the quantity-of-interest as a function of the data-weights

ϕlin(w) = ϕ(1N ) +
N∑

n=1
(wn − 1)∂ϕ(w)

∂wn

∣∣∣
w=1N

. (8)

The derivative ∂ϕ(w)
∂wn

∣∣
w=1N

is known as the influence score of data point n for ϕ at 1N .

Although the AMIP methodology has been developed and used for general quantities of interest, ϕ(θ̂(w), w),
we focus on the change in sign of a specified regression coefficient; thus, ϕ(θ̂(w), w) = −θ̂p(w). Under the
general setting where θ̂(1N ) is the solution to the equation (

∑N
n=1 ∇θf(θ̂(1N ), dn)) = 0P (which is the case

in our setup as θ̂(1N ) is a minimizer of a loss function) the implicit function theorem allows us to transform
a derivative in w space into a derivative in θ space

∂θ̂(w⃗)
∂wn

∣∣∣
w⃗=1N

= −H(1N )−1∇θf(θ̂(1N ), dn) (9)

where H(w) :=
∑N

n=1 wn∇2
θf(θ̂(1N ), dn) is the Hessian of the weighted loss. See Broderick et al. (2020)

for a detailed derivation of Equation (9). In the context of OLS, we consider the squared error loss,
f(θ̂(1N ), dn) = (yn − θ̂(1N )⊤xn)2. The gradient for this loss is ∇θf(θ̂(1N ), dn) = 2xn(yn − θ̂(1N )⊤xn), and
the Hessian is ∇2

θf(θ̂(1N ), dn) = 2xnx⊤
n (Belsley et al., 1980). Thus, from Equation (9), we get the expression
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for the influence score for data point n,

∂θ̂(w⃗)
∂wn

∣∣∣
w⃗=1N

= − (X⊤X)−1xn︸ ︷︷ ︸
leverage-like term

(yn − θ̂(1N )⊤xn)︸ ︷︷ ︸
residual term

. (10)

Let ep be the pth standard basis vector. Then the linear approximation in the setting where the quantity of
interest is the sign of the pth regression coefficient becomes

θ̂lin
p (w)= θ̂p(1N ) + e⊤

pH(1N )−1
N∑

n=1
(wn − 1)∇θf(θ̂(1N ), dn). (11)

B.2 Additive One-step Newton approximation

Past work has proposed using the One-step Newton (1sN) approximation to estimate how much dropping
a pre-defined subset of data changes the loss, for general losses (Beirami et al., 2017; Sekhari et al., 2021;
Koh et al., 2019; Ghosh et al., 2020). When we simultaneously consider (a) OLS linear regression and (b)
our particular (effect-size) quantity of interest, Additive One-step Newton is equivalent to the Additive
One-Exact approximation. So for the experiments in this work, there is no distinction. While Park et al.
(2023) first proposed the special case of Additive One-step Newton for logistic regression (in the context of
data attribution), we develop a general form of the approximation below. We hope the more general form
will prove useful in future works on worst-case data dropping beyond OLS; in particular, in models that are
expensive to run, a practitioner might be unwilling to incur the cost of running Additive One-Exact.

The One-step Newton approximation works by optimizing a second-order Taylor expansion to the loss around
w = 1N . In the case where we must search for the worst-case data subset to drop, we approximate θ̂(w) with

θ̂1sN(w) := θ̂(1N ) + H(w)−1
∑N

n=1
(wn − 1)∇θf(θ(1N ), dn). (12)

The One-step Newton approximation allows us to approximate θ̂(w) = arg min
∑N

n=1 wnf(θ, dn) with a
second-order Taylor series expansion (in θ) centered at the estimate for the full data, θ̂(1N ).

N∑
n=1

wnf(θ, dn) ≈ f(θ̂(1N ), dn) +
N∑

n=1
wn∇f(θ̂(1N ), dn)(θ − θ̂(1N ))

+ 1
2(θ − θ̂(1N ))⊤

N∑
n=1

wn∇2f(θ̂(1N ), dn)(θ − θ̂(1N ))

(13)

In order to solve for arg min
∑N

n=1 wnf(θ, dn), we can minimize the quadratic approximation to get

θ̂1sN(w) = θ̂(1N ) +
( N∑

n=1
wn∇2f(θ̂(1N ), dn)

)−1 N∑
n=1

wn∇f(θ̂(1N ), dn). (14)

In the recent machine learning literature, this One-step Newton approximation (Equation (14)) has been
proposed to estimate the effect of dropping known subsets of data (Beirami et al., 2017; Sekhari et al., 2021;
Koh et al., 2019; Ghosh et al., 2020) in the context of general twice-differentiable losses.

In the setting of simple linear regression, the One-step Newton approximation gives the exact solution to the
reweighted OLS estimate of a regression coefficient (Pregibon, 1981, Equation 3). Let X ∈ RN×P denote the
design matrix and y ∈ RN denote the response vector. Let S denote the dropped set (i.e., the observations
indexed by S in the design matrix and response vector) and \S denote its complement. Let θ̂1sN(w) denote
the One-step Newton approximation of θ̂(w) given in Equation (12).

θ̂1sN(w) = (X⊤X)−1X⊤y + (X⊤
\SX\S)−1(X⊤

S yS − X⊤
S XS(X⊤X)−1X⊤y)

= (X⊤X)−1X⊤y − (X⊤
\SX\S)−1(X⊤

\Sy\S − X⊤
\SX\S(X⊤X)−1X⊤y)

= (X⊤
\SX\S)−1X⊤

\Sy\S

(15)
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such that

θ̂(w) − θ̂1sN(w) = (X⊤
\SX\S)−1X⊤

\Sy\S − (X⊤
\SX\S)−1X⊤

\Sy\S = 0. (16)

The One-step Newton approximation has not been proposed in the context of the Maximum Influence
Perturbation problem because (unlike influence scores) the approximation is non-additive. This non-additivity
precludes the fast solution of approximating the Most Influential Set by ranking and taking a sum of the
top individual scores (Broderick et al., 2020). As a solution, we adapt ideas from the AMIP to consider an
approximation that uses a sum of One-step Newton scores for leaving out individual data points (Equation (17)).
We refer to this approximation, which was first proposed for the special case of logistic regression by Park
et al. (2023) (in the context of data attribution), as Additive One-step Newton (Add-1sN).

θ̂Add-1sN(w) = θ̂(1N ) +
∑
n∈S

(( N∑
n′=1,
n′ ̸=n

∇2f(θ̂(1N ), dn′)
)−1

∇f(θ̂(1N ), dn)
)

. (17)

Add-1sN applies to general differentiable losses, though we continue to focus on a quantity of interest equal
to a particular parameter value (so our approximation does not include a decision based on statistical
significance).

A promising direction for future research is to extend the Add-1sN to more general quantities of interest and
Z-estimators. Ideally, such extensions would be automatic through autodiff, similar to the approach taken
for the computation of the AMIP (see Broderick et al. (2020)). We anticipate that techniques developed for
the AMIP can aid in extending the Add-1sN to more general quantities of interest.

B.3 Analytic expressions for the error of additive approximations

As the approximation methods presented in Section 3 are local approximations based on removing individual
observations, errors may accrue when there exists subsets of points with high joint influence measures but
low individual influence measures.

In linear regression, we can formalize this intuition by looking at an analytic expression for the OLS estimator
of the pth regression coefficient, θ. Let ep ∈ Rd denote the pth standard basis vector. Let X ∈ RN×P denote
the design matrix and y ∈ RN denote the response vector. Let S denote the dropped set (i.e., the observations
indexed by S in the design matrix and response vector) and \S denote its complement. Let θ̂IF(w) denote the
influence function approximation of θ̂ given in Equation (11) and let θ̂Add-1Exact(w) denote the approximation
given in Equation (12).

Let X−n denote the design matrix leaving out data point n, xn ∈ Rd denote the x value of the nth data
point, and rn = (yn − θ̂(1N )⊤xn) denote the residual value of the nth data point.

The error incurred by AMIP can be written as

θ̂AMIP(w) − θ̂(w) =
∑
n∈S

e⊤
p (X⊤X)−1xnrn −

∑
n∈S

e⊤
p (X⊤

\SX\S)−1xnrn

= e⊤
p ((X⊤X)−1 − (X⊤

\SX\S)−1)
∑
n∈S

xnrn

= e⊤
p ((X⊤X)−1 − (X⊤

\SX\S)−1)X⊤
S rS

(18)

and the error by Additive One-Exact can be written as

θ̂Add-1Exact(w) − θ̂(w) =
∑
n∈S

e⊤
p (X⊤

−nX−n)−1xnrn −
∑
n∈S

e⊤
p (X⊤

\SX\S)−1xnrn

=
∑
n∈S

e⊤
p ((X⊤

−nX−n)−1 − (X⊤
\SX\S)−1)xnrn.

(19)
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B.4 Time complexity supplementals

AMIP: The AMIP algorithm can be broken down into four steps: (a) run the data analysis on the full
dataset, (b) compute the influence scores for each data point, (c) rank the influence scores, and (d) sum
the top ⌊αN⌋ scores. In the context of OLS, the cost of step (a) is O(NP 2 + P 3). More generally, we can
denote the cost of (a) as being O(Analysis). The cost of (b), computing the influence score for N data
points, is O(NP 2 + P 3). Recall that the influence score can be expressed as a Hessian-vector product (see
Equation (9)). The Hessian is a matrix of dimension P × P . For N data points, the cost of computing
the Hessian is O(NP 2). To invert the Hessian (which is done once in the computation) costs O(P 3). The
gradient is a vector of dimension P . To compute the gradient for N data points costs O(NP ). To multiply
the Hessian by the gradient, for N data points, costs O(NP 2). Step (c), finding the top ⌊αN⌋ influence
scores, costs O(N log αN).9 Step (d), the summing of top scores, costs O(N).

In general, the overall cost of running AMIP is O(Analysis + N log(αN) + NP 2 + P 3). For OLS with an
effect size quantity of interest, the cost of running OLS, O(Analysis), is O(NP 2 + P 3). Hence, the cost
becomes O(N log(αN) + NP 2 + P 3).

Additive One-Exact: The Additive One-Exact algorithm can be broken down into four steps: (a) run
the data analysis on the full dataset, (b) compute the One-exact scores (the exact impact of dropping an
individual data point) for each point, (c) rank the One-exact scores, and (d) sum the top ⌊αN⌋ scores.
The only difference between running this algorithm and running AMIP is in step (b). In the general data
analysis setting, the computation of One-Exact scores involves the re-running of data analyses upon dropping
each individual point in a dataset, a cost that is O(N × Analysis). In the setting of OLS, we can take
advantage of the One-step Newton update in place of re-running the analysis N times (see Appendix B.2
for more details). Using this rank-one update, the cost of computing One-Exact scores for N data points
becomes O(NP 3 + P 3), or simply O(NP 3). Notice that the cost differs from computing influence scores by
an extra factor of P (recall that the cost of computing influence scores for AMIP is O(NP 2 + P 3)). The
improved precision of One-Exact scores over influence scores comes at the cost of this additional factor of P ;
specifically, for Additive One-Exact, the Hessian matrix is reweighted to account for each dropped data point
(see Equation (17) in Appendix B.2 for the equation for this approximation) while, for AMIP, the reweighting
is omitted.

In general, the overall cost of running Additive One-Exact is O(N × Analysis + N log(αN)), and the cost
specific to OLS with an effect size quantity of interest is O(N log(αN) + NP 3).

Greedy AMIP: The Greedy AMIP algorithm can be broken down into three steps, iterated over ⌊αN⌋
times: a) approximate the change (to the quantity of interest) upon dropping each data point individually
using an influence function approximation, (b) select the point that results in the biggest approximated
change when dropped, and (c) re-run the data analysis. Recall that computing the influence scores for
N data points costs O(NP 2 + P 3); iterated for ⌊αN⌋ times, step (a) costs O(αN2P 2 + αNP 3). To find
the top influence score ⌊αN⌋ times, step (b) costs O(αN2). Finally, to re-run the data analysis ⌊αN⌋
times with the point dropped, step (c) costs O(αN × Analysis). In general, running Greedy AMIP costs
O(αN × Analysis + αN2P 2 + αNP 3). For OLS with an effect size quantity of interest, the cost of running
OLS, O(Analysis), is O(NP 2 + P 3). Thus, the cost of running Greedy AMIP for OLS with an effect size
quantity of interest is O(αN2P 2 + αNP 3).

Greedy One-Exact: The Greedy One-Exact algorithm can be broken down into three steps, iterated
over ⌊αN⌋ times: a) compute the exact change (to the quantity of interest) upon dropping each data point
individually, (b) select the point that results in the biggest change when dropped, and (c) re-run the data
analysis. In the general data analysis setting, when iterated for ⌊αN⌋ times, computing the exact changes for
leaving out each point individually, step (a) costs O(αN2 × Analysis). To find the top score costs O(N).
Repeated over ⌊αN⌋ times, step (b) costs O(αN2). To re-run the data analysis after dropping the top point,
step (c) costs O(αN × Analysis).

Thus, the general overall cost of running Greedy One-Exact is O(αN2 × Analysis). For OLS with an effect
size quantity of interest, this cost reduces to O(αN2P 3).

9In the limit, ⌊αN⌋ is equivalent to αN .
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B.5 Asymptotic Equivalence of ⌊αN⌋ and αN

The floor function introduces discrete rounding effects that are negligible in the asymptotic regime. We
formalize this intuition below.

We begin with the inequality:
αN − 1 ≤ ⌊αN⌋ ≤ αN. (20)

This inequality holds for all α ∈ (0, 1) and all N ∈ N. To simplify the comparison in big-O notation, we seek
multiplicative bounds.

Observe that for N > 2
α , we have that

αN − 1 >
1
2αN, (21)

which implies,
1
2αN ≤ ⌊αN⌋ ≤ αN. (22)

Hence, for sufficiently large N , the floor term ⌊αN⌋ is sandwiched between two constants times αN , so we
conclude:

⌊αN⌋ = O(αN) and αN = O(⌊αN⌋). (23)

Thus, ⌊αN⌋ and αN are asymptotically equivalent up to constant factors.

C Failure modes supplementals

C.1 Tables demonstrating results of approximation methods

Table 1 shows that, in the One Outlier example, AMIP fails both with and without re-run. While there exists
one point (in black) that can change the sign of the regression coefficient, the method reports that no subsets
of size one exist that can change the sign (a failure without re-run). Upon removal of the point suggested
by AMIP (which is a red point) and refitting the model, we still do not see a change in sign (a failure with
re-run). Greedy AMIP also faces a failure with re-run because the sign does not change upon refitting after
we remove the point identified by the algorithm. In this example, Additive One-Exact and Greedy One-Exact
succeed. Of the OLS-specific algorithms, NetApprox and FH-Gurobi (warm-start) also succeed, while integral
FH-Gurobi (without warm-start) fails to identify a subset of size one that can change the sign.

Table 2 shows that in the Simpson’s Paradox example, AMIP and Additive One-Exact fail both with and
without re-run. While there exists a group of ten points (α = 0.01) (specifically, the group of points in black)
such that, upon removal, the sign of the regression coefficient changes from positive to negative, both AMIP
and Additive One-Exact report that no such subset of this size or smaller exists. The sign also does not
change upon refitting, after removing the points identified by the algorithms. In this example, the greedy
versions of both approximations succeed. Of the mathematical programming algorithms, NetApprox and
FH-Gurobi (warm-start) also succeed, while integral FH-Gurobi (without warm-start) fails to identify a
subset of size 10 that can change the sign.

Similar to the Simpson’s Paradox example, Table 3 shows that in the Poor Conditioning example, AMIP and
Additive One-Exact fail both with and without re-run, while the greedy versions of both approximations
succeed. Again, of the mathematical programming algorithms, NetApprox and FH-Gurobi (warm-start)
succeed while integral FH-Gurobi (without warm-start) fails to identify a subset of size 10 that can change
the sign.

Table 4 through Table 8 display the performance of the data-dropping approximations on real-world data
sets.
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Table 1: Performance of methods under the One Outlier example, where an outlier is placed at (X, Y) = (1e6,
1e6). We know that there exists a subset (one data point!) such that, upon removal, the sign of the regression
coefficient changes from positive (1.000) to negative (-1.000). Hence, α = 1

N is sufficient to lead to a failure
mode. The “Predicted Estimate” column shows the estimate predicted by the approximation algorithm,
and the “Refit Estimate” column shows the result of refitting the model after removing the approximate
Most Influential Subset specified by the algorithm. The “Points Dropped” column shows the number of
red (R) and black (B) points that the algorithm drops. The values highlighted in green indicate that the
algorithm succeeded. Non-highlighted values under “Predicted Estimate” indicate a failure without re-run,
while non-highlighted values under “Refit Estimate” indicate a failure with re-run.

Method Predicted Estimate Refit Estimate Points Dropped
Removing Population A — -1.000 (R: 0, B: 1)
AMIP 0.999 0.999 (R: 1, B: 0)
Additive One-Exact -1.000 -1.000 (R: 0, B: 1)
Greedy AMIP — 0.999 (R: 1, B: 0)
Greedy One-Exact — -1.000 (R: 0, B: 1)
NetApprox — -1.000 (R: 0, B: 1)
FH-Gurobi — — (R: 62, B: 1)
FH-Gurobi (warm-start) — -1.000 (R: 0, B: 1)

Table 2: Performance of methods under the Simpson’s Paradox example. We know that there exists a
subset (namely, the 10 points in Population A (α = 0.01) in Figure 1) such that, upon removal, the sign
of the regression coefficient changes from positive (0.586) to negative (-0.990). The “Predicted Estimate”
column shows the estimate predicted by the approximation algorithm, and the “Refit Estimate” column
shows the result of refitting the model after removing the approximate Most Influential Subset specified by
the algorithm. The “Points Dropped” column shows the number of red (R) and black (B) points that the
algorithm drops. The values highlighted in green indicate that the algorithm succeeded. Non-highlighted
values under “Predicted Estimate” indicate a failure without re-run, while non-highlighted values under “Refit
Estimate” indicate a failure with re-run.

Method Predicted Estimate Refit Estimate Points Dropped
Removing Population A — -0.990 (R: 0, B: 10)
AMIP 0.462 0.279 (R: 2, B: 8)
Additive One-Exact 0.456 0.279 (R: 2, B: 8)
Greedy AMIP — -0.990 (R: 0, B: 10)
Greedy One-Exact — -0.990 (R: 0, B: 10)
NetApprox — -0.990 (R: 0, B: 10)
FH-Gurobi — — (R: 112, B: 10)
FH-Gurobi (warm-start) — -0.990 (R: 0, B: 10)
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Table 3: Performance of methods under the Poor Conditioning example. We know that there exists a
subset (namely, the 10 points in Population A (α = 0.01) in Figure 1) such that, upon removal, the sign
of the regression coefficient changes from positive (8.452) to negative (-1.049). The “Predicted Estimate”
column shows the estimate predicted by the approximation algorithm, and the “Refit Estimate” column
shows the result of refitting the model after removing the approximate Most Influential Subset specified by
the algorithm. The “Points Dropped” column shows the number of red (R) and black (B) points that the
algorithm drops. The values highlighted in green indicate that the algorithm succeeded. Non-highlighted
values under “Predicted Estimate” indicate a failure of type (i), while non-highlighted values under “Refit
Estimate” indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Indices Dropped
Removing Population A — -1.049 (R: 0, B: 10)
AMIP 6.724 5.376 (R:5, B:5)
Additive One-Exact 6.667 5.376 (R: 3, B: 7)
Greedy AMIP — -1.049 (R: 0, B: 10)
Greedy One-Exact — -1.049 (R: 0, B: 10)
NetApprox — -1.049 (R: 0, B: 10)
FH-Gurobi — — (R: 991, B: 10)
FH-Gurobi (warm-start) — -1.049 (R: 0, B: 10)

Table 4: Performance of methods on the mouse brain single-cell analysis data set, where α = 1% is sufficient to
lead to a failure mode. The “Predicted Estimate” column shows the estimate predicted by the approximation
algorithm, and the “Refit Estimate” column shows the result of refitting the model after removing the
approximate Most Influential Subset specified by the algorithm. The “Number Dropped” column shows the
number of points that the algorithm drops. The values highlighted in green indicate that the algorithm
succeeded. Non-highlighted values under “Predicted Estimate” indicate a failure of type (i), while non-
highlighted values under “Refit Estimate” indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Number Dropped
AMIP 0.451 0.355 656
Additive 1Exact 0.4511 0.355 656
Greedy AMIP — -0.003 172
Greedy 1Exact — -0.003 172
NetApprox — -0.002 656
FH-Gurobi — 0.000 1712
FH-Gurobi (warm-start) — 0.002 172
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Table 5: Performance of methods on the Ames Housing data set, where α = 1% is sufficient to lead to a failure
mode. The “Predicted Estimate” column shows the estimate predicted by the approximation algorithm,
and the “Refit Estimate” column shows the result of refitting the model after removing the approximate
Most Influential Subset specified by the algorithm. The “Number Dropped” column shows the number of
points that the algorithm drops. The values highlighted in green indicate that the algorithm succeeded.
Non-highlighted values under “Predicted Estimate” indicate a failure of type (i), while non-highlighted values
under “Refit Estimate” indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Number Dropped
AMIP 72.010 55.845 14
Additive 1Exact 55.844 55.845 14
Greedy AMIP — -15.09 4
Greedy 1Exact — -15.09 4
NetApprox — -14.11 14
FH-Gurobi — -15.05 5
FH-Gurobi (ws) — -15.05 5

Table 6: Performance of methods on the bird morphometrics data set, where α = 1% is sufficient to lead to a
failure mode. The “Predicted Estimate” column shows the estimate predicted by the approximation algorithm,
and the “Refit Estimate” column shows the result of refitting the model after removing the approximate
Most Influential Subset specified by the algorithm. The “Number Dropped” column shows the number of
points that the algorithm drops. The values highlighted in green indicate that the algorithm succeeded.
Non-highlighted values under “Predicted Estimate” indicate a failure of type (i), while non-highlighted values
under “Refit Estimate” indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Number Dropped

AMIP -0.401 0.399 1
Additive 1Exact 0.399 0.399 1
Greedy AMIP — 0.399 1
Greedy 1Exact — 0.399 1
NetApprox — -0.719 1
FH-Gurobi — 0.410 4
FH-Gurobi (warm-start) — 0.554 4
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Table 7: Performance of methods on the photosynthesis measurements data set, where all methods succeed with
refit at α = 0.0036. The “Predicted Estimate” column shows the estimate predicted by the approximation
algorithm, and the “Refit Estimate” column shows the result of refitting the model after removing the
approximate Most Influential Subset specified by the algorithm. The “Number Dropped” column shows the
number of points that the algorithm drops. The values highlighted in green indicate that the algorithm
succeeded. Non-highlighted values under “Predicted Estimate” indicate a failure of type (i), while non-
highlighted values under “Refit Estimate” indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Number Dropped

AMIP -0.0117 -0.0038 2
Additive 1Exact -0.0129 -0.00377 2
Greedy AMIP — -0.00377 2
Greedy 1Exact — -0.00377 2
NetApprox — -0.00377 2
FH-Gurobi — -0.00377 2
FH-Gurobi (warm-start) — -0.00377 2

Table 8: Performance of methods on the forestry data set, where all methods succeed with refit at α = 1%. The
“Predicted Estimate” column shows the estimate predicted by the approximation algorithm, and the “Refit
Estimate” column shows the result of refitting the model after removing the approximate Most Influential
Subset specified by the algorithm. The “Number Dropped” column shows the number of points that the
algorithm drops. The values highlighted in green indicate that the algorithm succeeded. Non-highlighted
values under “Predicted Estimate” indicate a failure of type (i), while non-highlighted values under “Refit
Estimate” indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Number Dropped

AMIP 0.0167 -0.0115 1
Additive 1Exact -0.0115 -0.0115 1
Greedy AMIP — -0.0115 1
Greedy 1Exact — -0.0115 1
NetApprox — -0.0115 1
FH-Gurobi — -0.0115 1
FH-Gurobi (warm-start) — -0.0115 1

C.2 Failure modes without an intercept term

In this section, we find that fitting without the intercept does not significantly affect the numerical results in
Section 4 and that most of the same failure modes still hold.

The one exception to this observation is that, with an intercept term, AMIP with re-run (which is the same
as Greedy-AMIP for dropping one data point) fails in the one-outlier example with an intercept term, but
without an intercept term, it succeeds. Here, we note that for the case when P = 1 and no intercept term, the
limiting expression for the arbitrary non-outlier point discussed in Proposition 4.3 (Equation (6)) is always 0
because ep and v are collinear by design. In more than 1 dimension, however, this collinearity need no longer
hold, and so Equation (6) may indeed converge to a non-zero constant, which may again result in failure
modes with re-run without an intercept term.

One-Outlier example. Upon fitting OLS without an intercept, the coefficient fit on the full dataset is 1.000.
The fit with the black-dot points removed is −1.033. The removal of the intercept has negligible effects on
the numerical results of the algorithms, with the exception of AMIP/Greedy-AMIP “Refit Estimate” (which
was 0.999 with an intercept and is −1.033 without an intercept) (Table 1).
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Table 9: Performance of methods under the One Outlier example, where an outlier is placed at (X, Y) = (1e6,
1e6). We know that there exists a subset (one data point!) such that, upon removal, the sign of the regression
coefficient changes from positive (1.000) to negative (−1.033). Hence, α = 1

N is sufficient to lead to a failure
mode. The “Predicted Estimate” column shows the estimate predicted by the approximation algorithm,
and the “Refit Estimate” column shows the result of refitting the model after removing the approximate
Most Influential Subset specified by the algorithm. The “Points Dropped” column shows the number of
red (R) and black (B) points that the algorithm drops. The values highlighted in green indicate that the
algorithm succeeded. Non-highlighted values under “Predicted Estimate” indicate a failure without re-run,
while non-highlighted values under “Refit Estimate” indicate a failure with re-run.

Method Predicted Estimate Refit Estimate Points Dropped
Removing Population A — -1.033 (R: 0, B: 1)
AMIP 1.000 -1.033 (R: 0, B: 1)
Additive One-Exact -1.033 -1.033 (R: 0, B: 1)
Greedy AMIP — -1.033 (R: 0, B: 1)
Greedy One-Exact — -1.000 (R: 0, B: 1)
NetApprox — -1.033 (R: 0, B: 1)
FH-Gurobi — -1.033 (R: 0, B: 1)
FH-Gurobi (warm-start) — -1.033 (R: 0, B: 1)

Simpon’s Paradox. When we do not include an intercept, the coefficient fit on the full dataset is 0.516.
The fit with the black-dot points removed is −0.990. The removal of the intercept has negligible effects on
the numerical results of the additive and greedy algorithms (Table 2). However, FH-Gurobi (warm-start)
now presents an additional failure.

Table 10: Performance of methods under the Simpson’s Paradox example. We know that there exists a
subset (namely, the 10 points in Population A (α = 0.01) in Figure 1) such that, upon removal, the sign
of the regression coefficient changes from positive (0.516) to negative (−0.990). The “Predicted Estimate”
column shows the estimate predicted by the approximation algorithm, and the “Refit Estimate” column
shows the result of refitting the model after removing the approximate Most Influential Subset specified by
the algorithm. The “Points Dropped” column shows the number of red (R) and black (B) points that the
algorithm drops. The values highlighted in green indicate that the algorithm succeeded. Non-highlighted
values under “Predicted Estimate” indicate a failure without re-run, while non-highlighted values under “Refit
Estimate” indicate a failure with re-run.

Method Predicted Estimate Refit Estimate Points Dropped
Removing Population A — -0.990 (R: 0, B: 10)
AMIP 0.462 0.278 (R: 2, B: 8)
Additive One-Exact 0.455 0.278 (R: 2, B: 8)
Greedy AMIP — -0.990 (R: 0, B: 10)
Greedy One-Exact — -0.990 (R: 0, B: 10)
NetApprox — -0.990 (R: 0, B: 10)
FH-Gurobi — — (R: 810, B: 10)
FH-Gurobi (warm-start) — 0.514 (R: 0, B: 1)

Poor Conditioning. When we do not include an intercept, the coefficient fit on the full dataset is 7.405.
The fit with the black-dot points removed is −1.042. The removal of the intercept has negligible effects on all
numerical results (Table 3).
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Table 11: Performance of methods under the Poor Conditioning example. We know that there exists a
subset (namely, the 10 points in Population A (α = 0.01) in Figure 1) such that, upon removal, the sign
of the regression coefficient changes from positive (8.452) to negative (-1.049). The “Predicted Estimate”
column shows the estimate predicted by the approximation algorithm, and the “Refit Estimate” column
shows the result of refitting the model after removing the approximate Most Influential Subset specified by
the algorithm. The “Points Dropped” column shows the number of red (R) and black (B) points that the
algorithm drops. The values highlighted in green indicate that the algorithm succeeded. Non-highlighted
values under “Predicted Estimate” indicate a failure of type (i), while non-highlighted values under “Refit
Estimate” indicate a failure of type (ii).

Method Predicted Estimate Refit Estimate Indices Dropped
Removing Population A — -1.049 (R: 0, B: 10)
AMIP 6.616 5.376 (R:3, B:7)
Additive One-Exact 6.548 5.376 (R: 3, B: 7)
Greedy AMIP — -1.049 (R: 0, B: 10)
Greedy One-Exact — -1.042 (R: 0, B: 10)
NetApprox — -1.049 (R: 0, B: 10)
FH-Gurobi — — (R: 991, B: 10)
FH-Gurobi (warm-start) — -1.049 (R: 0, B: 10)

C.3 Failure with and without re-run for FH-Gurobi

In this section, we discuss the distinction between failure with and without re-run for FH-Gurobi. Technically,
the FH-Gurobi algorithms do not always require the user to re-run their data analysis with the suggested
points dropped. However, the two failure modes are still equivalent for these approximations. To see the
equivalence, assume that the data are non-robust to data dropping—specifically, that there exists some set of
size ⌊αN⌋ that we can drop to change conclusions. If the approximation returns a set of size no greater than
⌊αN⌋, then approximation calls for users to re-run the data analysis with the identified subset dropped, in
order to determine whether conclusion (e.g., the sign of an effect size) indeed changes. Thus, the two failure
modes are equivalent in this setting. If the method returns a set of size greater than ⌊αN⌋, then a failure
has occurred because no set of size at most ⌊αN⌋ was found, so the user does not have to re-run their data
analysis. If they had re-run their analysis without this subset, the set is still greater than size ⌊αN⌋, which
still implies that the approximation failed. Thus, both failure types are again equivalent.

C.4 Successful examples in real-world data

To get a sense of examples in which data-dropping approximations do succeed in the real world, we provide
some real-world data sets that are non-robust to small-fraction data dropping, yet for which all methods
succeed.

C.4.1 Plants
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Figure 4: Plant photosynthesis data. Dashed line indicates the fit to the full data while solid line indicates
the fit with the 2 black-dot points removed.

Setup. This data set is taken from an ecological study on the plastic phenotypic response to light of shrubs
from a Panamanian rainforest Valladares et al. (2000). We consider a 1D linear regression (with intercept) of
height on dark respiration.

Experimental results. We know that there exists a subset of size 2 points (0.36% of the data) that we
can drop to change the sign of the regression coefficient from positive (0.0249) to negative (−0.014). In this
example, all methods succeed at identifying the two points that, when dropped, change the sign. Thus, all
methods succeed at α = 1%.

C.4.2 Forestry
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Figure 5: Forestry data. Dashed line indicates the fit to the full data while solid line indicates the fit with the
1 black-dot point removed. Though it is not visually apparent from the plot, we note here that the black-dot
point overlays one other red-cross point (with slightly different x and y values).

Setup. This data set is taken from a database recording various characteristics of woody plants (age, leaf
size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about
their growing environment (location, light, experimental treatment, vegetation type) (York, 2016). To ensure
that 1 data point is around 1% (this data set has a total of 92 points with non-missing values), we augmented
the data by repeating the 9 red-cross points closest in euclidean distance to the mean of the red-cross points.
We consider a 1D linear regression (with intercept) of the two variables Cot (plausibly a component of tree
biomass or a specific measurement related to tree structure10) on Diam (stem diameter).

Experimental results. We know that there exists 1 point in 101 (0.99% of the data) that we can drop to
change the sign of the regression coefficient from positive (0.170) to negative (−0.0115). In this example,
all methods succeed at identifying the one black-dot point that, when dropped, change the sign. Thus, all
methods succeed at α = 1%.

C.5 On the relationship between leverage scores and failures of additive approximations

A common theme across the multi-outlier failure modes presented in Section 4.3 is that the leverage scores of
the outlier points are extremely large (see Figure 6).

10variable definition not explicitly stated in the paper
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Figure 6: Plots of Residual vs. Leverage: one-outlier (top left), Simpson’s paradox (top middle), poor
conditioning (top right), two outliers (bottom left), two-outlier groups (bottom middle), two populations
(bottom right). In all surfaced failure modes, the leverage values of each black-dot point is larger than the
leverage values of each red-cross point.

Data-dropping is, in general, non-additive (Belsley et al., 1980; Gray & Ling, 1984). This fact becomes more
apparent when the data points being dropped have high leverage scores. Data points with high leverage
scores may interact with other data points in highly non-linear ways, leading to pronounced non-additivity in
data-dropping (Gray & Ling, 1984; Lawrance, 1995).

Recall, the leverage score for data point n is the nth diagonal entry of the least-squares projection matrix
(also known as the Hat matrix). This value can be interpreted as the degree by which the nth observation
impacts the nth fitted value (see Equation (24)) (Belsley et al., 1980). Similarly, the (n, m)th off-diagonal
entry of the Hat matrix, hnm, can be interpreted as the degree by which the nth observation impacts the mth
fitted value (Gray & Ling, 1984). Thus, the entries of the Hat matrix tell us important information about the
second-order interaction effects between pairs of data points, information that the additive approximations
fail to capture.

hnn = ∂ŷn

∂yn
(24)

The leverage score, hnn, bounds the off-diagonal elements of the Hat matrix, hnm. These off-diagonal elements
capture information about pairwise interactions between points (see Proposition C.1). When hnm is large,
additive approximations become poor approximations. This explains why, in all of the surfaced failure modes
of Section 4.3, the leverage scores for points in the Most Influential Set are large.
Proposition C.1. Let xn ∈ RP denote the nth column of the design matrix X ∈ RN×P . Let hnm :=
x⊤

n (X⊤X)−1xm denote the entries of the Hat matrix H := X(X⊤X)−1X⊤. It follows that

|hnm| ≤
√

hnnhmm. (25)

Proof. The Cauchy-Schwarz inequality states that for any vectors a, b, in an inner product space,

|⟨a, b⟩| ≤ ∥a∥∥b∥.
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Let a := (X⊤X)−1/2xn and b := (X⊤X)−1/2xm. Notice that the entries of the Hat matrix can be written in
terms of our defined vectors,

hnm = ⟨a, b⟩, hnn = ∥a∥2, hmm = ∥b∥2.

Taking square roots,
∥a∥ =

√
hnn, ∥b∥ =

√
hmm.

We thus conclude that
|hnm| ≤

√
hnnhmm.

C.6 One-outlier example

C.6.1 One-outlier failure mode theory

We saw that both AMIP and Greedy AMIP break down in the one-outlier setting. This is because the influence
score of the outlier vanishes as the point approaches infinity in the x and y directions. In Proposition 4.3, we
examine the mathematics behind this phenomenon.
Lemma C.2. Let λ ∈ R and ep ∈ RP be the pth standard basis vector. Let xn ∈ RP denote the nth row
of the design matrix X ∈ RN×P , and let yn ∈ R denote the nth entry of the response vector y ∈ RN . Let
X−1 ∈ RN−1×P denote the design matrix with the 1st row deleted, and let y−1 ∈ RN−1 denote the response
vector with the 1st entry deleted. Let A−1 = X⊤

−1X−1 and b−1 = y⊤
−1X−1. For any v ∈ RP with ∥v∥ = 1 and

any constant c > 0, let (x1, y1) = (λv, cλ). For 2 ≤ n ≤ N , let (xn, yn) ∈ RP × R be arbitrary points with the
constraint that X−1 has rank P . The influence score of data point (x1, y1) is,

∂θ̂p(w)
∂w1

∣∣∣
w=1N

= 1
λ2

(
e⊤

p A−1
−1v(c − b−1A−1

−1v)
λ−4 + 2λ−2v⊤A−1

−1v + (v⊤A−1
−1v)2

)
. (26)

Proof. Recall that, for OLS linear regression and the effect size quantity of interest, θp, the formula for the
influence score of the nth data point is

∂θ̂p(w)
∂wn

∣∣∣
w=1N

= e⊤
p (X⊤X)−1xn︸ ︷︷ ︸

leverage-like term

(yn − θ̂⊤xn)︸ ︷︷ ︸
residual term

. (27)

We start by examining the leverage-like term,

e⊤
p

(
X⊤X

)−1
x1. (28)

Using the Sherman-Morrison formula, the leverage-like term is equivalent to

e⊤
p (A−1 + x1x⊤

1 )−1x1 = e⊤
p

(
A−1

−1 −
A−1

−1x1x⊤
1 A−1

−1

1 + x⊤
1 A−1

−1x1

)
x1. (29)

Substituting x1 = λv and y1 = cλ, this term becomes

λe⊤
p A−1

−1v

1 + λ2v⊤A−1
−1v

, (30)

which tends to zero as λ → ∞.

We next look at the residual term.

The fitted value for x1 is
θ̂⊤x1 = y⊤X(X⊤X)−1x1. (31)
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Using the Sherman-Morrison formula, the fitted value can be written as

y⊤XA−1
−1x1 −

y⊤XA−1
−1x1x⊤

1 A−1
−1x1

1 + x⊤
1 A−1

−1x1
. (32)

Through algebraic simplification, the above expression can be written under one fraction,

y⊤XA−1
−1x1 −

y⊤XA−1
−1x1x⊤

1 A−1
−1x1

1 + x⊤
1 A−1

−1x1
= y⊤XA−1

−1x1

(
1 −

x⊤
1 A−1

−1x1

1 + x⊤
1 A−1

−1x1

)

=
y⊤XA−1

−1x1

1 + x⊤
1 A−1

−1x1

=
(y1x⊤

1 + b−1)A−1
−1x1

1 + x⊤
1 A−1

−1x1
.

(33)

Substituting x1 = λv ∈ RP , y1 = cλ, we get

(cλ2v⊤ + b−1)A−1
−1λv

1 + λ2v⊤A−1
−1v

=
cλ3v⊤A−1

−1v + λb−1A−1
−1v

1 + λ2v⊤A−1
−1v

. (34)

Finally, subtracting the fitted value from y1, the residual is

y1 − θ̂⊤x1 =
cλ − λb−1A−1

−1v

1 + λ2v⊤A−1
−1v

. (35)

Taken together, the influence score of (x1, y1) is

e⊤
p (X⊤X)−1x1(y1 − θ̂⊤x1) =

λ2(ce⊤
p A−1

−1v − e⊤
p A−1

−1vb−1A−1
−1v)

1 + 2λ2v⊤A−1
−1v + λ4(v⊤A−1

−1v)2

= 1
λ2

(
e⊤

p A−1
−1v(c − b−1A−1

−1v)
λ−4 + 2λ−2v⊤A−1

−1v + (v⊤A−1
−1v)2

)
.

(36)

We saw that AMIP failed both with and without re-run in the one-outlier setting.

In the one-outlier case in Section 4.2, we saw that, for sufficiently large λ, the influence score for the outlier
becomes smaller than that of a non-outlier. In Proposition 4.3, we explain this phenomenon more formally.
Proposition 4.3. Choose any v ∈ RP with ∥v∥ = 1 and any constant c > 0. Let (x1, y1) = (λv, λc). Let
(xn, yn)N

n=2 be any points in RP × R such that X−1 has rank P . Let θ̂p denote the pth entry of the OLS
estimator, θ̂, fit without an intercept. Then, for all 1 ≤ p ≤ P ,

lim
λ→∞

∂θ̂p(w)
∂w1

∣∣∣
w=1N

= 0, (5) and lim
λ→∞

∂θ̂p(w)
∂w2

∣∣∣
w=1N

= st

(v⊤A−1
−1v)2 , (6)

where s := (v⊤A−1
−1ve⊤

p A−1
−1x2 − e⊤

p A−1
−1vv⊤A−1

−1x2) and t := (y2v⊤A−1
−1v − cv⊤A−1

−1x2 − b−1A−1
−1x2v⊤A−1

−1v +
b−1A−1

−1vv⊤A−1
−1x2).

Proof. Let ep ∈ RP denote the pth standard basis vector. Let A−1 = X⊤
−1X−1 and b−1 = y⊤

−1X−1, where
y−1 ∈ RN−1 denotes the response vector with the nth entry deleted.

We begin by examining the influence score of (x1, y1).
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From Lemma C.2 Equation (36), we saw that the influence score of data point (x1, y1) is

∂θ̂p(w)
∂w1

∣∣∣
w=1N

= 1
λ2

(
e⊤

p A−1
−1v(c − b−1A−1

−1v)
λ−4 + 2λ−2v⊤A−1

−1v + (v⊤A−1
−1v)2

)
. (37)

Taking a limit as λ → ∞, this expression goes to zero at rate O( 1
λ2 ),

lim
λ→∞

1
λ2

(
e⊤

p A−1
−1v(c − b−1A−1

−1v)
λ−4 + 2λ−2v⊤A−1

−1v + (v⊤A−1
−1v)2

)
= 0. (38)

We next examine the influence score of (x2, y2). We start by examining the leverage-like term,

e⊤
p (X⊤X)−1x2. (39)

Using the Sherman-Morrison formula, this is equivalent to

e⊤
p (A−1 + x1x⊤

1 )−1x2 = e⊤
p (A−1

−1 −
A−1

−1x1x⊤
1 A−1

−1

1 + x⊤
1 A−1

−1x1
)x2. (40)

Substituting x1 = λv and combining fractions, the leverage-like term becomes

e⊤
p (X⊤X)−1x2 =

e⊤
p A−1

−1x2 + λ2(v⊤A−1
−1ve⊤

p A−1
−1x2 − e⊤

p A−1
−1vv⊤A−1

−1x2)
1 + λ2v⊤A−1

−1v
. (41)

We next look at the residual term.

Using the formula for the OLS solution, the residual for (x2, y2) is

y2 − θ̂⊤x2 = y2 − y⊤X(X⊤X)−1x2. (42)

Using the Sherman-Morrison formula, this can be written as

y2 − θ̂⊤x2 = y2 −

(
y⊤XA−1

−1x2 −
y⊤XA−1

−1x1x⊤
1 A−1

−1x2

1 + x⊤
1 A−1

−1x1

)
. (43)

Substituting x2 = λv and y = λc and combining fractions, we get

y2 − θ̂⊤x2 = y2 −

(
(λ2cv⊤ + b−1)A−1

−1x2 −
λ2(λ2cv⊤ + b−1)A−1

−1vv⊤A−1
−1x2

1 + λ2v⊤A−1
−1v

)

= y2 −

(
λ2cv⊤A−1

−1x2 + b−1A−1
−1x2 −

λ4cv⊤A−1
−1vv⊤A−1

−1x2 + λ2b−1A−1
−1vv⊤A−1

−1x2

1 + λ2v⊤A−1
−1v

)
.

(44)

Finally, combining fractions, we get that the residual is

y2 − θ̂⊤x2 =
λ2(y2v⊤A−1

−1v − cv⊤A−1
−1x2 − b−1A−1

−1x2v⊤A−1
−1v + b−1A−1

−1vv⊤A−1
−1x2) + y2 − b−1A−1

−1x2

1 + λ2v⊤A−1
−1v

.

(45)
Taking Equations (41) and (45) together, the influence score of (x2, y2) is

e⊤
p (X⊤X)−1x2(y2 − θ̂⊤x2) =

λ4st + λ2s(y2 − b−1A−1
−1x2) + λ2te⊤

p A−1
−1x2 + e⊤

p A−1
−1x2(y2 − b−1A−1

−1x2)
λ4(v⊤A−1

−1v)2 + 2λ2v⊤A−1
−1v + 1

,

(46)
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where

s = (v⊤A−1
−1ve⊤

p A−1
−1x2 − e⊤

p A−1
−1vv⊤A−1

−1x2) (47)
t = (y2v⊤A−1

−1v − cv⊤A−1
−1x2 − b−1A−1

−1x2v⊤A−1
−1v + b−1A−1

−1vv⊤A−1
−1x2) (48)

Taking a limit in Equation (46) as λ → ∞,

lim
λ→∞

e⊤
p (X⊤X)−1x2(y2 − θ̂⊤x2) = lim

λ→∞

λ4st + λ2s(y2 − b−1A−1
−1x2) + λ2te⊤

p A−1
−1x2 + e⊤

p A−1
−1x2(y2 − b−1A−1

−1x2)
λ4(v⊤A−1

−1v)2 + 2λ2v⊤A−1
−1v + 1

= lim
λ→∞

λ4st

λ4(v⊤A−1
−1v)2

= st

(v⊤A−1
−1v)2 .

(49)

C.6.2 Generality of conditions in the one-outlier theory: a simulation study.

To assess the strictness of the conditions posed in Proposition 4.3, we run a simulation study following the
setup and assumptions outlined in Proposition 4.3.

Next, for N = 1,000, we generate 5,000 datasets for each of dimensions, P = 3, 6, and 9. For each data set,
we choose 1 data point uniformly at random from the inlier samples to be (x2, y2), a random integer between
1 and P (inclusive) for the value of p in ep, and a random unit vector for v ∈ RP . Additionally, we take λ to
be large (1010) and choose (x1, y1) to be the point at the first index. We then compute the values of s and t.

In 5,000 simulations for each dimension, we observe that neither s nor t are ever zero. This provides further
empirical evidence to suggest that Proposition 4.3 holds more broadly than just the specific toy example
provided in Section 4.2.2.

C.6.3 One-outlier example, empirical findings supplementals.

Table 12 and Table 13 display empirical findings for the data generating process described in Section 4.2. The
tables present empirical evidence showing that a sufficiently far outlier will have vanishingly low influence
score (see Proposition 4.3). As the black-dot point (the outlier) moves far from the group of red-cross points
(the central points) in both the x and y directions, both the leverage-like term and the residual term of the
influence score approach zero at rate O( 1

λ ) (see numerical results in columns 3 and 4 of Table 12). When
observing the behavior of the red-cross point with the largest influence score in Table 13, we see that the
leverage-like term approaches zero while the residual term stays relatively constant (within the same order of
magnitude). Thus, for sufficiently large values of (xi, yi), the influence score for the black-dot point becomes
smaller than that of a red-cross point (see the highlighted values in Table 12 and Table 13). For the (xi, yi)
values with highlighted influence scores (see Table 12), both AMIP and Greedy AMIP fail (both with and
without re-run). This occurs at x = y = 106 for the data generating process described in Section 4.2.
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Table 12: This table shows the influence and One-Exact scores for the black-dot point at various values of (xi, yi)
for the data generating process described in Section 4.2 (see plot for the setting where (xi, yi) = (106, 106) in
Figure 1 (left)). In order to obtain the influence with respect to θ1, we let e1 = (0, 1), the standard basis
vector corresponding to the x term in our linear regression setup. The influence score, e⊤

1 (X⊤X)−1xi(yi − θ̂xi),
is a product between the quantity in column 3 (which we call the leverage-like term, see Equation (3)) and
column 4 (the residuals). The One-Exact score is the change in effect size that results from dropping the
single data point at (xi, yi) and refitting OLS. The influence scores highlighted in yellow are those that are
smaller than the influence score of a red-cross point, leading AMIP and Greedy AMIP to misidentify the
Most Influential Set of size 1, resulting in a failure with re-run.

Black Dot Point (the outlier):

xi yi e⊤
1 (X⊤X)−1xi (yi − θ̂xi) Influence Score One-Exact Score

1e1 1e1 9.36e-3 18.390 1.72e-1 1.90e-1
1e2 1e2 9.11e-3 17.981 1.64e-1 1.85
1e4 1e4 1.00e-5 1.97e-1 1.97e-5 2.03
1e6 1e6 1.00e-6 1.97e-3 1.97e-9 2.03
1e8 1e8 1.00e-8 2.00e-5 1.97e-13 2.18
1e10 1e10 1.00e-10 1.00e-5 9.54e-16 2.03

Table 13: This table shows the influence and One-Exact scores for the red-cross point with the largest
influence score when the black-dot point (see Figure 1 (left)) is placed at the (xi, yi) position shown in
the corresponding row of Table 12. In order to obtain the influence with respect to θ1, we let e1 = (0, 1),
the standard basis vector corresponding to the x term in our linear regression setup. The Influence Score,
e⊤

1 (X⊤X)−1xj(yj − θ̂xj), is a product between the quantity in column 3 (which we call the leverage-like
term, see Equation (3)) and column 4 (the residuals). The One-Exact score is the change in effect size that
results from dropping the single data point at (xj , yj) and refitting OLS. The influence scores highlighted in
yellow are those that are larger than the influence score of the black-dot point, leading AMIP and Greedy
AMIP to misidentify the Most Influential Set of size 1, resulting in a failure with re-run.

Red Cross Point (a central point):

xj yj e⊤
1 (X⊤X)−1xj (yj − θ̂xj) Influence Score One-Exact Score

2.13 -0.09 2.02e-3 1.66 3.38e-3 3.40e-3
-0.72 -2.05 7.10e-5 -1.57 1.12e-4 1.12e-4
2.70 -4.85 7.25e-5 -7.66 5.55e-7 5.55e-7
2.70 -4.85 7.25e-8 -7.65 7.63e-9 7.64e-9
2.70 -4.85 9.97e-10 -7.65 7.65e-11 7.66e-11
2.70 -4.85 1.00e-14 -7.65 7.65e-13 7.66e-13
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C.7 Multi-outlier examples

C.7.1 Multi-outlier failure mode theory

Additive approximations may be inaccurate, even for approximating the removal of two data points. In
Proposition 4.4, we show mathematically that when a pair of points, off by a constant term, go together
towards infinity, the Additive One-Exact approximation to dropping the pair tends towards zero, regardless
of what the true change in effect size approaches.

Proposition 4.4. Let λ, c ∈ R. Consider a pair of data points, (x1, y1) = (λ, λ) and (x2, y2) = (λ, λ + c). Let
(xn, yn)N

n=3 be any points in R × R such that at least one of (xn)N
n=3 is non-zero. We apply OLS to the single

covariate x and response y with no intercept; we make a decision based on the sign of the resulting effect size.
As λ → ∞, the Additive One-Exact approximation (Section 3.1) to the change in effect size from dropping
(x1, y1), (x2, y2) tends to zero, while the true change in effect size tends to 1 − (

∑N
n̸=1,2 xnyn/

∑N
n̸=1,2 x2

n).

Proof. Let θ̂−1 denote the OLS solution fit to the data after dropping point (x1, y1), and let θ̂{−1,−2} denote
the OLS solution fit to the data after dropping the pair, (x1, y1), (x2, y2). Let Add-1Exact(1, 2) denote the
Additive One-Exact approximation to the change in effect size after dropping (x1, y1), (x2, y2). Finally, let
S1 =

∑N
k ̸=1,2 x2

n and S2 =
∑N

n ̸=1,2 ynxn.

Add-1Exact(1, 2) is expressed as

Add-1Exact(1, 2) = (θ̂ − θ̂−1) + (θ̂ − θ̂−2)

= λ2(S1 − S2) − λ3c

(S1 + λ2)(S1 + 2λ2) + λ2(S1 − S2) + λ3c

(S1 + λ2)(S1 + 2λ2)

= 2λ2(S1 − S2)
(S1 + λ2)(S1 + 2λ2).

(50)

As λ → ∞, Equation (50) tends to zero.

lim
λ→∞

Add-1Exact(1, 2) = lim
λ→∞

2(S1 − S2)λ2

2λ4 + 3S1λ2 + S2
1

= 0.

(51)

In contrast, the expression for the true change in effect size from dropping the two points is expressed as

θ̂ − θ̂{−1,−2} = 4(S1 − S2)λ4 + 2(S1 − S2)S1λ2

(S1 + 2λ2)(S2
1 + 2S1λ2)

= 4(S1 − S2)λ4

4S1λ4 + O( 1
λ2 ).

(52)

Taking a limit in Equation (52) as λ → ∞,

lim
λ→∞

(θ̂ − θ̂−1,−2) = lim
λ→∞

4(S1 − S2)λ4

4S1λ4 + O( 1
λ2 )

= 1 − S2

S1

= 1 −
∑N

n ̸=1,2 ynxn∑N
k ̸=1,2 x2

n

.

(53)
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C.7.2 Additional multi-outlier examples

Adversarial Example. Moitra & Rohatgi (2023) presents an adversarially constructed example in which
there exists a small fraction of points that can be dropped such that the covariance matrix becomes singular.
This leads to a failure mode of approximation algorithms. In Section 4, we attempt to alter this adversarial
setup into one that might arise in natural data settings with no adversary (see Figure 1 (right)). We see that
even modest levels of instability in the covariance matrix can lead to failure modes in the approximation
methods.

To visualize the example presented in Moitra & Rohatgi (2023), we generate the red crosses so as to have
a singular covariance matrix (see Figure 7). In particular, we generate the 1,000 red crosses with xn = 0,
yn = ϵn, and ϵn

iid∼ N (0, 1). We draw the 10 black dots as xn
iid∼ N (−1, 0.01), yn = xn. When we consider

both black dots and red crosses together as a single dataset, there is no poor conditioning. However, when
we drop the red population, a pathological change occurs in the covariance matrix; it becomes singular. The
OLS-estimated slope on the full dataset is about 1.00; dropping the black dots (1% of the data) yields a
slope of exactly 0. Note, although the removal of the black-dot points do not induce a sign change in this
example, going from a positive signed coefficient to 0 still constitutes a conceivable conclusion change in a
data analysis.

2.0 1.5 1.0 0.5 0.0 0.5
x

9

5

1

3

y

Figure 7: Example of poor conditioning presented in Section 5.1 of Moitra & Rohatgi (2023)

Greedy AMIP Failure Example. In the following example, we illustrate a case in which Greedy AMIP
fails (See Figure 8). In particular, when there is one black dot left to remove, Greedy AMIP is unable to
identify the black dot as the point to remove. This is because the residual of the last remaining black dot
becomes vanishingly small when the second to last black dot is removed in the previous iteration.

In this example, we generate the 1,000 red crosses with xn = 0, yn = ϵn, and ϵn
iid∼ N (0, 1). We draw the 10

black dots as xn
iid∼ N (−1, 0.01), yn = −5xn − 10. The OLS-estimated slope on the full dataset is about 4.94;

dropping the black dots (1% of the data) yields a slope of about 0.

In this example, Greedy One-Exact succeeds. For the mathematical programs algorithms, NetApprox succeeds
while FH-Gurobi fails.

Greedy AMIP and Greedy One-Exact Failure Example. In the next example (See Figure 9), by
clustering k outliers tightly into a small clump, we can construct an instance where both greedy AMIP and
1sN fail to identify the k outlier cluster. This repeated k points centered around one clump (where k is large)
produces an example where the residuals are vanishingly small in the outlier cluster, while the leverage can
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Figure 8: This is an example where Greedy AMIP fails but Greedy One-Exact succeeds.

only be as big as 1/k. Hence, the One-Exact scores of certain points in the red inlier population (population
B) will be larger. In this instance, if we computed the One-Exact score for every subset of size k, however,
we would be able to correctly identify population A as the Most Influential Set.

For the mathematical programs algorithms, NetApprox succeeds while FH-Gurobi fails.

In this example, we generate the 1,000 red crosses with xn = 0, yn = ϵn, and ϵn
iid∼ N (0, 1). We draw the 10

black dots as xn
iid∼ N (−1, 10−7), yn = −5xn − 10. The OLS-estimated slope on the full dataset is about

4.94; dropping the black dots (1% of the data) yields a slope of about 0.
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Figure 9: This is an example where Greedy AMIP and Greedy One-Exact both fail.

Observe from Equation (18) that the error arises from a failure to correctly reweight the inverse Hessian term
by the dropped subset, S. While AMIP disregards this reweighting entirely, Additive One-Exact decreases
the error by reweighting the Hessian on an individual point basis (See Equation (19)).
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