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Abstract
In this work, we investigate the potential of Large
Language Models (LLMs) to serve as effective
human proxies by capturing human preferences
in the context of collaboration with AI agents. Fo-
cusing on two key aspects of human preferences
- explicability and sub-task specification in team
settings - we explore LLMs’ ability to not only
model mental states but also understand human
reasoning processes. By developing scenarios
where optimal AI performance relies on modeling
human mental states and reasoning, our investi-
gation involving two different preference types
and a user study (with 17 participants) contributes
valuable insights into the suitability of LLMs as
“Preference Proxies” in various human-AI appli-
cations, paving the way for future research on
the integration of AI agents with human users in
Human-Aware AI tasks.

1. Introduction
As Artificial Intelligence (AI) progresses, the development
of the next generation of AI agents requires an enhanced
understanding of human thought, processes and behaviors.
A vital component of this understanding is the Theory of
Mind (ToM), which involves attributing mental states – such
as beliefs, intentions, desires, and emotions – to oneself and
others, and to understand that these mental states may dif-
fer from one’s own. Large language models (LLMs) have
demonstrated exceptional abilities in various tasks that hu-
mans excel at (Hagendorff, 2023; Frieder et al., 2023; Ko-
rinek, 2023; Shen et al., 2023; Bubeck et al., 2023), making
them suitable candidates for exploring the capabilities of
ToM in AI systems (Kosinski, 2023).

Research on LLM’s ToM capacities has primarily focused
on their ability to model mental states associated with social
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Figure 1: The various roles of Large Language Models in
Human Aware AI interaction as a Human Proxy, Translator
(common lingua franca), and the Actor. In this work, we
investigate the role of LLMs as a Human Proxy (called
Preference Proxies) especially when they have to provide
answers to queries meant for eliciting human in the loop’s
preferences.

and emotional reasoning, as well as logical problem-solving
(Kosinski, 2023; Baker et al., 2011; Wellman et al., 2001;
Astington & Baird, 2005; Cuzzolin et al., 2020; Rescorla,
2015; Çelikok et al., 2019). While LLMs have been used
for several tasks like summarization, text generation, com-
prehension, conversations etc. there is limited literature on
testing LLM’s ability to predict human preferences. Since
these LLMs are infact trained on human generated data
available in the wild (Brown et al., 2020) and have been fine-
tuned with human feedback on various prompts (Ouyang
et al., 2022) a natural question arises :

Can LLMs capture human preferences?

We investigate whether LLMs can serve as human-proxy to
the real human in the loop (HiL) and answer queries made by
an AI agent meant for the real human. Several prior works
in learning human preferences have leveraged human feed-
backs of some form, like binary feedback, demonstration,
natural language guidance, action guidance, etc. We expect
the LLM to work for an AI agent that is acting in the world
(powered by an reinforcement learning, planning or other
sequential decision-making engines). A common theme
across these works has been to model a reward function that



Preference Proxies: Evaluating LLMs in capturing Human Preferences in Human-AI Tasks

captures human’s expectations from the agent. Therefore,
ToM is an important aspect of such a capability and while
prior research has been interested in answering whether
LLMs can ascribe correct mental states to the HiL, we go
beyond and test whether it can also ascribe correct reasoning
mechanisms used by humans. We argue that AI agents (like
LLM) must be able to maintain mental states of the HiL
and their reasoning process to answer questions that require
the agent to know about human’s expectations and prefer-
ences over the agent. Prior work has already established the
potential improvements in team performance when the AI
agent’s modeling of mental states and reasoning of the HiL
is correct (Lim & Klein, 2006; Edwards et al., 2006).

Human preferences over how the agent should behave and
what sub-tasks a human-AI team should solve for optimal
team performance are important problems being studied by
several research communities (Lee et al., 2021; Verma &
Metcalf, 2022; Verma et al., 2023; Sreedharan et al., 2020;
Guan et al., 2021; Soni et al., 2022; Park et al., 2022; Kamb-
hampati et al., 2022b; Christiano et al., 2017). LLM’s ability
to correctly identify human’s expectations of the agent, or,
human’s preferences over sub-tasks can be a good direction
to study whether LLMs are suitable ’Preference Proxies’.
While the term “preferences” has an open-ended definition
materializing with respect to the context, we study two im-
portant ways in which past research has looked at human
preferences over the AI agents when the human is in the
loop. First, when the human observer has a preference of the
agent acting in the world expecting a degree of explicability.
Explicability is the ability to understand human’s expecta-
tions of the agent and conform to it. Second, the human
actor in a human-AI coordination team has a preference for
the pursuit of certain sub-tasks by the team among countless
possibilities.

When the human in the loop assumes an observer role, our
work leverages past research to develop scenarios in which
the AI agent’s optimal performance depends on its ability
to model the human’s mental states and reasoning process.
This helps the AI to understand the human’s expectations
of the agent. For instance, in a search and rescue mission
where the human serves as an AI robot’s commander, it is
crucial that the robot can predict how the human would infer
and respond to various situations.

In cases where the human user plays an active role in achiev-
ing the team’s objectives, such as a field commander work-
ing alongside a rescue robot, it is vital that the robot iden-
tifies the same set of sub-tasks to be accomplished by the
team. This necessitates the agent to reason about the hu-
man’s preferred method for achieving the team’s goal, thus
going beyond simply ascribing mental states to the human
user.

The rest of the paper is structured as follows: we talk about

preliminaries for this work in Section 2. we then introduce
the readers to our Theory-of-Mind experiments which are di-
vided across Sections 3 and 4 along with their respective re-
sults. We describe our user study for understanding the align-
ment between LLM responses and user responses in Section
5, and finally conclude our investigation of this work in Sec-
tion 6. An appendix has also been attached at the end. Read-
ers are encouraged to view our additional supplementary ma-
terial containing prompts and responses from the GPT mod-
els at https://tinyurl.com/prefproxiessupp.

2. Theory of Mind, Language Models and
Human Preferences

In this section, we will revisit three core concepts essential
for our research: Theory of Mind, which facilitates the com-
prehension and forecasting of human preferences, and the
capability of Large Language Models to effectively simulate
these aspects.

2.1. What is Theory of Mind?

We follow the definition of “Theory of Mind” from (Sap
et al., 2022). Theory of Mind essentially ascribes the ability
to ascribe and infer mental states of others. This ability is
central to any form of human interactions, communications,
empathy, self-consciousness, moral judgment, and even
religious beliefs (Albuquerque et al., 2016; Heyes & Frith,
2014; Zhang et al., 2012; Milligan et al., 2007; Seyfarth &
Cheney, 2013; Dennett, 1978; Moran et al., 2011). While
modeling mental states is a fundamental aspect of theory of
mind, it encompasses more than just creating mental models.
Modeling the reasoning process over these mental states is
an equally important and challenging objective.

2.2. Theory of Mind and Learning Human Preferences

Prior works have tried to advocate how Inverse Reinforce-
ment Learning (IRL) is linked to Theory of Mind and that
reward learning mechanisms should take into account sev-
eral factors like human mental states, their desires, beliefs
etc. (Jara-Ettinger, 2019). The field of learning a reward
function from human preferences attempts to achieve a simi-
lar objective as IRL but assumes access to high-level human
feedback (like pairwise comparisons) than explicit demon-
strations (Verma & Metcalf, 2022). However, the expecta-
tions from the reward function being learned for the case
of PbRL is same as that of IRL with respect to Theory of
Mind.

Human Preferences can also be defined in various ways like
trajectory preferences (Lee et al., 2021), tacit or explicit
preferences, goal-oriented preferences (Verma et al., 2023),
or more abstract preferences like explicability, predictabil-
ity, and legibility expectations of the human from the agent

https://tinyurl.com/prefproxiessupp
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(Chakraborti et al., 2019). The spectrum of human prefer-
ences is vast and varied and can touch upon other aspects
like levels of autonomy, personalization, and transparency
to name a few. While these aforementioned preferences are
important in their own right, in this work we focus ourselves
on two key preferences prior literature has highlighted, i.e.
explicability and sub-task specification.

Under Explicability preference the human expects the agent
to behave in a certain way, and the agent proactively at-
tempts to model this expectation and follow it. Hence, by
definition, it involves ascribing mental states to the human
in the loop and beyond that performing inferences on these
states and reasoning about which behaviors would the hu-
man prefer. We restrict ourselves to situations where while
there may be a human-AI team but the human only observes
the agent (and the interaction may involve explanatory dia-
logues).

Next, we consider a Human-AI teaming scenario where the
human plays a more active role and can perform actions
in the world alongside our AI agent. On the other hand,
sub-task specification preferences involve the agent to come
up with the same set of sub-tasks that the human has in mind
to achieve the team objective.

2.3. Theory of Mind and LLMs

Large language models have shown great success and excep-
tional results with many tasks like summarization, conversa-
tions, and text generation to name a few. Figure 1 shows the
major components of a Human-AI interaction that involves
the human user, the AI agent, and a lingua-franca between
them (like natural language, formal languages, images, bi-
nary feedback etc). Prior literature have tasked LLMs with
the roles of Translator (Xie et al., 2023; Kambhampati et al.,
2022a), where the LLMs are responsible to ingest natural
language inputs from the human user and convert that into
a representation that can be easily understood by the AI
agent. Additionally, attempts have also been used to utilize
LLMs as the actor by asking them to produce actions to be
performed (Hu & Sadigh, 2023; Ahn et al., 2022). While the
debate regarding the utility of LLMs as a translator and as
an actor have not yet settled, we introduce another potential
role of LLMs as the “Human Proxy”.

While advances in LLMs-based technology can improve its
capabilities as a translator and as an actor, we argue that
general-purpose models modeling human preferences can
only do so uptill a certain point. This is because human
preferences are potentially highly non-stationary, unique
to individuals, and at times unknown to the human them-
selves. Despite this, for several realistic scenarios LLMs
can capture reasonable human preferences as shown in later
sections 3, 4. Therefore, at best, we are in search for a good
human-proxy who can provide general preferences humans

may have which can substantially reduce load on the human
in the loop.

3. Probing LLMs with Explicability
Preferences

In Human-AI scenarios with humans observing AI agents
acting in the environment, there is a natural preference, or
expectation in particular in this case, that humans may have
from the AI agent’s behavior. This expectation is for the
AI agent to act such that its actions or plan are explicable
to the human. While additional interaction in the form of
explanatory dialogue (Chakraborti et al., 2017) can help
bridge the gap between the human’s expectations of the
agent’s behavior and agent’s final behavior, researchers are
also interested in looking for automated ways.

One reasonable approach can be to have these general-
purpose large language models (LLMs) reason on behalf of
the human in the loop (HiL) who is observing such agents
acting in the environment. We test three such scenarios in
which the information with the HiL is limited due to varying
reasons that may require LLMs to perform ToM and “step
into the shoes of the human in the loop” to determine their
expectations of the AI agent.

Limited information on agent’s internal workings: We
begin with the Rover domain (Zhang et al., 2017), where a
rover is navigating in an environment to complete a certain
task, while the human observes a top-view of this environ-
ment. Note that the human in this case could be an expert of
the domain (and possesses knowledge about which actions
are possible, effect of those actions etc) but does not know
of how the AI agent computes its plan or policy. We test
LLMs if they can respond and reason on behalf of this user
and can answer questions with respect to explicability. The
complete description for this task is given in A.1.1.

Limited information on agent’s actions: Next, we ex-
periment with the Fetch domain (Chakraborti et al., 2017),
where the Fetch robot is tasked with picking up a block from
one location and transporting it to another location, as given
in A.1.2. In this test, the lay user only understands the high
level descriptions of the actions the robot can take. However,
they are still unaware of the internal workings of the agent,
and hence, not understanding the reasons behind its actions.
We again probe LLMs for explicability preference in this
case.

Limited information due to partial observability: In
the third experiment using the Urban Search and Rescue
(USAR) domain (Chakraborti et al., 2015; Sreedharan et al.,
2017), we have a user who is an expert of the agent and its
capabilities, and the task the agent needs to perform. How-
ever, this user can only partially observe the dynamics of
the environment due to the fact that they only have access
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to the top-view projection of what is happening on the field,
and hence, they may not be completely aware of the other
properties the environment like the weight of the medkits.
The complete description of this task is given in A.1.3.

3.1. Experiments & Results

We prompt eight LLM models with the same prompts given
in A.1.1, A.1.2 and A.1.3, and compare the responses with
the ground truth composed from prior works (Zhang et al.,
2017; Chakraborti et al., 2017; 2015; Sreedharan et al.,
2017). We perform a subjective check: if each LLM model
correctly identifies the explicability issue or not, and if so,
if the reason provided for the answer is also correct. The
results are shown in Table 1.

As part of the prompt, the LLMs are exposed to information
available with the AI agent (whom the LLM is trying to
assist by modeling the human in the loop), and information
available with the human in the loop (like access to only
the top-view). It is not, however, explicitly told the impacts
of missing information. The objective for LLM is then
two-fold, first to correctly identify which is the potential
impact of the missing information (for example, the fact
that the human is unaware of the ‘tuck’ motion being part
of ‘move’ in Fetch example) and secondly, to utilize this
information to judge whether or not the human in the loop
would find the AI agent’s actions explicable. We find that
newer generations of GPT models perform better than older
versions in these tasks. In the cases of Fetch and Rover, the
GPT models provide accurate reasoning, but they struggle
in the USAR domain. Although the models can correctly
predict the explicability label that the human would assign,
there is significant room for improvement in their reason-
ing abilities. While LLMs can offer valuable feedback as
preference proxies, their Theory of Mind (ToM) capabilities
could be enhanced further. Researchers should use LLMs
with caution and continue exploring ways to improve their
performance as preference proxies in such settings.

4. Probing LLMs for Sub-Task Preferences
The other set of experiments we perform are based on
Human-AI collaborative teaming settings where both, the
human and the AI agent are acting in the environment. In
this case, we identify at least two categories of human pref-
erences, preferences over the sub-tasks to achieve as a team,
and preferences over sub-task assignments between the hu-
man and the AI agent. While both of these require extensive
modeling of human mental states, we find that preferences
over sub-task assignment is usually unique to the human
in concern whereas generally, people come up with a finite
set of interesting sub-tasks they would want to pursue as a
team. Therefore, we restrict the scope of our investigation to
sub-task specification based preferences and leave sub-task

Table 1: Experiments on testing Theory-of-Mind capabili-
ties of LLMs across 3 domains: Rover, Fetch and USAR. Y:
matches with ground truth, Y⇤: matches with ground truth
with correct reasoning, N: does not match with ground truth,
-: no response.

Matches w/ Ground Truth
Domain/Model Rover Fetch USAR
text-davinci-001 N Y Y
text-davinci-002 Y* N Y
text-davinci-003 N Y* Y

text-ada-001 N N N
text-babbage-001 - - N

text-curie-001 - N Y*
gpt-3.5-turbo Y* Y* Y

gpt4 Y* Y* N

assignment as a future research objective.

We experiment with eight LLM models using the Over-
cooked domain, a popular 2-player game that has been
widely used for training collaborative agents paired with
real human partners (Carroll et al., 2019; Yu et al., 2023).
We prompt the LLMs with a general description of the game
as given in A.2.1, and then also add three specific layout
descriptions which have additional specifications on how
the two agents can act in the environment, as given in A.2.2,
A.2.3, and A.2.4. The objective of the LLM is to respond
with a set of seven sub-tasks that the human in the loop
would believe as reasonable sub-tasks to be pursued as a
team. We use a list of “events” used in prior work (Yu et al.,
2023) as the ground truth of what the human would expect.

These layouts are as follows:

Layout 1 - Asymmetric Advantages: This layout tests
whether players can choose high-level strategies that play
to their strengths. There is a counter in the middle with two
stoves that can be accessed from each side. Both players
have an onion dispenser, plate dispenser, and serving area
on their sides. However, the plates and the serving area are
closer to the player on the left, while the onion dispenser is
closer to the player on the right.

Layout 2 - Forced Coordination: This layout forces play-
ers to develop a high-level joint strategy, since neither player
can serve a dish by themselves due to a counter table be-
tween them over which the player on the left side can pass
over onions and plates, and the right player will take the
onions, put them on the cooking stove, plate the cooked
soup in a dish, and finally serve them

Layout 3 - Counter Circuit: This layout involves a non-
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Table 2: Experiments on testing Theory-of-Mind capabili-
ties of LLMs across 3 Overcooked domain layouts: Asym-
metric Advantages, Forced Coordination, and Counter Cir-
cuit.

# Matches (out of 7) w/ Ground Truth
Layout/
Model

Asymmetric
Advantages

Forced
Coordination

Counter
Circuit

text-davinci-001 1 4 2
text-davinci-002 4 3 5
text-davinci-003 4 2 5

text-ada-001 0 0 0
text-babbage-001 2 2 0

text-curie-001 0 2 3
gpt-3.5-turbo 3 5 4

gpt4 3 3 5

obvious coordination strategy, where onions are passed over
a counter in the middle of the kitchen to the pot, rather than
being carried around the counter. There is only one path
around the counter so the two agents can not cross each
other and will collide if they reach the same location in the
kitchen.

4.1. Results

For this set of experiments, we check how much overlap
exists between the responses of the LLM models and the
ground truth as has been described by (Yu et al., 2023) and
given in section A.2. This ground truth has been used by
(Yu et al., 2023) to account for human preferences when
training AI agents to partner with them and accomplish the
team goal. Consolidated results can be found in Table 2.
We perform a subjective check and report how many, out
of the seven predicted ‘events’ by the LLM, match with
the ground truth list. Unlike as in previous section, the
performance of GPT4 is at par, if not worse, with an older
generation model text-davinci-002 and text-davinci-003 for
all the three layouts. The results show that GPT4 model did
get several of the expected events, but could not capture all.
This furthers our point on using LLMs as a preference proxy
(than as a preference substitute).

5. User Study : How aligned are subtask
preferences as imagined by LLM with
human users?

The experiments and results described in sections 3, 4 use a
ground truth human preference either upon agent behavior
or sub-task specification obtained from past research works.
While these ground-truth preferences are catered by subject
matter experts, we also test how well LLMs can act as a
human proxy for sub-task specification.

5.1. Setup

We extend experiments of section 4 and designed a user
study to answer the following questions :

1. Q1: How well does the LLMs predicted sub-task spec-
ification for the Overcooked domain aligns with a lay
user’s sub-task specification?

2. Q2: Whether a lay user finds LLMs predicted sub-task
specification as ”human” generated?

We recruited 17 random participants with varying levels
of experience with the Overcooked domain. We described
the general theme of the game and showed various layouts
of the game and the two agents acting to achieve the task.
The layouts were drawn from prior (Carroll et al., 2019)
research in multi-agent coordination tasks designed specif-
ically to test certain key ideas like “forced coordination”,
“asymmetric advantages” etc. We obtained 60s videos of
agents acting in the Overcooked maps using the popular
benchmark (Hum, 2023) with Human-Aware PPO agent.
The participants were asked to create their own preference
list, similar to the expert event-list described in the previous
section. After completing their lists, they were shown two
lists - one generated by the LLM (referred to them as ”un-
known source”) and their own list from the previous step
(referred to them as ”List B Created by you in the previous
step”). Nex, they were asked to compare the two lists and
rate on a Likert scale the degree to which they find the two
lists aligned (Question 1 above). Finally, they were asked
to rate on a Likert scale the degree to which they believed
List A was generated by a human. Please refer to Appendix
: figures 6, 7, for details on the study interface, event-lists,
and the exact language used to phrase the questions.

Furthermore, as part of the study, we gathered event lists
created by actual human users, which could be beneficial
for further research.

5.2. Results

For the general Overcooked setting shown in Table 3, we
first report the alignment of the responses with our ground
truth expert event list. We find that GPT4 does a better job
when coming up with event-list for the game in general (as
compared to a specific layout). We speculate that this could
because of its limited planning capabilities that hinder its
ToM abilities to understand nuances of a specific layout. We
also collected event-list as responses from our participants
in our user study and tested whether the events given by
the LLM matches to any of the events given by atleast one
participant. While LLM responses may not exactly match
an individual participant’s response this test allows us to
analyse whether there exists atleast one person with similar
event-list item as that of the LLM. We find that text-davinci
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Table 3: Experiments on testing Theory-of-Mind capabili-
ties of LLMs across the general Overcooked game ground
truth as per the domain’s provided description, and the user
study.

Overcooked
Source/
Model

# Matches (out of 7)
w\Ground Truth

# Matches (out of 7)
w\User Study

text-davinci-001 4 7
text-davinci-002 4 6
text-davinci-003 3 4

text-ada-001 0 0
text-babbage-001 1 0

text-curie-001 0 0
gpt-3.5-turbo 3 6

gpt4 5 7

models and gpt3.5 and gpt4 models performed exceptionally
well achieving close to perfect scores.

The answer to the above-mentioned Q1 tells us that partici-
pants also believed that LLMs aligned with their preferences
with an average agreement of 3.8/5 ±0.7 on a Likert scale
of 1-5. Hence, we infer that LLMs are indeed a reasonable
proxy for human preferences, but should not be confused
with being a substitute.

For the second question, we note that an agreement of
3.5/5±1.3 from the participants which is indeed border-
line, and hence, no real consensus can be drawn on whether
the participants really believed that the list was generated
from another human. One reason for this could be because
typically, the human generated lists were not as structured,
lengthy and impressively written.

From the user study, we also note that users, in general,
stuck to listing events in their responses which are supposed
to be boolean predicates. Very small percentage (17%) of
the total participants mentioned strategy-specific responses.
Moreover, very few people gave infeasible answers that
involved actions or objects not present in the game descrip-
tion. 15% of the people gave more than 2 infeasible answers,
while 53% people gave all feasible answers.

6. Conclusion
In this work, we explore the role of large language models to
serve as a human proxy for providing answers to preference
queries by an AI agent employing LLMs for its Theory of
Mind capabilities. Among the several manifestations of hu-
man preferences, we explore two key human preferences as
explicability preference of a human observer and a sub-task
specification preference of a human co-actor in a human-AI
team. We borrowed suitable scenarios to probe LLMs for
their Theory of Mind abilities to answer whether a human in

the loop would find a certain agent behavior explicable, or
what sub-tasks would the human in the loop come up with
for the team to pursue. We evaluate eight GPT-based models
on three explicability preference tasks and three sub-task
preference layouts in the Overcooked domain. We also con-
ducted a human user study to confirm that LLMs do show
Theory of Mind abilities to be a preference proxy, however,
they can provide incorrect reasoning. We also discovered
that the study participants generally concurred that there
was a substantial correlation between the sub-task list they
would have created and what the LLM had provided.

We finally conclude that for these tasks, LLM showed
promise to be used as a human proxy. While the earlier
LLM models struggled, newer models can perform much
better, and real humans agree that it is good enough for
these sub-task specification preferences. We hope that fu-
ture research in learning from and identifying preferences
of humans in the loop can utilize our findings and cautiously
use LLM for its Theory of Mind capabilities.
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