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Abstract
Speech-driven gesture generation models enhance robot gestures
and control avatars in virtual environments by synchronizing ges-
tures with speech prosody. However, state-of-the-art models are
trained on a limited number of speakers, with audios typically
recorded in controlled conditions, potentially resulting in poor
generalization to new voices and noisy environments. This paper
presents a robust evaluation method for speech-driven gesture
generation models against unseen voices and varying noise levels.
We utilize a voice conversion model to produce synthetic speech
that maintains prosodic features, ensuring a thorough test of the
model’s generalization capabilities. Additionally, we introduce a
controlled synthetic noisy dataset to evaluate model performance
under different noise conditions. This methodology establishes a
comprehensive framework for robustness evaluation in speech-
to-gesture synthesis benchmarks. Applying this approach to the
state-of-the-art DiffuseStyleGesture+ model reveals a slight perfor-
mance degradation with diverse voices and increased background
noise. Our findings emphasize the need for models that can gener-
alize better to real-world conditions, ensuring reliable performance
in varied acoustic scenarios.

CCS Concepts
• Computing methodologies→Machine learning; • Human-
centered computing → Human-computer interaction (HCI).
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1 Introduction
Multispeaker gesture generation models from speech have become
increasingly significant in the realm of virtual reality, enabling a
plethora of applications. For example, users can control avatars
within the metaverse, participate in virtual games, or attend vir-
tual meetings, all with gestures dynamically generated from their
spoken words. This technology is particularly advantageous in
virtual production, as it facilitates the creation of characters with-
out the need for motion capture. In this context, the capacity of
these models to adapt to previously unseen conditions, such as new
voices or noisy environments, is a key challenge towards more per-
sonalized virtual experiences since it can ensure that the avatars’
gestures align closely with the user’s personal style, enhancing
virtual characters’ realism and individuality.

Previous research has explored generating gestures specific to dif-
ferent speakers, successfully capturing their unique styles [1, 5, 22].
Additionally, style-transfer techniques have shown promising re-
sults in generating gestures for unseen styles [3, 4]. Diffusion-based
models gained a lot of attention in recent works in gesture gen-
eration [15, 18]. However, a significant gap remains in generaliz-
ing gesture generation models to unseen voices. Despite claims
of handling synthesized audio or being speaker-agnostic [4, 22],
a comprehensive evaluation across diverse unseen voices is still
lacking.

Moreover, applications such as virtual meetings in busy offices or
gaming in public places often involve significant background noise.
For these applications, speech-driven gesture generation systems
should generalize not only to different voices but also to various
environmental noise conditions. This is challenging due to the
limited datasets with multiple speakers in diverse conditions and
styles. Also, most datasets are recorded in controlled environments,
such as motion capture or video studios, which do not reflect real-
world settings.

On the other hand, evaluating gesture generation models is dif-
ficult due to the variability of gestures and subjective aspects of
human motion quality. The gold standard is perceptual evaluations
for human-likeness and speech appropriateness [9]. However, user
studies are costly and time-consuming, making including variables
like unseen voices and environmental noise during development im-
practical. Thus, an objective benchmark for these aspects is highly
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valuable. Currently, no benchmarks exist for assessing the robust-
ness of speech-driven gesture generation models to unseen voices
and environmental noise.

To address this gap, this work presents three main contributions:
(1)We propose amethod to evaluate the robustness of speech-driven
gesture generation models to unseen voices using voice conversion
(VC) speech synthesis models. This approach enables controlled
experiments without the need for new studio recordings. (2) We
introduce TWH-Party, a new dataset derived from the Talking with
Hands (TWH) dataset [10], which includes speech stimuli with
varying levels of background noise. (3) We benchmark the state-
of-the-art model DiffuseStyleGesture+ [21] against conditions not
encountered during its training and provide a detailed discussion
of the results.

2 Proposed Method
In this section, we describe the key components of our proposed
method to establish a benchmark for assessing robustness to unseen
conditions in speech-to-gesture synthesis models. First, for any
trained model, we propose to evaluate it against unseen voices
generated synthetically by a voice conversion system rather than
using new studio recordings. Section 2.1 explains how state-of-the-
art VC systems can be utilized as experimental tools for controlled
experiments. Second, to assess the robustness of the models to
degraded input speech, we constructed a dataset of speech stimuli
with varying levels of background noise derived from the TWH
dataset, a large-scale public dataset of synchronized motion and
audio (Section 2.2). Finally, we propose evaluating the models under
unseen conditions during the training stage using objective metrics
such as Frechét Gesture Distance (FGD) (Section 2.3).

2.1 Voice Conversion
Voice conversion (VC) alters a speaker’s voice in a given input audio
to that of another speaker while preserving linguistic, paralinguis-
tic (e.g., pitch, volume, intonation, rhythm), and non-verbal (e.g.,
breathing, laughing, crying) information [12]. VC has been used in
benchmarks like the ASVspoof challenge for spoofed and deepfake
speech detection, where it created voice deepfake attacks to test
participants’ solutions detection abilities [19].

Standard VC models are enhanced using fundamental frequency
(𝐹0) as a conditioning factor. It allows not only to achieve disen-
tanglement between input 𝐹0 and speaker timbre information but
also to make the output 𝐹0 controllable with the modification of
the input curve [13]. This approach is particularly successful for
singing voice conversion (SVC) models [11]. In this work, we pro-
pose to use a state-of-the-art open-source SVC model due to its
ability to synthesize expressive speech, a key factor in addressing
the expressiveness of speech-synchronized gesture datasets [6].

In particular, our experimental setup used So-VITS-SVC model1
to convert the existing audios to unseen voices. Its architecture
includes four pre-trained audio encoders: a timbre encoder for
speaker representations [17], a Whisper encoder for linguistic con-
tent [14], a soft HUBERT encoder for prosody [16], and a CREPE
model for fundamental frequency [7]. These representations are

1Available at https://github.com/PlayVoice/whisper-vits-svc

processed by a normalizing flow-based decoder, trained to disen-
tangle speaker information so that different timbres can be applied
during inference.

2.2 Noise Corruption
To assess the robustness of the models to degraded input speech,
we propose using a dataset of speech stimuli with varying levels of
background noise.We built this dataset by extracting the audio from
the 17-speaker TWH dataset subset used in the GENEA Challenge
2023 [9] and synthesizing new audios with different degrees of
environmental noise. We named this new dataset “TWH-party”.

TWH-party dataset was created by corrupting the original TWH
dataset with convolutional reverb randomly extracted from the
Room Impulse Response and Noise Database [8], to add an ambient
factor, and also with added environmental background, transient,
and speech noises, using randomly selected audios from the Libri-
Party dataset. The LibriParty2 dataset is a synthetic augmentation
of the LibriSpeech dataset with reverb, background and transient
noises to simulate a cocktail-party/meeting scenario.

To evaluate the model’s robustness in scenarios with different
levels of background noise, we parameterize the TWH-party gener-
ation scripts. These parameters control the volume of input audio
from the TWH to be corrupted (S), the amount of reverb (R), the
number of corruption audios added from the Libriparty (N), and
their combined volume level (V). We made available the TWH-party
as well as its generation scripts to encourage other researchers to
evaluate their systems in these settings.

2.3 Comparing Generated Motion Sequences
We propose to adopt the Frechét Gesture Distance (FGD) [22] and
Mean Squared Error (MSE) to compare the generated motion se-
quences. The FGD is based on an unsupervised motion feature ex-
tractor, and it represents the distance between the Gaussian mean
and covariance of the extracted motion features of two sets of
gestures, 𝑋1 and 𝑋2. The FGD is defined as follows:

𝐹𝐺𝐷 (𝑋1, 𝑋2) = ∥𝜇1 − 𝜇2∥2 + Tr(Σ1 + Σ2 − 2(Σ1Σ2)1/2), (1)

where 𝜇𝑖 and Σ𝑖 are the first and second moments of the latent
feature distribution 𝑍𝑖 of gestures𝑋𝑖 . In our experimental setup, we
trained an autoencoder using the train set of the GENEA Challenge
2023 in sequences of joints’ global positions and used the encoder
part of the network as the feature extractor.

Additionally, MSE is used to measure the average squared differ-
ences between two sets of gestures. It is defined as:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑋1 − 𝑋2)2, (2)

where 𝑋1 and 𝑋2 represent the generated gesture positions.

3 Experimental Setup
This section describes our experimental approach to benchmark
the state-of-the-art DiffuseStyleGesture+ model against unseen
conditions during the training stage.Our code is publicly available
at https://github.com/AI-Unicamp/Benchmarking-SDGG-Models
2Available at https://github.com/speechbrain/speechbrain/tree/develop/recipes/
LibriParty/generate_dataset
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3.1 Model of Study: DiffuseStyleGesture+
DiffuseStyleGesture+model is considered state-of-the-art in speech-
driven gesture generation and was one of the top models in the GE-
NEA Challenge 2023 [9], also winning the reproducibility award in
the challenge. DiffuseStyleGesture+ is a multimodal gesture gener-
ation model designed to automatically generate co-speech gestures
synchronized with speech [21]. The model integrates data sources
like audio, text, and speaker characteristics, mapping these modal-
ities to a latent space. Subsequently, through a diffusion model,
DiffuseStyleGesture+ proved to be one of the best evaluated in
the challenge to process and produce gestures synchronized with
speech.

DiffuseStyleGesture+ excels in integrating various speech fea-
tures, including (MFCCs,mel-spectrogram, pitch, energy,WavLM [2]
representations, and onsets), to generate highly accurate and con-
textualized gestures [20, 23]. The model processes both local and
global audio features, incorporating semantic information from text
and speaker-specific data. This multimodal integration ensures that
generated gestures accurately reflect speech intonation, rhythm,
and content, adapting to both the main speaker and interlocutors
in complex conversations [18].

The ability to capture diverse speech features is crucial for pro-
ducing natural and expressive gestures, enhancing interactivity
and fluency. However, since features like mel-spectrogram, MFCCs,
and WavLM [2] representations used in the model contain speaker
timbre information, the model is inherently conditioned on tim-
bral information of the speakers present in training, thus with the
potential to compromise its generalization to unseen voices.

3.2 Robustness to Unseen Voices
First, we evaluated the model using input speech audio with a voice
different from the input Speaker ID and unseen during training. Our
experiment used the DiffuseStyleGesture+ model, pre-trained with
the TWH subset of GENEA Challenge 2023. The TWH subset used
in the GENEA Challenge 2023 includes 17 speakers. We focused on
Speaker 1, who represents 43% of the training set and 80% of the
test set (the other 16 speakers individually represent less than 5%
of the training set). We applied the SVC model to convert the test
utterances of the Speaker 1 to several different out-of-distribution
voices.

As the VC model, we used an implementation of the So-VITS-
SVC model that is pre-trained on a large multi-speaker speech and
singing voice corpus. This model is fine-tunedwith the learning rate
set to a tenth of the original for 100 epochs on the English partition
of the Emotional Speech Dataset (ESD), which consisted of 29 hours
of speech data divided across 10 gender-balanced speakers, and in
5 styles: “angry”, “happy”, “neutral”, “sad”, and “surprise” [24]. This
step yields a VC model that can convert any input speech into the
voice of any ESD speaker.

The audios from the TWH’s Speaker 1 were converted to the
voices of some speakers recorded by the ESD dataset. Aiming to
ensure that a greater diversity of unseen voices is evaluated, four
speakers of the ESD with different genders and vocal ranges were
selected:

• Speaker 12, a male voice with the highest mean pitch (160
Hz) across all ESD male speakers (Condition Man High
Pitch);

• Speaker 20, a male voice with the lowest mean pitch (115 Hz)
across all ESD male speakers (ConditionMan Low Pitch);

• Speaker 18, a female voice with the highest mean pitch (239
Hz) across all ESD female speakers (ConditionWomanHigh
Pitch);

• Speaker 19, a female voice with the lowest mean pitch (150
Hz) across all ESD female speakers (ConditionWoman Low
Pitch).

To appropriately convert the utterances from the Speaker 1 of
the TWH dataset to all the conditions described above, each pos-
sessing different vocal ranges, a fundamental frequency matching
algorithm was applied during the conversions. This algorithm con-
sists in transposing the input pitch to match the vocal range of the
output speaker. For example, when converting an utterance from
the Speaker 1 of the TWH (a female voice) to the Speaker 12 of
the ESD (a male voice), the extracted input pitch curve from the
Speaker 1 was transposed down 4 semitones so that the generated
converted output speech sits on the usual vocal range of the Speaker
12, which is in a lower register. An upwards transposition was used
to convert audio from a lower register speaker to a higher register
speaker.

After converting the test set partition of Speaker 1 to each of
the four voices (conditions), these new voice sets were used as
inputs to the DiffuseStyleGesture+ algorithm, resulting in the re-
spective generated movements. Consequently, with the generated
movements from the test set of Speaker 1 and the generated move-
ments from the new four voice sets, the next step was to obtain
the representations of 3D rotations and positions. These position
representations were subsequently used for calculating the FGD
metric. For this FGD calculation, pairwise comparisons were made,
that is, comparisons between the gesture set from the test data of
Speaker 1 and each of the gesture sets from the four voices (Man
High Pitch, Woman Low Pitch, Woman High Pitch, Man Low Pitch).
Additionally, the MSE calculation was performed. The results of
the comparisons for both FGD and MSE are provided in Table 1 left
part in Section 4.

3.3 Robustness to Environmental Noises
In Section 2.2, we introduced TWH-party; therefore, in this section,
we explain how this dataset is applied to the current proposal. To
begin with, the TWH-party dataset contains three subsets of audios,
where each subset is a copy of the TWH test audio dataset, with the
difference that each subset has been added with a different level of
noise. Consequently, three levels of noisy dataset were considered,
named conditions: low, medium, and high. These were constructed
with the following set of parameters, which are also explained in
Section 2.2:

• Condition Low Noise : {S = -3dB, R = 0.45, N = 6, V = 0.10}.
• ConditionMedium Noise : {S= -4dB, R= 0.55, N= 8, V= 0.12}.
• ConditionHigh Noise : {S = -5dB, R = 0.65, N = 10, V = 0.15}.

Therefore, the GENEA Test Dataset can be considered as "clean
from environmental noise" to a certain extent, as it only contains the
natural noise of the speakers talking during the interview, without
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Table 1: Results of the evaluation of the Frechét Gesture Distance (FGD) and Mean Squared Error (MSE) metrics when evaluated
under different voice conditions and noise levels. Lower values in FGD and MSE indicate better performance.

Metric Man
High Pitch

Woman
Low Pitch

Woman
High Pitch

Man
Low Pitch

Low
Noise

Medium
Noise

High
Noise

FGD 15.74 20.36 28.08 50.25 10.56 14.23 17.59
MSE 2.38 2.51 2.61 3.06 1.82 1.95 2.01

any deliberately added noise using tools or algorithms. On the
other hand, the three new datasets (TWH-party) have deliberately
added noise at different levels to test the gesture generation model’s
robustness.

TWH-party served as new inputs to the DiffuseStyleGesture+
algorithm, resulting in the respective generated movements, that
is, three sets of gestures. Subsequently, the representations of 3D
rotations and positions for each of the three gesture sets were
obtained. Finally, the position representationswere used to calculate
the FGDmetric, enabling pairwise comparisons between the gesture
set from the GENEA test audio data and each of the gesture sets
from the audio datasets with added noise at different levels. The
results of the comparisons for both FGD and MSE are provided in
Table 1 right part in Section 4.

4 Results and Discussion
The robustness evaluation results for the DiffuseStyleGesture+
model are presented in Table 1. This table displays the FGD and
MSE metrics obtained by applying voice conversion (VC) to the
audio from the TWH dataset using four different speaker voices
from the ESD dataset, as well as for audio with different levels of
added noise (low, medium, and high) the THW-party.

The table shows that the model performed best under the Man
High Pitch, with an FGD of 15.74 and an MSE of 2.38. This indicates
that the model generated gestures closer to the Speaker 1 when the
converted voice had the highest pitch among the male speakers.
The Woman Low Pitch followed with an FGD of 20.36 and an MSE
of 2.51, suggesting that the model synthesized gestures reasonably
well with this voice.

However, themodel faced significant challenges under theWoman
High Pitch and Man Low Pitch, with FGDs of 28.08 and 50.25, and
MSEs of 2.61 and 3.06, respectively. This suggests that extreme pitch
variations, both high and low, particularly for female voices and
very low-pitched male voices, represent a challenge for the model.
These results indicate a decrease in the model’s ability to generalize
to voices with significantly different pitch ranges.

For noise conditions, the table indicates that the model is quite
robust to low levels of noise, with an FGD of 10.56 and an MSE of
1.82. This suggests that the model can maintain gesture accuracy
even with some background noise, which is common in real-world
applications. As the noise level increases, the model’s performance
decreases. For medium noise, the FGD rises to 14.23 and the MSE
increases to 1.95, showing a moderate impact on the quality of
gesture generation. In high noise conditions, the FGD reaches 17.59
and the MSE 2.01, indicating a more substantial deterioration in
performance.

Overall, the results demonstrate that DiffuseStyleGesture+ ex-
hibits a certain degree of robustness to unseen voices and environ-
mental noise. The model performs better with voices that approxi-
mate the original pitch of Speaker 1 in the TWH dataset and with
lower levels of noise. This highlights the importance of handling
noise in speech-driven gesture generation models. Although the
DiffuseStyleGesture+ model shows some resilience to environmen-
tal noise, its robustness is compromised at higher noise levels. This
demonstrates the need for further development to enhance noise
robustness, ensuring reliable performance across a variety of real-
world acoustic scenarios. In particular, extreme variations in pitch,
both high and low, appear to be a challenge for the model. Future
improvements should focus on expanding the range of voices and
acoustic conditions that the model can effectively handle.

5 Conclusion
This work evaluated the robustness of speech-driven gesture gen-
eration models, focusing on generalization to unseen voices and re-
sistance to environmental noise. We used a voice conversion model
to generate synthesized audio and created a controlled dataset with
background noise, named TWH-party. The evaluation was con-
ducted using the DiffuseStyleGesture+ model. Results show that
DiffuseStyleGesture+ model exhibits robustness to unseen voices
and noise, performing best with voices similar in pitch to Speaker
1 in the TWH dataset and with lower noise levels. However, perfor-
mance decreases as noise level and pitch variation increase.

This work contributed to establishing a framework for systemat-
ically evaluating gesture generation model robustness, providing a
method and dataset for assessing generalization to new voices and
noisy environments.

Limitations include using a single gesture generation model. As
Future work should evaluate more speech-driven models and use
larger datasets like VCTK, which contains 109 voices. Additionally,
we aim to expand the proposed robustness protocol to unseen
languages.
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