Under review as a conference paper at ICLR 2025

ASSESSING LARGE LANGUAGE MODELS FOR VALID
AND CORRECT CODE REASONING

ABSTRACT

Frontier large language models (LLMs) consider reasoning as first-class citizens:
they learn to refine their reasoning process and try different strategies during train-
ing. Thereby, when prompted, can think through problems and respond better with
proper reasoning. For programming tasks, this makes code reasoning a must. In
this paper, we propose the task of Code Execution Simulation (CES) as a proxy
for evaluating the code reasoning capabilities of LLMs. CES defines the notions
of valid or invalid reasoning process, which enables it to promptly (1) determine
where the execution simulation diverges from ground truth for incorrect output
predictions (essential to understanding limitations of LLMs in code reasoning)
and (2) identify suspiciously correct output predictions (essential to understand-
ing reasoning shortcuts, hallucinations, or potential data leakage). In addition
to evaluating LLMs’ execution reasoning on a program with a single test, CES
measures their reasoning consistency across tests with the same or different prime
path coverage. This enables it to evaluate the code reasoning of LLMs in a spec-
trum: strong, weak, and random. Our results show that LLMs, to a great ex-
tent (83.32%), follow a valid reasoning process (results in 30.79% correct and
51.53% incorrect output predictions). However, their reasoning is mostly random
(55.59%) or weak (41.69%), which explains their weakness in programming tasks
that require flow- or path-sensitive program analysis to succeed.

1 INTRODUCTION

Large Language Models (LLMs) have shown emerging abilities in code/test synthesis, bug/vulnera-
bility detection, code translation, and program repair (Roziere et al., 2023 [Zhu et al.| | 2024; |Achiam
et al., 2023} [Lozhkov et al., 2024} Reid et al.| |2024; |[Yang et al.l 2024; Mishra et al., [2024)). The
extent to which they can reason about code execution is still under investigation. CRUXEVAL (Gu
et al.,|2024) and CODEMIND (Liu et al.,[2024a)) proposed the output prediction task for given inputs
to evaluate LLLMs for code execution reasoning. REVAL (Chen et al.| [2024)) took one step further
and evaluated LLMs using four runtime behavior prediction tasks: for given inputs and a statement
in the program, predict (1) if the statement is covered during execution, (2) variable values after the
execution of it, (3) the next statement executed after it, and (4) final output.

These techniques lack the following essential features: Flow Sensitivity. Assessing LLMs for fol-
lowing the correct execution path from start to end is essential for code reasoning. CRUXEVAL and
CODEMIND only concern output prediction without evaluating intermediate program states. REVAL
evaluates runtime behavior prediction of a subset of statements in programs, not all, due to computa-
tional overhead inherent in their design. It also prompts an LLM separately per individual statement
without strategies to combine all predictions for the entire program. Diagnosis. None of these tech-
niques can promptly and reliably determine (1) where the LLM’s execution reasoning diverges from
the ground truth and results in incorrect output prediction, or (2) flags suspiciously correct output
predictions. The former is essential to understanding the limitations of LLMs in code reasoning and
improving the next generation of Code LLMs. The latter can reveal data contamination, halluci-
nations, and reasoning shortcut cases, which are important trustworthiness concerns (Zhang et al.,
2023; [Shi et al.; |[Ding et al.,[2024a). Reasoning Consistency. Prior techniques evaluate the reason-
ing of LLMs per single test, failing to study the consistency of reasoning across multiple tests with
potentially different coverage. Investigating such consistency can reveal the strength of inductive
reasoning in LLMs: a model that correctly reasons about execution across tests with different cov-
erage is unlikely to succeed by chance (Strong Reasoning), and a model that correctly reasons about
the execution across tests with the same coverage, but not those with difference coverage has a Weak
Reasoning abilities. Otherwise, the reasoning of the model can be considered random.

We propose Code Execution Simulation (CES) task for assessing LLMs in code reasoning. CES
unifies output prediction and intermediate program state predictions into one prompt. Asking LLM
to predict all intermediate program states and output makes the task complex and can confuse it,

Under review as a conference paper at ICLR 2025

REval (6PT-4 Turbo)

prompt1- True
prompt2- ans = [-10, 3]
prompt3- Next line to be executed: 8 (6)

prompt1- True

prompt2- ans = [-10, 3, -5, 2, -3, 3,9, 0,
123, 1] ([-10,3,-5,2,-3,3,5,0,9,1,123])
prompt3- Next line to be executed: -1
(10)

prompt1- True

prompt2- ans = [-10, 3, -5, 3, -3, 0, 5, 2,
9, 1, 123] (|-10,3,-5,2,-3,3,5,0,9,1,123])
promp3- Next line of code to be executed
inside the function: -1

prompt4- Output: [-10, 3, -5, 2, 5, 3, 9, 0,
123, 1, -3] (-10,3,-5,2,-3,3,5,0,9,1,123])

(a)

def sort_even(l: list):
evens = 1[::2]
odds = 1[1::2]
evens.sort()
ans = []

ans.extend([e, o])

if len(evens) > len(odds):

ans.append(evens[-1])
] return ans

Input: [5,3,-5,2,-3,3,9,0,123,1,-10]
Output: [-10,3,-5,2,-3,3,5,0,9,1,123]

(b)

1
2
3
4
5
6 for e, o in zip(evens, odds):
7
8
9
1

CES (GPT-4 Turbo)

- Reasoning about loop properties:

e=[-10,-5,-3,5,9]

0=1[0,1,2,3,3] ([3,2,3,0,1])
zip(evens,odds) = [-10,0,-5,1,-3,2,5,3,9,3]
([-10,3,-5,2,-3,3,5,0,9,1])

evens = [-10,-5,-3,5,9,123]

odds =[0,1,2,3,3] ([3,2,3,0,1])

- Reasoning about conditional properties:

len(evens) > len(odds) = True (True)
Branch taken = Yes (Yes)

- Reasoning about output:

output = [-10,0,-5,1,-3,2,5,3,9,3,123]
(1-10,3,-5,2,-3,3,5,0,9,1,123])

(c)

Figure 1: A motivating example showcasing CES reasoning (c) in root causing the incorrect output
prediction by GPT-4 Turbo for HumanEval/37 problem (b), compared to REVAL reasoning (a)

especially since this requires reasoning across multiple statements considering execution flow (Al-
lamanis et al.j [Sabbatella et al., 2024} [Chang et al.| 2024)). We alleviate the issue by (1) prompting
the model to predict only essential decision point values (loop variables, loop iterables, predicates,
conditions, and branches) and (2) instructing the task with adaptive in-context examples (using static
analysis to adjust the in-context example based on the program). CES is flow-sensitive (evaluates
the execution reasoning of a program as a whole), scalable (need to prompt model per program and
test), and diagnostic (identifies execution simulation divergence points for incorrect output predic-
tions AND rule out suspicious correct output predictions).

Extensive empirical evaluation of CES on two API-access (GPT-4 Turbo and Gemini-1.5 Pro) and
eleven open-access LLMs (different sizes and training strategies of DeepSeekCoder, CodeLlama,
MagiCoder, StarCoder2, and SemCoder) demonstrates that LLMs, in general, can follow a valid
reasoning process, resulting in 30.79% correct and 51.53% incorrect output predictions. However,
their reasoning is mostly random (55.59%) or weak (41.69%). Our experiments show slight agree-
ment between CES and three other programming tasks that heavily rely on program understanding
and analysis (bug detection, localization, and repair), even for SemCoder that is pre-trained on ex-
ecution data. This confirms why LLMs have yet to generalize to programming tasks, specifically
in the real world and beyond benchmarks. CES also categorizes the root causes for incorrect or
suspiciously correct output predictions, which could be valuable to understanding the limitations of
LLMs in code reasoning and designing the next generation of execution-aware Code LLMs. Our
artifacts are publicly available (Authors,|[2024)).

2 MOTIVATING EXAMPLES

Understanding where the model’s execution simulation diverges from real execution can reveal im-
portant facts about LLMs’ code understanding. Can existing code execution reasoning approaches
diagnose the inception of such divergence? To answer this question, consider the example in Fig-
ure[I}b, which shows the code and corresponding test for the HumanEval/37 problem. CODEMIND,
REVAL, and CES unanimously show that GPT-4 Turbo cannot correctly predict the output of this
program for the given inputs. CODEMIND provides no additional information on where the model
lost the execution track, producing incorrect output prediction. REVAL selects statements 7, 9, and
10 as representative statements for code reasoning. For each statement, it individually prompts GPT-
4 Turbo to predict if the statement is covered in the execution (prompt1), what are the variable values
after the execution (prompt2), and what is the next statement to be executed (prompt3). For the last
statement, it also asks the model to predict the final output value (prompt4). Figure[T}a summarizes
the GPT-4 Turbo response to REVAL’s 10 prompts.

GPT-4 Turbo correctly predicted promptl for all selected statements. When it comes to loops,
REVAL’s ground truth values for predicting program states (prompt2) and the next statement to be
executed (prompt3) consider the first loop iteration. Looking at the results of prompt2, we can see
that GPT-4 Turbo correctly predicts the value of ans in the first iteration, but the predicted value
for this variable in statements 9 and 10, and hence the output, are different from the ground truth
values. The model’s response to the next statement execution prediction (prompt3) does not match
the ground truths in any statement.

This example highlights the issues of individual statement reasoning of REVAL and inconsistencies
that prevent diagnosis of execution simulation divergence: the reasoning response corresponding to
statement 7 (highlighted in purple) suggests that LLM terminates the loop after the first iteration
(it predicts statement 8 to execute next). When prompting the model to predict runtime properties

Under review as a conference paper at ICLR 2025

REval (6PT-4 Turbo) CES (6PT-4 Turbo)
1 def int_to_mini_roman(number): . .
2 num = [1, 4, 5, 9, 10, 40, 50, 90, - Reasoning about loop properties
3 100, 400, 500, 900, 1000] number = [152,152,152,152,52,2,2,2,2,2,2,2,2,2,2 2]
Prompt1- True 4 sym = ["I", "IV", "V", "IX", "X", "XL", ([152,152,152,152,52,52,2,2,2,2,2,2])
Prompt2- div=1 5 "L, “Xc", "c", "cp", "D", "cM", "M"] div=[0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,2] ([0,0,0,0,1,0,1,
Prompt3- Next line to be executed: 12 ¢ i=12 0,0,0,0,0,2,1])
7 res = "' - CoT Reasoning:
8 while number: The function ‘int_to_mini_roman’ is called with the
9 div = number // num[i] argument (number = 152). Inside the function, two lists
Prompt1- True 10 number %= num[i] ‘num’ and ‘sym’ are defined, representing the Roman
i i = numeral values and their corresponding symbols
Prompt2- i=11 11 while div:] 4 P P (T o
" . pectively. The variable 'i” is initialized to 12, pointing to the
Prompt3- Next line to be executed: 9 12 res += sym[i] last element of the lists, and ‘res’ is initialized as an empty
Prompt4- Output: ‘clli’ 13 div -= 1 string to accumulate the result. The outer while loop checks if
14 i-=1 “number’ is non-zero.The inner while loop checks if ‘number’
15 return res.lower() is non-zero. After all iterations, the result "res’ is "CLII", which
Input: 152 is then converted to lowercase "clii" and returned,
Output: ‘clli’ - Reasoning about output:
output = "clli’
(a) (b) (c)

Figure 2: A motivating example showcasing CES reasoning (c) in identifying suspiciously correct
prediction of GPT-4 Turbo for the HumanEval/156 problem (b), compared to REVAL reasoning (a)

of statement 9, the response (highlighted in blue) suggests that LLM does iterate over the loop
and populates ans with more items (inconsistency 1). Looking at the model’s response to reasoning
about statement 10 (highlighted in green), we can see that there is also an inconsistency in predicting
the value of ans and predicting output, which are the same thing (inconsistency 2). Given all these
logical inconsistencies, one cannot reliably identify execution simulation divergence using REVAL.

CES prompts LLMs to predict values of loop variables (e and o), loop iterable (zip (evens,
odds)), predicate (Len (evens) >len (odds)), branch (i f statement), and output (ans). FigureE]-
¢ shows the response of GPT-4 Turbo to CES’s prompt. We can clearly see that the model simulates
the execution from the program’s start to the end, and predicted values, even if incorrect, are con-
sistent throughout the program. These results suggest that the divergence from ground truth is due
to misprediction of the loop variable o at statement 6. Although the simulation correctly follows the
control and data flow of the program, the misprediction of o propagates and results in incorrect out-
put prediction. This diagnosis is possible by prompting GPT-4 Turbo once, compared to 10 prompts
in REVAL that cannot provide reliable insights.

In addition to identifying simulation divergence, it is also important to rule out suspiciously correct
output predictions. Such cases can happen due to data contamination (the expected output of the
program for given inputs has been seen during training), hallucinations (correct prediction based on
previously incorrect ones), or shortcuts (predicting the code logic based on the function name not
understanding the code). As we will show in this paper, this phenomenon is common, even in the
best LLMs such as GPT-4 Turbo and Gemini-1.5 Pro (§5.4).

Figure 2] demonstrates the ability of CES in detecting such case when prompting GPT-4 Turbo for
reasoning about HumanEval/156 problem, compared to REVAL and CODEMIND. All three ap-
proaches show that GPT-4 Turbo correctly predicts the output for the given input. GPT-4 Turbo
correctly predicts promptl, prompt2, and prompt3, thereby, REVAL marks its reasoning (incremen-
tally) consistent. On the other hand, GPT-4 Turbo fails to correctly predict the value of loop variable
numbers in Line 8§, starting from iteration 6. This impacts the prediction related to the inner loop,
resulting in incorrect prediction of values for div at the same iteration. In real execution, these in-
correct predictions would propagate to an incorrect output prediction. However, the predicted output
matches the ground truth. CES marks this reasoning process invalid and discards the suspiciously
correct output prediction. Further manual investigation shows that even the step-by-step natural
language reasoning of the model for this case is incomplete (it only explains a high level of code
without considering program states and variable values) and incorrect (finally, it incorrectly predicts
the output to be “clii” rather than “clli”’). Thereby, CES correctly identified and discarded it.

3 CODE EXECUTION SIMULATION (CES)

A program P = {s;|s; € Sassign U Sioop U Secondition U Sreturn } 1 a set of statements that can
assign a value to a variable (S,ssign), introduce recursions in the logic (Sj,0p), cause branches in the
control flow (Scondition), OF terminate the program execution (Sy.ety,r). Given input(s) I to P, CES
evaluates LLMs in predicting properties related to Sioop, Scondition, and Syeturn statements. These
statements identify the start or end of basic blocks in the program and can capture mispredictions in
the assignment statements inside the block. Furthermore, asking a model to predict all intermediate
variable values can make the task complex, preventing proper responses to evaluate them (Liu et al.,
2024b). In this section, we first define these properties (§3.1) and explain how the CES prompts
models and evaluates their abilities in simulation execution (§3.2). We also define the notions of

Under review as a conference paper at ICLR 2025

valid or invalid reasoning process (§3.3) and how this enables CES to diagnose suspiciously correct
output prediction or determine where the simulation diverges from execution (§3.4).

3.1 PROGRAM PROPERTIES DEFINITIONS

Definition 1. Loop Properties. A program may contain m (m > 0) loop statements. A loop
statement [; € Sjoop = {l1,...,lm} consists of two main components: loop variable (V1,) and
loop iterable (Iljﬂ The loop variable keeps track of the iterations, and the loop iterable defines
the values or orders of the loop variable. In the example of Figure [T}b, the statement in Line 6
is a loop statement. The loop variables are e and o, and the loop iterable is zip (evens, odds).
For each [; in a given program P and concerning input(s) I, CES will ask the LLM to predict the
values of all V;;s. The loop iterable can be a compound, i.e., consists of multiple variables or API
calls. As a result, CES asks the LLM to predict values of all sub-components. The rationale here
is to correctly identify the root cause for simulation divergence. In the example of Figure [I}b, the
LLM may diverge from ground truth by mispredicting the values of evens or odds, or it may fail
to understand the logic of zip API in Python library, mispredicting the return value of it even with
correct values of evens and odds.

Definition 2. Condition Properties. A program may
contain n (n > 0) conditional statements. A conditional
statement ¢; € Scondition = {C1,...,Cn} represents a

l SYS Message ‘ llnstruction ‘ lQuestion ‘ l Response ‘

You are an Al programming assistant, utilizing the Deepseek
Coder model, developed by Deepseek Company

branch Bcj in the control flow, which may be taken or not
during execution, depending on the value of the condi-
tional predicate P.,. A predicate can be a compound, i.e.,
consisting of multiple sub-predicates connected by logi-
cal operators. For example, a conditional statement i f (x

Annotated Code :$ICL_ANNOTATED_CODE
Input: $ICL_CODE_Input

CoT: $ICL_COT

Completed Code: $ICL_COMPLETED_CODE
Output: $ICL_OUTPUT

#i## Instruction:
1.Replace the "??" between [STATE] and [/STATE] in the

comment with the state of a variable or the return value of a
method call/expression.

> 0 && y < 0) consists of two sub-predicates, x > 0
and y < 0. Compared to related research (Chen et al.|
2024 [Tufano et al., [2023) that evaluate LLMs only for
predicting the branches to be taken or not, CES performs
a finer-granularity assessment, asking LLMs to predict all
sub-predicates, the predicate, and the branch. A mispre-
diction at each could indicate a specific limitation of LLM
in code reasoning: an LLM that correctly predicts sub-
predicates but not the predicate may struggle with rea-
soning about complex logical expressions. An LLM that can correctly predict sub-predicates and
predicate, but not the branch, struggles in understanding program construct semantics. As we will
explain later in this section, this level of granularity also enables CES to identify invalid reasoning.

Annotated Code: $ANNOTATED_CODE
Input: $CODE_INPUT

CoT: $CoT
Completed Code: $COMPLETED CODE
Output: $CODE_OUTPUT

Figure 3: Prompt template used in CES

Definition 3. Return Properties. A program may contain k& (k > 0) conditional statements. A
return statement r; € Srepurn = {r1,...,71} defines the output of the program (a value to be
returned or message to be logged), O,.j, once the execution terminates. A return statement can also
be compound; in such cases, CES breaks it down into the sub-components and evaluates the LLM
in predicting the values per each.

3.2 PROMPTING AND METRICS

def sort_even(l: list):
evens = 1[::2]
odds = 1[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds): ## [STATE]e=2?[/STATE]
[STATE]o=22[/STATE][STATE Jevens=2?[/STATE] [STATE Jodds=2?
[/STATE][STATE]zip(evens,odds)=?? [/STATE]
ans.extend([e, o])
if len(evens) > len(odds): ## [CONDITION](len(evens) >
len(odds))=2?[/CONDITION][BRANCH]taken=??[/BRANCH]
ans.append(evens[-1])
return ans

Figure [3|shows the prompt template in CES. Regard-
less of the number of loops, conditions, and return
statements, and whether the loops or conditions are
nested, CES asks the model to predict all properties
during the execution simulation of given inputs. This
enables a flow-sensitive assessment of the models in
code execution simulation, showing where the simu-
lation starts to converge from real execution. Figure[d]
demonstrates the annotated code in the prompt used
to evaluate GPT-4 Turbo in the illustrative example
of Figure E} CES leverages in-context learning (Brown et al., [2020) to introduce code execution
simulation task to LLMs.

Figure 4: Annotated code in CES’s prompt

"Note that loop iterable may not explicitly be specified in the loop statement, e.g., highlighted while
statements in Figure E]-b only have loop variables.

Under review as a conference paper at ICLR 2025

When in-context examples closely resemble the problem, performance improves significantly due
to the model’s generalization from familiar patterns (Ye et al.,2023;|Zhang et al., 2022). As a result,
CES constructs a pool of examples reflecting different combinations of programming constructs
(details in §AT)), e.g., nested loops or conditional statements. When constructing the prompt, it per-
forms a lightweight static analysis on P to find the most relevant in-context example from the pool.
It also prompts LLMs with implicit Chain-of-Thoughts (CoT) (Wei et al.| [2022). After receiving
the response of model M for simulating the execution of program P under inputs I, CES com-
pares the ground truth with the predicted values for properties of individual statement in [; € Sj0p,
Cj S S(:ondition: and Ty S Sreturn as below:

CES(M, P,I,X,,) = [[Z[[M(P, I, Xy,)=GT(PI,Xy,)] =2] 1)

w=1
where ij represents individual Vi]., Ilj, Bcj, ch, and Orj propertiesﬂ ij can be compound,
consisting of multiple sub-components X, = {X,. ,..., X, }. Asaresult, Equation|l|evaluates
whether model’s prediction and ground truth values for sub-components of property X, match or
not. CES(M, P, 1, X,;) is 1 only if the model correctly predicts all sub-components of X, .

3.3 DETERMINING THE VALIDITY OF REASONING

The result of CES(M, P,I,0,;) in Equation (1| shows whether the model can correctly pre-
dict the output of P for given inputs I. The results of CES(M, P,1,V},), CES(M, P,1,1;,),
CES(M,P,I,B.;), and CES(M, P, I, P.,) will be used to determine if the model’s reasoning
process is valid or invalid. The notion of reasoning validity enables CES to detect suspiciously
correct output predictions under invalid reasoning process (§3.4), identify where the simulation di-
verges from ground truth (valid reasoning process followed by incorrect output prediction §3.4), (3)
define a new self-consistency notion with respect to code reasoning (§4).

We determine the cases where code reasoning process is invalid, and consider the rest as valid. With
respect to the properties that CES evaluates during execution simulation, we define three main cases
of invalid reasoning process, evaluated using the equations below:

m—+n
(CES(M,P,1,0,;)=1) A (][] CES(M,P,1,X,,)=0))
j=1
CES(M,P,I,P.;) # CES(M,P,I,B.,) A3)
3 j suchthat (CES(M,P,I,X,;)=1)A(]]IM(P,I,X,,,)=GT(PI X,)] =0))

w=1
At the highest level (represented by Equation [2)), the reasoning is invalid if at least one of the inter-
mediate predictions (Equation [I)) is incorrect, but the output is correctly predicted. The illustrative
example in Figure [2| shows such a case, which never happens in the real execution of the program,
as the incorrect program state will be propagated to the output. As we will show (§5.4), such invalid
reasoning process is common in LLMs due to hallucination, CoT shortcuts, and potential data leak-
age. There are other invalid reasoning process cases, regardless of the outcome of output prediction:
for conditional statement, incorrect prediction of predicate and correct prediction of branch demon-
strates invalid reasoning process (Equation [3)); For compound properties, incorrect prediction of at
least one sub-component and correct prediction of the compound also indicates invalid reasoning
process (Equation[)). In the example of Figure[I] where GPT-4 Turbo mispredicts values of odds, if
it correctly predicted the values of zip (evens, odds), it could be considered an invalid reasoning.

3.4 DIAGNOSIS

CES can promptly identify suspiciously correct outputs upon receiving the response from the model.
To that end, it checks whether at least one of the conditions in Equations exists in the response
and marks the reasoning as invalid. For cases where the output prediction is correct for the sim-
ulation of P under I, CES marks the correct output prediction as suspiciously correct for further
investigation and excludes it from correct prediction results.

For the cases where the reasoning is valid but the output prediction is incorrect, CES identifies all the
program points where a misprediction occurs (CES(M, P, I, X,,) = 0). Given that the reasoning
process has been checked to be valid firsthand, the first incorrect prediction likely propagates in the
execution simulation, causing the LLM to mispredict subsequent properties. Thereby, identifying

2The breakdown of the equation can be found in

Under review as a conference paper at ICLR 2025

©) .
1 def max_element(l: list): ® max eIer:;:I:(e[s'?azt,h.:;v(;;?ge
2 m=1[e] [4,3,6], [1,2,3,6], [1,2,3.4]
3 for e in l: © max_element([-5, 2, 48, 9, 4, 0, 6, 7]):
4 if e > m: ’ [4,3,6], [4,5,3,6], [5,3,4], [1,2,3,6], [1,2,3,4,5]
5 m=e ® @ max_element([1,2,3]):
6 returnm ® [4,3,6], [4,5,3,6], [5,3.4], [1,2,3,6], [1,2,3,4,5]

(a) (b) (c)

Figure 5: HumanEval/35 program (a), its corresponding control flow graph (b), and the prime path
coverage of three test inputs for this program (c)

where the simulation execution starts to diverge from the real execution can reveal important infor-
mation about the limitations of the models in code reasoning. CES follows a flow-sensitive static
analysis on the program P, and selects the first statement with CES(M, P, I, X,;) = 0. Given
that the reasoning is valid, the misprediction at this point will propagate, resulting in other interme-
diate incorrect properties prediction and, ultimately, incorrect output prediction. In the illustrative
example of Figure[T] the misprediction of e results in subsequent incorrect output predictions.

4 THE SPECTRUM OF CODE EXECUTION REASONING

The code that LLMs generate should be comprehensively tested using tests that cover all the ex-
ecution paths in the program. Otherwise, one can falsely claim an incorrect code to be correct.
Similarly, one cannot claim victory on code reasoning until the LLM can correctly simulate all the
execution paths. CES introduces the spectrum of code reasoning and evaluates the models based on
their reasoning consistency across different execution paths.

Figure [5] shows a program with its control flow graph. Due to the existence of a loop, the number
of execution paths for this program depends on the input. To account for this issue and having a
bounded number of execution paths, CES considers prime paths in the control flow graph (Ammann
& Offutt, 2017). A prime path in a cyclic graph is a path between two arbitrary nodes that does not
visit any node more than once except for the starting and ending nodes. Figure[5}c shows three tests
for the program of Figure [5}a and their prime path coverage during test execution. The union of
these tests covers all the prime paths, hence, critical execution sequences in the program.

Given a program P, test inputs I = {i1,...,4,}, and corresponding prime path coverage of tests
Teon = {covy, . ..cov,} (0 < cov; < 1), we define the spectrum of code reasoning as follows:

Definition 4. Strong Reasoning. An LLM archives a strong level of code execution reasoning on
program P, if it can consistently simulate the execution of P under test inputs with different prime
path coverage correctly.

V(p?éq%] (CO’UP#COUQ) A (CES(M7P57’P7X9;):CES(M7PaZQ7XyJ):1) (5)

Definition 5. Weak Reasoning. An LLM archives a weak level of code execution reasoning on
program P, if it can only consistently simulate the execution of P under test inputs with the same
prime path coverage correctly.

(V (p#q)v] (COUP:COUQ) A (CES(MvpaZZNXyJ):CES(M3P77’Q?XU7):1)) A

(3 (r#p), k (covr # covp) AN (CES(M, P,ir, Xy,) =0)) ©

An LLM is randomly reasoning about program P, if there exists no consistency in correctly simu-
lating the execution of test inputs regardless of their coverage.

For the example of Figure [5] GPT-4 Turbo consistently and correctly simulates the program execu-
tion across three tests, covering all the prime paths. As a result, it achieves a strong reasoning for
this program. Our definition of strong reasoning does not require test inputs covering all the prime
paths but only different ones. Even with such slack, we observe that even the frontier LLMs achieve
strong reasoning for a handful of programs in the HumanEval benchmark (§5.3).

5 EVALUATION
To demonstrate the effectiveness of CES, we investigate the following research questions:

RQ1: Performance in CES. To what extent can LLMs simulate the program execution?

Under review as a conference paper at ICLR 2025

RQ2: Reasoning Consistency Across Multiple Tests. To what extent can LLMs consistently sim-
ulate the same or different execution path of the same program?

RQ3: Incorrect and Suspiciously Correct Qutput Predictions. At which program points are
LLMs more likely to start diverging from the real execution? What are the potential root
causes for incorrect and suspiciously correct output predictions?

RQ4: Agreement Between CES and Other Programming Tasks. Is there any correlation be-
tween the performance of LLMs in CES and programming tasks that inherently require
control- and data-flow awareness?

5.1 EXPERIMENTAL SETUP

Subject LLMs We select thirteen pre-trained or instruction-tuned models of different sizes, covering
both general-purpose and Code LLMs: GPT-4 Turbo (Achiam et al.| 2023)), Gemini-1.5 Pro (Team
et al.l 2023), CodelLlama (Roziere et al.l [2023) (Base-7b, Instruct-7b, Base-13b, Instruct-13b,
Instruc-34b), DeepSeekCoder (B1 et al.| 2024) (Instruct-6.7b, Base-6.7b, Instruct-33b), Magicoder-
S-6.7b (Wei et al., [2023)), SemCoder-S (Ding et al.| [2024b)), and StarCoder2-15b (Lozhkov et al.,
2024). We downloaded the open-access LLMs from HuggingFace (hug, 2024) and followed the
best prompting practices from their official documents to ensure proper evaluation. Our experimen-
tal setting enforces temperature zero for all the models to ensure the reproducibility of results. For
other parameters, we use the default setting of each model.

Subject Programs We evaluate subject LLMs on the HumanEval (Chen et al., 2021), the most
widely used programming dataset of 164 Python programming problems. Our selection of this
benchmark for evaluation is two-fold: First, evaluating the most recent Code LLMs under different
programming tasks demonstrates a great performance on HumanEval. As we will show, such an
outstanding performance is not necessarily due to code understanding, and many of them involve
incorrect and unreasonable CoT shortcuts (@; hence, it should not be considered a victory. Fur-
thermore, HumanEval comes with extra artifacts, i.e., human-written bugs, which are required for
RQ4 to evaluate the agreement between CES and bug-related tasks. The programs in HumanEval
are mostly standalone methods but are challenging in terms of algorithmic complexity. Prior re-
search also has shown that (Liu et al.|[2024a) the mean and median cyclomatic complexity of the
programs in this benchmark is close to other programming benchmarks. For each problem in the Hu-
manEval dataset, we randomly selected three tests. When sampling, we did not control for coverage
to be fair for all programs and include all of them in the evaluation.

5.2 RQ1. PERFORMANCE IN CES

Table [1| shows the detailed results of evaluating subject LLMs in code execution simulation. We
break down the results into four categories of programs in the HumanEval dataset: programs with
conditional statements only (CO), programs with loop statements only (LO), programs with both
loops and conditional statements (LC), and programs with none of these programming constructs
(Others). For the last category, the CES task becomes a simple output prediction; thereby, correct
and incorrect intermediate reasoning is not applicable. When reporting the aggregated result (last
four rows), we count them under Valid Reasoning rows, depending on the output prediction. We
categorize our observations based on the validity of the reasoning as below:

* Valid Reasoning Process. LLMs are more likely to simulate the execution with valid (83.32%)
than invalid reasoning process (16.68%). However, they mostly yield incorrect output predictions.

[Impact of size]: Within the family of models, LLMs with more parameters always outperform
smaller ones on correct output prediction: the performance improves from 18.40% (CodeLlama-
Instruct-7b) to 25.17% (CodeLlama-Instruct-34b) and from 31.51% (DeepSeekCoder-Instruct-
6.7b) to 39.43% (DeepSeekCoder-Instruct-33b). Between the models of different sizes, big-
ger models outperform smaller ones, except DeepSeekCoder-Instruct-34b slightly outperforming
Gemini-1.5 Pro in correct output prediction.

[Impact of instruction-tuning]: Instruction-tuning, although slightly, improves the performance
of LLMs in code execution simulation: for CodeLlama-7b, CodeLlama-13b, and DeepSeekCoder-
6.7b, the instruction-tuned version outperforms the base with the margin of 1.96%, 1.65%, and
3.47%, respectively. This is because the instruction-tuned versions follow prompt instructions
better, which is important since code execution simulation is a complex task. For SemCoder (Ding
et al., [2024b)), fine-tuned on DeepSeekCoder-Base-6.7b with execution data, the improvement is

Under review as a conference paper at ICLR 2025

Table 1: Performance of LLMs in Code Execution Simulation (CES) task considering all the three
sampled tests per each HumanEval program (total 164 programs). CO: programs with conditional
statements, LO: programs with loops, LC: programs with both loops and conditional statements.
We highlight the top three best-performing models with red (1°%), green (2"¢), and blue (3"%).

Programs p Subject LLMs

CodeLlama DeepSeekCoder MagiCoder-S |SemCoder-S | StarCoder2 | Gemini-1.5| GPT-4
(Inst-7b) | (Base-7b) | (Inst-13b) | (Base-13b) | (Inst-34b) | (Inst-6.7b) | (Base-6.7b) | (Inst-33b) (6.7b) (6.7b) (15b) (Pro) (Turbo)

Valid Correct Output | 23.37% | 20.90% | 25.97% 23.38% 30.88% 38.89% 37.50% 41.67% 29.17% 47.22% 40.28% 54.17% | 81.94%

coe4) Reasoning Incorrect Output| 42.86% | 53.64% | 44.16% | 45.45% | 50.00% | 36.11% 51.39% 36.11% 52.78% 38.89% 50.00% 30.56% | 8.33%
Invalid Correct Output | 16.88% | 25.47% | 22.08% 24.68% 19.12% 19.44% 11.11% 20.83% 18.06% 12.50% 6.94% 13.89% 9.72%

Reasoning Incorrect Output| 16.88% | 0.00% 7.79% 6.49% 0.00% 0.00% 0.00% 1.39% 0.00% 1.39% 2.78% 1.39% 0.00%

Valid Correct Output | 8.11% 0.00% 40.54% 35.14% 35.29% 47.22% 38.89% 52.78% 41.67% 41.67% 40.54% 38.89% | 55.56%

LO (12) Reasoning Incorrect Output| 64.86% | 62.16% | 43.24% | 51.35% | 61.76% | 36.11% 52.78% 30.56% 44.44% 47.22% 52.78% 36.11% | 5.56%
Invalid Correct Output | 27.03% | 37.84% 16.22% 13.51% 22.55% 16.67% 8.33% 16.67% 13.89% 11.11% 8.33% 27.78% | 38.89%

Reasoning Incorrect Output| 0.00% | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Valid Correct Output | 3.69% 2.46% 7.37% 4.15% 6.86% 11.56% 7.11% 15.56% 11.56% 10.22% 16.00% 12.44% | 36.00%

LC (75) Reasoning Incorrect Output| 68.66% | 77.72% | 71.43% | 64.98% | 70.59% | 56.89% 68.89% 55.56% 65.33% 61.33% 53.33% 43.56% | 18.67%
Invalid Correct Output | 26.73% | 19.82% | 21.20% | 3041% | 22.55% | 30.67% 24.00% 28.44% 22.67% 28.00% 30.22% 40.44% | 45.33%

Incorrect Output| 0.88% 0.00% 0.00% 0.44% 0.00% 0.89% 0.00% 0.44% 0.44% 0.44% 0.44% 1.78% 0.00%

Others (53) Correct Output 40.37% | 37.93% | 42.59% 34.19% 46.15% 52.83% 50.94% 69.18% 62.26% 62.89% 67.30% 65.41% | 88.05%
Incorrect Qutput 59.63% | 62.07% | 57.41% 65.81% 53.85% 47.17% 49.06% 30.82% 37.74% 37.11% 32.70% 34.59% | 11.95%

Valid Correct Output | 18.40% | 16.44% 19.14% 17.49% 25.17% 31.51% 28.04% 39.43% 32.72% 34.96% 37.80% 38.21% | 60.98%

Total (164) Reasoning Incorrect Output| 61.85% | 66.69% | 61.11% | 67.07% | 61.47% | 49.28% 58.75% 42.88% 53.05% 49.39% 46.14% 38.22% | 14.02%
Invalid Correct Output | 16.67% | 16.87% | 18.52% 14.20% 13.37% 18.09% 13.21% 17.28% 14.02% 15.45% 15.45% 22.56% |25.00%

Incorrect Output| 3.09% 0.00% 1.23% 1.23% 0.00% 1.12% 0.00% 0.41% 0.21% 0.20% 0.61% 1.01% 0.00%

6.92%. SemCoder also outperforms instruction-tuned models of the same size or even bigger,
demonstrating the impact of execution-aware fine-tuning in better code reasonin

[Impact of code]: We can observe that LLMs struggle with loops (row LO) and complex programs
with different code constructs (row LC), as the average correct output prediction for programs in
these categories drop significantly compared to CO programs. Given the simplicity of programs
in HumanEval compared to real-world code, this indicates LLMs may struggle more in reasoning
about such complex code.

* Invalid Reasoning Process. Surprisingly, LLMs with good performance in valid reasoning process
and correct output prediction also result in more invalid reasoning. Among all the models, GPT-4
Turbo and Gemini-1.5 Pro generate more invalid reasoning cases, 25% and 23.57%, respectively.
In a similar trend, the base models that previously underperformed instruction-tuned models gen-
erate less suspiciously correct outputs. As we will discuss later with more details and in-depth
analysis (§5.4), we speculate this is due to the interference of natural language reasoning and code
reasoning. That is, instruction-tuned models that are better aligned with natural language instruc-
tions may override code reasoning with natural language reasoning shortcuts or hallucinations.
The same observation holds for SemCoder, which generates more suspiciously correct predictions
compared to DeepSeekCoder-Base-6.7b. While SemCoder incorporates execution information
such as coverage, orders, and program states, it uses natural language monologues for instruction
tuning. As a result, it falls into the same trap as other models and hallucinates with invalid reason-
ing process. We believe these results should initiate rethinking about pre-training or fine-tuning
strategies for more realistic Code LLMs that can better reason about code.

5.3 RQ2. REASONING CONSISTENCY ACROSS MULTIPLE TESTS

o, Strong Reasoning m Weak Reasoning = Random Reasoning To evaluate the extent to which LLMs can rea-
0 . .
10 son about different execution paths of the same
ig program, we computed the percentage of pro-
40 grams they can strongly, weakly, or randomly
20 simulate executions. We used Equations SHo|
0 . i
fms 42 FmaDf £ 5 ow » 2 2 3 and divided the values by the total number of
En g EN SmEST =] =] = 5 o= A = . .
S Sm8T 578928 2.8 £ & £ £ programs in HumanEval. Figure [f] shows the
2235323223295 9,593 8 5 §E + . .
i3 22 2 Lk £8¢3 €335 E 2 d result of this study. Given our random three-
=0M0 .5 ' = S 33 5 = g Q I . .
°=22% $ee= @ k| © test selection process and since some programs
O L Od 0L
AEAmAE

are simple with no branches, only 52 out of
164 programs (31.71%) had at least two tests
with different prime path coverage. The red
line in Figure [fl marks this max number.

Figure 6: The reasoning strength of subject LLMs
on HumanEval programs. The red line marks the
percentage of subjects with at least two tests of dif-
ferent prime path coverage These results show that 55.59%, 41.69%, and

2.72% of reasoning, on average across all sub-
ject LLMs, are random, weak, and strong. The notion of self-consistency among different tests
is simpler than self-consistency among different tasks (Min et al., 2023 |Huang et al., 2023)) since

3Per information in the paper, the authors have decontaminated HumanEval problems from their dataset.

Under review as a conference paper at ICLR 2025

= (0,1,x,x) == (1,0,x,x) ==(0,0,x,x) == (x,x,1,0) == (x,x,0,0) = (1,1,1,1) == (x,x,1,1) = (1,1,xX)

GPT GPT
10CFT 30 60
MC s Gemini MC~ 20 Gemini mMC~ 1 Gemini
CL z DS cL @ DS cL DS
e sC sC
(@) LO (b) CO (©)LC

Figure 7: Comparison of simulation divergence locations for top six models across Loop Only (a),
Condition Only (b), and Loops and Condition (c) programs. Models’ names are abbreviated as
follows: CL (CodeLlama-Instrcut-34b), DS (DeepSeek-Coder-Instruct-33b), Gemini (Gemini-1.5-
Pro), GPT (GPT-4-Turbo), MC (MagiCoder-S), and SC (StarCoder2-15b). (V;, I;, P., B..) labels
represent location of divergence as (loop variable, loop iterator, conditional predicate, conditional
branch). 2 denotes the observation holds regardless of the values for a given variable

the task here is not changing. Yet, state-of-the-art LLMs cannot consistently simulate the same
execution paths under different inputs. These results confirm that self-consistency across multiple
tests is a vital evaluation metric and should be considered more seriously when evaluating LLM’s
performance in other programming tasks.

5.4 RQ3. INCORRECT AND SUSPICIOUSLY CORRECT OUTPUT PREDICTIONS

Incorrect Output Prediction. CES can automatically determine where the execution simulations
diverge from the actual program execution. Figure [7]compares the simulation divergence locations
across different categories of programs for the top six best-performing models from Table [T} We
label the locations with quadruples (V;, I}, P., B.), where the elements represent loop variable, loop
iterator, conditional predicate, and conditional branch, respectively (. The values of 1 and 0
for an element indicate whether it is correctly predicted. The elements that are not applicable per
program category or whose values do not impact the label are marked with an ‘x.” The polygons in-
side the spider charts are mostly non-convex and overlapping, demonstrating different behaviors of
the LLMs. In LO programs, mispredicting loop iterables—(1,0,x,x)—is the most common reason to
initiate the divergence. For CO programs, mispredicting predicates and branches simultaneously—
(X,X,0,0)—results in divergence. In LC programs, LLMs tend to mispredict both loop properties—
(0,0,x,x), resulting in divergence from ground truth. We manually investigated these cases to un-
derstand why the predictions differed from ground-truth values. Our investigations reveal several
shortcomings of the subject LLMs as follows: (1) LLMs fail to track loop iterable whose value is
dynamically changing inside the loop (Listing [3] (HumanEval/13, DeepSeekCoder-Instruct-33b));
(2) LLMs may struggle to reason about compound properties, e.g., conditional statements with mul-
tiple sub-predicates (Listing 4| (HumanEval/57, Gemini-1.5 Pro)); (3) LLMs tend to hallucinate on
branch decision making, i.e., although they correctly predict the predicate values, they mispredict if
the branch will be taken or not (Listing E] (HumanEval/148, GPT-4 Turbo)); (4) Nested constructs
(if/loop inside another if/loop) can make it harder for LLMs to simulate program execution (List-
ing E] (HumanEval/73, CodeLlama-Instruct-13b), Listing [7| (HumanEval/142, MagiCoder-S), and
Listing [§(HumanEval/12, DeepSeekCoder-Instruct-6.7b); (5) LLMs may struggle to reason about
complex arithmetic/logic operations (Listing E] (HumanEval/47, GPT-4 Turbo)); and (6) LLMs may
mispredict return value of API calls (Listing[10] (HumanEval/160, Gemini-1.5 Pro)).

Suspiciously Correct Output Prediction. CES automatically detects suspiciously correct output
predictions. However, it cannot explain why LLMs make such mistakes. We manually investigated
them deeper to better understand the root causes of suspiciously correct output predictions. The
most common culprit is the CoT shortcut. In such cases, a monologue-style step-by-step thinking
of code execution seemingly overrides the code simulation asked in CES, making up for incorrect
properties (loop variable, loop iterator, conditional predicate, branch) predictions and resulting in
correct output prediction. The examples of such cases are shown in Figure [2] (HumanEval/156)
and Listing[TT] (HumanEval/11). In the latter, Gemini-1.5 Pro mispredicts the conditional predicate
inside the loop (i==7) in iterations 3, 4, and 6. In the CoT reasoning, however, it looks at the method
name (string_xor), assumes that the method implements bitwise XORing, and uses this assumption
in the correct output prediction.

We also observed cases where simulation execution and CoT reasoning were incorrect, yet the LLM
correctly predicted the output. Examples of such cases are Listing [12| (HumanEval/0), Listing

Under review as a conference paper at ICLR 2025

Table 2: The performance of LLMs on Bug Prediction, Bug Localization, Bug Repair, and CES.
Cohen’s Kappa coefficients represent the pairwise agreement between CES and these tasks.

CodeL.tama- | DecpSeek-Coder- |y agiCoder-$ | SemCoder-S | S¥TC9€2 | Gemini.1.5-Pro | GPT-4-Turbo

Bug Prediction | 18.75% 2875% %625% 18.13% 15.00% 9250% §8.75%

Bug Localization | 41.85% 2063% 24.38% 35% 33.15% 72.50% 7125%

Bug Repair 1250% 76.25% 69.38% 74.35% 60.00% 50.00% 93.13%

CES 18.13% 27.50% 2061% BI5% 25.00% 32.50% 55.00%
KoBS.BP 006 0.05 0.02 0.06 007 0.00 002
KCBS.BL 0.02 0.18 0.03 002 0.05 0.06 002
KCES.BR 004 003 001 0.02 0.03 002 001

(HumanEval/98), and Listing |[14| (HumanEval/73). In the first example, GPT-4 Turbo mispredicts
the inner loop variable values (idx1, elem2) as well as the conditional predicates (idx!=idx2
and distance < threshold). The CoT explains the code at a very high level without discussing
the program states and variable values. Magically, in the end, it hallucinates the return value to
be True. Similarly, in the second example, CodeLlama-Instruct-13b correctly predicts the output
despite both simulation execution and CoT being incorrect. In the first two examples, the return
type is boolean, making it easy for LLMs to predict output correctly with a high chance. The last
example, however, returns an integer, which is harder to predict by chance. For this example, the
CoT reasoning of GPT-4 Turbo shows an additional iteration over the loop. However, since this
additional iteration does not change the output, the return value will be predicted correctly.

5.5 RQ4. AGREEMENT BETWEEN CES AND OTHER PROGRAMMING TASKS

LLMs should incorporate their knowledge of programming languages and examples they have seen
to solve programming tasks. Otherwise, one cannot expect them to generalize to different tasks,
perform reasonably on real-world programs, or trust them. We consider three programming tasks
that, outside of the LLM world, performing them require execution awareness: bug prediction, bug
localization, and bug repair. Ideally, if an LLM can correctly simulate an execution path, it is more
likely to detect, localize, and repair a bug in that specific execution path. Similarly, we expect that
if a model cannot correctly simulate an execution path, it fails to detect, localize, or fix the bug.

To investigate these two hypotheses, we used OctoPack (Muennighoff et al., [2023), a dataset of
bugs generated by humans injected into HumanEval programs. We first executed OctoPack tests
and identified the failed tests on the buggy version of HumanEval programs. We then checked
if those were among our three sampled tests and kept the programs and tests passing the check.
We prompted the seven best-performing models in CES with the prompts in §A.2]to perform bug
prediction, localization, and repair.

Table [2)illustrates the performance of models in these tasks, as well as the Cohen’s Kappa (McHughl
2012) coefficients representing the pairwise agreement between CES and these tasks. Cohen’s
Kappa is a statistical test that checks the agreement between the two groups in terms of the va-
lidity of the property (how well Group A’s validity predicts Group B’s validity). It accounts for
agreement by chance, making it more reliable than a simple percentage of agreement. Its coefficient
(k) takes a value between -1 and 1. The x = 1 shows perfect agreement; x = 0 indicates agreement
by chance; negative values demonstrate no agreement or systematic disagreement.

From these results, we can see that there is, at best, a slight agreement between CES E] and these
tasks, rejecting our mentioned hypotheses. Figure [§| (§A.6]in Appendix) demonstrates the degree of
overlap between CES and individual bug-related tasks across the programs. To better understand
the reasons for agreements and disagreements, we manually investigated instances where models (1)
succeeded in CES and other bug-related tasks and (2) failed in CES but succeeded in bug-related
tasks, respectively. Our investigation shows that frontier models, e.g., GPT-4 Turbo and Gemini-1.5
Pro, attempt to simulate the execution when solving bug-related tasks. In cases of agreement with
CES, their code execution simulation extracted from CoT is correct (Figure[9). In case of disagree-
ment, natural language hallucinations interfere with their code execution simulation (Figure [I0), or
their code execution simulation is incorrect, and they succeed in the task through shortcuts (Fig-
ure[TT). The results of current and prior research questions should bring the attention to the
following questions: Shall we settle on LLMs that incorporate pattern matching or similar
strategies but not inductive code reasoning when performing programming tasks? To what
extent can we trust such LLMs?

“The CES values are different from that of in Table 1, since this experiment was done on buggy programs
in the OctoPack dataset.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Huggingface model hub. https://huggingface.co/docs/hub/en/models-the-hub,
2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Miltiadis Allamanis, Sheena Panthaplackel, and Pengcheng Yin. Unsupervised evaluation of code
llms with round-trip correctness. In Forty-first International Conference on Machine Learning.

Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University Press, 2017.

Anonymous Authors. Ces artifact website. https://github.com/CESCodeReasoning/
CES|, 2024.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Kaiyan Chang, Songcheng Xu, Chenglong Wang, Yingfeng Luo, Tong Xiao, and Jingbo Zhu. Effi-
cient prompting methods for large language models: A survey. arXiv preprint arXiv:2404.01077,
2024.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime behavior
of a program with 1lm: How far are we? arXiv e-prints, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Mengru Ding, Hanmeng Liu, Zhizhang Fu, Jian Song, Wenbo Xie, and Yue Zhang. Break the chain:
Large language models can be shortcut reasoners. arXiv preprint arXiv:2406.06580, 2024a.

Yangruibo Ding, Jinjun Peng, Marcus J Min, Gail Kaiser, Junfeng Yang, and Baishakhi Ray.
Semcoder: Training code language models with comprehensive semantics. arXiv preprint
arXiv:2406.01006, 2024b.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Baizhou Huang, Shuai Lu, Weizhu Chen, Xiaojun Wan, and Nan Duan. Enhancing large language
models in coding through multi-perspective self-consistency. arXiv preprint arXiv:2309.17272,
2023.

Changshu Liu, Shizhuo Dylan Zhang, and Reyhaneh Jabbarvand. Codemind: A framework to
challenge large language models for code reasoning. arXiv preprint arXiv:2402.09664, 2024a.

11

https://huggingface.co/docs/hub/en/models-the-hub
https://github.com/CESCodeReasoning/CES
https://github.com/CESCodeReasoning/CES

Under review as a conference paper at ICLR 2025

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024b.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173,2024.

Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica, 22(3):276-282, 2012.

Marcus J Min, Yangruibo Ding, Luca Buratti, Saurabh Pujar, Gail Kaiser, Suman Jana, and
Baishakhi Ray. Beyond accuracy: Evaluating self-consistency of code large language models
with identitychain. arXiv preprint arXiv:2310.14053, 2023.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, et al. Gran-

ite code models: A family of open foundation models for code intelligence. arXiv preprint
arXiv:2405.04324, 2024.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruc-
tion tuning code large language models. arXiv preprint arXiv:2308.07124, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Antonio Sabbatella, Andrea Ponti, Ilaria Giordani, Antonio Candelieri, and Francesco Archetti.
Prompt optimization in large language models. Mathematics, 12(6):929, 2024.

Ankit Satpute, Noah GieBing, André Greiner-Petter, Moritz Schubotz, Olaf Teschke, Akiko Aizawa,
and Bela Gipp. Can llms master math? investigating large language models on math stack ex-
change. In Proceedings of the 47th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 2316-2320, 2024.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Dangqi
Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In The
Twelfth International Conference on Learning Representations.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Michele Tufano, Shubham Chandel, Anisha Agarwal, Neel Sundaresan, and Colin Clement. Pre-
dicting code coverage without execution. arXiv preprint arXiv:2307.13383, 2023.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Hanjun Dai, Julian Martin Eisenschlos, Sercan O Arik,
and Tomas Pfister. Universal self-adaptive prompting. arXiv preprint arXiv:2305.14926, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code
is all you need. arXiv preprint arXiv:2312.02120, 2023.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning:
An information compression perspective for in-context example selection and ordering. arXiv
preprint arXiv:2212.10375, 2022.

12

Under review as a conference paper at ICLR 2025

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars
for in-context learning. In International Conference on Machine Learning, pp. 39818-39833.
PMLR, 2023.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. arXiv
preprint arXiv:2211.04486, 2022.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219, 2023.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

A APPENDIX

A.1 PROMPT DESIGN OF CES

Figure [14|shows the detailed prompt template used in CES, consisting of five key components: the
system message, adaptive in-context learning examples, instruction, question, and response. In both
the question and the in-context learning examples, we begin by commenting on the program us-
ing “’sub-questions,” which include variables or expressions related to loop or conditional construct
properties, along with placeholders marked as ”??”. Within the in-context learning examples, we
also provide sample answers where the placeholders are replaced with the correct values or states.
The instruction specifies how the LLMs should respond to the questions: answers related to loop pre-
dictions should be enclosed in ”[STATE]” and ”[/STATE]”, condition-related predictions in ”’[CON-
DITION]” and ”[/CONDITION]”, and branch predictions in [BRANCH]” and ”[/BRANCH]”. In
the question section, we annotate the program similarly to how it is done in the in-context learning
examples, and we expect the LLMs to generate responses in the format outlined in the instruction.

With the growing capabilities of large language models (LLMs), in-context learning (Dong et al.,
2022) has emerged as an important paradigm for natural language processing (NLP) tasks. More-
over, research (Wu et al.| [2022; |Wan et al., 2023)) suggests that selecting well-performing in-context
learning examples tailored to different inputs can enhance LLMs’ ability to generate correct outputs.
Building on the concept of adaptively selecting in-context learning examples, we developed 11 sets
of examples based on program constructs and their locations: if, elif, nested if, for loop, while loop,
nested loop, if inside while loop, if outside while loop, if inside for loop, if outside for loop, and
if inside nested loop. For each problem in the benchmark, we utilize the tree-sitterE]to extract code
constructs and their locations, and then select the corresponding examples from our predesigned
in-context learning candidates.

Table 3: Ablation Study on Prompting Strategies.

GPT-4-Turbo Gemini-1.5-Pro D oder-Inst-33b StarCoder2-15b SemCoder-S
- CES - CES oc | CES - CES n CES
ces | FS | (ixea | cEs | CES | bixea | cES | CES | (hixed | cES | CFS | (Fixed | cES | CFS | (Fixed

(-CoT) (-CoT) (-CoT) (-CoT) (-CoT)

ICL) ICL) ICL) ICL) ICL)
60.98% | 55.49% | 57.93% | 38.21% | 31.71% | 29.88% | 39.43% | 36.18% | 33.54% | 37.80% | 34.96% | 35.16% | 34.96% | 32.52% | 30.49%

Correct
Output
Incorrect
Output
Correct
Output
TIncorrect
Output

Valid

14.02% | 20.73% | 17.07% | 38.22% | 48.17% | 46.95% | 42.88% | 46.34% | 49.39% | 46.14% | 50.41% | 49.19% | 49.39% | 51.22% | 53.86%

Invalid 25.00% | 21.95% | 22.56% | 22.56% | 18.29% | 19.51% | 17.28% | 16.26% | 15.24% | 15.45% | 14.02% | 14.43% | 15.45% | 14.84% | 13.82%

0.00% 1.83% | 2.44% 1.01% | 1.83% | 3.66% | 0.41% 1.22% 1.83% | 0.61% | 0.61% | 122% | 0.20% 1.42% 1.83%

To further demonstrate the effectiveness of our design choice, we repeated the experiments for the
top five best-performing models with two variants of CES:

>https://tree-sitter.github.io/tree-sitter/creating-parsers

13

Under review as a conference paper at ICLR 2025

* CES (-CoT): Here we remove the natural language CoT in our adaptive in-context learning (ICL)
examples (text between [REASONING] and [/REASONING] in Figure [T4) and ask LLMs to
include only the annotated code and the output of code execution in the response.

* CES (Fixed ICL): instead of selecting ICL examples adaptively according to the program con-
structs and their locations, we use the fixed ICL example (shown in Listing[]) for all the programs
in the benchmark.

Table 3] shows the results of this experiment. Our most notable observations are:

* Comparing CES with CES(-CoT), we can see that including CoT can improve valid reasoning
process & correct output prediction by 4.11%. Comparing CES with CES (Fixed ICL), we find
that providing adaptive ICL examples instead of fixed ones can improve correct code reasoning
by 4.88% on average.

* Including the CoT and applying adaptive prompting also result in more invalid reasoning cases.
In particular, they improve the invalid reasoning process & correct output by 2.32% and 2.04%,
respectively. However, the gain in invalid reasoning process & correct output is still smaller than
that of invalid reasoning process & correct output, which still supports our prompt design.

These observations support our prior claim about the inference of natural language reasoning, which
is prone to shortcuts and hallucinations, with more formal reasoning in CES. We believe that, once
the models replace their natural language CoT reasoning with more formal ones, including the for-
mal CoT reasoning results in benefits without any side effects.

In Listing [I] and Listing 2] we show how adaptive in-context learning example improves
DeepSeekCoder-Inst-33b on HumanEval/132. HumanEval/132 (is_nested) has if-else construct
inside the for loop, and in fixed-ICL setting (Listing [I)), we present a program with for loop (ICL
Example 1) and another program with if statement (ICL Example 2) in the prompt and expect them
to teach the model to respond correctly. However, we can see that DeepSeekCoder-Inst-33b still
fails to track the states of conditional predicates inside the for loops and makes incorrect predictions
on the loop properties of the second for loop. In Listing 2} according to the program construct of
HumanEval/132, we include an ICL example that also has a conditional statement inside the for
loop in the prompt, and it helps DeepSeekCoder-Inst-33b to generate the correct reasoning process
and correct output.

Listing 1: Fixed ICL Example (HumanEval/132)

You are given a piece of Python code and its output. You are asked to complete the
following task:

1. Replace the "??" in the comment with the state of a variable or the return value of a
method call/expression. Enclose the annotated code with [ANSWER] AND [/ANSWER]

2. Think step by step and print your reasoning process of the code execution.

3. Print the output and enclose it with [OUTPUT] and [/OUTPUT].

ICL Example 1
[CODE]
def sum_of_integer (N):
sum_1 = 0
for 1 in range(l,N+1): ## [STATE]i=2?7?[/STATE] [STATE]range (1,N+1)=2?[/STATE] [STATE]N+1=22[/
STATE]
sum += i
return sum
[/CODE]
[INPUT]
sum_of_integer (5)
[/INPUT]

[REASONING]

The function sum_of_integer is called with (N = 5).
Inside the function, a variable ‘sum‘ is initialized to O.
The loop iterates from 1 through 5 (since (N =5)).

First Iteration (i = 1):
‘sum += i‘ updates ‘sum® to 1 (0 + 1 =1).
Second Iteration (i = 2):

‘sum += i‘ updates ‘sum‘ to 3 (1 + 2 3 Do
Third Iteration (i = 3)

‘sum += i‘ updates ‘sum' to 6 (3 + 3
Fourth Iteration (i = 4)

‘sum += 1i‘ updates ‘sum‘ to 10 (6 + 4 = 10).
Fifth Iteration (i = 5)

6).

14

Under review as a conference paper at ICLR 2025

‘sum += 1i' updates ‘sum‘ to 15 (10 + 5 =1).
After the loop completes, the function returns the value of ‘sum‘, which is now 15.
[/REASONING]

[ANSWER]
def sum_of_integer (N) :
sum_1 = 0

for i in range(1,N+1): ## [STATE]i=[1, 2, 3, 4, 5][/STATE] [STATE]range(1l,N+1)=[1, 2, 3, 4,
5] [/STATE] [STATE]N+1=[6] [/STATE]

sum += 1
return sum
[/ANSWER]
[OUTPUT]
15
[/OUTPUT]

ICL Example 2

[CODE]
def check_integer (1)
if i >= 1 and i <3: ## [CONDITION] (i>=1) = ??[/CONDITION] [CONDITION] (i <3) = ??[/CONDITION
] [CONDITION] (i >= 1 and i <3)=2?[/CONDITION] [BRANCH]taken=?7?[/BRANCH]
return 0
elif i < 5: ## [CONDITION] (i<5) = ??[/CONDITION] [BRANCH]taken=27?[/BRANCH]
return 1
else: ## [BRANCH]taken=2?[/BRANCH]
return 2
[/CODE]
[INPUT]
check_integer (4)
[/INPUT]
[REASONING]
The function check_integer is called with (1 = 4).

i is 2, which doesn’t satisfy (1 <= i < 3).The condition i >= 1 and i < 3 is False.
The first branch is not taken.

i = 2 satisfies (i<2). The condition i<5 is True, and the second branch is taken.
Therefore, the final output of the function check_integer(2) is 1.
[/REASONING]
[ANSWER]
def check_integer (i)
if i >= 1 and i <3: ## [CONDITION] (i>=1) = [True] [/CONDITION] [CONDITION] (i <3) = [True][/

CONDITION] [CONDITION] (i >= 1 and i <3)=[True] [/CONDITION] [BRANCH]taken=[Y] [/BRANCH]
return 0
elif i < 5:
return 1
else: ## [BRANCH]taken=[N] [/BRANCH]
return 2
[/ANSWER]

[OUTPUT]
1
[/OUTPUT]

Question

[CODE]

def is_nested(string) :
opening_bracket_index = []
closing_bracket_index = []

for i in range(len(string)): ## [STATE]i=2?[/STATE] [STATE]range (len(string))=2??[/STATE] [
STATE]len (string)=2?[/STATE]
if string[i] == '[': ## [CONDITION] (string[i] == '[')=??[/CONDITION] [BRANCH]taken=?2?[/
BRANCH]

opening_bracket_index.append (i)
else: ## [BRANCH]taken=27?[/BRANCH]
closing_bracket_index.append (1)
closing_bracket_index.reverse ()
cnt = 0
i=0
1 = len(closing_bracket_index)
for idx in opening_bracket_index: ## [STATE]idx=?7?[/STATE] [STATE]opening_bracket_index
=27 [/STATE]
if 1 < 1 and idx < closing_bracket_index[i]: ## [CONDITION] (i < 1 and idx <
closing_bracket_index[i])=2??[/CONDITION] [CONDITION] (i < 1)=?2[/CONDITION] [
CONDITION] (idx < closing_bracket_index[1])=2?[/CONDITION] [BRANCH]taken=2??[/BRANCH
]
cnt += 1
i+=1
return cnt >= 2

15

Under review as a conference paper at ICLR 2025

[/CODE]

[INPUT]

is_nested('[[]]")

[/INPUT]

Response

[REASONING]

1. The function is_nested(string) is defined. It takes one parameter, string.

2. Inside the function, two empty lists are initialized: opening_bracket_index and
closing _bracket_index. These lists will be used to store the indices of opening and closing
brackets in the string.

3. The for loop runs from 0 to the length of the string.

Loop details when string='[[]]"':

When string[i]='[': opening_bracket_index becomes [0].

When string[i]="']': closing_bracket_index becomes [2].

4. The closing_bracket_index list is reversed.

5. Two variables cnt and i are initialized to 0. cnt is used to count the number of nested
brackets, and i is used to iterate over the closing_bracket_index list.

6. The for loop iterates over the opening_bracket_index list. For each index idx in
opening_bracket_index, it checks if idx is less than the current index i in
closing_bracket_index. If it is, it increments cnt and 1.

7. Finally, the function returns True if cnt is greater than or equal to 2, and False
otherwise. This indicates whether the string contains at least two nested brackets.
[/REASONING]

[ANSWER]
def is_nested(string):
opening_bracket_index = [
closing_bracket_index = [
for 1 in range(len(string)): ## [STATE]i=[0, 1, 2, 3][/STATE] [STATE]range (len(string))=[0,
1, 2, 3][/STATE] [STATE]len(string)=[4] [/STATE]
if string[i] == '[':
[CONDITION] (string[i] == '[')=[False] [/CONDITION] [BRANCH]taken=[N] [/BRANCH]
opening_bracket_index.append (1)
else: ## [BRANCH]taken=[Y][/BRANCH]
closing_bracket_index.append (i)
closing_bracket_index.reverse ()

1
1
)

cnt = 0
i=0
1 = len(closing_bracket_index)

for idx in opening_bracket_index:
[STATE]idx=[0] [/STATE] [STATE] opening bracket index=[0] [/STATE]
if i < 1 and idx < closing_bracket_index[i]:
[CONDITION] (i < 1 and idx < closing bracket_index[i])=[True] [/CONDITION]
[CONDITION] (i < 1)=[True] [/CONDITION]
[CONDITION] (idx < closing bracket index[i])=[True] [/CONDITION]
[BRANCH] taken=[Y] [/BRANCH]

cnt += 1
i+=1
return cnt >= 2
[/ANSWER]
[OUTPUT]
False
[/OUTPUT]

Listing 2: Adapative ICL Example (HumanEval/132)

You are given a piece of Python code and its output. You are asked to complete the following
task:

1. Replace the "??" in the comment with the state of a variable or the return value of a
method call/expression. Enclose the annotated code with [ANSWER] AND [/ANSWER]

2. Think step by step and print your reasoning process of the code execution.

3. Print the output and enclose it with [OUTPUT] and [/OUTPUT].

Adaptive ICL Example

[CODE]
def sum_of_integer (N) :
sum_1 = 0
for i in range(1,N+1): ## [STATE]i=2?[/STATE] [STATE]range (1,N+1)=2?[/STATE] [STATE]N+1=2?[/
STATE]
if i >= 1 and i <3: ## [CONDITION] (i>=1) = 2?[/CONDITION] [CONDITION] (i <3) = 22[/

CONDITION] [CONDITION] (i >= 1 and i <3)=??[/CONDITION] [BRANCH]taken=27?[/BRANCH]
sum_1 += 1

elif 1 < 5: ## [CONDITION] (i<5)=27?[/CONDITION] [BRANCH]taken=2??[/BRANCH]
sum_1l+= 2

else: ## [BRANCH]taken=7?7?[/BRANCH]

sum_1 x= 4
return sum_1
[/CODE]

16

Under review as a conference paper at ICLR 2025

[INPUT]
sum_of_integer (5)
[/INPUT]

[REASONING]

The function sum_of_integer is called with (N = 5).
Inside the function, a variable sum_1 is initialized to O.
The loop iterates from 1 through 5 (since (N =5)).

First Iteration (i = 1)

— 1 is 1, which satisfies (1 <=1 < 3).

- The condition i >= 1 and i < 3 is true.

- Action: sum_1 += 1 results in sum_1 = 1.
Second Iteration (i = 2)

— 1 is 2, which still satisfies (1 <=1 < 3).

— The same condition is true.
— Action: sum_1 += 1 updates sum_1 to 2 (1 + 1 = 2).
Third Iteration (i = 3)
- 1 is 3, which now satisfies (3 <=1 < 5).
— The condition i < 5 is true (while the first condition i >= 1 and i < 3 is false).
— Action: sum_1 += 2 updates sum_1 to 4 (2 + 2 = 4).
Fourth Iteration (i = 4)
- 1 is 4, also satisfying (3 <= i < 5).
— The condition i < 5 is still true.
— Action: sum_1 += 2 updates sum_1 to 6 (4 + 2 = 6).
Fifth Iteration (i = 5)
- i is 5, now outside the previous conditions, falling into the else block.
— The else block’s action: sum_1 x= 4 updates sum_1 to 24 (6 » 4 = 24).
Return Statement
— After the loop completes, the function returns the value of sum_1, which is now 24.

Therefore, the final output of the function sum_of_integer (5) is 24.
[/REASONING]

[ANSWER]
def sum_of_integer (N):
sum_1 = 0
for i in range(1,N+1): ## [STATE]i=[1, 2, 3, 4, 5][/STATE] [STATE]range(l,N+1)=[1, 2, 3, 4,
5] [/STATE] [STATE]N+1=[6] [/STATE]
if i >>= 1 and 1 <3: ## [CONDITION] (i>=1) = [True, True, True, True, True] [/CONDITION] [
CONDITION] (i <3)= [True, True, False, False, False] [/CONDITION] [CONDITION] (i >=
1 and i <3)=[True, True, False, False, False] [/CONDITION] [BRANCH]taken=[Y, Y, N,
N, N][/BRANCH]
sum_1 += 1
elif i < 5: ## [CONDITION] (i<5)=[True, True, True, True, False] [/CONDITION] [BRANCH]
taken=[N, N, Y, Y, NJ][/BRANCH]
sum_1+= 2
else: ## [BRANCH]taken=[N, N, N, N, Y][/BRANCH]
sum_1 x= 4
return sum_1
[/ANSWER]

[OUTPUT]
24
[/OUTPUT]

Question
[CODE]
def is_nested(string):
opening_bracket_index = []
closing_bracket_index = []
for 1 in range(len(string)): ## [STATE]i=??[/STATE] [STATE]range (len(string))=22[/STATE] [
STATE] len (string)=2?[/STATE]
if string[i] == '[': ## [CONDITION] (string[i] == '[')=2??[/CONDITION] [BRANCH]taken=2?[/
BRANCH]
opening_bracket_index.append (i)
else: ## [BRANCH]taken=27?[/BRANCH]
closing_bracket_index.append (1)
closing_bracket_index.reverse ()
cnt = 0
i=0
1 = len(closing_bracket_index)
for idx in opening_bracket_index: ## [STATE]idx=2?7?[/STATE] [STATE]opening_bracket_index
=272 [/STATE]
if i < 1 and idx < closing_bracket_index[i]: ## [CONDITION] (i < 1 and idx <
closing_bracket_index[i])=2?[/CONDITION] [CONDITION] (i < 1)=2?[/CONDITION] [
CONDITION] (idx < closing_bracket_index[1])=2?[/CONDITION] [BRANCH]taken=??[/BRANCH
]
cnt += 1
i+=1

17

Under review as a conference paper at ICLR 2025

return cnt >= 2
[/CODE]

[INPUT]

is_nested('[[]1]")

[/INPUT]

Response

[REASONING]

The function is_nested is called with (string = '"[[]]"').

Inside the function, two empty lists are initialized: opening_bracket_index and
closing_bracket_index.

Iteration 1:

-The character '[' is found at index 0, so it is appended to opening_bracket_index.
Iteration 2:

—-The character '[' is found at index 1, so it is appended to opening_bracket_index.
Iteration 3:

—-The character ']' is found at index 2, so it is appended to closing_bracket_index.
Iteration 4:

-The character ']' is found at index 3, so it is appended to closing_bracket_index.

After the loop, the closing_bracket_index list is reversed.

Iteration 1:
—-The index 3 is less than the length of closing_bracket_index (4) and is less than the
element at index 0 of closing_bracket_index (2).
—-The condition is true, so cnt is incremented by 1 and i is incremented by 1.
Iteration 2:
—-The index 2 is less than the length of closing_bracket_index (4) and is less than the
element at index 1 of closing_bracket_index (3).
—-The condition is true, so cnt is incremented by 1 and i is incremented by 1.

After the loop, cnt is 2, which is greater than or equal to 2, so the function returns True.

[/REASONING]

[ANSWER]

def is_nested(string):
opening_bracket_index = [
closing _bracket_index = [

1
]

for 1 in range(len(string)): ## [STATE]i=[0, 1, 2, 3][/STATE] [STATE]range (len(string)
=[4] [/STATE] [STATE] len (string)=[4] [/STATE]
if string[i] == '[': ## [CONDITION] (string[i] == '[')=[True, True, False, False] [/

CONDITION] [BRANCH]taken=[Y, Y, N, NJ][/BRANCH]
opening_bracket_index.append (1)
else: ## [BRANCH]taken=[N, N, Y, Y][/BRANCH]
closing_bracket_index.append (i)
closing_bracket_index.reverse ()

cnt = 0
i=0
1 = len(closing_bracket_index)

for idx in opening_bracket_index: ## [STATE]idx=[0, 1] [/STATE] [STATE]opening_bracket_index

=[0, 1] [/STATE]
if i < 1 and idx < closing_bracket_index[i]: ## [CONDITION] (i < 1 and idx <

closing _bracket_index[i])=[True, True] [/CONDITION] [CONDITION] (i < 1)=[True, True
] [/CONDITION] [CONDITION] (idx < closing_bracket_index[i])=[True, True] [/CONDITION
] [BRANCH] taken=[Y, Y] [/BRANCH]

cnt += 1

i+=1

return cnt >= 2
[/ANSWER]
[OUTPUT]

True
[/OUTPUT]

A.2 PROMPT TEMPLATE FOR BUG PREDICTION, LOCALIZATION, AND REPAIR

A.2.1 PROMPT TEMPLATE FOR BUG PREDICTION

Given the following code, tests, and natural language specification, is the code buggy or not?

First, think step by step and simulate the execution process of the test.

Then respond with "Yes" or "No". "Yes" menas the code is buggy, "No" means it is not buggy.
Enclose your response with "‘‘‘response" and "‘‘‘".

Code:

from typing import List

def below_zero (operations: List[int]) -> bool:

balance = 0

18

Under review as a conference paper at ICLR 2025

for op in operations:
balance += op
if balance ==
return True
return False

Test:
assert below_zero([l, -2, 2, -2, 5, -5, 4, -4]) == True

The code should satisfy the following natural language specification:

Write a Python function below_zero (operations: List[int]) -> bool to solve the following
problem: You are given a list of deposit and withdrawal operations on a bank account that
starts with zero balance. Your task is to detect if at any point the balance of account
fallls below zero, and at that point function should return True. Otherwise it should
return False.

Reasoning

[Reasoning]

Now let’s look at the program. The function initializes ‘balance' to 0. It iterates through
each operation in the operations list, adjusting balance by adding each operation (op) .

It checks if balance == (which only detects when the balance exactly reaches zero, not when
it goes below zero). If balance == 0, the function returns True, though we’re actually
interested in whether balance < 0.

In the test case ‘operation' is initialized with [1, -2, 2, -2, 5, -5, 4, -4].

In the first iteration, op=1, balance=1l.

In the second iteration, op=-2, balance=-1.

In the third iteration, op=2, balance=l.

In the forth iteration, op=-2, balance=-1.

In the fifth iteration, op=5, balance=4.

In the sixth iteration, op=-5, balance=-1.

In the seventh iteration, op=4, balance=3.

In the eighth iteration, op=-4, balance=-1.

‘balance’ never exactly reaches zero at a point when it first goes negative and the function
will return False as the output while the expected output is True.

Therefore the code is buggy.

[/Reasoning]

Response:

’’!response

Yes
e

Code:

{code}

Test:

{test}

The code should satisfy the following natural language specification:
{nl}

A.2.2 PROMPT TEMPLATE FOR BUG LOCALIZATION

Given the following buggy code, test, and natural language specification, your task is to
identify the buggy line.
First, think step by step and simulate the execution of the provided test.

Then print the buggy line. Enclose your response with "'‘‘response" and "‘‘‘".
Buggy Code:
from typing import List
def below_zero (operations: List[int]) -> bool:
balance = 0

for op in operations:
balance += op
if balance ==
return True
return False

Test:
assert below_zero([l, -2, 2, -2, 5, -5, 4, -4]) == True

The code should satisfy the following natural language specification:

Write a Python function below_zero (operations: List[int]) -> bool to solve the following
problem: You are given a list of deposit and withdrawal operations on a bank account that
starts with zero balance. Your task is to detect if at any point the balance of account
fallls below zero, and at that point function should return True. Otherwise it should
return False.

Reasoning:

[Reasoning]

Now let’s look at the program. The function initializes ‘balance' to 0. It iterates through
each operation in the operations list, adjusting balance by adding each operation (op) .

It checks if balance == 0 (which only detects when the balance exactly reaches zero, not when

19

Under review as a conference paper at ICLR 2025

it goes below zero). If balance == 0, the function returns True, though we’re actually
interested in whether balance < 0.

In the test case ‘operation' is initialized with [1, -2, 2, -2, 5, -5, 4, -4].

In the first iteration, op=1, balance=l.

In the second iteration, op=-2, balance=-1.

In the third iteration, op=2, balance=1l.

In the forth iteration, op=-2, balance=-1.

In the fifth iteration, op=5, balance=4.

In the sixth iteration, op=-5, balance=-1.

In the seventh iteration, op=4, balance=3.

In the eighth iteration, op=-4, balance=-1.

‘balance’ never exactly reaches zero at a point when it first goes negative and the function
will return False as the output while the expected output is True.

Therefore the buggy line is ' if balance == 0:', which can not catch any negative balance.
[/Reasoning]

Response:
'!''response
if balance == 0:

(R

Buggy Code:

{buggy code}

Test:

{test}

The code should satisfy the following natural language specification:
{nl}

A.2.3 PROMPT TEMPLATE FOR BUG REPAIR

Fix bugs in below_zero.
First, think step by step and simulate the execution of the provided test.
Enclose the fixed code in ‘‘‘python and ‘‘‘.

Buggy Code:
def below_zero (operations: List[int]) —-> bool:
balance = 0
for op in operations:
balance += op
if balance == 0:
return True
return False

Test:
assert below_zero([l, -2, 2, -2, 5, -5, 4, —-4]) == True

The fixed code should satisfy the following natural language specification:

Write a Python function below_zero (operations: List[int]) -> bool to solve the following
problem: You are given a list of deposit and withdrawal operations on a bank account that
starts with zero balance. Your task is to detect if at any point the balance of account
fallls below zero, and at that point function should return True. Otherwise it should
return False.

Reasoning

[Reasoning]

Now let’s look at the program. The function initializes ‘balance‘ to 0. It iterates through
each operation in the operations list, adjusting balance by adding each operation (op) .

It checks if balance == 0 (which only detects when the balance exactly reaches zero, not when
it goes below zero). If balance == 0, the function returns True, though we’re actually
interested in whether balance < 0.

In the test case ‘operation' is initialized with [1, -2, 2, -2, 5, -5, 4, -4].

In the first iteration, op=1, balance=1l.

In the second iteration, op=-2, balance=-1.

In the third iteration, op=2, balance=l.

In the forth iteration, op=-2, balance=-1.

In the fifth iteration, op=5, balance=4.

In the sixth iteration, op=-5, balance=-1.

In the seventh iteration, op=4, balance=3.

In the eighth iteration, op=-4, balance=-1.

‘balance‘ never exactly reaches zero at a point when it first goes negative and the function
will return False as the output while the expected output is True.

However, if we were correctly checking ‘balance < 0', the function would catch any negative
balance.

[/Reasoning]

Fixed Code:

'''python

def below_zero (operations: List[int]) -> bool:
balance = 0

20

Under review as a conference paper at ICLR 2025

for op in operations:
balance += op
if balance < 0:
return True
return False

Fix bugs in {method_name} .
First, think step by step and simulate the execution of the provided test.
Enclose the fixed code in ‘‘‘python and ‘‘‘.

Buggy Code:

{buggy code}

Test:

{test}

The fixed code should satisfy the following natural language specification:
{nl}

A.3 CASE STUDY

This section lists the results of our manual investigation into the root causes of incorrect output
predictions and suspiciously correct output predictions. Each listing corresponds to a program in the
HumanEval dataset and a specific model that attempted to simulate its execution given the specified
inputs. We highlight the mispredictions in red and the correct predictions in green. Each listing also
includes the ground-truth values for program properties that are mispredicted.

Listing 3: HumanEval/13

def greatest_common_divisor(a: int, b: int) -> int:
while b: ## [STATE]b=[60, 144, 0][/STATE]
a, b=Db, a $b
return a
greatest_common_divisor (144, 60)

Ground Truth:
b=[60, 24, 12, 0], output=12

DeepSeek—-Coder-Instruct-33b

Predicted output: 60

Analysis:

First Iteration:

- b != 0, so the loop continues; _a = 60, b = 144 % 60 = 144.

- a and b are updated to b and a % b respectively. Now, a = 144, b = 60.
Second Iteration:

- b != 0, so the loop continues. a = 60, b = 144 % 60 = 0.
- a and b are updated to b and a % b respectively. Now, a = 0, b = 60.
The loop terminates because b is 0.

The function returns the value of "a", which is now 60.

Listing 4: HumanEval/57

def monotonic(l: list):

if 1 == sorted(l) or 1 == sorted(l, reverse=True) :
[CONDITION] (1 == sorted(l))=False[/CONDITION]
##[CONDITION] (1 == sorted(l,reverse=True))=False[/CONDITION]
[CONDITION] (1 == sorted(l) or 1 == sorted(l, reverse=True))=False[/CONDITION]

[BRANCH]taken=[N] [/BRANCH]
return True
return False
monotonic([4, 1, 0, -10])

Ground Truth:

(1 == sorted(l)) = False
(1 == sorted(l, reverse=True)) = True
(1 == sorted(l) or 1 == sorted(l, reverse=True)) = True

output: True

Gemini-1.5-Pro
Predicted output: False

Analysis:

The function ‘monotonic' is called with the list "1 = [4, 1, 0, -10]".

The function checks if the list is sorted in ascending order or in descending order.

The condition ‘1 == sorted(l)‘ checks if the list is sorted in ascending order.

The condition ‘1 == sorted(l, reverse=True) ' checks if the list is sorted in descending order.
The condition ‘1 == sorted(l or 1 == sorted(l, reverse=True) ‘' checks if the list is sorted in

either ascending or descending order.

21

Under review as a conference paper at ICLR 2025

The condition is_ false because the list is not sorted in either ascending or descending order.
Therefore, the function returns False.

Listing 5: HumanEval/148

def bf (planetl, planet2):
planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "
Neptune")
if planetl not in planet_names or planet2 not in planet_names or planetl == planet2: ## [
CONDITION] (planetl not in planet_names or planet2 not in planet_names or planetl ==
planet2)=[False] [/CONDITION] [CONDITION] (planetl == planet2)=[False] [/CONDITION] [
CONDITION] (planetl not in planet_names)=[False] [/CONDITION] [CONDITION] (planet2 not in
planet_names)=[False] [/CONDITION]
[BRANCH] taken=[Y] [/BRANCH]
return ()
planetl_index = planet_names.index (planetl)
planet2_index = planet_names.index (planet?2)
if planetl_index < planet2_index: ## [CONDITION] (planetl_index < planet2_index)=[True] [/
CONDITION]
[BRANCH] taken=[N] [/BRANCH]
return (planet_names[planetl_index + 1: planet2_index])
else: ## [BRANCH]taken=[N] [/BRANCH]
return (planet_names[planet2_index + 1 : planetl_index])
bf ("Jupiter", "Neptune")

Ground Truth:
first if branch: [N]; second if branch: [Y]
output: ('Saturn', 'Uranus')

GPT-4-Turbo:
predicted output: ()

Analysis:

The function bf is called with (planetl = "Jupiter", planet2 = "Neptune").

The first condition 'planetl _not_in_planet_names_or planet2 _not _in_planet_names_or_planetl ==
planet2' is false, since all the planets are present in the list. The second condition
'planetl _==_planet2' is also false, since planetl and planet2 are different. The third
condition planetl not in planet_names is false, since planetl is present in the list.

The fourth condition planet2 not in planet_names is also false, since planet2 is present in
the list. Therefore, the if branch is taken and the method returns (). Therefore, the final
output of the function ‘bf ("Jupiter", "Neptune")' is ().

Listing 6: HumanEval/73

def smallest_change (arr) :
ans = 0
for 1 in range(len(arr) // 2): ## [STATE]i=[0, 1, 2, 3][/STATE]
[STATE]range((len(arr) // 2))=[0, 1, 2, 3][/STATE] [STATE] (len(arr) // 2)=4[/STATE]

if arr[i] != arr[len(arr) - i - 1]:
[CONDITION] (arr[i] !'= arr[len(arr) — i — 1])=[True, True, False, False] [/CONDITION]
[BRANCH] taken=[Y, Y, Y, N][/BRANCH]
ans += 1

return ans

smallest_change([1, 2, 3, 4, 3, 2, 2])
Ground Truth:

i= [0,1,2]

range ((len(arr) // 2)) = [0,1,2]
(len(arr) // 2) =3

output: 1

CodeLlama-Instruct-13b:
Predicted output: 2

Analysis:
Iteration 1:
- 'i' is 0, ‘arr[i]" is 1, and arr[len(arr) - i - 1] is 2.
- The condition ‘arr[i] != arr[len(arr) - i - 1]' is true, so ‘ans‘' becomes 1.
Iteration 2:
-1 is 1, ‘tarr[i]‘ is 2, and ‘arr[len(arr) - i - 1] is 3.
Iteration 3:
- i is 2, arr[i] is 3, and ‘arr([len(arr) - i - 1] is 2.
Iteration 4:
— "i° is 3, "arr[i]” is 4, and “arr[len(arr) - i - 1] is 4.

Therefore, the final output of the function smallest_change([1, 2, 3, 4, 3, 2, 2]) is 2.

Listing 7: HumanEval/142

def sum_squares(lst):

22

Under review as a conference paper at ICLR 2025

result =[]

for 1 in range(len(lst)): ## [STATE]i=[0, 1, 2][/STATE] [STATE]range (len(lst))=[0, 1, 2]1[/
STATE] [STATE]len (lst)=[3] [/STATE]
if i %3 == 0: ## [CONDITION] (i %3 == 0)=[True, False, True] [/CONDITION]

[BRANCH]taken=[Y, N, Y][/BRANCH]
result.append (lst[1]*%2)

elif i $ 4 == 0 and i%3 != 0: ## [CONDITION] (i % 4 == 0 and i%3 != 0)=[False, False,
False] [/CONDITION] [CONDITION] (i $ 4 == 0)=[False, False, False] [/CONDITION] [

=
CONDITION] (i%3 != 0)=[False, False, False]|[
BRANCH]
result.append (lst[1]*%3)
else: ## [BRANCH]taken=[N, Y, N][/BRANCH]
result.append(lst[i])
return sum(result)

/CONDITION] [BRANCH]taken=[N, N, N] [/

sum_squares ([1,2,3])

Ground Truth:

(i%3) == 0: [True, False, False],
i%4 == 0 and 1%3 !=0: [False, False, False]

else branch: [N, Y, Y]

MagiCoder-S:

Predicted output: 10

Analysis:

Iteration 1:

The index ’0’ is divisible by 3, so the square of the element at index 0 (1) is appended to
the result list.

Iteration 2:

The index ’1’ is not divisible by 3, so the element at index 1 (2) is appended to

the result list.

Iteration 3:

The index '2' is divisible by 3, so the square of the elementa at index 2 (3) is appended to
the result list.

The sum of the elements in the result list is 10.

Listing 8: HumanEval/12

def longest (strings: List([str]) —-> Optional[str]:
if not strings: ## [CONDITION] (not strings)=[False] [/CONDITION] [BRANCH]taken=[N] [/BRANCH]
return None

maxlen = max(len(x) for x in strings)
for s in strings: ## [STATE]s=['x', 'yyy'][/STATE]
[STATE]strings=['x"', 'yyy', 'zzzz', 'www', 'kkkk', 'abc'][/STATE]
if len(s) == maxlen: ## [CONDITION] (len(s) == maxlen)=[False, True] [/CONDITION]

[BRANCH] taken=[N, Y] [/BRANCH]
return s
longest (['x", '"yyy', ’'zzzz', "www’, ’'kkkk’, ’"abc’]

Ground Truth:
s=["x", "yyy', 'zzzz']

output = ‘zzzz’

DeepSeek-Coder-Instruct-6.7b
Predicted iutput: "yyy’

Iteration 1:
—-The string ’x’ has length 1, which is not the maximum length.
Iteration 2:
—The string 'yyy' has length 3, which is the maximum length.
—-So, it returns 'yyy'.
Therefore, the final output of the function longest (['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc'

1) is 'yyy'.

Listing 9: HumanEval/47

def fib4(n: int):
results = [0, 0, 2, 0]
if n < 4: ## [CONDITION] (n < 4)=[False] [/CONDITION] [BRANCH]taken=[N] [/BRANCH]
return results[n]

for _ in range(4, n + 1): ## [STATE]_=[4, 5][/STATE] [STATE]range(4, (n + 1))=[4, 5][/STATE
] [STATE] (n + 1)=[6][/STATE]
results.append (results[-1] + results[-2] + results[-3] + results[-4])
results.pop (0)
return results[-1]
fib4 (5)

23

Under review as a conference paper at ICLR 2025

Ground Truth:
Output: 4

GPT-4-Turbo:

Predicted output: 10

The function fib4 is called with (n =5).

Inside the function, a list results is initialized to [0, 0, 2, 0].

The condition (n < 4) is not satisfied, therefore the else branch is taken.
The loop iterates from 4 through 5 (since (n =5)).
First Iteration (_ = 4):

results.append (results[-1] + results[-2] + results[-3] + results[-4]) updates “results’
to [0, O, 2, 0, 4] and results.pop(0) removes the first element from “results .

Second Iteration (_ = 5):
results.append (results[-1] + results[-2] + results[-3] + results[-4]) updates “results’
to [0, 2, 0, 4, 10] and results.pop(0) removes the first element from “results .

After the loop completes, the function returns results[-1] which is 10 as the output.

Listing 10: HumanEval/160

def do_algebra (operator, operand):

expression = str(operand([0]

for oprt, oprn in zip(operator, operand([l:]): ## [STATE]Joprt=['//', '+'][/STATE] [STATE]
oprn=[3, 4][/STATE] [STATE]zip (operator, operand[l:])=[('//"', 3), ('x', 4)]1[/STATE][
STATE] operator=['//', 'x'][/STATE] [STATE]operand[1l:]=[3, 4][/STATE]

expression += oprt + str (oprn)
return eval (expression)

do_algebra(l'//', '+'1, [7, 3, 41)

Ground Truth:
Output: 8

Gemini-1.5-Pro:
Predicted output: 2
Analysis:
The function do_algebra is called with (operator = [’//', 'x'], operand = [7, 3, 4]).
Inside the function, a variable expression is initialized to '7'.
The loop iterates over the pairs of elements in operator and operand[l:].
First Iteration (oprt = ’//’, oprn = 3):
expression += oprt + str(oprn) results in expression = '7//3'.
Second Iteration (oprt = 'x', oprn = 4):
expression += oprt + str(oprn) results in expression = '7//3%4'.
The function returns the result of evaluating the expression, which is 2.

Listing 11: HumanEval/11

def string_xor(a: str, b: str) -> str:
def xor(i, 3j):
if 1 == j: ##[CONDITION] (i == j)=[True, False, False, False, False, False] [/CONDITION]

[BRANCH]taken=[Y, N, N, N, N, N][/BRANCH]
return '0'

else: ## [BRANCH]taken=[N, Y, ¥, Y, ¥, Y][/BRANCH]
return '1'

return ''.join(xor(x, y) for x, y in zip(a, b))

string_xor('111000', '101010")

Ground Truth:

(i==j) = [True,False,True,True,False, True]
if branch: [Y,N,N,N,N.N]

else branch: [N,Y,Y,Y,Y]

output: 7010010’

Gemini-1.5-Pro:

Predicted output: 010010

Analysis:

The function string_xor takes two binary strings a and b as input and returns a new binary
string that is the result of XORing the two input strings. The function xor is a helper
function that takes two characters i and j as input and returns 0 or 1 values.

If "a” is '111000' and "b" is '101010', then the output of the “string xor function will be
'010010"

Listing 12: HumanEval/0

def has_close_elements (numbers: List[float], threshold: float) -> bool:

24

Under review as a conference paper at ICLR 2025

for idx, elem in enumerate (numbers): ## [STATE]idx=[0, 1, 2, 3, 4, 5][/STATE] [STATE]elem
=[1.0, 2.0, 3.9, 4.0, 5.0, 2.2][/STATE] [STATE]enumerate (numbers)=[(0, 1.0), (1, 2.0),
(2, 3.9), (3, 4.0), (4, 5.0), (5, 2.2)][/STATE] [STATE]numbers=[1.0, 2.0, 3.9, 4.0,
5.0, 2.2][/STATE]
for idx2, elem2 in enumerate (numbers): ## [STATE]idx2=[0, 1, 2, 3, 4, 5][/STATE]
[STATE]elem2=[1.0, 2.0, 3.9, 4.0, 5.0, 2.2][/STATE]

if idx != idx2: ## [CONDITION] (idx != idx2)=True[/CONDITION]
[BRANCH] taken=Y [/BRANCH]
distance = abs(elem - elem2)

if distance < threshold: ## [CONDITION] (distance < threshold)=True[/CONDITION]

[BRANCH] taken=Y [/BRANCH]
return True

return False
has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2],0.3)

Ground Truth:

deb2=00,1,2,3,4,59,0,1,2,3,4,5]p elau? = [[1.0,2:0,3,9,4:0,5:0,2:2,1,0,2:,0,3.9,4,0,5.0,2.2]
(distance<threshold) = [false, false,false, false,false, false,false, false,false,true]

output = true

GPT-4-Turbo:

Predicted output: True

Analysis:

The function uses two nested loops to compare each element with every other element in the
list:

— The outer loop iterates through each element in the list, with idx as the index and elem as
the element at that index.

— The inner loop also iterates through each element in the list, with idx2 as the index and
elem2 as the element at that index.

For each pair of elements (elem, elem2) where idx is not equal to idx2 (ensuring they are
distinct elements), the function calculates the absolute difference distance between elem and
elem2. If this distance is less than the threshold, the function immediately returns True,
indicating that there are close elements.

If no such pair is found after all comparisons, the function returns False.

In this specific case, the input list is "[1.0, 2.0, 3.9, 4.0, 5.0, 2.2]° and the threshold
is "0.3°. The function will return “True .

Listing 13: HumanEval/98

def count_upper (s):
count = 0
for 1 in range(0,len(s),2): ## [STATE]i=[0, 2, 4][/STATE] [STATE]range (0, len(s), 2)=[0, 2,
4] [/STATE] [STATE] len (s)=6[/STATE]
if s[i] in "AEIOU": #i# [CONDITION] (s[i] in "AEIOU")=[False, True, False]
[/CONDITION] [BRANCH]taken=[N, Y, N][/BRANCH]
count += 1
return count
count_upper (' aBCdEf’)

Ground truth:
(s[i] in "AEIOU")=[False, False, True]; output = 1

CodeLlama-Instruct-13b:
Predicted output: 1
Analysis:
The function count_upper is called with (s = ’"aBCdEf’).
Inside the function, a variable count is initialized to O.
The loop iterates from 0 through 4 (since (len(s) = 6) and (step = 2)).
First Iteration (i = 0)
- i is 0, which is not in the string ’aBCdEf’.
Second Iteration (i = 2)
— "i° is_ 2, which is 'B', which is in the string 'aBCdEf'.
— The condition “s[i] in "AEIOU" is true.
- Action: count += 1 updates count to 1.
Third Iteration (i = 4)
- 1 is 4, which is ’'E’, which is not in the string 'aBCdEf'.
— The same condition “s[i] in "AEIOU" is false.

Listing 14: HumanEval/73

def smallest_change (arr) :

ans = 0
for i in range(len(arr) // 2): ## [STATE]i=[0, 1, 2, 3][/STATE] [STATE]range((len(arr) //
2))=[0, 1, 2, 3]1[/STATE] [STATE] (len(arr) // 2)=[3][/STATE]
if arr[i] !'= arr[len(arr) - i — 1]: ## [CONDITION] (arr[i] !'= arr[len(arr) - i - 1])=[
True, False, False, False] [/CONDITION] [BRANCH]taken=[Y, N, N, N][/BRANCH]
ans += 1

return ans

25

Under review as a conference paper at ICLR 2025

Table 4: Comparison with REVAL and CODEMIND. op refers to output predition and ic refers to
incremental consistency in (Chen et al.|[2024). -’ means that the results of the model is not available
in the official artifact.

Models CES op(CodeMind) | op(REVAL) | ic(REVAL)
CodeLlama-Instruct-7B 15.85% - 80.00% 9.50%
CodeLlama-base-7B 12.20% - 77.56% 2.49%
CodeLlama-Instruct-13B 13.41% 75.85% 79.51% 3.36%

DeepSeek-Coder-Instruct-6.7B | 30.49% 63.41% - -

MagiCoder-S-6.7B 23.17% 74.39% 79.24% 6.43%
StarCoder2-15B 34.15% 71.95% 85.37% 17.28%
GPT-4-Turbo 47.56% 82.93% 87.80% 42.72%

smallest_change([1, 2, 3, 4, 3, 2, 2]

Ground Truth:

i= [0,1,2]

range ((len(arr) // 2)) = [0,1,2]
(len(arr) // 2) = 3

output = 1

GPT-4-Turbo:
Predicted output: 1

Analysis:

The function smallest_change is called with the array [1, 2, 3, 4, 3, 2, 2].

The purpose of this function is to determine the minimum number of changes required to make
the array a palindrome.

The length of the array is 7, so the loop will iterate over the first half of the array,
which is the range from 0 to len(arr) // 2 (i.e., 0 to 3).

Iteration 1 (i = 0):
- Compare arr[0] (which is 1) with arr([6] (which is 2).
— They are not equal, so ans 1is incremented by 1.

Iteration 2 (i = 1):
— Compare arr[l] (which is 2) with arr([5] (which is 2).
- They are equal, so ans remains unchanged.

Iteration 3 (i = 2):
— Compare arr[2] (which is 3) with arr([4] (which is 3).
- They are equal, so ans remains unchanged.

Iteration 4 (i = 3):
— Compare “arr[3]° (which is _4) with “arr[3]° (which is 4).
— They are equal, so “ans remains unchanged.

After completing the loop, the function returns the value of ans, which is 1. This indicates
that only one change is needed to make the array a palindrome.

A.4 COMPARISON WITH ALTERNATIVE APPROACHES

In Table[d we compare CES with REVAL and CODEMIND. Toward a fair comparison, we select 82
programs (containing 240 statements) that are used by all three approaches. From Table 4| we can
observe that:

* CES achieves more pragmatic output prediction. Since CES discards suspiciously correct output
predictions(§5.4) , the performance of LLMs on output prediction is 41.95% and 57.19% lower
than that in CODEMIND and REVAL, respectively. It is infeasible for these two approaches to
identify suspiciously correct output. REVAL only works on filtered statements thus it can not
reason about the program as a whole. CODEMIND is capable of reasoning about code on the
program level but it only requires LLMs to generate CoT along with the output which makes it
hard to automatically evaluate the quality of the reasoning process.

» CES indicates higher consistency within the code reasoning tasks compared with REVAL. REVAL
prompts LLMs separately and displays a very low incremental consistency. On the contrary, CES
tracks the flow of the program within one prompt, and the correct output prediction with valid

26

Under review as a conference paper at ICLR 2025

reasoning process means that the model has consistent behavior in intermediate decision point
prediction and output prediction. On average the consistency of CES is 187.54% higher than the
ic (incremental consistency) of REVAL, which reveals a more realistic consistency within the code
reasoning task.

A.5 BREAKDOWN OF THE EQUATION 1

After receiving the response of model M for simulating the execution of program P under inputs 7,
CES compares the ground truth with the predicted values for properties of individual statement in
lj S Sloozn cj € Secondition, and ;€ Sreturn as below:

vlj € Sloop :{ll,.--7lm}

2 7
CES(M,P,1,1,) = [S_[M(P,1,1,,) = GT(P, 1, T,)] = <] @
w=1
v Cj € Scondition - {Clv sy Cn}
: 8
CES(M,P,1,P.) = [SIM(P.1,P.),) = GT(P.1, .,)] = 2] ®
w=1
v T € Sreturn = {le cee 7Tk}
9

CES(M7P7170T]') = [[Z[[M(P7I7O7‘jw) :GT(P7I7OTjw)ﬂ :Z]]

w=1

These three equations will be aggregated into Equation 1 for all the statements evaluated for code
execution simulation.

A.6 IN-DEPTH ANALYSIS ON RQ 4

The Venn diagrams of Figure[§]visualize the success cases per seven best-performing LLMs on CES,
Bug Prediction, Bug Localization, and Bug Repair. To better understand the reasons for agreements
and disagreements, we manually investigated instances where models (1) succeeded in CES and
other bug-related tasks (instances inside the CES diagram) and (2) failed in CES but succeeded in
bug-related tasks (instances outside of CES diagram), respectively. When we compare CES with
any bug-related task, we can see that there are some unique problems in which the models can only
produce correct predictions on CES or the bug-related task. This finding is consistent with the
conclusion from the Kappa coefficients in Table 2]

GPT-4 Turbo and Gemini-1.5 Pro can succeed in all four tasks on the 33.75% and 19.38% problems
in the benchmark, respectively. However, such cases could be very rare in less advanced LLMs.
DeepSeekCoder-Inst-33b can consistently produce correct predictions on only 3% of the problems,
and such cases do not exist in CodeLlama-Inst-13b. By investigating the CoT reasoning of models
in bug-related tasks, we observed that GPT-4 Turbo and Gemini-1.5 Pro simulate the program exe-
cution in their CoT, and use that to judge whether there is a bug in the code, localize the bug, and
repair the bug. Figure [J] presents such an example from Gemini-1.5 Pro. In this Figure[}a, e1if
1%3 !'= 0 cannot handle the case where the index is a multiple of 4 and not a multiple of 3, which
is specified in the natural language description in Figure Pfb. From Figures B¢ to O}, we can see
that Gemini-1.5 Pro can correctly simulate the execution process of the test case. It determines that
the program is buggy by predicting a different output (36) from the expected output (6). This exam-
ple shows that LLMs that are more successful in bug-related tasks indeed consider code execution
simulation in their reasoning process.

27

Under review as a conference paper at ICLR 2025

Bug Repair Bug Localization Bug Prediction

MagiCoder-S-6.7b SemCoder-S-6.7b StarCoder2-15b

Figure 8: Correct predictions that representative LLMs make on CES, Bug Repair, Bug Localiza-
tion, and Bug Prediction.

Figure [T0] presents another example where Gemini-1.5 Pro makes the correct prediction in
CES but fails in all three bug-related tasks. The bug of HumanEval/70 is in line 2, where
switch is mistakenly initialized into False instead of True. As a result, given the input
strange_sort_list ([1,2,3,4]), the buggy code returns [4,1,3,2] instead of [1,4,2,3].
Gemini-1.5 Pro correctly reasons about the loop property and the output of the buggy code (Fig-
ure[T0}c) in CES. For the bug prediction (Figure [I0}d), although it tries to simulate the execution
of the given input, the simulation is incorrect. As a result, it concludes that the code is not buggy.
Concerning bug localization (Figure[I0}e) and bug repair (Figure[I0}), Gemini-1.5 Pro can success-
fully simulate the execution in its CoT. However, it hallucinates when localizing and repairing the
bug, resulting in an incorrect performance. We believe that with a more formal reasoning approach
concerning code execution that can be promptly validated, such as CES, LLMs will not fall into
the trap of natural language hallucinations. As a result, when capable of performing code execution
simulation, they can succeed in bug prediction, localization, and repair.

LLM:s also could successfully predict, localize, and repair the bug while failing in the CES. Fig-
ure [T1] shows such an example from the performance of GPT-4 Turbo on HumanEval/6 concerning
different tasks. The buggy code is shown in Figure[IT}a and the test input (“ (() (()) ((()))) ")
is expected to return [4]. Due to the bug, however, the code returns [3]. From Figure [TT}c, we can
see that GPT-4 Turbo diverges from the ground truth execution from the beginning (prediction of
loop variable c in the 7th iteration) and propagates the mistake through the execution, resulting in
incorrect output prediction. From Figures [[T}d to [T}, we can see that GPT-4 Turbo is capable of
predicting, localizing, and fixing the bug; however, the correct predictions are based on the incorrect
understanding of the provided test case: in the CoT reasoning, it claims that the output of the test
case matches the expected one on the buggy code. Despite the other examples, we also see that the
code execution simulation in the CoT is either performed at a very high level or not at all. This
example indicates that LLMs may neglect the test information or even incorrectly reason about the
code execution, solely relying on the natural language specification to derive the results by chance,
which can affect their trustworthiness.

From the examples above, we observe that LLMs are capable of following the step-by-step format
to reason the execution process of the code when performing bug-related tasks, regardless of the
correctness of the natural language CoT. However, CoT shortcuts and hallucinations may prevent
LLMs from correctly performing code-related tasks. Therefore, we believe that combining a more
systematic way, like CES, to represent the reasoning process in the pre-training / finetuning stage
can improve LLMs on both code reasoning tasks and programming tasks that require awareness on
the execution.

28

Under review as a conference paper at ICLR 2025

Buggy Code
1. def sum_squares(lst):
2. result =[]
3. for i in range(len(lst)):
4. if 1 %3 == o:
5. result.append(1st[i]**2)
6. elif i%3 != o:
7. result.append(1lst[i]**3)
8. else:
9. result.append(1lst[i])
10. return sum(result)

Input: sum_squares([1,2,3])
Output: 36(6)

(a)
Bug Prediction

CoT Reasoning:

Let's trace the execution with “Ist = [1, 2, 3]':

1. **i = 0:** 0 % 3 == 0 is true. ‘result.append(1**2)’
which is 1. ‘result” is now "[1]".

2. " =1* 1% 3 != 0 is true. ‘result.append(2**3)’
which is 8. ‘result’ is now '[1, 8]".

3. *i =2 2% 3 !=0is true. ‘result.append(3**3)"
which is 27. ‘result” is now '[1, 8, 27]".

4. The function returns “sum(result)” which is 1 + 8 +
27=36

The assertion "assert sum_squares([1,2,3]) == 6 will
fail because the function returns 36, not 6. The code
doesn't handle the "multiple of 4 and not a multiple of
3" condition correctly and also has a redundant
“else’ block. It should only square if the index is a
multiple of 3, cube if the index is a multiple of 4 but
not 3, and otherwise leave the element unchanged.
Bug Prediction: buggy

(d)

NL Description

Write a Python function “sum_squares(Ist)’ to solve
the following problem:

This function will take a list of integers. For all entries
in the list, the function shall square the integer entry if
its index is a multiple of 3 and will cube the integer
entry if its index is a multiple of 4 and not a multiple of
3. The function will not change the entries in the list
whose indexes are not a multiple of 3 or 4. The
function shall then return the sum of all entries.

(b)

Bug Localization

CoT Reasoning:

Let's trace the execution with Ist = [1, 2, 3]:

-*i=0:** 0 % 3 == 0 is true. result.append(1**2) which
is 1. result = [1]

- " =1 1% 3 1= 0 is true. result.append(2**3) which
is 8. result = [1, 8]

- ** =22 % 3 1= 0 is true. result.append(3**3) which
is 27. result = [1, 8, 27]

The sum of the elements in result” is 1 + 8 + 27 = 36,
not 6 as expected.

The problem lies in the conditional logic. The “elif i % 3
I= 0:" condition is incorrect. It should be checking if the
index is a multiple of 4 and not a multiple of 3, i.e., elif i
% 4 ==0andi% 3!=0:. The current "else” block is
redundant and will never be executed because any
number is either divisible by 3 or not divisible by 3.
Buggy Line: elif i%3 != o:

(e)

CES

- Reasoning about loop properties:
i=[0,1,2]
range(len(lst)) = [0, 1, 2]
len(Ist) = [3]

= ing about conditional properties:
i%3==0 =[True, False, True]
if branch taken = [Yes, No, No]
i %3 =0 = [False, True, True]
if branch taken = [No, Yes, Yes]
else branch taken = [No, No, No]

- Reasoning about output:
output = 36

(c)
Bug Repair

CoT Reasoning:
Let's trace the execution with Ist = [1, 2, 3]:

The provided code has a couple of issues:

1. **Incorrect Conditional Logic:** The "elifi % 3 1= 0
condition is redundant and overlaps with the "if i % 3
== 0" condition. The ‘else’ block will never be
executed. The logic should check for multiples of 4
after checking for multiples of 3. Also, it needs to
handle the case where a number is a multiple of
both 3 and 4.

2. *Incorrect Calculation:** The code squares
numbers whose indices are multiples of 3 and cubes
numbers whose indices are *not* multiples of 3. It
should cube numbers whose indices are multiples of
4 (and not multiples of 3). It should leave other
numbers unchanged.

Fixed Line: elifi % 4 == 0 and i%3 !=0:

®

Figure 9: An example showcasing Gemini-1.5 Pro making correct predictions on CES (c), Bug
Prediction (d), Bug Localization (e), and Bug Repair (f) for HumanEval/142.

Buggy Code

1. def strange_sort list(lst):
28 res, switch = [], False
3. while 1st:
4.

else max(lst))
5. 1st.remove(res[-1])
6. switch = not switch
7. return res

Input: strange_sort_list([1, 2, 3, 4])
Output: [4, 1, 3, 2]([1, 4, 2, 3])

(a)
Bug Prediction

CoT Reasoning:
Let's analyze the code:
Let's trace the execution of 'strange_sort_list([1, 2,
3,4)):
1. Initial state: ‘Ist = [1, 2, 3, 4]', ‘res = [[, 'switch =
False’
2. **lteration 1:**
- ‘res.append(min(Ist))’ (since ‘switch® is False).
‘res = [1]
- ‘Ist.remove(1)'. Ist = [2, 3, 4]
- "switch = not switch’. “switch = True’
3. “*Iteration 2:**
- “res.append(max(Ist))’ (since ‘switch’ is True).
‘res =[1, 4]
- Ist.remove(4)'. “Ist = [2, 3]
- “switch = not switch. “switch = False’
4. “*Iteration 3:**
- ‘res.append(min(Ist))’ (since ‘switch’ is False).
‘res=[1,4,2]
- Ist.remove(2). “Ist = [3]
- “switch = not switch'. “switch = True’
5. **lteration 4:**
- ‘res.append(max(Ist))” (since ‘switch® is True).
‘res=[1,4,2, 3]
- Ist.remove(3)'. “Ist =[]
- "switch = not switch". “switch = False’
6. **Loop terminates** because ‘Ist’ is empty.
7.**Return ‘res =[1, 4, 2, 3]™**
Bug Prediction: Not Buggy (Buggy)

(d)

NL Description

Write a Python function
“strange_sort_list(Ist)" to solve the
following problem:

res.append(min(lst) if switch Given list of integers, return list in strange

order.

Strange sorting, is when you start with
the minimum value,then maximum of the
remaining integers, then minimum and so
on.

(b)
Bug Localization

CoT Reasoning:
Let's trace the execution of "strange_sort_list([1, 2, 3, 4])':
1. Loop 1:

‘Ist = [1, 2, 3, 4]". “switch’ is "False’, so ‘max(Ist)" which
is "4’ is appended to ‘res’. ‘res = [4]'.'4 is removed from
‘Ist”. Ist = [1, 2, 3]"."switch’ becomes "True’.

2. Loop 2:

“Ist =[1, 2, 3], 'switch™ is "True’, so "min(Ist)” which is "1
is appended to ‘res’. ‘res = [4, 1]". "1" is removed from
“Ist”. Ist = [2, 3]'."switch™ becomes "False’.

3. Loop 3:

“Ist = [2, 3]'. “switch’ is "False’, so ‘'max(Ist)” which is "3"
is appended to ‘res’. ‘res = [4, 1, 3]'. '3" is removed from
“Ist”. Ist = [2], switch™ becomes "True’.

4. Loop 4:

‘Ist = [2]';"switch is “True’, so ‘min(Ist)’ which is "2" is
appended to ‘res’. ‘res = [4, 1, 3, 2]'."2" is removed from
‘Ist’. "Ist = [I', switch™ becomes "False’.

The loop terminates because ‘Ist’ is empty. The function
returns ‘[4, 1, 3, 2]', which is incorrect. The expected
outputis ’[1, 4, 2, 3]".

The buggy line is the conditional append:
‘res.append(min(ist) if switch else max(Ist))’ because it
cannot correctly alternate between picking the minimum
and maximum elements.

Buggy Line: res.append(min(1lst) if switch else
max(1lst)) (res, switch = [], False)

(e)

CES

- Reasoning about loop properties:
Ist=[[1, 2, 3, 4], [1, 2, 3], [2, 3], [2]]

- Reasoning about output:
output=[4, 1, 3, 2]

(c)
Bug Repair

CoT Reasoning:
Consider the test case '[1, 2, 3, 4]".
1. First iteration: switch® is ‘False’, so ‘max(ist)’ (4) is
appended to ‘res’. ‘Ist’ becomes '[1, 2, 3]'.
2. Second iteration: “switch’ is “True’, so ‘min(st)’ (1)
is appended to ‘res’. 'Ist" becomes '[2, 3]'.
3. Third iteration: “switch' is "False’, so ‘max(lst)’ (3) is
appended to ‘res’. 'Ist’ becomes [2]'.
4. Fourth iteration: “switch is "True’, so ‘min(Ist)’ (2) is
appended to ‘res’. 'Ist’ becomes "[]"
The resultis '[4, 1, 3, 2], which is incorrect.
The issue arises because after removing the maximum
element (4), the next minimum element selected is
from the modified list, not the original list with
duplicates considered.
To fix this, we can create a copy of the list at the
beginning and work with the copy, leaving the original
list untouched for finding min/max values.
Fixed Code:
def strange_sort_list(lst):
res =
1st_copy = 1st[:]; switch = False
while 1st_copy:
if switch:
val = min(1st_copy)
else:
val = max(1st_copy)
res.append(val)
1st_copy. remove(val)
switch = not switch
return res
(res, switch =[], True)

()

Figure 10: An example showcasing Gemini-1.5 Pro makes correct prediction on CES (c) but fails
on Bug Prediction (d), Bug Localization (e), and Bug Repair (f) for HumanEval/70.

29

Under review as a conference paper at ICLR 2025

Buggy Code

def parse_paren_group(s):
depth = 0
max_depth = @
for c in s
if ¢ ==
depth += 1
max_depth =
else:
max_depth -= 1
return max_depth
return [parse_paren_j group(x) for
paren_string.split(' '

VONOUAWN R

max(depth,max_depth)

NL Description

def parse_nested_parents(paren_string):

Write a Python function
‘parse_nested_parens(paren_string: str)
-> List[int]" to solve the following
problem:

Input to this function is a string
represented multiple groups for nested
parentheses separated by spaces.

For each of the group, output the

x in deepest level of nesting of parentheses.

Input: parse_nested_parens(’ (()(())((()))) ")

Output: [3]([4])

(a)
Bug Prediction

CoT Reasoning:

Let's analyze the code:

1. The function "parse_nested_parens’ takes a string
“paren_string” and splits it into groups based on
spaces.

2. For each group, it calls ‘parse_paren_group’ to
determine the maximum depth of nesting.

3. In “parse_paren_group’, ‘depth’ tracks the current
depth of nesting, and ‘max_depth® tracks the
maximum depth encountered.

4. For each character in the string:

- Ifit's '(, "depth’ is incremented and ‘'max_depth’
is updated if ‘depth” exceeds ‘max_depth’.

- Ifit's '), 'max_depth’ is incorrectly decremented.
This is a mistake; it should be ‘depth’ that is
decremented.

The decrement should be applied to ‘depth’ to
correctly track exiting a level of nesting, not to
“max_depth’. ‘'max_depth™ should only capture the
highest value of "depth’ reached during the parsing
of the group.

Given the test, ‘assert parse_nested_parens(
"(OON))) == [4T, input string does not contain
spaces, so it's treated as a single group. The output
of the test case is 4, which matches the expected
output. However, the logic error in decrementing
"max_depth’ instead of ‘depth™ could lead to
incorrect results in other cases or if the input string
were modified.

Bug Prediction: buggy

()

(b)
Bug Localization

CoT Reasoning:

The function “parse_nested_parens’ is designed to
parse groups of nested parentheses and determine the
maximum depth of nesting for each group. The function
first defines a helper function ‘parse_paren_group
which calculates the maximum depth of a single group
of parentheses.

The main function splits the input string “paren_string
by spaces to handle multiple groups and uses a list
comprehension to apply ‘parse_paren_group’ to each
group.

In the helper function ‘parse_paren_group’, the
variable “depth’ tracks the current depth of nesting, and
‘max_depth” tracks the maximum depth encountered.
For each character in the string:

- If the character is '(‘, "depth” is incremented.

- If the is'), "depth’ is
However, the line that decrements *'max_depth® instead
of "depth® when encountering a ') is incorrect. This
results in incorrect tracking of the maximum depth, as
“max_depth® should only be updated to record higher
values, not decremented.

In the test case ‘parse_nested_parens('(()())(()))))",
the function correctly identify that the deepest level of
nesting is 4. However, due to the bug, it might not
compute this correctly in other cases.

Buggy Line: max_depth= 0:

(e)

CES

- Reasoning about loop properties:
s=[(J

GCEYIDTEC)N

- Reasoning about

c== (" =[True, True, False, True, True, False, True, True,
True, False, False, False, False] ([True, True, False, True,
True, False, False,True, True, True, False, False, False, False])

if branch taken = [Y, Y, N, Y, Y, N, Y, Y, Y, N, N, N, N]([Y, Y, N,
Y,Y,N,N,Y, Y, Y,N,N, N, N])

else branch taken LN, Y, NN, Y, NN N, Y, Y, Y, Y(IN, N,
YN, NY, YNNG N Y, Y, Y, YD)
- Reasoning about output:

output = [4]([3])

(c)
Bug Repair

CoT Reasoning:
The function “parse_nested_parens’ is intended to
determine the maximum depth of nested
parentheses for each group of parentheses in a
string separated by spaces. However, the provided
code has a few issues:
1. The function ‘parse_paren_group’ incorrectly
decreases ‘max_depth” instead of ‘depth” when
ing a closing p:).
2. The function is intended to handle multiple groups
separated by spaces, but the test case and function
call fail to correctly split the string into groups, even
though the output ([4]) matches the expected result.
The test case provided does not include spaces to
separate groups, so the function should be tested
with a single group or the description should match
the test case.

Fixed Line: depth =1

®

Figure 11: An example showcasing incorrect CES reasoning (c) by GPT-4 Turbo for HumanEval/6
problem (a), and correct Bug Prediction (d), Bug Localization (e), and Bug Repair (f) from GPT-4
Turbo for the same code. The specification for the functionality of HumanEval/6 is shown in (b).

m Correct mIncorrect
60

GPT-4-Turbo

StarCoder2-15b| SemCoder-S GPT-4-Turbo

Gemini-1.5-pro

StarCoder2-15b SemCoder-S

DeepSeekCoder-
Inst-33b

(b)

300 140
250 120
200 ‘gg
150 60
100 40
50 20
0036912036912036912036912035912 0 12 036 912 036 912 036 912 0 3 6 9 12
#n . #llst lcngth
GPT-4-Turbo ~ Gemini-1.5-Pro DeepSeekCoder- StarCoder2-15b SemCoder-S GPT-4-Turbo Gemini-1.5-Pro DeepSeekCoder- StarCoder2-15b SemCoder-S
Inst-33b Inst-33b
(©) (d)

Figure 12: Number of correct/incorrect predictions on loop variables, loop iterables, conditional
predicates (a), and return values(b) with different types. Impact of integer values (c) and loop length
on the performances of LLM:s.

A.7 IMPACT OF VARIABLE

TYPES

Figure[12] presents the number of correct and incorrect predictions on variables per different types.
Here we collect all the variables that are predicted in CES, including loop variables, loop iterables,
conditional predicates as well as return values, and categorize them into seven most common types
in the programs: String, Int, Float, Boolean, List, Tuple, and Dict.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

3 GPT-4-Turbo 3 Gemini-1.5-Pro StarCoder2-15B
[1 DeepSeek-Coder-Instruct-33B | CodeLlama-Instruct-34B

(e)LC / (d) Other

Figure 13: Comparison between the valid reasoning correct output prediction of representative
LLM:s.

From Figures[[2}a and[T2}b, we can see that predicting values of the float types is more challenging
than other variable types for LLMs: the top five best-performing LLMs can only correctly predict
16.46% of them. We speculate that float is always associated with precise arithmetic computation,
which has been proven to be one of the weaknesses of LLMs (Satpute et al}[2024). List is also very
difficult for LLMs since it requires additional memory and recursion to understand every item inside
it correctly. On average, LLMs can predict the value of 45.41% of variables in the type of list, which
is lower than other primitive types (e.g., String, Int, and Boolean).

In Figures [I2}c and [I2}d, we further investigate how the absolute value of integers and the length
of the lists impact the prediction of LLMs. Here we put all the ints and lists into different bins
([0—2],[3—5],[6—8],[9—11],[12 — 4+00.]) according to their values/lengths. We observe a similar
trend in all models, that the percentage of correct predictions decreases as the integer value or list
length grows, which indicates their negative impact on the code execution simulation performance
of the LLMs.

A.8 COMPARISON BETWEEN THE VALID REASONING CORRECT OUTPUT PREDICTION OF
REPRESENTATIVE MODELS.

In Figure [I3] we compare the valid reasoning process & correct output (also shown in Table [T)
achieved by different models. From Figure [[3}c, we can see that GPT-4 Turbo has 34 unique valid
reasoning process & correct output compared to other models in the total 75 LC programs (programs
with both loops and conditional statements, which shows its superiority in code execution reasoning.
Similar trend can be found in LO programs (Figure [I3}a), CO Programs (Figure [I3}b) and Other
(Figure [I3}d).

31

Under review as a conference paper at ICLR 2025

You are given a piece of Python code and its input. You are asked to complete the following task:

System Message

[CODE]
def sum of integer(N):
sum_1 = 0

for i in range(l,N+1): ## [STATE]i=??[/STATE]
[STATE] range (1,N+1)=2?2[/STATE] [STATE]N+1=22[/STATE]
if 1 >= 1 and i <3:

[CONDITION] (i>=1)=??2[/CONDITION]
[CONDITION] (i <3) = 2?[/CONDITION]
[CONDITION] (i >= 1 and i <3)=2??[/CONDITION]
[BRANCH] taken=2?[/BRANCH]

sum 1 += 1

sum_1 *= 4

return sum 1

[REASONING]
The function ‘sum_of integer’ is called with (N =5).
Inside the function, a variable "sum_1" is initialized to 0.
The loop iterates from 1 through 5 (since (N =5)).
First Iteration (i= 1)

-'i"is 1, which satisfies (1 <=1<3).

- The condition "i>= 1 and i < 3" is true.

- Action: “sum_1 += 1" results in ‘'sum_1=1".
Second Iteration (i = 2)

- 1" is 2, which still satisfies (1 <=i<3).

- The same condition is true.

- Action: “sum_1 += 1" updates ‘sum_1"to2 ("1 +1=2").

[/REASONING]

[PYTHON]

def sum of integer(N):
sum_1 = 0

for i in range(1,N+1):

[/CODE] #4 [STATE]i=[1, 2, 3, 4, 5][/STATE]
[INPUT] [STATE]range (1,N+1)=[1, 2, 3, 4, 5][/STATE]
[STATE]N+1=[6] [/STATE]
sum_of integer(5) if 1 >= 1 and 1 <3: ##
[CONDITION] (i>=1) = [True, True, True,
[/INPUT] True, True] [/CONDITION].......
return sum 1
[/PYTHON]
[OUTPUT]
24
[/OUTPUT] Adaptive In-context learning Examples
[REASONING]
[CODE] The function "count_vowels_consonants’ is called

def count_vowels_consonants (input_string) :

vowels = 'aeiouAEIOU' Inside the function, a variable
vowel count = 0 ‘vowel_count’ and ‘consonant_count’ are initialized to 0.
consonant_count =0 ...
for char in input_string: [/REASONING]
[STATE]char=2??[/STATE] [PYTHON]

def count

with (input_string = "Hello, World!").

vowels_consonants (input_string) :

[STATE] input_string=2?[/STATE] vowels = !aeiouAEIOUY
[/CODE] vowel count = 0
consonant_count = 0
for char in input string:
(UG ## [STATE] char=['H','e",'1',"1',...,'d"', '!'][/STATE]
count_vowels_consonants("Hello, World!") [STATE] input_string=["Hello, World!"][/STATE]
[ANPUT] e
[/PYTHON]
[OUTPUT]
(3, 10)
[/OUTPUT]
Instruction
You are given a piece of Python code and its input. You are asked to complete the following task:
1. Replace the "??" between [STATE] and [/STATE] in the comment...
2. Replace the "??" between [CONDITION] and [/CONDITION] in the comment...
3. Replace the "??" between [BRANCH] and [/BRANCH] in the comment with "Y" and 'N".
. [REASONING] Answer
Question The function ‘longest’ is called with (strings = ['x', 'y', 'z']).
[CODE]
def longest (strings: List[str]) -> Optional[str]: | [/REASONING]
if not strings: ## [COT?ITION](not strings)=?? [PYTHON]
[/CONDITION] [BRANCH] taken=2?[/BRANCE] def longest (strings: List[str]) -> Optional[str]:
return None if not strings: ## [CONDITION] (not strings)=[True]

maxlen max (len (x)
for s in strings: ##
if len(s) == maxlen:
return s

for x in strings)

[/CODE]

[INPUT]
longest(['x', 'y", 'Z'])
[/INPUT]

[/CONDITION]
[BRANCH] taken=[Y] [/BRANCH]
return None

[/PYTHON]
[OUTPUT]
None
[/OUTPUT]

Figure 14: The prompt template used in our study.

32

	Introduction
	Motivating Examples
	Code Execution Simulation (CES)
	Program Properties Definitions
	Prompting and Metrics
	Determining the Validity of Reasoning
	Diagnosis

	The Spectrum of Code Execution Reasoning
	Evaluation
	Experimental Setup
	RQ1. Performance in CES
	RQ2. Reasoning Consistency Across Multiple Tests
	RQ3. Incorrect and Suspiciously Correct Output Predictions
	RQ4. Agreement Between CES and Other Programming Tasks

	Appendix
	Prompt Design of CES
	Prompt Template for Bug Prediction, Localization, and Repair
	Prompt Template for Bug Prediction
	Prompt Template for Bug Localization
	Prompt Template for Bug Repair

	Case Study
	Comparison With Alternative Approaches
	Breakdown of the Equation 1
	In-depth Analysis on RQ 4
	Impact of Variable Types
	Comparison between the valid reasoning correct output prediction of representative models.

