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Localization in urban environments is becoming increasingly important and used in tools such as ARCore [18],
ARKit [34] and others. One popular mechanism to achieve accurate indoor localization and a map of the space
is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to
be resource-intensive in memory and processing time. Furthermore, some of the operations grow in com-
plexity over time, making it challenging to run on mobile devices continuously. Edge computing provides
additional compute and memory resources to mobile devices to allow offloading tasks without the large la-
tencies seen when offloading to the cloud.

In this article, we present Edge-SLAM, a system that uses edge computing resources to offload parts of
Visual-SLAM. We use ORB-SLAM2 [50] as a prototypical Visual-SLAM system and modify it to a split archi-
tecture between the edge and the mobile device. We keep the tracking computation on the mobile device and
move the rest of the computation, i.e., local mapping and loop closing, to the edge. We describe the design
choices in this effort and implement them in our prototype. Our results show that our split architecture can
allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the ac-
curacy of operation. It also keeps the computation and memory cost on the mobile device constant, which
would allow for the deployment of other end applications that use Visual-SLAM. We perform a detailed per-
formance and resources use (CPU, memory, network, and power) analysis to fully understand the effect of
our proposed split architecture.
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1 INTRODUCTION

Advances in sensing, computing, communication, and actuation are bringing a new set of mobile
devices into our daily lives. Service robots operate in our homes, cleaning our spaces and delivering
condiments in hotels. Augmented reality apps on smartphones allow us to navigate in indoor
environments, provide visualizations of spatial reconfigurations without actually doing it, or play
games in the real world by augmenting it with virtual objects. Augmented reality glasses are used
for collaboration across the globe. There are many more envisioned applications, including better
seamlessness via mixed reality as well as telepresence using robots. Most of these applications
rely on sensing spatial context, in particular, spatial localization and place recognition indoors in
GPS-denied scenarios.

Spatial sensing has been a research topic for several decades. Depending on the application,
there are several modalities of spatial sensing. Examples include (i) place recognition which takes
a sensor snapshot (an image from a camera, for example) of a location and matches it with known
locations from prior measurements, (ii) tracking or estimation of the path followed by the mobile
device from a starting point e.g., odometry, and (iii) localization which is the absolute positioning
of a mobile device with respect to known landmarks. Each of these classes of sensing is useful for
various applications and has tradeoffs in terms of computational complexity as well as utility. More
recently, Simultaneous Localization and Mapping (SLAM) has evolved as a class of algorithms
useful for accurate spatial context. It is the process of localizing a mobile device with respect to an
absolute coordinate system as well as mapping the traversed space with respect to the same coor-
dinate system. In particular, there has been much recent interest in using visual sensing (cameras,
depth sensors, LIDARs) for SLAM leading to several Visual-SLAM algorithms.

Typical Visual-SLAM algorithms perform three main tasks. First, as the mobile device is moving,
the algorithm performs a frame-frame alignment. This is the process of relating the pose of the
mobile device that captured frame (image) k with the pose when capturing frame k+1. Usually, this
is achieved by detecting features in each frame and finding feature correspondence between the
two frames. The second step is to perform map adjustments locally. This step involves adjusting
the frame-frame alignment performed in step 1 and identifying “KeyFrames” or frames of signifi-
cance to be used in step 3. Finally, step 3 is loop closing, or the ability of the algorithm to identify
when the mobile device is back at a location that it has previously visited. This step requires the
algorithm to compare the new frame with all previous frames to identify matches. A challenge
with this task is the growing complexity of this task as the map grows. A typical solution to al-
leviate this problem is the use of KeyFrames identified in step 2 for these comparisons, and not
compare the new frame with all previous frames. Other algorithms limit the number of compar-
isons to a subset of frames by various methods [22], such as the use of a short-term and long-term
memory [39], or clustering using other sensing [28]. However, most of these solutions perform a
tradeoff of accuracy to computational complexity that leads to mixed results.

Recently, there has been much excitement in edge computing architectures [43, 57, 58, 60]. Such
an architecture advocates for the use of edge computing resources, typically relatively local to the
mobile device and one hop over the local network away, to alleviate some of the computational
tasks on mobile devices. In this work, we use edge computing resources to improve Visual-SLAM.
To this end, we make the following contributions:
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— We adapt ORB-SLAM2 [50], a popular Visual-SLAM system, to the edge computing archi-
tecture. Our system is called Edge-SLAM.

— Our design accomplishes this adaptation by designing a novel data structure called Local-
Map. This mapping structure allows us to decouple the Tracking and Local-Mapping tasks,
thereby improving Local-Mapping and Loop-Closing efficiency without compromising the
functionality of the Tracking module.

— We evaluate Edge-SLAM on a prototypical mobile device using two large custom datasets
as well as two open-source datasets (TUM [33]).

— We improve the map update implementation on the mobile device to perform faster updates
and smoother tracking. These improvements reduce the map update reconstruction latency
on the mobile device by 19% compared to the original Edge-SLAM [7] implementation.

— Implement a map update controller interface on the mobile device to provide control over
the updates to the user and/or motion planner algorithm. Such an interface has significantly
improved experimentations with Edge-SLAM by reducing the chances of losing track due to
previously known scenarios such as sharp turns.

— We perform a complete resource usage analysis, including CPU, memory, and network (la-
tency and bandwidth) usage as well as power consumption.

— We open-source our Edge-SLAM implementation' allowing other practitioners to compare
with our system.

Our results show that Edge-SLAM architecture is a good way to distribute Visual-SLAM com-
putation between the edge and the mobile device. Figure 1 shows the difference between a current
Visual-SLAM system and Edge-SLAM when run on a mobile device. The mobile device in Edge-
SLAM works with a partial map of the environment and is assisted by an edge device. In addition
to performance, there are several additional benefits to deploying Visual-SLAM in the edge com-
puting paradigm, such as control of map complexity, privacy, concurrency as well as reasoning
with dynamics. We hope to study these ideas in future work.

2 RELATED WORK
2.1 Edge/Cloud Offloading

The area of edge computing has been the topic of research for the last decade [43, 57, 58, 60].
It proposes a paradigm with sizeable computing and storage resources placed at the edges of the
Internet closer to mobile and IoT devices that generate a lot of data. The idea is to utilize computing
and storage closer to the sensors to improve processing latency while not burdening the resource-
scarce devices.

There has been some work on offloading tasks from mobile devices to the edge/cloud previously.
MAUI [17] and CloneCloud [14] perform cloud offloading of tasks at various granularities. MAR-
VEL [11], VisualPrint [36], and [41] present application-specific techniques for offloading to the
edge or the cloud. These papers work on decreasing offload latency or masking it from the end
user in time-sensitive applications.

In the cloud robotics area, several studies have looked into simplifying the integration between
the robots and the cloud. Rapyuta [47] is a cloud platform to enable computation offloading for
robots. Ref. [5] proposes a multi-query motion planning system that uses serverless functions on
the cloud. Ref. [13] offers an offloading strategy using deep reinforcement learning to help a robot
make an informed decision on when it is best to offload a computation. PoundCloud [44] is a
communication framework to simplify the integration of robots and the cloud. DewROS [8] is a

https://droneslab.github.io/edgeslam/.
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Fig. 1. Visual-SLAM vs. Edge-SLAM. An augmented reality device running Visual-SLAM (top), and an aug-
mented reality device running Edge-SLAM in collaboration with an edge device in the environment (bot-
tom) [1-3, 33, 50].

communication architecture to distribute the computation among the robot, the network device,
and the cloud.

2.2 Simultaneous Localization and Mapping (SLAM)

SLAM has been a topic of research in robotics and mobile systems for several decades [6, 20, 61].
Initial research focused on depth sensors such as sonar [23] and 2-D LiDAR [16, 19]. Other sensors,
such as Wi-Fi signal strength have been used for SLAM as well [24, 31, 46].

Visual-SLAM has grown rapidly in the last decade [22, 30]. This includes the use of RGB cameras,
RGB-D cameras, and LiDAR sensors. Systems such as PTAM [37], DTAM [52], LSD-SLAM [21]
used monocular cameras for SLAM. A recent trend has been the use of color images with depth
images, as well as using point and line features [53, 69]. Some more well-known Visual-SLAM
examples include RGBD-SLAM [22], RTAB-Map [39], ORB-SLAM [10, 49, 50], and VINS-Mono [54].
They build on initial work from systems such as Kinect Fusion [51], and Kintinuous [64] that first
used RGB-D sensors for 3-D modeling of environments. Current trends improve on basic Visual-
SLAM by reasoning about semantics [27, 29, 67], reasoning about object permanence in maps [26],
and introducing deep learning techniques to replace or augment various parts of the traditional
Visual-SLAM pipeline [45, 62].

More recently, there is increased interest in the use of multiple sensors to perform SLAM. Ref.
[63] combines event camera frames, traditional camera images, and IMU sensor data for accurate
visual SLAM in high dynamic range and low light scenes. Several recent works combine Wi-Fi
with visual sensing for improved SLAM. In [35], they model Wi-Fi signal strength using a Gaussian
process and use it for finding an initial seed estimate of the robot’s location, which is then refined
with RGB-D data. Ref. [55] utilizes a training phase for Wi-Fi modeling and then applies particle
filters for fusing different sensors. Ref. [28] provided a general way to integrate wireless signal
strength from Wi-Fi APs to Visual-SLAM algorithms. Ref. [4] uses a Wi-Fi map to merge multiple
visual maps from multiple agents.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 18. Publication date: October 2022.



Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping 18:5

2.3 Collaborative SLAM

Collaborative SLAM has been explored in recent works through combining edge/cloud comput-
ing with SLAM systems in different ways. Ref. [59] built a collaborative monocular SLAM on top
of ORB-SLAM2 [50] for Unmanned Aerial Vehicles (UAVs). The system runs a smaller ver-
sion of ORB-SLAM2 (Tracking thread and Local-Mapping thread) on every UAV, to maintain and
optimize a limited local map independently, and runs place recognition and map fusion on a cen-
tralized server, to merge and optimize the UAVs local maps into a global map. This study focuses
on enabling collaborative SLAM on multiple UAVs. Whereas Edge-SLAM addresses the increas-
ing resource usage (compute, storage, etc.) of Visual-SLAM on mobile devices by splitting the
Visual-SLAM pipeline between a mobile device and an edge device. Ref. [25] presents a mapping
framework for Micro Arial Vehicles (MAVs). It consists of one-way communication between
multiple MAVs and a server. Every MAV extracts features, estimates relative-motion, and then
sends the information to the server to build a separate map and detect loops, as well as merge
the MAVs maps. This framework does not maintain a local map on the MAVs and runs the SLAM
pipeline on the server. In Edge-SLAM, the system maintains a local and global map by splitting
Visual-SLAM pipeline between a mobile device and an edge device. Ref. [56] describes C2TAM,
which is a collaborative SLAM framework that is built on top of PTAM [37]. This system keeps
PTAM’s Tracking thread on the client and moves PTAM’s mapping thread to the cloud. The client
sends new KeyFrames to the server, while the server sends the full map to the client after every
optimization. Such a mechanism has the potential of causing the client to run out of memory and
generate increasing network traffic as the map size gets bigger. Edge-SLAM keeps memory and
network usage under control by only maintaining a local map on the client instead of a global
map. In [40], the authors present CORB-SLAM, which is a multi-robot SLAM system built on top
of ORB-SLAM2 [50]. CORB-SLAM runs on multiple robots and a centralized server. Every robot
runs an instance of ORB-SLAM2 to build a map of its environment and sends it to the server. The
server merges the maps received from robots and feed the complete merged map back to every
robot. Sending back the full map to the client can cause the same memory and network issues
mentioned for C2TAM. Ref. [48] presents a collaborative mapping system using robots. In this
system, each robot maintains a local map and sends a copy of that map to the cloud. The cloud
merges and optimizes the local maps received from the robots into a global map. The cloud would
then push to each robot an optimized version of its local map. Collaborative SLAM studies might
have some overlap with what we do; however, there are differences between the approaches as
well as the goals. Most collaborative SLAM works focus on building an accurate joint global map
from smaller maps built by individual robots. Their architecture has no computation offloading; in
these systems, multiple agents run independently to map an area. Therefore, they will likely not
be comparable in resource use to Edge-SLAM. Building a global map from smaller maps has other
sources of error beyond what Edge-SLAM does. Thus, comparing Edge-SLAM with these systems
would not be an apples-to-apples comparison of the functioning of the two pipelines. Ref. [15]
introduces a decentralized Visual-SLAM system through the integration of multiple decentralized
SLAM components. However, unlike Edge-SLAM and the previously discussed work, their system
does not depend on a singular, central edge or cloud device.

2.4 SLAM Offloading

Some studies have run the entire SLAM pipeline on the cloud. FogRos [12] and FogRos2 [32] are
cloud platforms to enable deploying robot systems on the cloud. They were used to deploy ORB-
SLAM2 on the cloud. For this, a robot was used to transfer camera frames to the cloud. On the cloud,
the full ORB-SLAM2 pipeline was running to build and maintain a map of the robot environment.
Few recent studies have considered splitting the SLAM pipeline between a mobile device and an
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Fig. 2. Architecture of a typical Visual-SLAM system [2].

edge or a cloud device. One such study is edgeSLAM [66], which addressed offloading Visual-SLAM
to the edge. In this study, the authors propose an edge-assisted monocular SLAM system built on
top of ORB-SLAM [49]. At a high level, their goal is similar to our work. However, examining it
closely reveals significant differences in design and implementation. The authors made offloading
decisions by looking at the internal pieces of ORB-SLAM modules and not by looking at each mod-
ule as one piece. Furthermore, the authors incorporated a semantic segmentation algorithm into
their system for improved accuracy. Unlike us, the focus of this study is not on resource constraints
on mobile devices. Correspondingly, their design does not address relocalization, and their study
does not measure resource usage (CPU, memory, network, and power) or overhead of synchroniz-
ing the edge and mobile devices. Furthermore, incorporating semantic segmentation makes their
design harder to generalize across other Visual-SLAM systems. Another study, CloudSLAM [65],
proposes a split architecture for cloud-assisted Visual-SLAM system for autonomous driving. This
study aims at minimizing network usage of the system while preserving an acceptable level of con-
sistency between the vehicle and the edge device. The authors claim that the level of consistency in
the system is enough to calculate an accurate trajectory. In contrast, Edge-SLAM is built on top of
ORB-SLAM2 [50] (improved version of ORB-SLAM) and incorporates all aspects of Visual-SLAM,
including relocalization as well as the ability to work with monocular, stereo, and RGB-D cameras.
Our design and implementation focus on resource usage (CPU, memory, network, and power) on
the mobile device, and our work extensively evaluate these aspects of the implementation.

3 SYSTEM DESIGN
3.1 Overview of a Typical Visual-SLAM System

Shown in Figure 2 is an architecture diagram of a typical feature-based Visual-SLAM system. Sev-
eral SLAM systems adhere roughly to this architecture, including PTAM [37], LSD-SLAM [21],
ORB-SLAM [49], ORB-SLAM2 [50], and ORB-SLAM3 [10]. The input to a typical Visual-SLAM
system are series of images (aka frames) captured from a camera. While we describe this generic
system as one that accepts regular images (RGB), many SLAM systems are capable of accepting
stereo images, depth images as well as color and depth images together. Most Visual-SLAM sys-
tems have three main modules described below.

3.1.1 Tracking Module. The Tracking module detects features in the incoming image (frame).
Typical features can be SIFT, SURF, ORB, or corners. The Tracking module then uses these fea-
tures to find correspondences with a previous reference image (also called KeyFrame in many
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cases). Based on the correspondences in features between the two frames, it calculates the rela-
tive odometry (labeled frame-frame alignment) between the reference KeyFrame and the current
frame. The Tracking module then determines if this frame should be added as a KeyFrame to the
map based on a set of criteria such as number of feature matches. If it decides to add a KeyFrame,
it passes the current frame to the Local-Mapping module.

3.1.2  Local-Mapping Module. If Tracking module deemed the current frame to be a new
KeyFrame, the Local-Mapping module is invoked. This module creates correspondences between
the new KeyFrame and other KeyFrames in the map. It then performs local bundle adjustment; a
process of refining the relative coordinates of where the images were taken given the detected com-
mon features between KeyFrames. The bundle adjustment is local because it limits the reasoning
to KeyFrames with common features.

3.1.3 Loop-Closing Module. Every so often (frequency depends on the particular algorithm),
the SLAM system runs the loop closure procedure. Conceptually, this might need to run every
time a new KeyFrame is added. The new KeyFrame is compared to all the other KeyFrames in the
map to check if the current location (place where the current image was taken) is the same as a
previously visited location. If the current KeyFrame is similar to a previous one, this module will
perform a fusion of these KeyFrames and all related ones. It might also perform pose optimization,
typically as a graph optimization [38].

3.2 Challenges in Deploying Visual-SLAM Systems

3.2.1 Computational Complexity. Typically, loop closure, or the process of identifying previ-
ously visited places is extremely time consuming. This is because the complexity of this task grows
with the size of the map. This has been the research topic for several Visual-SLAM systems such
as RTAB-Map [39], which uses long-term and short-term memory to reduce this complexity. Sec-
ondly, the process of merging map data structures from two distinct locations could be arbitrarily
complex depending on the local structure at those places. Finally, the step of refining poses after
the merge involves solving an optimization problem which might also be complex.

Historically, SLAM algorithms were designed to run on robots that had reasonably powerful
computing onboard. As these technologies move to mobile/wearable devices, running a Visual-
SLAM algorithm at reasonable rates is extremely challenging. Furthermore, SLAM is typically a
service to identify the location or recognize a place. This service is used by an application to
perform additional tasks that could need additional computing power making it even more chal-
lenging to run a complete SLAM system on a mobile/wearable device.

3.2.2 Tight Coupling between Modules. An idea would be to run some modules in a SLAM algo-
rithm on the mobile device while running others on the edge/cloud. However, this is challenging
as all modules are tightly coupled. As shown in Figure 2, all of them operate on the Global-Map
and require to compare, modify and trim the map. Latency in access to this shared data structure
or between the modules would result in improper function of the overall system. Therefore, it is
challenging to simply offload parts of the computation in a Visual-SLAM system. To better visual-
ize the complexity of de-coupling Visual-SLAM modules, we traced the modules that access parts
of the Global-Map in ORB-SLAM2 [50] in Section 4.1.2. The number of locks, and the accessing of
various data structures from multiple locations demonstrates the tight coupling of the modules.

3.3 Edge-SLAM Design

3.3.1 Edge-SLAM Design Goals. Our primary goal in designing Edge-SLAM is to reduce
the computational and memory overhead on the mobile/wearable device without affecting the
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Fig. 3. Envisioned architecture of the Edge-SLAM system—our modifications are shown in red [2].
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accuracy of the execution of the Visual-SLAM system. As described previously, this is challenging
given the tightly coupled nature of the modules. A second goal is to keep the overall resource us-
age (CPU, memory) constant to allow the smooth working of applications on the mobile device. As
seen in Figure 8, running a Visual-SLAM pipeline could potentially require a large, and increasing
amount of resources over time. Our objective is to keep that constant for long-term operation.

3.3.2  Edge-SLAM Architecture. Shown in Figure 3 is the Edge-SLAM architecture. Our goal is to
offload some of the computing to a “nearby” edge device. However, this is non-trivial as described
previously. To make it possible, we make two major changes. First, we propose to run the Tracking
module on the mobile device and move the Local-Mapping as well as the Loop-Closing to the edge
device along with the Global-Map. However, the Tracking module needs the map for its tasks. To
address this, we introduce a Local-Map—a partial map that resides on the mobile device. This is our
second modification. We designed the Local-Map structure to meet one of our primary motivations,
which is to keep the resource overhead (CPU, memory) on the mobile device constant. From the
local/global map structure, the split followed. The Tracking module could work completely using
the Local-Map and is, therefore, on the mobile device. The Local-Mapping and the Loop-Closing
modules need the Global-Map for some of their computation. Therefore, they were moved to the
edge. We then provision communication mechanisms between the Tracking module and the Local-
Mapping module. Since Local-Mapping and Loop-Closing modules frequently update the Global-
Map, we also need a mechanism to update the Local-Map when the Global-Map changes. This is
discussed further below.

Network Design. A key design challenge was the synchronization between the Tracking module
on the mobile device and the Local-Mapping/Loop-Closing modules on the edge device. First, we
assume that there is a reasonable connection (such as a reliable wireless connection with speeds
similar to a local wireless network) between the two sides. Without this, it is challenging to sustain
the amount of synchronization required. As shown in Figure 3, we designed three separate network
connections between the mobile device and the edge device. Each of these network connections
operates independently of the other so that there is no sequencing of the communication and
corresponding delays.

The first two connections are used to pass the output of the Tracking module to the edge device—
they are shown in red in the lower portion of Figure 3. One connection is used by the Tracking
module during relocalization to communicate the processed frame including features and local
geometry, and is labeled Frames in Figure 3. The second connection is used to pass the KeyFrame
if Tracking module decided to create a new KeyFrame, and it is labeled KeyFrames in Figure 3. The
third connection is used to update the Local-Map. This is shown in the top portion of Figure 3 and
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labeled Map Updates. This communication is typically from the edge device to the mobile device.
This connection keeps the Local-Map updated with the Global-Map. The Global-Map keeps track
of the differences between its state and the current Local-Map. If the difference is deemed to be
large, it creates an update and sends the update to the mobile device. Depending on the current
status of tracking, the mobile device can decide if it wants to accept the update or not.

Updating the Local-Map. Both the Local-Mapping and Loop-Closing modules update and opti-
mize the Global-Map. They look for local and global relationships between KeyFrames and con-
stantly work on optimizing the overall map for consistency. However, since Edge-SLAM creates a
new map structure for the mobile device, it is important to keep it synchronized with the Global-
Map for correct execution of the Tracking module.

Each time the Tracking module creates a new KeyFrame, it passes it on to the Local-Mapping
module on the edge. Correspondingly, the edge keeps track of the Local-Map on the mobile device.
As the Global-Map changes, it computes map updates and sends them to the mobile device for
update. However, map updating on the mobile device is a time consuming process as will be shown
later. Therefore, we modify the Tracking module to have the capability to accept or reject the map
updates. Given this tradeoff, we empirically determine a timeout mechanism to decide when the
Local-Map is stale and requires updating. The exact mechanism is discussed in the implementation
of our prototype.

While conceptually, these changes seem straightforward, engineering everything to work to-
gether with realistic network latencies is challenging.

3.3.3  Adapting Edge-SLAM Architecture in Visual-SLAM Systems. To demonstrate the feasibility
of our Edge-SLAM architecture, we prototyped our idea on ORB-SLAM2 [50], a well-known Visual-
SLAM system. Our work provides a conceptual design to offload Visual-SLAM. In order to apply
it to other Visual-SLAM systems, one would need to map the components of our design to the im-
plementation of the particular Visual-SLAM system to determine the exact implementation of the
offloading. For example, to apply Edge-SLAM architecture to VINS-Mono [54], we can map VINS’s
Measurement Preprocessing and Initialization module to Edge-SLAM’s Tracking module on the
mobile device. Then, we map VINS’s Local Visual-Inertial Odometry with the Relocalization mod-
ule to Edge-SLAM’s Local-Mapping module on the edge device. Finally, we map VINS’s Global Pose
Graph Optimization and Reuse module to Edge-SLAM’s Loop-Closing module on the edge device.

Other non-Visual-SLAM systems such as LIDAR-SLAM might be less applicable to our Edge-
SLAM architecture depending on the particular system pipeline. For example, LOAM [68] is a
LiDAR-based mapping system where the pipeline components cannot be directly mapped to Edge-
SLAM components. For such systems, further exploration of the details is necessary.

4 Edge-SLAM IMPLEMENTATION IN ORB-SLAM?2

Section 3 described our overall design to offloading some tasks in Visual-SLAM. We prototyped
our idea using ORB-SLAM2 since it is open-source. We will now describe ORB-SLAM2, and our
Edge-SLAM prototype implementing the split architecture using ORB-SLAM2. Please note that we
present some of the details including several magic numbers that make the system work for clarity.

4.1 ORB-SLAM2

4.1.1  Overview. ORB-SLAM2 [50] is the recent state-of-the-art graph-based Visual-SLAM algo-
rithm that can use a monocular (RGB) camera, stereo cameras, or RGB-D camera to build sparse
3-D maps. The map is a graph where vertices correspond to image frames, and edges correspond
to 3-D visual transformations between them.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 18. Publication date: October 2022.



18:10 A.J. Ben Ali et al.

Tracking
. . Pose Prediction KeyFrame
Stereo/RGB-D - Pre-process (Motion Model) Track Local Map New Ke_y!:rame Y
Frame Input - Decision
or Relocalization
Place -
Recognition Global-Map KeyFrame o
Insertion 8
Visual 4 =
MapPoints KeyFrames Recent [
Vocabulary MapPoints g
Culling >
Q
Recognition Covisibility . .
Database Graph Spanning Tree New P&?lnls
Creation
Local Bundle
Loop Correction Loop Detection Adjustment
Update Full Bundle Optimize
i 3 Loop Compute Query Local
M Adjust: it
ap I ljustment Eésent;]al Fusiem SE3 Database KeyFrames
& Culling
Global Bundle =
Adjustment Loop-Closing —l

Fig. 4. ORB-SLAM2 system architecture [50].

ORB-SLAM2 consists of three threads, one per module: Tracking, Local-Mapping, and Loop-
Closing as shown in Figure 4. The Tracking thread loops through incoming image frames for their
initial pose estimation and decides which frame to accept as a KeyFrame, based on five conditions
where the first four were introduced in the first ORB-SLAM article [49], and the fifth in the second
article [50]. They are:

(1) If relocalization occurred, then 20 frames should pass to insert a new KeyFrame.

(2) Either 20 frames have passed after the last inserted KeyFrame, or Local-Mapping thread is
not busy.

(3) The current frame is tracking at least 50 features.

(4) The current frame is tracking fewer than 90% points compared to the frame’s reference
KeyFrame (i.e., the KeyFrame most similar to the current frame).

(5) If the current frame tracks less than 100 close points, and can create more than 70 new close
points.

As described later, this detail is important to Edge-SLAM because our split requires us to reason
about some of these conditions on the mobile side and others on the edge side.

Local-Mapping adds accepted KeyFrames to a Global-Map and performs MapPoints and
KeyFrames optimization as well as bundle adjustment on the map local to the accepted KeyFrame.
Next, Local-Mapping passes the accepted KeyFrame to the Loop-Closing thread, which checks
for loops, which checks if the current KeyFrame is similar to any previously stored KeyFrame. If
they are similar, it performs loop correction where it corrects KeyFrames poses and optimizes the
Global-Map.

There are two central data structures to the operation of ORB-SLAM2—KeyFrames and Map-
Points. A KeyFrame, as described above, is an image frame that contains a unique segment or
viewpoint of the environment. A MapPoint stores the position, feature descriptor, and references
to all KeyFrames that observe it. In ORB-SLAM2, the MapPoints are obtained by detecting the ORB-
features in an image. Therefore, the feature descriptors are ORB-descriptors. Each KeyFrame points
to several MapPoints. Also, multiple KeyFrames could point to the same MapPoints if the same fea-
tures are seen from multiple KeyFrames. Together, the set of all KeyFrames currently constructed,
and all their observed MapPoints form the current Global-Map. These three data structures depend
on each other, and maintain several additional information—details can be found in [49, 50]. Part
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Table 1. Global-Map Locks in ORB-SLAM2 [50]

No. of Operations
Data Structure Lock Acquiring the Lock
per Module
5—Tracking
1—Local Mapping
1—Loop Closing
1—Full Bundle Adjustment
12—Tracking
6—Local Mapping
4—Loop Closing
1—Full Bundle Adjustment
12—Tracking
6—Local Mapping
4—Loop Closing
1—Full Bundle Adjustment
2—Tracking
4—Local Mapping
4—Loop Closing
1—Full Bundle Adjustment
4—Tracking
7—Local Mapping
4—Loop Closing
1—Full Bundle Adjustment
7—Tracking
KeyFrame mMutexFeatures 8—Local Mapping
6—Loop Closing
1—Tracking
KeyFrameDatabase mMutex 1—Local Mapping
1—Loop Closing
1—Tracking
1—Local Mapping
1—Loop Closing
1—Full Bundle Adjustment
4—Tracking
1—Local Mapping
6—Tracking
6—Local Mapping
1—Loop Closing
1—Full Bundle Adjustment

MapPoint mGlobalMutex (static)

MapPoint mMutexPos

MapPoint mMutexFeatures

KeyFrame mMutexPose

KeyFrame mMutexConnections

Map mMutexMapUpdate

Map mMutexPointCreation

Map mMutexMap

of the map is a visual vocabulary. ORB-SLAM2 stores this, so it is easy to compare frames. Each
incoming frame gets tagged with the list of observed words from this dictionary. This can be used
later for quick lookup of similar frames—for loop closure for example.

4.1.2  Complexity. ORB-SLAM2? is an open-source system with large code-base consisting of
20 classes and ~18,000 lines of code. The system depends on three main threads running simul-
taneously, where each thread runs one of the modules, i.e., Tracking, Local-Mapping, and Loop-
Closing. Furthermore, the system initiates a fourth thread on-demand after every loop closure to
perform full bundle adjustment. ORB-SLAM2 complexity lies in all these threads working on a
shared Global-Map structure. To demonstrate the level of coupling between these threads, Table 1
lists the set of locks used in the ORB-SLAM2 code, the data structures they control access to, and
the number of times they are called in various modules. For example, we observe in the table
that the Map data structure lock mMutexMap is acquired to perform six operations in the Tracking
module such as Tracking: :UpdatelLocalMap(), to perform six operations in the Local-Mapping
module such as LocalMapping: :MapPointCulling(), to perform one operation LoopClosing: :
CorrectLoop() in the Loop-Closing module, and to perform full bundle adjustment.

In ORB-SLAM2, all three threads assume to execute on the same computing device and have access
to a Global-Map maintained by the system. The operation of each of the threads is dependent on each
other because of their reliance on the shared data structures.

Zhttps://github.com/raulmur/ORB_SLAM2.
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Fig. 5. Edge-SLAM system architecture—our modifications are shown in red.

4.2 Edge-SLAM Implementation

Figure 5 shows a breakdown of Edge-SLAM into components that run on the mobile device and
the edge. As described earlier, in Edge-SLAM split architecture, the Tracking thread runs on the
mobile device while the Local-Mapping and the Loop-Closing threads run on the edge.

4.2.1 Global-Map. The Global-Map is created and stored on the edge. This contains the com-
plete set of KeyFrames, set of MapPoints, the Co-Visibility Graph, and the Spanning Tree. The
Co-Visibility Graph connects KeyFrames based on their shared MapPoints observations. The Span-
ning Tree is a subset of the Co-Visibility Graph connecting every KeyFrame with the KeyFrame
that they share the most MapPoints.

4.2.2 Local-Map. We create our new map structure called the Local-Map in the Tracking thread
on the mobile device. It includes a subset of the latest created KeyFrames, MapPoints, Co-Visibility
Graph, and Spanning Tree from the Global-Map. It uses the same visual vocabulary and recognition
database as the one on the edge.

4.2.3  Map Synchronization. The edge periodically sends Local-Map updates with the latest op-
timized changes to the mobile device. The mobile device, on the other hand, instantly sends newly
created KeyFrames along with its MapPoints to the edge. On receiving an update, the mobile device
can choose if it wants to update its Local-Map or not. The edge always accepts new KeyFrames
from the mobile device.

4.3 Mobile-Edge Network Setup

As described in Section 3, the latency between modules could greatly affect the working of the
Visual-SLAM system. To this end, we have three separate connections between the mobile device
and the edge—one each to transmit frames from the mobile device to the edge upon relocalization
event, to transmit KeyFrames from the mobile device to the edge, and the third to send Local-Map
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updates or relocalization map updates from the edge to the mobile device. Because each connection
is running on a separate thread and in a nonblocking/simultaneous fashion with other working
threads, we implemented three callback sub-modules, as shown in Figure 5. Local-Map Update
Callback in the Tracking thread on the mobile device. Frame Callback and KeyFrame Callback in
the Local-Mapping thread on the edge. Upon successful transmission of a Frame/KeyFrame/Map-
Update object, the corresponding callback sub-module will be triggered to process the incoming
data. With system performance a priority, we use a fast blocking concurrent queue implementa-
tion® for inter-thread communication. Our results show that such setup has low overhead on the
overall working of the Edge-SLAM system.
We will now describe Edge-SLAM operation on the mobile as well as the edge.

4.4 Mobile Device Operation

In our design (Figure 5), the mobile device runs the Tracking thread. In order to decouple the mobile
device operation, we allow the Tracking thread to maintain a Local-Map, create new KeyFrames,
create new MapPoints, and accept map updates from the edge. As in ORB-SLAM2, the Tracking
thread in Edge-SLAM continuously processes input feed/frames from the camera, tracks the Local-
Map, estimates the initial position of the current frame, and decides which frame to be a KeyFrame.
However, in Edge-SLAM, the Local-Mapping on the edge does not accept all KeyFrames created
by the Tracking on the mobile device. This is because we split the KeyFrame creation conditions,
described in Section 4.1, between the mobile device and the edge depending on where each condi-
tion can be validated. We moved the conditions 1 and 2 to the Local-Mapping on the edge and kept
the conditions 3, 4, and 5 on the mobile device. If a new KeyFrame is to be created, the Tracking
thread creates the new KeyFrame in its Local-Map and sends a copy to the edge to be considered
for addition to the Global-Map as well.

When the mobile device receives a Local-Map update, it first checks if it is not redundant. A map
update is considered redundant if no new KeyFrame created since the last applied map update. Sec-
ond, the mobile device checks if applying the Local-Map update would significantly increase the
chance of losing track due to its latency. We apply a time constraint starting at 300 milliseconds,
which decreases as the number of KeyFrames in the Local-Map increases. Such a time constraint
will limit the size of the Local-Map on the mobile device. It will also prevent a Local-Map update
from being applied when the KeyFrame creation rate is high. Typically, more KeyFrames are cre-
ated when there are large changes in the scene indicating that the device is moving fast. In such
cases, interruptions for map updates will lead to losing track, and is undesirable. Thus, a Local-
Map update is accepted only if more than the time constraint has passed since the last created
KeyFrame. We use the following formula to compute the time constraint:

TC = ITC/((KFN/LMU) + 1). (1)

Where TC is Time Constraint, ITC is Initial Time Constraint (set to 300ms), KFN is current num-
ber of KeyFrames in the Local-Map, and LMU is the Local-Map Update size (set to six KeyFrames).
We discuss why we choose such numbers in Section 4.7.

When a Local-Map update is accepted, the Tracking thread would temporarily stop operation
and not process any new frame. The mobile device updates the Local-Map by fully clearing the
current one, and then constructs a new map using the received update. Because KeyFrames are
sent to the edge upon creation, no information is lost when the current Local-Map is cleared. This
is a time-consuming process and we show the latencies involved in Section 5. We also discuss some
additional measures we take to address this challenge in Section 4.7.

Shttps://github.com/cameron314/concurrentqueue.
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4.5 Edge Operation

As described earlier, the edge runs two threads: Local-Mapping and Loop-Closing. Local-Mapping
thread receives KeyFrames from the mobile device as they get created and sends periodic Local-
Map updates back to the mobile device. On the other hand, Loop-Closing thread interacts with
Local-Mapping thread to receive new KeyFrames, after they get processed and added to the Global-
Map, and then it continues processing as in ORB-SLAM2. When the Local-Mapping thread on the
edge device receives a new KeyFrame, it checks the remaining KeyFrame insertion conditions, i.e.,
conditions 1 and 2 described in Section 4.1, before accepting the KeyFrame to be inserted into the
Global-Map.

In Edge-SLAM, the mobile device maintains a Local-Map to keep the system going. This map
is not intended to be used for a long-term run. Because the Local-Mapping and Loop-Closing
run on the edge, the Tracking Local-Map (on mobile device) does not get optimized and might
drift and affect the system accuracy if it does not receive an update regularly. Thus, our objective
is to maximize the number of updates to minimize such drift in the Tracking thread. However,
maximizing the number of updates would also mean more network usage as well as adding map
reconstruction overhead to the Tracking thread. In Edge-SLAM, we implemented a timer-based
Local-Map Update Module in Local-Mapping thread to regularly send a Local-Map update with the
minimum number of KeyFrames possible at short time intervals. Such an update would correct
any drifts and inconsistencies in the mobile device’s Local-Map. In our update module, a Local-
Map update is sent every five seconds and consists of the six most recent KeyFrames inserted into
the Global-Map along with all of their MapPoints. By sending small map updates at short time
intervals, we are achieving our objectives to minimize the drift, minimize the map reconstruction
overhead, and limit the network usage. We will quantify all these in Section 5. In Section 4.7, we
discuss why a Local-Map update consists of six KeyFrames in more detail.

4.6 Implementation Tradeoffs

4.6.1 Local-Map Update Strategies. There are two typical methods to update the Local-Map on
the mobile device. The first method is to apply edge changes to the mobile device’s current Local-
Map. The second method is to clear the mobile device’s current Local-Map and replace it with the
new received Local-Map update from the edge. After running several experiments, we identified
the following issues with the first method, which makes it not efficient and unsafe:

— If we continue reusing the current Local-Map on the mobile device by applying changes to
it, then we will accumulate lots of unprocessed and unoptimized KeyFrames and MapPoints
in the Local-Map. Such KeyFrames and MapPoints will also contribute to creating newer
KeyFrames and MapPoints that are inaccurate and increase the chances of drift and lower
accuracy in the Global-Map on the edge.

— Applying changes to the current Local-Map requires an expensive search for every single
KeyFrame and MapPoint in the update to find all their references in the Local-Map structure.
This would significantly increase the time complexity of applying an update and reduce the
mobile device performance.

— Due to the complex structure of ORB-SLAM?2, there exist lots of cyclic references in the
data structures. Thus, applying changes to the current Local-Map increases the chances of
memory issues such as memory leaks.

— The Local-Map structure on the mobile device is shared between the various threads. This re-
quires mechanisms to avoid concurrent operations on the map for correct functioning. There-
fore, synchronization mechanisms such as locks are used by individual threads to streamline
their access. Isolating such data structure to update it would be very time consuming and
might result in the erroneous operation of the whole system.
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Thus, whether we receive updates immediately as it happens or regularly over time, the process
of applying the updates would rapidly increase the chance of losing track as well as decrease the
mobile device performance. The second method, by contrast, is safer, more efficient, and has fewer
side effects on the mobile device. In this method, a Local-Map update fully replaces the existing
mobile device Local-Map with the minimum possible overhead on the mobile device performance
due to the small size of the update.

4.7 Engineering Edge-SLAM Modules for Efficient Operation

4.7.1 Tracking Thread. In this subsection, we first discuss Edge-SLAM Parameters, then we
discuss the Local-Map Update Callback sub-module in the Tracking thread.

Edge-SLAM Parameters. Edge-SLAM has four parameters that have been selected after careful
and extensive testing. The parameters are:

— Local-Map Update Size (discussed in Section 4.7.3) this is set to six KeyFrames, which is
the minimum number of KeyFrames required for the system to operate in the normal mode.
Otherwise, the system would run in the initialization mode. This parameter is so sensitive as
it directly affects the mobile device performance. Increasing the size of the Local-Map update
will increase the time required to freeze the Tracking module to apply the map update and
consequently increase the chances of the mobile device losing track. Therefore, we set this
parameter to the minimum possible number of KeyFrames to keep the map update overhead
at the lowest rate.

— Local-Map Update Frequency (discussed in Section 4.5) this is set to five seconds, such
that small map updates are sent frequently in short time intervals from the edge device.
This parameter indirectly affects the mapping accuracy of the system. Increasing the map
update frequency will increase the network usage but may help reduce the mapping drifts
on the mobile device. On the other hand, reducing the map update frequency will reduce the
network usage but may increase the mapping drifts since the mobile device will work more
with unoptimized mapping data. Therefore, this parameter may be adjusted as necessary
depending on the conditions under which the system has to run.

— Relocalization Frame Frequency (discussed in Section 4.7.5) this is set to half a second,
such that one frame is sent every half a second from the mobile device to the edge device to
receive map assistance for relocalization. This time interval would prevent the mobile device
from sending additional redundant frames to the edge device. Typically, cameras produce
30 frames per second. This parameter defines how frequently a frame is sent from the mo-
bile device to the edge device when the system is in relocalization mode. Increasing the
frequency will increase the network usage but may also increase the chances of successful
relocalization if the scene changes rapidly; otherwise, the sent frames will be redundant.
Reducing the frequency, on the other hand, will reduce the network usage but may also re-
duce the chances of successful relocalization. Therefore, this parameter can be adjusted as
necessary depending on the conditions under which the system has to run.

— Time Constraint to Accept a Local-Map Update. As we discussed in Section 4.4, the
Tracking thread computes a time constraint value which is used to decide whether to accept
a Local-Map update or not. We initially set this to 300 ms. When selecting an initial time
constraint value, our objective was to control how big the Tracking Local-Map can get be-
fore it is updated, especially during a high KeyFrame creation rate. Also, we wanted to allow
the mobile device to work independently for short periods regardless of connectivity to the
edge. After several experiments, we found that during high KeyFrame creation periods, an
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initial time constraint value of 300 ms would most likely lead the Tracking thread to accept
a Local-Map update before the size of the Local-Map gets higher than 50 KeyFrames. We
found through experiments that working with 50 unoptimized KeyFrames in the Local-Map
is a fair number before needing a map update. The “Local-Map Update Frequency” parame-
ter discussed above defines how frequently a map update is sent from the edge device. The
“Time Constraint to Accept a Local-Map Update” parameter defines how frequently a map
update is accepted on the mobile device. This parameter is sensitive to changes as it directly
affects how the mobile device behaves in different scenarios. Increasing the time constraint
will reduce the frequency of accepted map updates, leading to mapping drifts. However, this
may still help in challenging mapping scenarios by preventing a map update from being
applied when the scene is rapidly changing. Reducing the time constraint, however, will in-
crease the frequency of accepted map updates which may increase the chances of losing track
soon after the system gets into any challenging scenario. Therefore, careful consideration is
necessary when setting this parameter.

Our experiments show that the above parameters work with most scenarios and datasets with-
out adjusting them. Furthermore, Edge-SLAM is sensitive to ORB-SLAM2 parameters. Thus, not
setting such parameters correctly would affect the system’s performance.

Local-Map Update Callback. The Local-Map Update Callback submodule in the Tracking thread
is responsible for processing and reconstructing the Local-Map when an update is received from
the edge. Before processing an incoming update, the submodule would first check if all the follow-
ing conditions are true:

— The map update controller (discussed in Section 4.7.2) did not disable map updates.
— The system is not in initialization mode.

— The Local-Map has changed since the last applied map update.

— The current KeyFrame creation rate is not high.

If the above conditions are true, the submodule pauses the Tracking thread from processing
incoming camera frames. It would then fully erase the Local-Map on the mobile device. Since a
copy of every new KeyFrame is sent to the edge device on creation, no information will be lost
when the Local-Map is erased. Next, the received map update is used to rebuild the Local-Map.
Once the map is rebuilt and all connections have been established, the submodule will resume the
Tracking thread to process the incoming frames. The Tracking thread processes the latest camera
frame when the frame processing resumes. Since the latency of updating the map is small, the
amount of change in the scene (i.e., when comparing the last processed frame before the update
and the first processed frame after the update) is typically accepted by the system, which allows
tracking to continue without issues. Occasionally, applying a map update would cause tracking to
be lost, but that only happens due to unforeseen circumstances, as discussed in Section 4.7.2.

4.7.2  Map Update Controller Interface. After testing ORB-SLAM2 and Edge-SLAM with various
datasets, we have observed that the mapping pipeline is sensitive to the following scenarios:

— Quick Rotation is when the speed at which the mobile device changes direction is more
than what the system can handle, i.e., the system cannot track the changes in the scene
during the rotation.

— Sharp Turn is when instead of the mobile device turning gradually while moving forward,
it makes the turn in place, resulting in a sharp angle turn. Such a turn would most likely
result in a totally different scene from the one before the turn.
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— Shaking Scene is when the mobile device shakes while moving at a degree that would result
in a blurry scene that is not visible enough to extract features.

— Featureless Scene there are moments where the environment that the mobile device is
navigating has very few features, which may result in difficulties for the system to continue
tracking scene changes.

— Dynamic Scene is when the scene includes some non-static moving objects such as a walk-
ing person or a moving car. Such dynamicity can cause a rapid change in the scene, making
it difficult to track.

When such movements happen, the system loses track and needs to perform relocalization or
restart its map. This is because the system needs to compute the amount of change in the scene
after processing every single frame. The scene change is calculated by extracting features from the
current frame and matching those features to the features of the last created KeyFrame. For the
tracking to persist, the number of matched features after processing each frame must meet a preset
threshold in ORB-SLAM2 [49, 50]. If the threshold is not met, the tracking will be lost. Therefore,
any challenging movement, such as the ones mentioned above, would lead to the same outcome,
losing track if the minimum number of feature matches is not found. Because continuous tracking
is time-consuming and computationally heavy, losing track chances significantly increases when
an unforeseen movement happens.

Furthermore, in Edge-SLAM, when the mobile device receives a map update, it needs to freeze
processing the incoming camera frames while it reconstructs an updated map. Such updates could
take hundreds of milliseconds and affect the system’s trackability. The process of freezing the
tracking and constructing the map is particularly exaggerated if the mobile device is experiencing
any of the above scenarios, which can pull the number of matched features in the scene to zero,
causing tracking to be lost.

To address this, we take the following measures in Edge-SLAM to reduce the chances of losing
track due to the scenarios mentioned above:

— We reconsider the data structures used in ORB-SLAM2 to maintain the map’s KeyFrames
and MapPoints and then restructure the map using other data structures that would enable
fast retrieval. One such data structure that we have decided to use is the unordered_map data
structure from the C++ Standard Template Library (STL), which is based on hash tables
and can, in most cases, retrieve an item in a constant time. This is particularly important
because the map in ORB-SLAM2 is highly connected. Each KeyFrame object should have a
reference to each of its MapPoints, and each MapPoint object, on the other hand, should ref-
erence each KeyFrame that observes it. In ORB-SLAM2, each KeyFrame could have hundreds
of MapPoints, and each MapPoint could be observed by multiple KeyFrames. When a map
update is received in Edge-SLAM, the Local-Map should be reconstructed from the update
by looping through the KeyFrames and MapPoints to rebuild the map connections. Such
operation would require at least quadratic time complexity when used with the map data
structures in ORB-SLAM2 to reconstruct the map. To address this, we use unordered_map,
a hash-based data structure to map each KeyFrame and each MapPoint to its corresponding
unique identification value. This way, every KeyFrame, and MapPoint can be retrieved on
average in a constant time, and the map rebuild operation will take a linear time complexity
on average. Our objective in restructuring the map is to reduce the time it takes to rebuild the
Local-Map from an update on the mobile device and consequently reduce the time needed
to freeze the Tracking module.

— We implement a map update controller interface for the mobile device to enable or dis-
able map updates at specific moments. Our rationale behind the controller is that several
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undesirable movements such as those mentioned above might be known to the user or other
algorithms, such as motion planning. The controller would enable a user or an algorithm to
use such knowledge to prevent a map update from causing tracking loss. The controller has
a graphical user interface (GUI) and a programming interface.

The mobile device’s environment can be highly dynamic, which can introduce many navigation
challenges beyond a single system’s ability to understand and properly handle. Therefore, having
a map update controller interface on the mobile device for the user and other algorithms can
improve the mapping quality and assist in correctly addressing navigation challenges that can
cause unnecessary tracking loss.

For example, the planner could use the controller on a robot to indicate an upcoming sharp turn
by turning off the map updates. The map update controller should be toggled to disable map up-
dates on the mobile device before receiving a new update from the edge device during an unwanted
scenario. The controller can then re-enable map updates as soon as the undesirable scenario is over.

4.7.3 Local-Mapping Thread. As described earlier in Section 4.5, when the Local-Mapping
thread prepares a Local-Map update to send to the mobile device, it sets the size of the update
to six KeyFrames. The main objectives we had when setting the size of the Local-Map update was
to reduce network usage and to reduce map reconstruction overhead on the mobile device. Thus,
after looking into the Tracking thread initialization process, we found that if the system loses track
and there are less than six KeyFrames in the map, the Tracking thread would reset the whole sys-
tem. It would assume the system lost track right after initialization. Based on this condition, the
minimum number of KeyFrames the Local-Map can have to continue working without resetting
the system is six, which is what we choose as our Local-Map update size.

4.7.4  Reset Function. The reset function can be called by the system as well as the user. The
system calls reset function after an unsuccessful initialization. Whenever the reset function is
called, the system will clear all data structures and restart the mapping process. In Edge-SLAM,
we did not add any new data structure to perform a full (mobile-edge) system reset. Instead, the
Tracking thread uses the same KeyFrames connection to resend the most recent KeyFrame after
setting the KeyFrame’s reset flag to true. This way, both sides would reset instantly upon receiving
a request either from the system or the user.

4.7.5 Relocalization Function. Relocalization function is called when the Tracking thread loses
track where it tries to re-compute the camera pose using the Global-Map. Relocalization is particu-
larly useful when the Tracking thread loses track at a location that has been previously visited and
mapped. In Edge-SLAM, we want relocalization to be as robust as ORB-SLAM2. To this end, when
our system loses track, it not only tries to relocalize using the current Local-Map but also sends a
relocalization request to the edge for assistance. This is why we dedicated one of the connections
between the mobile device and the edge to the transmission of frames that assist in relocalization.
When the Tracking thread on the mobile device loses track, it transmits a frame to the edge every
half a second. We chose to send a frame every half a second to allow some change to happen in
the scene, so we do not send redundant frames. The Local-Mapping on the edge uses the received
frames to detect candidate KeyFrames from the Global-Map for relocalization. It then sends a relo-
calization map update to the mobile device using the Relocalization Map Update Module, as shown
in Figure 5, so the mobile device can try estimating the camera pose from the map. A relocaliza-
tion map update consists of candidate KeyFrames in addition to the KeyFrames connected to each
one of them. When Edge-SLAM is trying to relocalize, it lifts all time and size limits imposed on
Local-Map updates. This is because successful relocalization is a priority over performance during
such time. We compare Edge-SLAM and ORB-SLAM2 relocalization statistics in Section 5.3.2.
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5 EVALUATION

To study Edge-SLAM, we conduct several experiments to demonstrate the performance as well
as overheads from our design. We use a setup that mimics that of the modern mobile devices
to study the performance. We use two datasets collected at University at Buffalo along with two
publicly available datasets. The collected datasets are much longer than the publicly available ones,
allowing us to demonstrate the performance of Edge-SLAM for more extended periods. We study
the mapping accuracy, performance, memory use, CPU use, network use, and power consumption.
Finally, we look at the impact of variable network bandwidth on Edge-SLAM performance by using
a network shaper tool and limiting the upload/download bandwidth available.

5.1 Experiment Setup

To evaluate Edge-SLAM, we run experiments using two mobile devices and an edge device. The
first mobile device is an NVIDIA JETSON TX2—64-bit NVIDIA Denver and ARM Cortex-A57
CPUs, NVIDIA Pascal GPU, 8 GB Memory, and Connects using 802.11ac WLAN—running Ubuntu
18.04 LTS. We denote this device as JTX2. The second mobile device is a DELL Latitude laptop—
Intel Core i7-7600U, Intel HD Graphics, 16 GB Memory—running Ubuntu 18.04 LTS. We denote this
device as LAPT. The edge device is a DELL XPS desktop—Intel Core i7 9700 K, NVIDIA GeForce
GTX 1080, 32 GB Memory—running Ubuntu 18.04 LTS. We denote this device as DESK. In this
section, we evaluate our system Edge-SLAM and compare it to ORB-SLAM2. In ORB-SLAM?2 ex-
periments, only a mobile device is required, so we either use JTX2 or LAPT. In Edge-SLAM exper-
iments, a mobile device and an edge device are needed, and for that, we use either JTX2-DESK or
LAPT-DESK.

We use two pre-collected RGB-D datasets of our campus building floors as the input source
for long-running experiments. Our datasets are collected using a robot equipped with a Kinect
360 RGB-D sensor and a Velodyne VLP-16 LiDAR for the ground truth. Our first and primary
dataset consists of 52,427 frames, runs for a total of 1,774 seconds (~30 minutes), and has a
trajectory of ~155 meters. We denote this dataset as D1. Our second dataset consists of 39,374
frames, runs for a total of 1,315 seconds (=22 minutes), and has a trajectory of ~140 meters. We
denote this dataset as D2. We also use two popular public datasets from the Technical Univer-
sity of Munich called TUM [33] RGB-D datasets for short-running experiments. The first TUM
dataset is called freiburg2_pioneer_slam2, which we denote as D3. The second TUM dataset is
called freiburg2_pioneer_slam3, which we denote as D4. All the datasets frames are read from stor-
age by the mobile device and published as ROS topics* for consumption by either ORB-SLAM2 or
Edge-SLAM.

We repeat the experiments on each platform by replaying the dataset frames as if they were
being collected. This allows us to provide an exact comparison of performance across different
platforms and is a standard mechanism to compare performance across SLAM systems [9]. The
speed at which the robot traversed D1 and D2 datasets are not constant. Due to the campus build-
ing corridor dynamics at the time of the dataset collection, the robot had to make several stops
in different parts of the datasets. Therefore, the speed cannot be calculated purely from the dis-
tance and duration of the dataset. A typical frame rate of the Kinect is between 15-30 fps. Due
to the sensitivity of the Tracking module discussed in Section 4.7.1 and Section 4.7.2, we replay
our datasets for the long-running experiments using 15 fps and use the map update controller at
turns as necessary to reduce the chances of losing track. Note that this is a shortcoming of ORB-
SLAM2, and fixing this was beyond the scope of this work. We use the same configurations to

*https://wiki.ros.org.
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Fig. 6. ORB-SLAM?2 and Edge-SLAM trajectories mapping D1 (left) and D2 (right) datasets compared to the
ground-truth. ORB-SLAM2 is running on JTX2, and Edge-SLAM is running on JTX2 and DESK.

Table 2. Mean Localization Error of ORB-SLAM?2
and Edge-SLAM Mapping D1 and D2 Datasets

Visual-SLAM | ORB-SLAM2 | Edge-SLAM
Accuracy Measure X2 JTX2-DESK
Mean Localization Error
for D1 Dataset (cm)
Mean Localization Error
for D2 Dataset (cm)

19.08 £ 9.4 18.69 + 8.55

21.36 £10.46 | 18.94 +£7.53

evaluate ORB-SLAM2 and Edge-SLAM in all the long-running experiments results are presented
below. For the short-running experiments, we use the public datasets, which we replay using
30 fps for all platforms.

The mobile devices are connected to a private campus Wi-Fi network (Download = 84 Mbps,
Upload = 92 Mbps). The edge is connected to a private campus network through a wired connection
(Download = 92 Mbps, Upload = 93 Mbps), emulating an actual deployment.

5.2 Mapping Accuracy

Our primary objective was to improve the execution performance of Visual-SLAM while running
on mobile devices. Implicit in this objective is to retain the accuracy of the localization and mapping
achieved by the redesigned Visual-SLAM system. This subsection will compare the localization and
mapping accuracy of ORB-SLAM2 and Edge-SLAM with a ground-truth trajectory. For this, we
perform four experiments. The first two experiments map D1 and D2 datasets using ORB-SLAM2
running on a mobile device (JTX2). The second two experiments map D1 and D2 datasets using
Edge-SLAM running on a mobile device (JTX2) and an edge device (DESK).

The 2-D trajectories of the path traced by the mobile device (JTX2) as constructed by ORB-
SLAM2 and Edge-SLAM are shown in Figure 6. There is minimal difference between the mapped
trajectories and the ground-truth trajectory, demonstrating that the Edge-SLAM system is compa-
rable in accuracy to ORB-SLAM2.

For a more detailed examination, we show the mean localization error in centimeters of ORB-
SLAM2 and Edge-SLAM for both datasets in Table 2. Edge-SLAM performs slightly better on both
datasets with a difference of ~1 cm (0.01 m) on average on a trajectory of ~150 m. For most appli-
cations, this is quite acceptable for the feasibility of deploying accurate localization and mapping
long-term on mobile devices.

Also, ORB-SLAM2 mapping is highly accurate. From the results in Table 2, we see that it only
drifts for ~20 cm (0.2 m) after traveling ~150 m, which is small. Inherent latency, splitting the
architecture, and working with a smaller map (Local-Map) tend to increase Edge-SLAM’s po-
tential drift/error. However, our results show that the drift of running Edge-SLAM is similar to
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Fig. 7. Overall latency of ORB-SLAM2 and Edge-SLAM while mapping D1 dataset on JTX2. The average
latency per-module (left) shows that Edge-SLAM offloads the two CPU-intensive tasks. Tracking module
latency on the mobile device (JTX2) over time (right) better shows the latency for that module in each system.

ORB-SLAM2, i.e., 19 cm (0.19 m), after traveling the same trajectory length. This is because, in
ORB-SLAM2 and Edge-SLAM, full bundle adjustment is performed after every loop closure. This
process optimizes the Global-Map to reduce the drift. In our experiments, the D1 dataset has two
loops, and the D2 dataset has one loop, where each system got to run full bundle adjustment at
least once in each dataset. However, in Edge-SLAM, the full bundle adjustment gets to run on the
edge device with more computing power and lower latency, which would help achieve either the
same or better accuracy than ORB-SLAM2.

5.3 Performance

In this subsection, we measure the overall performance of ORB-SLAM2 and Edge-SLAM. We look
at the latency of the modules as well as the latency of the relocalization operation. Our goal is to
determine how the split architecture has affected the working of the Visual-SLAM pipeline.

5.3.1 Module Latency. In this subsection, we present the results of two experiments. In the first
experiment, we map our D1 dataset using ORB-SLAM2 running on JTX2. In the second experiment,
we map our D1 dataset using Edge-SLAM running on JTX2 as the mobile device and DESK as the
edge. If not specified, all the results are averaged over our dataset. As a reminder, the two goals
of Edge-SLAM are to reduce computational load on the mobile device and keep the load constant.
Our first set of results show the computational complexity of running Visual-SLAM entirely on
the mobile device (ORB-SLAM2) and running Visual-SLAM with edge offloading (Edge-SLAM).

Shown in Figure 7 (left) are the average times taken (in ms) to run the individual modules (Track-
ing, Local-Mapping, and Loop-Closing) in each of the two configurations. As seen from Figure 7
(right), the Tracking thread takes less than 60 ms on average. There is also not much difference
in performance between latency in execution of the original ORB-SLAM2 Tracking module and
the Tracking module in Edge-SLAM. This is expected given the two modules are similar, except
for the Tracking module in Edge-SLAM interacting with the Local-Map, which does not have any
significant performance impact. However, when a loop is detected and closed, at ~65% and ~95%
execution time, we observe that the Tracking latency on ORB-SLAM2 goes up to =120 ms. In
contrast, the Tracking latency on Edge-SLAM continues working at the same rate given the loop
closure operation is performed on the edge side. Furthermore, we see a large difference between
the execution time for Local-Mapping as well as Loop-Closing modules.

We would like to make two observations regarding the results of average latency in process-
ing for each of the modules of Visual-SLAM. First, Edge-SLAM reduces the latency in the Local-
Mapping and Loop-Closing modules by offloading them to the edge. It reduces the latency of the
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Table 3. Relocalization Statistics for ORB-SLAM2 and
Edge-SLAM on JTX2 Mapping D3 and D4 Public Datasets

A.J. Ben Ali et al.

Visual-SLAM | ORB-SLAM2 | Edge-SLAM
Relocalization JTX2 JTX2-DESK
D3: # of Successful 8 5
Relocalization
D3: Relocalization 3213 + 2.91 305 + 1.5
Latency (ms)
D4: # of Successful 3 8
Relocalization
D4: Relocalization 94 4 115 37 £ 526
Latency (ms)

Loop-Closing module dramatically, allowing for faster map updates. Our second observation is that
by offloading the intensive tasks, we reduce the variability of performance on the mobile device
and allow the mobile device to run end-user applications, which are the main reason to run Visual-
SLAM in the first place. This accomplishes our first objective of reducing the overall computational
load on the mobile device.

5.3.2  Relocalization Latency. Relocalization is an essential feature of Visual-SLAM systems. It
enables the system to resume mapping after losing track due to sudden movement. This subsec-
tion shows that the split architecture in Edge-SLAM has minimal effect on the relocalization per-
formance. We map two challenging TUM [33] RGB-D public datasets, D3 and D4, at 30 fps using
ORB-SLAM2 and Edge-SLAM. We use JTX2 as our mobile device and DESK as our edge device.
The camera in these datasets heavily shakes multiple times while in motion causing both systems
to lose track and try to relocalize.

Table 3 shows that both systems successfully relocalize multiple times in each of the two datasets.
Successful relocalization mainly depends on how well the system is performing with respect to
feature extraction and matching. This is why each system might relocalize better or worse than
the other system in each dataset. However, since the Tracking module in Edge-SLAM uses a Local-
Map, it reasons with fewer KeyFrames and features than ORB-SLAM2; therefore, it has a slightly
higher chance of losing track compared to ORB-SLAM2.

Table 3 also shows that the split architecture of Edge-SLAM has minimal effect on the relocal-
ization latency. When our system loses track, it tries to relocalize using the existing Local-Map. In
the meantime, it requests relocalization assistance from the edge. From the table, we observe that,
on average, the relocalization latency on both systems is less than ~40 ms. ORB-SLAM2 takes on
average 28 ms, and Edge-SLAM takes on average 34 ms. The additional overhead of Edge-SLAM
comes from serializing a frame every half a second to send it to the edge to get assistance.

5.4 CPU and Memory Usage

Figure 8 shows the CPU and memory usage on the mobile device (JTX2) while running ORB-
SLAM2 and Edge-SLAM to map the D1 dataset. This is our next significant result that we demon-
strate with our system.

Figure 8 (left) shows the instantaneous CPU usage through the execution on the mobile device
(JTX2). On average, the CPU usage for ORB-SLAM2 is at #30% while using the JTX2. In comparison,
the CPU usage is at #15% when using the JTX2 for Edge-SLAM. Overall, there is *50% reduction
in CPU use while using Edge-SLAM due to offloading.

Figure 8 (right) shows the memory usage on the mobile device (JTX2) for both ORB-SLAM2
as well as Edge-SLAM. As described in Section 3, as the size of the map increases, the overall
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Fig. 8. Resource usage of ORB-SLAM2 and Edge-SLAM on the mobile device (JTX2) while mapping D1
dataset—CPU (left) and Memory (right). The jumps in memory use at 65% time and 95% time (right) are
due to loop closures in ORB-SLAM2.

Table 4. Map Update Latencies and Frequencies on
the Mobile Device (JTX2) and on the Edge (DESK)
While Mapping the D1 Dataset using Edge-SLAM

Visual-SLAM Edge-SLAM JTX2-DESK | Edge-SLAM JTX2-DESK
Measurement without MUCI ‘with MUCT
Keyframe Transmit Latency from
Mobile Device to Edge (ms)
Construct Map Update
Latency on Edge (ms)
Map Update Publish
Frequency on Edge (s)
Map Update Acceptance
Frequency on Mobile Device (s)
Re-Construct Map Update
Latency on Mobile Device (ms)
Mean Localization Error
for D1 Dataset (cm)

We provide measurements for Edge-SLAM with and
without Map Update Controller Interface (MUCI). The
measures for the “without MUCI” are based on [7].

162.43 + 2.90 97.03 £ 3.58

57.09 + 0.69 61.82 £ 0.64

8.24 +0.48 8.76 + 0.57

9.16 + 0.55 9.62 + 0.65

411.43 £ 4.84 335.72 £ 1.79

19.23 + 11.32 18.69 + 8.55

memory required to store it also goes up. If the Global-Map is stored on the mobile device, as in
ORB-SLAM2, this will result in growing memory use which is highly undesirable. Also, note that
the memory use goes up when loop closure is performed (at ~65% and ~95% execution time). This
is also undesirable. Because Edge-SLAM stores a fixed-size Local-Map on the mobile device, the
memory usage of Edge-SLAM is constant. It remains constant even during loop closure, which is
performed on the edge. This accomplishes our second objective of keeping the resource use on the
mobile device constant.

5.5 Network Usage

5.5.1 Latency. As described in Section 5.1, we use a regular on-campus wireless network to
connect the mobile device with the edge device. We also performed our experiments during normal
working hours when the access points are used by other users. We did so to understand the network
latency imposed in a typical urban setup and its effect on the Edge-SLAM system. In Figure 3, we
show three links between the mobile and the edge device. We characterize the delay on these links
for Edge-SLAM running on the mobile device (JTX2) and the edge (DESK) while mapping the D1
dataset.

The biggest source of delay is in the map update from the Global-Map on the edge to the Local-
Map on the mobile device. This latency is shown in Table 4 (with MUCI). Totally, there are three
parts to this latency. First is the latency to construct the map update on the edge. Second to transmit
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Fig. 9. Network usage over time for Edge-SLAM running on LAPT mapping D1 dataset without limiting the
bandwidth.

the map update across the network. Third, once the update is received, the mobile device needs to
reconstruct its Local-Map using the received map update. The table shows that preparing the map
update on the edge takes ~62 ms. Reconstructing the map update on the mobile device, however,
takes ~336 ms. We should note that the mobile device cannot execute the Tracking module while
reconstructing the map update. The reconstruction latency might seem long on the mobile device,
but with the current optimizations, it is short enough for the Tracking module to continue mapping
smoothly.

Each map update consists of the latest six KeyFrames added to the edge Global-Map. Shown
in Table 4 (with MUCI) is the end-to-end latency in transmitting each KeyFrame across the wire-
less network. This latency includes the time from when a KeyFrame is assigned for transmission
on one side to when it is received and deserialized on the other side. We see that each KeyFrame
transmission takes on average ~97 ms, which is small. We should note that all network connec-
tions are non-blocking, and each runs on a separate thread simultaneously with other mapping
operations. Therefore, Edge-SLAM can tolerate reasonable network latencies and delays.

Finally, Table 4 (with MUCTI) shows the frequency of the map update in our experiment. Note that
the mobile device might choose not to accept map updates transmitted by the edge. We offer the
average frequency of map updates sent from the edge and the frequency of map updates accepted
on the mobile device. Our results show that the mobile device rejects map updates rarely, at least on
the D1 dataset. Map updates are published every ~9 s from the edge and accepted every ~10 s on
the mobile device.

5.5.2  Bandwidth. In order to measure the effect of available network bandwidth on the perfor-
mance of Edge-SLAM, we use the wondershaper [42] tool to control the bandwidth on the mobile
device. We also identify the minimum required bandwidth for Edge-SLAM to work correctly. Be-
cause wondershaper is not compatible with JTX2, we use LAPT as our mobile device for the band-
width experiments. In these experiments, we map our primary dataset, D1, using Edge-SLAM. We
run three experiments, first with a high bandwidth (no limits), second with medium bandwidth,
and third with low bandwidth (minimums).

Figure 9 shows network usage for Edge-SLAM on the mobile device LAPT while mapping the
D1 dataset without limiting the bandwidth. The mobile device in Edge-SLAM uses the network
to download map updates from the edge every 5 seconds and upload KeyFrames to the edge im-
mediately after creation. We observe that the download rate is steady at ~5 Mbps. This is because
the Local-Map updates are small and consist of only six KeyFrames per update. On the other hand,
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Table 5. Comparing the Overhead of Limiting the Mobile Device’s (LAPT)
Network Bandwidth on the Performance of Edge-SLAM to Map D1 Dataset

Bandwidth High Medium Low
Measure (U =51 Mbps, D = 67 Mbps | (U = 20 Mbps, D = 20 Mbps) | (U = 15 Mbps, D = 10 Mbps)
# of Dropped KeyFrames
on Mobile Device
Mean Localization
Error (cm)

11 236 392

23.3 +10.13 19.59 + 8.65 28.50 £ 12.49

the upload rate is *2 Mbps most of the time, but it spikes when the KeyFrame creation rate is high.
The figure shows around eight upload spikes that go as high as 56 Mbps. These spikes correspond
to eight turns that exist in the D1 dataset. When the robot turns, the scene changes rapidly, causing
the system to create a higher number of KeyFrames to keep up with the changes.

Table 5 shows how lower network bandwidths could affect the performance of Edge-SLAM. Our
main objectives in performing the network bandwidth measurements are:

— Show that Edge-SLAM can work reliably in different network conditions.
— Identify the minimum network bandwidth required for Edge-SLAM to map properly.

After performing several experiments, we have identified the upload rate of 15 Mbps and the
download rate of 10 Mbps as the minimum required bandwidths for Edge-SLAM to work accurately
without mapping issues. We have used these minimum rates for our low bandwidth experiment.
From the low bandwidth measurements, we observe some overhead with respect to the number
of dropped KeyFrames and the mean localization error. This overhead is still within an acceptable
range, given that the system could fully map the dataset without any mapping issues. As for the
medium bandwidth experiment, we see no overhead in the mean localization error, which is even
better than the high bandwidth’s mean localization error. However, we do see more drops of cre-
ated KeyFrames, but without affecting the system mapping accuracy. We would like to note here
that ORB-SLAM2 and consequently Edge-SLAM depend on multiple factors when run; therefore,
their outcomes are slightly different after each run. These factors include but are not limited to
the device’s computational load, resource availability, network condition, and optimization quality.
Thus, as long as the network bandwidths are above the minimum, it is normal to observe slightly
mixed measurements for medium and high bandwidths. i.e., higher KeyFrame drops, lower local-
ization error for medium bandwidth, lower KeyFrame drops, and higher localization error for high
bandwidth. However, the final mapping outcome for both bandwidths should still be consistent
and within an acceptable accuracy range. Therefore, Edge-SLAM can smoothly map with a wide
range of today’s bandwidths and variable network conditions.

5.6 Map Update Controller Interface Analysis

As described in Section 4.7.2, we implemented a map update controller interface along with other
map update improvements for the mobile device to prevent unnecessary tracking loss during chal-
lenging mapping scenarios. In this subsection, we analyze these improvements by comparing dif-
ferent aspects of the system with the previous version. For this, we use measurements for Edge-
SLAM running on the mobile device (JTX2) and the edge (DESK) while mapping the D1 dataset.
The measurements for Edge-SLAM without the map update controller interface are based on [7].

Table 4 compares the measurements of the previous version of Edge-SLAM (without MUCI) to
the current improved version of Edge-SLAM (with MUCI). For the edge operations (i.e., map up-
date construction latency and publish frequency), these stayed almost the same as they are not
affected by the map update controller and the map restructuring improvements. The improve-
ments are designed to mainly enhance mobile device operations. For instance, when the con-
troller prevents applying map updates during challenging scenarios, it enables the mobile device to
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Fig. 10. Power consumption over time for ORB-SLAM2 and Edge-SLAM on JTX2 mapping D1 dataset.

better utilize its resources for other mapping and non-mapping operations. For mapping oper-
ations, we observe that the map update controller has slightly improved the mean localization
error (i.e., accuracy). We also observe that the controller has almost no impact on the frequency at
which the mobile device accepts map updates. For non-mapping operations, we look at the latency
to prepare (serialize) and transmit newly created KeyFrames from the mobile device to the edge.
Since all network connections are non-blocking, and each runs on a separate thread simultane-
ously with other mapping operations, we observe a 40% reduction in the KeyFrame transmission
latency from the mobile device to the edge when map updates are only applied at the proper times.

Restructuring the map to support fast retrieval operation has improved the time it takes for the
mobile device to rebuild the Local-Map from an update and establish the map connections. This
can be seen in Table 4, showing a 19% reduction in the map update reconstruction latency.

Finally, we want to highlight another main benefit of the map update controller interface: re-
ducing the number of experiments that must be performed to successfully map the long-running
datasets with challenging scenarios. For instance, in the D1 dataset shown in Figure 6, there are
eight sharp turns the robot needs to make without losing track to successfully map the dataset, and
that is challenging. Thus, without the map update controller, we had to map the dataset multiple
times from the beginning until getting a run where the system made it through all turns. However,
after implementing the map update controller, we successfully mapped the entire dataset in a single
run.

5.7 Power Consumption

We also measure power consumption on the mobile device for ORB-SLAM2 and Edge-SLAM. For
this, we first map our main dataset, D1, using ORB-SLAM2 running on the JTX2. Second, we map
the D1 dataset using Edge-SLAM running on the JTX2 as the mobile device and DESK as the edge
device. The power measurements are collected on the JTX2.

To measure power consumption, we collect voltage readings throughout the run of each system.
Then, we calculate the current using the obtained voltage using Equation (2). Finally, we calculate
the power using Equation (3).

Current = (Voltage — 2.5)/0.1, (2)
Power = Voltage = Current. (3)

Figure 10 shows no significant difference in power consumption between ORB-SLAM2 and Edge-
SLAM on the JTX2. In ORB-SLAM2, the power consumption varies between 2 and 2.25 Watts. We
believe this variation in power consumption is due to the loop closure and global optimization
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operations on the mobile device happening at ~65% and ~95% execution time. These operations are
computationally heavy and run when a loop is detected. In Edge-SLAM, the power consumption
is steady at ~2.25 Watts. We believe this steadiness is due to moving the occasional computation-
heavy operations such as loop closure and global optimization to the edge device. On the other
hand, due to the continuous Wi-Fi network usage throughout the experiment, Edge-SLAM power
consumption is equal to ORB-SLAM?2’s maximum power value of 2.25 Watts. ORB-SLAM?2 does not
use the network while mapping. Therefore, the increase of 0.25 watts on average can be attributed
to the consistent use of the Wi-Fi. Even with this addition, Edge-SLAM power consumption is
comparable to that of ORB-SLAM2.

6 CONCLUSION

Many mobile applications require spatial localization, including augmented reality apps and li-
braries such as ARCore, ARKit, and HoloLens APIL. One popular mechanism to achieve this is
using Visual-SLAM. However, most Visual-SLAM systems are computationally intensive. In this
work, we adapt Visual-SLAM to a split architecture called Edge-SLAM, distributing the compute
load between a mobile device and an edge device. We demonstrate our proposed idea by prototyp-
ing the Edge-SLAM architecture using ORB-SLAM2, a popular Visual-SLAM system. In particular,
we kept the Tracking module on the mobile device and moved the Local-Mapping and the Loop-
Closing modules to the edge. We achieved this split by creating a new map structure called the
Local-Map on the mobile device for use by the Tracking module. This Local-Map only contains a
local view of the Global-Map and gets periodically updated by the edge when needed.

In Edge-SLAM, we mainly overcome two challenges of ORB-SLAM2. First, we limit the growth
in memory usage due to increasing map size and keep the mobile device memory usage constant.
Second, we move the bursty computational tasks (Local-Mapping and Loop-Closing) to the edge
device, allowing the mobile device to function more efficiently and run other apps. Overall, we
achieved this with minimal loss of accuracy in the final map and the trajectory taken. We demon-
strated this using our own datasets as well as publicly available datasets. We have internally tested
our system on multiple other datasets, and the results are similar. We evaluated all aspects of re-
sources used by our system, including CPU, memory, network, and power consumption. We open-
source’ our Edge-SLAM implementation and make it available to other researchers to evaluate
their solutions.
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