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Abstract

Retrieval-augmented Generation (RAG) relies001
on effective retrieval capabilities, yet traditional002
sparse and dense retrievers inherently struggle003
with multi-hop retrieval scenarios. In this paper,004
we introduce GEAR, a system that advances005
RAG performance through two key innova-006
tions: (i) an efficient graph expansion mech-007
anism that augments any conventional base re-008
triever, such as BM25, and (ii) an agent frame-009
work that incorporates the resulting graph-010
based retrieval into a multi-step retrieval frame-011
work. Our evaluation demonstrates GEAR’s012
superior retrieval capabilities across three multi-013
hop question answering datasets. Notably, our014
system achieves state-of-the-art results with im-015
provements exceeding 10% on the challenging016
MuSiQue dataset, while consuming fewer to-017
kens and requiring fewer iterations than exist-018
ing multi-step retrieval systems.019

1 Introduction020

Retrieval-augmented Generation (RAG) has en-021

hanced the performance of Large Language Models022

(LLMs) (OpenAI, 2023) in Question Answering023

(QA) tasks (Lewis et al., 2020). While effective for024

simple queries, multi-hop QA presents a more com-025

plex challenge, requiring reasoning across several026

passages or documents. Consider the example in027

Table 1, where finding the correct answer requires028

building a 3-hop reasoning chain starting from the029

question’s main entity (i.e. “Stephen Curry”).030

What year did the father of Stephen Curry join the team
from which he started his college basketball career?

Stephen Curry son of−−−→ Dell Curry
Dell Curry college team−−−−−−→ Virginia Tech

Dell Curry college start−−−−−−→ 1982 (answer)

Table 1: Multi-hop question (top) involving a reasoning
chain (bottom) extending across several entities.

To address these complex reasoning require- 031

ments, there has been a growing interest in lever- 032

aging graph representations of passages to bridge 033

the semantic gap inherent in multi-hop questions 034

(Fang et al., 2024; Li et al., 2024; Edge et al., 2024; 035

Gutierrez et al., 2024; Liang et al., 2024). By ex- 036

tracting entities, atomic facts, or semantic triples 037

(Li et al., 2024; Fang et al., 2024; Gutierrez et al., 038

2024), these graphs can establish more direct path- 039

ways for multi-hop reasoning and associate relevant 040

passages. For instance, HippoRAG extracts triples 041

from passages and employs a variant of PageRank 042

for passage retrieval, conditioned on this extracted 043

knowledge graph (Gutierrez et al., 2024). Further- 044

more, GraphReader uses an LLM agent, with ac- 045

cess to graph-navigating operations for exploring 046

the resulting graph (Li et al., 2024). TRACE relies 047

on an LLM to iteratively select triples to construct 048

reasoning chains, which are then used for ground- 049

ing the answer generation directly, or for filtering 050

out irrelevant documents from an original set of 051

retrieved results (Fang et al., 2024). However, re- 052

cursively prompting LLMs to traverse graphs can 053

be computationally expensive, especially as the 054

search space expands. 055

In this paper, we present GEAR, a Graph- 056

enhanced Agent for Retrieval-augmented gener- 057

ation. During the offline stage, we align an index 058

of passages with an index of triples extracted from 059

these passages. With such alignment, passages are 060

intermediately connected through graphs of triples. 061

GEAR contains a graph-based passage retrieval 062

component referred to as SyncGE. Unlike previous 063

works that rely on expensive LLM calls for graph 064

exploration, we leverage an LLM for locating ini- 065

tial nodes (triples) and employ a generic semantic 066

model to expand the sub-graph of triples by explor- 067

ing diverse beams of triples. Furthermore, GEAR 068

utilises multi-hop contexts retrieved by SyncGE 069

and constructs a memory that summarises informa- 070

tion for multi-step retrieval. 071
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Our work refines the neurobiology-inspired072

paradigm proposed by Gutierrez et al. by modeling073

the communication between the hippocampus and074

neocortex during episodic memory formation. In075

our design, an array of proximal triples functions076

as a memory gist learned through the hippocam-077

pus within one or a few shots (iterations), which078

is then projected back to the neocortex for later re-079

call stages (Hanslmayr et al., 2016; Griffiths et al.,080

2019). We highlight the complementary potential081

between our graph retrieval approach and an LLM,082

which, within our system, emulates the synergy083

between the hippocampus and neocortex, offering084

insights from a biomimetic perspective.085

We evaluate the retrieval performance of GEAR086

on three multi-hop QA benchmarks: MuSiQue,087

HotpotQA, and 2WikiMultihopQA. GEAR pushes088

the state of the art, achieving significant improve-089

ments in both single- and multi-step retrieval set-090

tings, with gains exceeding 10% on the most chal-091

lenging MuSiQue dataset. Furthermore, we demon-092

strate that our framework can address multi-hop093

questions in fewer iterationswhile consuming sig-094

nificantly fewer LLM tokens. Even with a single095

iteration, GEAR offers a more efficient alterna-096

tive to other iterative retrieval methods, such as097

HippoRAG w/ IRCoT. Our contributions can be098

summarised as follows:099

• We introduce a novel graph-based retriever,100

SyncGE, which leverages an LLM for locat-101

ing initial nodes for graph exploration and102

subsequently expands them by diversifying103

beams of triples that link multi-hop passages.104

• We incorporate this graph retrieval method105

within an LLM-based agent framework, ma-106

terialising GEAR, achieving state-of-the-art107

retrieval performance across three datasets.108

• We conduct comprehensive experiments show-109

casing the synergetic effects between our pro-110

posed graph-based retriever and the LLM111

within the GEAR framework.112

2 Related Work113

Our work draws inspiration from two branches of114

research: (i) retrieval-augmented models for QA115

and (ii) multi-hop QA using combinations of LLMs116

with graphical structures.117

2.1 Retrieval-augmented Models for QA 118

Lewis et al. first showcased the benefits of augment- 119

ing language models’ input context with relevant 120

passages. Recent work by Wang et al. and Shen 121

et al. explores query expansion approaches, gener- 122

ating pseudo-documents from language models to 123

expand the content of original queries. Subsequent 124

frameworks, beginning with IRCoT, have investi- 125

gated the interleaving of retrieval and prompting 126

steps, allowing each step to iteratively guide and 127

refine the other (Trivedi et al., 2023; Jiang et al., 128

2023; Su et al., 2024). 129

2.2 Multi-hop QA with LLMs and Graphs 130

Several architectures have introduced an offline 131

indexing phase to form hierarchical passage sum- 132

maries (Chen et al., 2023; Sarthi et al., 2024; Edge 133

et al., 2024). However, summarization must be re- 134

peated when adding new data, making knowledge 135

base updates computationally expensive. Recent 136

approaches have leveraged structured knowledge to 137

address multi-hop QA challenges with LLMs (Park 138

et al., 2023; Fang et al., 2024; Li et al., 2024; Gutier- 139

rez et al., 2024; Liang et al., 2024; Wang et al., 140

2024). GraphReader, TRACE and HippoRAG pro- 141

pose offline methods for extracting entities and 142

atomic facts or semantic triples from passages (Li 143

et al., 2024; Fang et al., 2024; Gutierrez et al., 144

2024). This allows chunks containing the same 145

or neighbouring entities to construct a graph of 146

indexed passages. TRACE relies on an LLM to it- 147

eratively select triples for reasoning chains, which 148

ground answer generation or filter retrieved results. 149

However, its search space is limited by pre-filtered 150

candidate lists for each query. Li et al. employ 151

an LLM agent that selects from a set of prede- 152

fined actions to traverse knowledge graph nodes 153

in real time given an input question. Liang et al. 154

later introduced additional graph standardisation, 155

including instance-to-concept linking and semantic 156

relation completion. However, this approach heav- 157

ily depends on associating triples with pre-defined 158

concepts for logical form-based retrieval. 159

HippoRAG leverages an alignment of passages 160

and extracted triples to retrieve passages based on 161

the Personalized PageRank algorithm (Gutierrez 162

et al., 2024). While achieving improvements for 163

single- and multi-step retrieval (when coupled with 164

IRCoT (Trivedi et al., 2023)), it remains agnostic 165

to the semantic relationships of extracted triples. 166

In this paper, we leverage a similar alignment of 167
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passages and extracted triples but introduce a new168

graph-based retrieval framework that uses a small169

semantic model for exploring multi-hop relation-170

ships. Our framework considers the contributions171

of all triple elements participating in reasoning172

chains, offering a more robust solution for asso-173

ciating questions with triple reasoning chains.174

3 Preliminaries175

Let C = {c1, c2, . . . , cC} be an index of passages176

and T = {t1, t2, . . . , tT : tj = (sj , pj , oj)} be an-177

other index representing a set of triples associated178

with the passages in C s.t. ∀tj ∈ T∃! ci ∈ C,179

where sj , pj and oj the respective subject, predi-180

cate and object of the j-th triple. In this setup, each181

triple is uniquely linked to exactly one passage,182

and a passage can potentially be associated with183

multiple triples.184

Given an input query q and an index of interest185

R = {r1, . . . , rR}, retrieving items from R rele-186

vant to q can be achieved by using a base retrieval187

function hkbase (q,R) ⊆ R that returns a ranked list188

of k items from R in descending order, according189

to a retrieval score. BM25 or a conventional dense190

retriever can serve as a base retrieval function, with-191

out requiring any multi-hop capabilities.192

Our goal is to retrieve relevant passages from C193

that enable a retrieval-augmented model to answer194

multi-hop queries (Lewis et al., 2020). To this end,195

we introduce GEAR, which is a graph-enhanced196

framework of retrieval agent (see Figure 1).197

4 Retrieval with Synchronised Graph198

Expansion199

Given an input query q, let C′
q = hkbase (q,C) be200

a list of passages returned by the base retriever.201

Given this list, C′
q, our goal is to derive relevant202

multi-hop contexts (passages) by retrieving a sub-203

graph of triples that interconnect their source pas-204

sages. Two challenges arise in materialising such205

sub-graph retrieval: (i) locating initial triples (i.e.206

starting nodes) Tq, and (ii) expanding the graph207

from these initial triples while reducing the search208

space. The following sections address these chal-209

lenges within GEAR.210

4.1 Knowledge Synchronisation211

We describe a knowledge Synchronisation (Sync)212

process to locate initial nodes for graph expan-213

sion. We first employ an LLM to read C′
q (see214

Appendix J.2) and summarise knowledge triples215
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Figure 1: System Architecture

that can support answering the current query q: 216

T′
q = read

(
C′

q,q
)
. (1) 217

T′
q is a collection of triples to which we refer 218

as proximal triples. Initial nodes Tq for graph 219

expansion are identified by linking each triple in 220

T′
q to a triple in T, using the tripleLink function: 221

Tq =
{
ti|ti = tripleLink(t′i) ∀t′i ∈ T′

q

}
. (2) 222

The implementation of tripleLink can vary. How- 223

ever, in this paper we consider it to be simply re- 224

trieving the most similar triple from T. 225

4.2 Diverse Triple Beam Search 226

We borrow the idea of constructing reasoning triple 227

chains (Fang et al., 2024) for expanding the graph, 228

and present a retrieval algorithm: Diverse Triple 229

Beam Search (see Alg. 1). 230

We maintain top-b sequences (beams) of triples 231

and the scores at each step are determined by a 232

scoring function. In this paper, we focus on lever- 233

aging a dense embedding model to compute the 234

cosine similarity between embeddings of the query 235

and a candidate sequence of triples, leaving other 236

implementations of the scoring function for future 237

work (see Section 9). 238

Considering all possible triple extensions at each 239

step, in a Viterbi decoding fashion, would be in- 240

tractable due to the size of T. Consequently, we 241
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Algorithm 1 Diverse Triple Beam Search
Input: q: query

b: beam size
l: maximum length
score(·, ·): scoring function
{t1, t2, . . . , tn}: initial triples
γ: hyperparameter for diversity

1: B0 ← [ ]
2: for t ∈ {t1, t2, ..., tn} do
3: s← score(q, [t])
4: B0.add(⟨s, [t]⟩)
5: B0 ← top(B0, b)
6: for i ∈ {1, . . . , l − 1} do
7: B ← [ ]
8: for ⟨s, T ⟩ ∈ Bi−1 do
9: V ← [ ]

10: for t ∈ get_neighbours(T.last()) do
11: if exists(t, Bi−1) then
12: continue
13: s′ ← s+score(q, T ◦t) # concat
14: V.add(⟨s′, T ◦ t⟩)
15: sort(V,descending)
16: for n ∈ {0, . . . , V.length()− 1} do
17: ⟨s′, T ◦ t⟩ ← V [n]

18: s′ ← s′ × e
−min(n,γ)

γ

19: B.add(⟨s′, T ◦ t⟩)
20: Bi ← top(B, b)

21: return Bi

define the neighbourhood of a triple as the set242

of triples with shared head or tail entities (i.e.243

get_neighbours in Alg. 1). During each expan-244

sion step, we only consider neighbours of the last245

triple in the sequence, and avoid selecting previ-246

ously visited triples (i.e. exists in Alg. 1) to further247

reduce the search space.248

While regular beam search can reduce the search249

space, it is prone to producing high-likelihood se-250

quences that differ only slightly from one another251

(Ippolito et al., 2019; Vijayakumar et al., 2018).252

Our algorithm increases the diversity across beams253

to improve the recall for retrieval. In detail, for254

each beam, we sort candidate sequences extended255

from that beam in descending order, and weight256

their scores based on their relative positions. Can-257

didate sequences that are ranked lower, within a258

beam, will receive smaller weights. Consequently,259

the resulting top-b beams at each step are less likely260

to share the same starting sequence.261

The top-b returned sequences are flattened in a 262

breadth-first order. Each triple in the resulting list is 263

then mapped to its source passage. This alignment 264

between triples and passages is described in more 265

detail in Section 3. Let C̃q be the list of unique 266

passages after alignment. The output of our graph 267

expansion is then given by the Reciprocal Rank 268

Fusion (RRF) (Cormack et al., 2009) of C̃q and 269

the initial C′
q list of passages : 270

Cq = RRF
(
C̃q,C

′
q

)
. (3) 271

We refer to this method for retrieving passages as 272

Syncronised Graph Expansion (SyncGE). 273

5 Multi-step Extension 274

We further present an agentic framework that 275

models a human-like information-seeking process 276

through multi-turn interactions with the graph- 277

enhanced retriever. The resulting agent is referred 278

to as GEAR. We focus on: 279

• maintaining a gist memory of proximal knowl- 280

edge obtained throughout the different steps 281

• incorporating a similar synchronisation pro- 282

cess that summarises retrieved passages in 283

proximal triples to be stored in this multi-turn 284

gist memory 285

• determining if additional steps are needed for 286

answering the original input question 287

Within this multi-turn setting, the original input 288

question q is iteratively decomposed into simpler 289

queries: q(1), . . . ,q(n), where q(1) = q and n ∈ 290

N represents the number of the current step. For 291

each query q(n), we use the graph retrieval method 292

introduced in Section 4 in order to retrieve relevant 293

passages Cq(n) . 294

5.1 Gist Memory Constructor 295

To facilitate the multi-step capabilities of our agent, 296

we introduce a gist memory, G(n), which is used for 297

storing knowledge as an array of proximal triples. 298

At the beginning of the first iteration, the gist mem- 299

ory is empty. During the n-th iteration, similar to 300

the knowledge synchronisation module explained 301

in Section 4.1, we employ an LLM to read a collec- 302

tion of retrieved paragraphs Cq(n) and summarise 303

their content with proximal triples: 304
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TG
q(n) =

read
(
Cq(n) ,q

)
, if n = 1

read
(
Cq(n) ,q,G(n−1)

)
, if n ≥ 2

(4)

305

Apart from the first iteration where Eq. 1 and 4306

are identical, the inclusion of the memory in the307

read operation differentiates the construction of308

proximal triples produced at the subsequent steps309

compared to the ones from Eq. 1. G(n) maintains310

the aggregated content of proximal triples s.t.311

G(n) =
[
TG

q(1) ◦ · · · ◦TG
q(n)

]
, (5)312

where ◦ defines the concatenation operation. The313

triple memory serves as a concise representation of314

all the accumulated evidence, up to the n-th step.315

We believe the process introduced by the read316

step along with the information storage paradigm317

served by the gist memory, aligns well with the318

communication between the hippocampus and neo-319

cortex. The combination of the two establishes the320

synergetic behaviour between our graph retriever321

and the LLM that we seek to achieve within GEAR.322

5.2 Reasoning for Termination323

After updating G(n), we assess whether it contains324

sufficient evidence to answer the original question325

through an LLM reasoning step:326

a(n), r(n) = reason(G(n),q), (6)327

where a(n) denotes the query’s answerability given328

the evidence in G(n), and r(n) represents the rele-329

vant reasoning. When the query is deemed answer-330

able, the system concludes its iterative process.331

5.3 Query Re-writing332

The query re-writing process leverages an LLM333

that incorporates three key inputs: the original334

query q, the accumulated memory, and crucially,335

the reasoning output r(n) from the previous step.336

This process can be formally expressed as:337

q(n+1) = rewrite
(
G(n),q, r(n)

)
, (7)338

where q(n+1) represents the updated query, which339

serves as input for the retriever in the next iteration.340

341

5.4 After Termination 342

GEAR aims to return a single ranked list of pas- 343

sages. Given the final gist memory G(n) upon ter- 344

mination, we link each proximal triple in G(n) to a 345

list of passages as follows: 346

Ctj = passageLink (tj , k) , (8) 347

where j ∈
{
1, . . . , |G(n)|

}
. Similar to 348

tripleLink, passageLink is implemented by re- 349

trieving passages with a triple as the query (see 350

Appendix B.2). The final list of passages returned 351

by GEAR is the RRF of the resulting linked pas- 352

sages and passages retrieved across iterations: 353

C
(n)
q = RRF

(
Ct1 , . . . ,Ct|G(n)|

, 354

Cq(1) , . . . ,Cq(n)

)
. (9) 355

All relevant prompts for the read, reason and 356

rewrite steps are provided in Appendix J.2. 357

6 Experimental Setup 358

We evaluate our framework on three open-domain 359

multi-hop QA datasets: MuSiQue (Trivedi et al., 360

2022), HotpotQA (Yang et al., 2018), and 2Wiki- 361

MultiHopQA (2Wiki) (Ho et al., 2020). For 362

MuSiQue and 2Wiki, we use the data provided 363

in the IRCoT paper (Trivedi et al., 2023) which 364

includes the full corpus, while for HotpotQA, we 365

follow the same setting as HippoRAG (Gutierrez 366

et al., 2024) to limit experimental costs. More de- 367

tails are provided in Appendix A. 368

We measure both retrieval and QA performance, 369

with our primary contributions focused on the re- 370

trieval component. For retrieval evaluation, we use 371

Recall@k (R@k) for k ∈ {5, 10, 15}, showing the 372

percentage of questions where the correct entries 373

are found within the top-k retrieved passages. We 374

include an analysis about the selected recall ranks 375

in Appendix C. Following standard practices, QA 376

performance is evaluated with Exact Match (EM) 377

and F1 scores (Trivedi et al., 2023). 378

6.1 Baselines 379

We evaluate GEAR against strong, multi-step base- 380

lines, including IRCoT (Trivedi et al., 2023) and 381

HippoRAG w/ IRCoT (Gutierrez et al., 2024), 382

which, similar to our framework, combines graph 383

retrieval and a multi-step agent. To demonstrate 384

our graph retriever’s (i.e. SyncGE) benefits, we 385

evaluate it against several stand-alone, single-step 386

retrievers: (i) BM25, (ii) Sentence-BERT (SBERT), 387

5



Retriever
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

Single-step
Retrieval

ColBERTv2 39.4 44.8 47.7 59.1 64.3 66.2 79.3 87.1 90.1
HippoRAG 41.0 47.0 51.4 75.1 83.2 86.4 79.8 89.0 92.4
BM25 33.8 38.5 41.3 59.5 62.7 64.1 74.2 83.6 86.3

+ NaiveGE 37.5 45.5 48.4 65.0 70.7 71.8 79.1 89.1 91.9
+ SyncGE 44.7 52.6 57.4 70.5 76.1 79.3 87.4 93.0 94.0

SBERT 31.1 37.9 41.6 41.2 48.1 51.5 72.1 79.3 84.0
+ NaiveGE 32.2 41.4 45.4 45.1 54.0 57.3 76.1 84.7 88.8
+ SyncGE 41.6 51.3 54.2 54.8 64.9 70.7 84.1 89.6 92.8

Hybrid 39.9 46.3 49.1 60.0 65.8 66.6 77.8 85.8 89.7
+ NaiveGE 41.8 49.4 53.0 63.0 70.8 72.6 80.6 89.4 92.7
+ SyncGE 48.7 57.7 61.2 72.6 80.9 82.4 87.4 93.3 95.2

Multi-step
Retrieval

IRCoT (BM25) 46.1 54.9 57.9 67.9 75.5 76.1 87.0 92.6 92.9
IRCoT (ColBERTv2) 47.9 54.3 56.4 60.3 86.6 69.7 86.9 92.5 92.8
HippoRAG w/ IRCoT 48.8 54.5 58.9 82.9 90.6 93.0 90.1 94.7 95.9
GEAR 58.4 67.6 71.5 89.1 95.3 95.9 93.4 96.8 97.3

Table 2: Retrieval performance for single- and multi-step retrievers on MuSiQue, 2Wiki, and HotpotQA. Results are
reported using Recall@k (R@k) metrics for k ∈ {5, 10, 15}.

(iii) a hybrid approach combining BM25 and388

SBERT through RRF and (iv) HippoRAG. Follow-389

ing Gutierrez et al., we refer to the single-step setup390

when multiple LLM iterations are not supported.391

6.2 Implementation Details392

We reproduce HippoRAG and IRCoT using the393

code provided by Gutierrez et al.. To en-394

sure fair comparisons, we employ GPT-4o mini395

(gpt-4o-mini-2024-07-18) for all methods that396

require an LLM as well as their corresponding397

triple extraction. The temperature is set to 0. Our398

triple extraction prompt (in Appendix J.1) is in-399

spired by Gutierrez et al.. We run QA experiments400

using the prompts provided in Appendix J.3.401

In addition to our proposed SyncGE, we consider402

a more naive implementation of GE (i.e. NaiveGE)403

to evaluate the performance when no LLM is in-404

volved and further demonstrate the effectiveness of405

synchronisation. In NaiveGE, we input all triples406

associated with C′
q (see Section 4) for diverse triple407

beam search. Comprehensive implementation de-408

tails are provided in Appendices B–C. Addition-409

ally, Appendix E provides more experiments evalu-410

ating GEAR with varying configurations.411

7 Results412

GEAR demonstrates state-of-the-art perfor-413

mance in multi-step retrieval The multi-step414

results in Table 2 show that our agent-based ap-415

proach to multi-step retrieval is highly effective,416

achieving state-of-the-art results across all datasets.417

While we see significant improvements on satu-418

1 2 3 4
Number of Iterations (n)

40
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55
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65

70

R
@

15

69.5

51.7

61.2

GeAR
Hybrid + SyncGE
HippoRAG w/ IRCoT
IRCoT (BM25)
IRCoT (ColBERTv2)

Figure 2: R@15 over 4 iterations on MuSiQue. Re-
call is computed at each iteration using the cumulative
set of retrieved documents, with prior recall values car-
ried forward for questions that terminated in earlier
iterations. The horizontal line indicates the single-step
performance of Hybrid + SyncGE.

rated datasets like 2Wiki and HotpotQA, GEAR 419

especially excels on MuSiQue, delivering perfor- 420

mance gains of over 10% compared to competitors. 421

SyncGE contributes to state-of-the-art perfor- 422

mance in single-step retrieval As shown in the 423

single-step section of Table 2, our proposed Hy- 424

brid + SyncGE method achieves state-of-the-art 425

single-step retrieval performance on both MuSiQue 426

and HotpotQA datasets. We observe consistent 427

improvements using NaiveGE and SyncGE, out- 428

performing HippoRAG in many setups regardless 429

of the base retriever (i.e. sparse, dense or hybrid). 430

Most notably, Hybrid + SyncGE surpasses Hip- 431

poRAG by up to 9.8% at R@15 on MuSiQue. 432
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Higher recall leads to higher QA performance433

Our analysis shows a positive correlation between434

recall and QA performance, aligning with the re-435

sults of prior works (Gutierrez et al., 2024). As436

shown in Table 3, GEAR achieves the highest EM437

and F1 scores. A closer examination reveals in-438

teresting insights. Taking MuSiQue as an exam-439

ple, GEAR shows a 21% relative improvement in440

R@15 compared to HippoRAG w/ IRCoT, while441

achieving a 37% relative improvement in both EM442

and F1 scores. Similarly to Table 2, SyncGE out-443

performs HippoRAG on MuSiQue and HotpotQA.444

Retriever
MuSiQue 2Wiki HotpotQA

EM F1 EM F1 EM F1

No Passages 2.6 12.5 17.2 27.9 19.5 34.3
Gold Passages 36.6 59.2 54.4 70.3 55.0 75.9

Hybrid + SyncGE 14.0 27.1 38.0 50.2 45.0 63.4
HippoRAG 8.2 18.2 39.8 51.8 40.1 57.6

IRCoT (BM25) 7.6 15.9 28.8 38.5 34.3 50.8
IRCoT
(ColBERTv2) 12.2 24.1 32.4 43.6 45.2 63.7

HippoRAG w/
IRCoT 14.2 25.9 45.6 59.0 49.2 67.9

GEAR 19.0 35.6 47.4 62.3 50.4 69.4

Table 3: End-to-end QA performance using the top-
5 retrieved passages. The best model is in bold and
second best is underlined. The top part shows the lower
and upper bounds of QA performance, while the middle
and bottom sections display scores for single-step and
multi-step retrievers, respectively.

8 Discussion445

8.1 What makes GEAR work?446

NaiveGE vs SyncGE As shown in Table 2, both447

graph expansion variants enhance every base re-448

triever’s performance across all datasets. The su-449

perior performance of SyncGE indicates the effec-450

tiveness of using LLMs for locating initial nodes.451

Notably, it surpasses HippoRAG w/ IRCoT’s on452

MuSiQue without multiple iterations.453

Diverse Triple Beam Search improves perfor-454

mance As shown in Table 4, our diverse triple455

beam search consistently outperforms standard456

beam search across all datasets and recall ranks. By457

incorporating diversity weights into beam search,458

we align a language modelling-oriented solution459

with information retrieval objectives that involve460

satisfying multiple information needs underlying461

multi-hop queries (Drosou and Pitoura, 2010).462

Metric Dataset w/ Diversity w/o Diversity

R@5
MuSiQue 48.7 47.0
2Wiki 72.6 68.2
HotpotQA 87.4 85.0

R@10
MuSiQue 57.7 53.9
2Wiki 80.9 76.0
HotpotQA 93.3 92.2

R@15
MuSiQue 61.2 58.4
2Wiki 82.4 77.4
HotpotQA 95.2 94.3

Table 4: Effects of beam search diversity on Hybrid +
SyncGE across MuSiQue, 2Wiki and HotpotQA.

GEAR mostly nails it the first time While 463

GEAR supports multiple iterations, Figure 2 shows 464

that GEAR achieves strong retrieval performance 465

in a single iteration on MuSiQue. This differenti- 466

ates it from IRCoT-oriented setups that require at 467

least 2 iterations to reach maximum performance. 468

This can be attributed to the fact that GEAR reads 469

(Eq. 4) multi-hop contexts and associates proximal 470

triples in gist memory with passages, establishing 471

synergy between our graph retriever and the LLM. 472

We believe this mirrors the hippocampal process 473

of forming and resolving sparse representations, 474

where gist memories are learned in a one or few- 475

shot manner (Hanslmayr et al., 2016). The 10% 476

performance gap between Hybrid + SyncGE and 477

GEAR at n = 1 indicates that the LLM reading 478

and linking processes effectively approximate the 479

hippocampus’s role within our framework. 480

8.2 How robust is GEAR? 481

GEAR excels at questions of low-to-moderate 482

complexity Figure 3 presents a detailed break- 483

down of retrieval performance across different hop 484

types, including path-finding and path-following 485

questions categorized by Gutierrez et al.. For 2- 486

hop questions, while GEAR and HippoRAG w/ 487

IRCoT achieve similar interquartile ranges, GEAR 488

shows a higher mean recall, indicating superior 489

performance on low-complexity questions. This 490

advantage becomes more pronounced with 3-hop 491

questions, where GEAR’s entire interquartile range 492

exceeds HippoRAG w/ IRCoT’s median perfor- 493

mance across both hop subdivisions. This demon- 494

strates GEAR’s enhanced capability in handling 495

moderately complex questions. In addition to 496

MuSiQue, 2Wiki and HotpotQA, we test GEAR 497

against the hand-picked case study data provided 498

by Gutierrez et al.. These include four path-finding 499

questions across four different domains. Our find- 500
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Figure 3: Analysis of R@15 performance divided by hop types on MuSiQue. The hop categorisation follows the
MuSiQue documentation. Mean recall values are indicated by grey dots for each hop type.

ings (Appendix H.2) indicate that GEAR’s per-501

formance is on par with HippoRAG w/ IRCoT,502

outperforming the competition in three out of the503

four cases, in terms of recall.504

GEAR’s performance remains consistent across505

chunks with varying numbers of triples Using506

MuSiQue, we group questions based on the average507

number of triples (i.e. triple density, ρt) associated508

with their golden passages, and evaluate R@15509

across four ranges: (i) ρt < 9, (ii) 9 ≤ ρt < 11,510

(iii) 11 ≤ ρt < 13 and (iv) 13 ≤ ρt. Across511

all these ranges, the recall performance of both512

SyncGE and GeAR exhibits lower variation, with513

significantly smaller standard deviations of 1.18≪514

2.04 and 2.08 ≪ 5.59, respectively, compared to515

NaiveGE and HippoRAG w/ IRCoT. Further de-516

tails are provided in Appendix G.517

8.3 Is GEAR efficient?518

As observed in Figure 2, GEAR requires fewer iter-519

ations than the competition to reach its maximum520

recall performance. Furthermore, Figure 4 shows521

that GEAR can act as a more efficient alternative522

with respect to LLM token utilisation. We note523

that even for a single iteration, GEAR uses fewer524

tokens than HippoRAG w/ IRCoT. In contrast to525

ours, this trend exacerbates for the competition as526

the number of iterations increases. These findings527

also reiterate the value of SyncGE, which outper-528

forms a significantly more LLM-heavy solution on529

MuSiQue, using almost 2.9 million fewer tokens.530

Even in the case that HippoRAG w/ IRCoT runs531

for a single iteration it would require more than532

0.7 million tokens that Hybrid + SyncGE, with a533

substantially lower R@15 of 51.7.534

1 2 3 4
Number of Iterations (n)

1M

2M

3M

4M

To
ke

ns
U

se
d

(m
ill

io
ns

)
Hybrid + SyncGE Input
Hybrid + SyncGE Output
GeAR Input
GeAR Output
HippoRAG w/ IRCoT Input
HippoRAG w/ IRCoT Output

Figure 4: Progressive accumulation of input and output
LLM tokens across agent iterations on MuSiQue. The
Hybrid + SyncGE method appears only to the left of
Iteration 1 as it is a single-step approach.

9 Conclusion 535

We propose GEAR, a novel framework that incor- 536

porates a graph-based retriever within a multi-step 537

retrieval agent to model the information-seeking 538

process for multi-hop question answering. 539

We showcase the synergy between our proposed 540

graph retriever (i.e. SyncGE) and the LLM within 541

the GEAR framework. SyncGE leverages the LLM 542

to synchronise information from passages with 543

triples and expands the graph by exploring diverse 544

beams of triples that link multi-hop contexts. Our 545

experiments reveal that this strategy improves over 546

more naive implementations, demonstrating the 547

LLM’s capability to guide the exploration of initial 548

nodes for graph expansion. Furthermore, GEAR 549

utilises multi-hop contexts returned by SyncGE and 550

constructs a gist memory which is used for effec- 551

tively summarising information across iterations. 552

GEAR achieves superior performance compared to 553

other multi-step retrieval methods while requiring 554

fewer iterations and LLM tokens. 555
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Limitations556

The scope of this paper is limited to retrieval with557

the aid of a graph of triples that bridge correspond-558

ing passages. While we demonstrated the efficacy559

of our graph expansion approach and GEAR, we560

acknowledge that the implementation of the un-561

derlying graph follows previous study (Gutierrez562

et al., 2024) and is rather simple. Better graph con-563

struction that addresses challenges such as entity564

disambiguation (Dredze et al., 2010) and knowl-565

edge graph completion (Lin et al., 2015) can lead566

to further improvements. Further discussion is pro-567

vided in Appendix D.568

We focused on employing a dense embedding569

model for our diverse triple beam search scoring570

function, though alternative functions could open571

up promising avenues for future research. For ex-572

ample, one can study the feasibility of formulating573

the scoring of neighbours as a natural language574

inference task (Wang et al., 2021), using a model575

that predicts how confidently a sequence of triples576

answers the given query.577

Additionally, our approach relies on LLMs that578

can be better prompted to achieve superior perfor-579

mance on the relevant GEAR tasks. Nonetheless,580

we provide more experiments in Appendix F show-581

casing that GEAR can achieve equivalent perfor-582

mance with open-weight LLMs.583
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MuSiQue 2Wiki HotpotQA

Split Source IRCoT IRCoT HippoRAG

# Hops 2− 4 2 2
# Documents 139, 416 430, 225 9, 221
# Test Queries 500 500 1, 000

# Chunks (C) 148, 793 490, 454 10, 293
# Triples (T) 1, 521, 136 4, 993, 637 122, 492
Av. # T/C 10.2 10.2 11.9

Table 5: Dataset characteristics and preprocessing statis-
tics, where triples are extracted from chunks, and Av.
# T/C represents the average number of triples per
chunk.

in Section 3. Please note for all the evaluated775

datasets, we use their open-domain setting and an-776

swerable subset if applicable.777

Reasoning behind dataset split choices For778

MuSiQue and 2Wiki, we use the data provided779

by Trivedi et al., including the full corpus and sub-780

sampled test cases for each dataset. To limit the781

experimental cost for HotpotQA, we follow the set-782

ting by Gutierrez et al. where both the corpus and783

test split are smaller than IRCoT’s counterpart.784

B More Implementation Details785

B.1 Baselines Details786

We implement all proposed approaches using787

Elasticsearch1. For SBERT, we employ the788

all-mpnet-base-v2 model with approximate k-789

nearest neighbours and cosine similarity for vector790

comparisons. In IRCoT experiments, we evalu-791

ate both ColBERTv2 and BM25 retrievers — Col-792

BERTv2 for alignment with HippoRAG’s base-793

lines, and BM25 for consistency with the original794

IRCoT implementation.795

For all multi-step approaches, including ours, we796

follow Gutierrez et al. with respect to the maximum797

number of retrieval iterations, which vary based on798

the hop requirements of each dataset. Thus, we799

use a maximum of 4 iterations for MuSiQue and 2800

iterations for HotpotQA and 2Wiki.801

B.2 GEAR Details802

GEAR involves several hyperparameters, such as803

the beam size inside graph expansion. We ran-804

domly sampled 500 questions from the MuSiQue805

development set, which we ensure not to overlap806

with the relevant test set. We select our hyperpa-807

rameters based on this sample without performing808

1https://www.elastic.co

a grid search across all possible configurations. Our 809

goal is to demonstrate that our method is able to 810

achieve state-of-the-art results without extensive 811

parameter tuning. 812

The initial retrieval phase utilises the chunks 813

index C as the information source, while leaving 814

the triple index T unused. Our graph expansion 815

component implements beam search with length 816

2, width 10, and 100 neighbours per beam. The 817

hyperparameter γ employed in diverse triple beam 818

search is set to twice the beam search width. For the 819

scoring function, we use the cosine similarity score 820

and the SBERT embedding model. In Appendix E, 821

we test the performance of GEAR across different 822

beam search length values and maximum numbers 823

of agent iterations. 824

For the single-step configurations (i.e. any base 825

retriever with NaiveGE or SyncGE), we set the base 826

retriever’s maximum number of returned chunks 827

to match our evaluation recall threshold. With the 828

multi-step setup, we maintain a consistent maxi- 829

mum of 10 retrieved chunks before knowledge syn- 830

chronisation for the purpose of matching IRCoT’s 831

implementation. While this 10-chunk limitation 832

applies to individual retrieval rounds, please note 833

that the total number of accessible chunks can ex- 834

ceed this threshold through graph expansion and 835

multiple GEAR iterations. 836

passageLink Details We use passageLink to 837

link each triple tj ∈ G(n) to its corresponding pas- 838

sages in C by running a retrieval step as follows: 839

hkbase (q,C ∪T) = RRF
(
hkbase (tj ,C) , 840

hkbase (tj ,T)
)
, (10) 841

where j ∈
{
1, . . . , |G(n)|

}
and hkbase (tj ,C ∪T) 842

is the RRF of passages returned by both T and C 843

when queried with tj . 844

C Ensuring Fair Comparisons 845

Although related studies often use common 846

datasets, their experimental settings are frequently 847

inconsistent. For instance, Gutierrez et al. sub- 848

sampled documents from the full corpus, using a 849

different set from the one in the original IRCoT 850

paper. In our paper, we reproduced HippoRAG 851

on MuSiQue and 2Wiki, using the same dataset 852

settings (i.e. full corpus and identical evaluation 853

split) as in IRCoT. On HotpotQA, we follow the 854

same setting as HippoRAG to limit the experimen- 855

tal cost. 856
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To ensure fairness in our comparisons, we ran857

all baselines using a consistent experimental setup.858

Additionally, for areas of potential discrepancy, and859

where possible, we report the retrieval performance860

of baselines in their original configuration to con-861

firm that the used experimental setup does not ad-862

versely affect performance. Below, we address863

any potential discrepancies in the following areas:864

(i) triple extraction methodology, (ii) retrieval met-865

rics, and (iii) LLMs.866

Choice of triple extraction methodology Hip-867

poRAG employs a sequential approach to triple ex-868

traction: it first identifies named entities from a text869

chunk, and then uses these entities to guide triple870

extraction in a second step. In contrast, our method871

extracts both entities and triples simultaneously.872

Table 6 shows that both approaches achieve com-873

parable retrieval performance across all datasets,874

with each method excelling in different scenarios.875

These results validate that joint entity and triple ex-876

traction can match the effectiveness of sequential877

extraction while reducing the number of required878

processing steps.879

Reasoning behind retrieval metrics Our evalu-880

ation employs recall at ranks 5, 10, and 15 (R@5,881

R@10, R@15). While previous works, such as882

HippoRAG, evaluate R@2, we choose higher rank883

thresholds since many questions in MuSiQue re-884

quire information from more than two documents.885

Additionally, given modern LLMs’ expanding con-886

text length capabilities (Ding et al., 2024), exam-887

ining recall beyond R@5 (HippoRAG’s highest888

evaluated rank) provides valuable insights. Follow-889

ing IRCoT’s approach, we measure up to R@15890

and include R@10 as an intermediate point, offer-891

ing a comprehensive view of model performance892

across retrieval depths.893

Choice of LLM Gutierrez et al. use894

gpt-3.5-turbo-1106 for their experiments,895

whereas in this paper we reproduce it with GPT-4o896

mini. GPT-4o mini was selected as a more897

capable alternative to GPT-3.5 Turbo (please898

refer to: https://openai.com/index/gpt-4899

-mini-advancing-cost-efficient-intelli-900

gence). In order to alleviate any concerns901

regarding discrepancies with respect to the902

selected LLM, we also run experiments using903

gpt-3.5-turbo-1106. Table 7 shows the retrieval904

results of our proposed methods against Hip-905

poRAG w/ IRCoT. We observe a similar trend to906

that in Table 2—GEAR surpasses the performance 907

of HippoRAG w/ IRCoT. 908

D Why this graph construction method? 909

We adopt an LLM-based triple extraction methodol- 910

ogy, following the approach outlined in HippoRAG 911

(Gutierrez et al., 2024). In their study, they evalu- 912

ated the performance of various LLMs in OpenIE 913

and compared these results with those of the end- 914

to-end REBEL model (Huguet Cabot and Navigli, 915

2021). They reported substantial improvements 916

in triple extraction when using LLMs in domains 917

that deviate from conventional ClosedIE or OpenIE 918

settings, which are respectively overly constrained 919

and unconstrained in terms of named entities and 920

pre-defined relations. Similar concerns about the 921

generalisability and scalability of conventional KG 922

construction approaches in open-domain scenarios 923

are recognised by Wang et al., who sought to con- 924

struct their graphs without relying on pre-existing 925

ontologies, or KGs for named entity disambigua- 926

tion. 927

These findings resonate with the growing in- 928

terest in recent literature towards applying such 929

methodologies for automatic, schema-free knowl- 930

edge graph construction (Li et al., 2024; Fang et al., 931

2024; Gutierrez et al., 2024; Park et al., 2024). As 932

our primary focus is retrieval rather than graph 933

construction, we adopt the triple extraction method- 934

ology from HippoRAG and refer readers to their 935

paper for a more detailed analysis. 936

Our work presents a novel framework for advanc- 937

ing the performance of RAG systems in the context 938

of texts associated with schema-free triples. We 939

follow HippoRAG’s graph construction approach, 940

as exploring graph construction methods falls out- 941

side the scope of this paper. However, this does 942

not imply that our proposed method relies on this 943

specific approach, and we believe that further im- 944

provements in graph construction could lead to 945

additional gains. 946

E GEAR across Different Configurations 947

Table 8 illustrates the performance of GEAR across 948

varying hyperparameter configurations, including 949

beam search length—applied during graph expan- 950

sion—and the maximum number of agent iterations. 951

As the maximum number of iterations increases, 952

GEAR achieves better retrieval performance. How- 953

ever, consistently with the trends shown in Figure 2, 954

this improvement levels off when setting the max- 955
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MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

HippoRAG original prompt 41.9 46.9 51.1 75.4 83.5 86.9 79.7 88.4 91.4
our prompt 41.0 47.0 51.4 75.1 83.2 86.4 79.8 89.0 92.4

HippoRAG
w/ IRCoT

original prompt 49.9 56.4 59.3 81.5 90.2 92.3 90.2 94.7 95.8
our prompt 48.8 54.5 58.9 82.9 90.6 93.0 90.1 94.7 95.9

Table 6: Retrieval performance comparison between HippoRAG’s sequential triple extraction method and our joint
extraction approach across three datasets.

LLM Retriever MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

GPT-3.5 turbo
Hybrid + SyncGE 48.3 55.0 58.1 70.7 78.4 79.7 86.1 92.0 94.3
HippoRAG w/ IRCoT 45.5 51.0 54.8 80.0 87.9 89.8 87.4 92.6 94.6
GEAR 52.9 62.1 64.4 84.2 90.0 90.3 91.0 95.6 96.1

Table 7: Retrieval performance for our proposed retrievers and HippoRAG w/ IRCoT across various datasets. We
use gpt-3.5-turbo-1106 with a temperature of 0 as the underlying LLM, to replicate HippoRAG’s experimental
setup.

imum number of iterations at n ≥ 3. In contrast,956

increasing beam search length above 2 slightly re-957

duces performance. Despite this, GEAR maintains958

highly competitive results and significantly outper-959

forms alternative methods shown in Table 2.960

F Compatibility with Open-weight961

Models962

GEAR Results As shown in Table 9, we evaluate963

GEAR using popular 7-8B parameter open-weight964

models, comparing them against a closed-source al-965

ternative. On HotpotQA, Llama-3.1-7B surpasses966

the closed-source alternative, achieving higher re-967

call rates at R@10 and R@15. For MuSiQue and968

2Wiki, while the closed-source model maintains a969

slight superior edge in performance, the margin is970

narrow. Importantly, all tested open-weight models971

consistently outperform the previous state-of-the-972

art, HippoRAG w/IRCoT. This decouples GEAR973

from the need to use closed-source models, sug-974

gesting that state-of-the-art multi-step retrieval can975

be achieved using more accessible models.976

Diverse Beam Search Results Expanding upon977

Table 4, Table 10 demonstrates that diverse beam978

search consistently improves retrieval performance979

across both closed-source and open-weight models980

when using our proposed Hybrid + SyncGE setup.981

This further confirms the broader applicability of982

this approach.983

G Robustness Studies 984

We assess the robustness of our framework in re- 985

trieving passages when triple extraction produces 986

either limited or excessive triple content. Using 987

the MuSiQue dataset, we group questions based 988

on the average number of triples (i.e. triple den- 989

sity, ρt) associated with their golden passages and 990

evaluate R@15 performance across these ranges. 991

Table 11 presents the results for both the single- 992

and multi-step retrieval settings. 993

The results showcase that SyncGE and GEAR 994

are more robust than the competition at retrieving 995

suitable passages. NaiveGE’s performance tends 996

to decline when the average number of triples as- 997

sociated with the gold passages either falls below 998

or exceeds a certain threshold (for MuSiQue, the 999

average number of triples extracted from the gold 1000

passages is 11.71). A similar trend is observed 1001

for HippoRAG w/ IRCoT in the case of golden 1002

passages associated with more than 11 triples. We 1003

believe that this trend can be partially attributed to 1004

the Personalised PageRank machinery that makes 1005

HippoRAG agnostic to the semantic relationships 1006

of the extracted triples. In contrast, SyncGE and 1007

GEAR are able to maintain consistent performance 1008

across both dense and sparse triple extraction out- 1009

comes. 1010
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R@k across Different Maximum Numbers of Iterations

n = 1 n = 2 n = 3 n = 4

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

Beam Search
Length

b = 2 58.1 66.0 69.5 59.2 68.9 71.3 57.9 68.0 71.5 58.4 67.6 71.5
b = 3 55.9 64.6 67.9 57.2 66.6 70.2 58.1 67.8 71.0 56.7 66.1 70.4
b = 4 54.9 62.9 67.3 56.6 66.3 69.3 58.1 67.9 71.0 56.1 66.1 69.9

Table 8: GEAR’s retrieval performance across different hyper-parameters in terms of maximum number of agent
iterations (n) and graph expansion’s beam search length (b). Results are reported using Recall@k (R@k) metrics
for k ∈ {5, 10, 15} for the MuSiQue dataset.

LLM
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

Closed-source GPT-4o mini 58.4 67.6 71.5 89.1 95.3 95.9 93.4 96.8 97.3

Open-weight Llama-3.1-8B 52.4 62.3 66.7 81.6 91.0 93.7 92.2 97.4 98.1
Qwen-2.5-8B 53.7 63.7 66.7 85.9 91.6 93.0 91.7 96.2 96.9

Table 9: Retrieval performance of GEAR across different closed-source and open-weight models on MuSiQue,
2Wiki and HotpotQA. Results are reported using Recall@k (R@k) metrics for k ∈ {5, 10, 15}, showing the
percentage of questions for which the correct entries are found within the top-k retrieved passages. The included
open-weight models are Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct, and the closed-source model is GPT-4o
mini.

MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

GPT-4o mini w/ diversity 48.7 57.7 61.2 72.6 80.9 82.4 87.4 93.3 95.2
w/o diversity 47.0 53.9 58.4 68.2 76.0 77.4 85.0 92.2 94.3

Llama-3.1-8B-Instruct w/ diversity 46.2 54.3 57.4 69.1 78.1 81.6 87.3 92.8 95.1
w/o diversity 44.9 52.7 55.0 66.9 75.9 78.2 85.0 91.7 94.4

Table 10: Retrieval performance of the Hybrid + SyncGE method with different LLMs for the read step (see
Eq. 1) w/ and w/o diversity for triple beam search. Results are reported using Recall@k (R@k) metrics for
k ∈ {5, 10, 15}, showing the percentage of questions for which the correct entries are found within the top-k
retrieved passages.

Retriever ρt < 9 9 ≤ ρt < 11 11 ≤ ρt < 13 13 ≤ ρt

Single-step Retrieval Hybrid + NaiveGE 50.6 54.6 54.1 50.0
Hybrid + SyncGE 62.8 (↑ 12.2%) 61.2 (↑ 6.6%) 59.8 (↑ 5.7%) 60.1 (↑ 10.1%)

Multi-step Retrieval HippoRAG w/ IRCoT 64.4 65.5 55.0 52.8
GEAR 73.6 (↑ 9.2%) 73.7 (↑ 8.2%) 69.3 (↑ 14.3%) 69.7 (↑ 16.9%)

Table 11: Retrieval performance for single- and multi-step retrievers across different triple density measurements in
MuSiQue. Results are reported using R@15. Triple densities (ρt) are calculated as the average number of triples
associated with the gold documents for the questions within the MuSiQue’s test set.
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Query GEAR HippoRAG w/ IRCoT

What team is the player who
led the league in sacks in
2017 a member of?

("Chandler Jones", "team", "Arizona Cardinals")
("Chandler Jones", "led the league in sacks in", "2017")

To answer the question about
the player who led the league in
sacks in 2017, I need to identify
the player and their team from
external sources, as the
provided documents do not
contain that specific
information

Who is the CEO of
FleetBoston Financial’s
purchaser?

("FleetBoston Financial", "purchaser", "Bank of America")
("Bank of America", "CEO", "Brian Moynihan")

The purchaser of FleetBoston
Financial is Bank of America.
To find the CEO of Bank of
America, I need to look for
information about the current
leadership of the bank. Next, I
will check for the current CEO
of Bank of America to answer
the question accurately.

What UK label was
purchased by the company
that, along with the
distributor of The Cube,
and ABC, is the other
major New York-based
broadcaster?

("CBS", "purchased", "Oriole Records")
("CBS", "is a major broadcaster based in", "New York")
("NBC", "is a major broadcaster based in", "New York")
("The Cube", "was distributed by", "NBC")

The original network of
Undercovers is NBC, which is
one of the major broadcasters
based in New York. Now, I
need to find out which UK label
was bought by NBC ...

What was the 2018
population of the Italian
city that’s underwater?

("Venice", "population in 2018", "260,897")

The Italian city that is
underwater is Krag, British
Columbia, which is a ghost
town...

Table 12: Comparison of MuSiQue queries where GEAR achieves 100% recall at R@15 in a single iteration, while
HippoRAG w/ IRCoT shows lower performance despite using all four available iterations. Cell colors indicate
recall performance: green for 100% recall, red for 0% recall, and yellow for any intermediate value. Cell values
in GEAR represent the proximal triples stored in the Gist Triple Memory. Cell values in HippoRAG w/ IRCoT
represent IRCoT’s thought process.
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H Qualitative Analysis1011

H.1 Positive Instances in MuSiQue1012

Table 12 showcases some query instances where1013

GEAR achieves perfect recall in a single iteration,1014

while HippoRAG w/ IRCoT achieves lower re-1015

call and consumes all available iterations. The1016

presented examples illustrate how GEAR’s Gist1017

Memory G(n) precisely captures the essential infor-1018

mation needed to answer MuSiQue’s queries, main-1019

taining the appropriate level of granularity with-1020

out including superfluous details. In contrast, Hip-1021

poRAG w/ IRCoT struggles to retrieve crucial in-1022

formation—whether due to limitations in its triple1023

extraction step or retriever functionality—such as1024

the exact population of Venice, which is necessary1025

for accurate responses. Furthermore, the verbose1026

nature of IRCoT’s thought process component con-1027

trasts with GEAR’s streamlined approach. The1028

lack of such verbose component in our approach1029

contributes to the fact that GEAR requires fewer1030

LLM tokens than the competition, as explained in1031

subsection 8.3.1032

H.2 Beyond MuSiQuE, 2Wiki and HotpotQA1033

We evaluate our framework on three open-domain1034

multi-hop QA datasets: MuSiQue (Trivedi et al.,1035

2022), HotpotQA (Yang et al., 2018), and 2Wiki-1036

MultiHopQA (2Wiki) (Ho et al., 2020). Our1037

dataset choices closely align with the multi-hop1038

QA tasks, and are consistent with related studies1039

in this space (Li et al., 2024; Fang et al., 2024;1040

Gutierrez et al., 2024; Park et al., 2024).1041

In order to explore the generalisability of GEAR1042

in additional scenarios, we use the hand-picked1043

case study data2 provided by Gutierrez et al.. These1044

include four path-finding questions across four dif-1045

ferent domains: books, movies, universities and1046

biomedicine. We test GEAR against HippoRAG1047

w/ IRCoT on these cases. Table 13 displays the1048

results. In three out of the four cases, GEAR out-1049

performs the competition in recall, successfully1050

identifying more relevant passages, and misses the1051

relevant passages in only one case.1052

I Increasing the Number of Agent1053

Iterations1054

Figure 5 expands upon the analysis shown in Figure1055

2 by evaluating retrieval performance over 20 itera-1056

tions, rather than the initial 4 iterations. The results1057

2https://github.com/OSU-NLP-Group/HippoRAG/
tree/main/data

demonstrate a consistent pattern across all methods: 1058

retrieval performance stabilises after approximately 1059

4 iterations, with no substantial improvements or 1060

degradation in subsequent iterations. While some 1061

minor fluctuations occur beyond this point, they 1062

are negligible. 1063

This performance plateau can be attributed to 1064

two key factors. First, the query re-writing mech- 1065

anisms in all investigated approaches struggle to 1066

generate effective subsequent queries. Second, our 1067

analysis has identified several cases of unanswer- 1068

able queries within MuSiQue’s answerable subset. 1069

A representative example is provided in Table 14. 1070
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Query
GEAR HippoRAG w/ IRCoT

Passage Titles R@5 R@10 R@15 Passage Titles R@5 R@10 R@15

Which book
was published
in 2012 by an
English author
who is a
Whitbread
Award winner?

P1 A Stitch in Time
P2 Stevie Parle
P3 The Red House
P4 Whitbread Awards
. . .
P10 Mark Haddon

50 100 100

P1 Oranges Are Not
. . .
P2 Mark Haddon
P3 William Trevor . . .
P4 The Curious . . .
. . .
P11 The Red House

50 50 100

Which war film
based on a non
fiction book
was directed by
someone
famous in the
science fiction
and crime
genres?

P1 And the Band . . .
P2 Band of Brothers
P3 Aircraft in Fiction
P4 Unchained
. . .

0 0 0

P1 Shangai Patrol
P2 Black Hawk Down
P3 Ridley Scott
P4 Outline of science
. . .

100 100 100

Which Stanford
professor works
on the
neuroscience of
Alzheimer’s?

P1 Thomas C. Sudhof
P2 Thomas C. Sudhof
P3 Judes Poirier
P4 Thomas C. Sudhof
. . .
P10 Robert Malenka
P13 Robert Malenka

50 75 100

P1 Thomas C. Sudhof
P2 Thomas C. Sudhof
P3 Manolis Kellis
P4 Giovanna Malluci
P5 Dena Dubal

50 50 50

What drug is
used to treat
chronic
lymphocytic
leukemia by
interacting with
cytosolic p53?

P1 P53 Regulation
P2 Venetoclax
P3 Chlorambucil
P4 Chronic Lympho-
cytic Leukemia

50 50 50

P1 P53
P2 Cirmtuzumab
P3 MDC1 Function
P4 Chronic Lympho-
cytic Leukemia

0 0 0

Table 13: Retrieval performance comparison between GEAR and HippoRAG w/ IRCoT. Both models are configured
with a maximum number of 4 iterations. The example questions are taken from Gutierrez et al. and showcase
multi-hop path-finding queries across different domains: books, movies, universities and biomedicine. Cell colours
indicate recall performance: green for 100% recall, red for 0% recall, and yellow for any intermediate value.
Retrieved passage titles are listed in the ’Passage Titles’ columns, with bold text indicating gold passages and Pn

indicating their position in the retrieved list.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Iterations (n)
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R
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GeAR
Hybrid + SyncGE
HippoRAG w/ IRCoT
IRCoT (BM25)
IRCoT (ColBERTv2)

Figure 5: Evolution of R@15 over 20 iterations on MuSiQue. Recall is computed at each iteration using the
cumulative set of retrieved documents, with prior recall values carried forward for questions that terminated in
earlier iterations. The horizontal line indicates the single-step performance of Hybrid + SyncGE.
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Question Who did the producer of Big Jim McLain play in True Grit?

Gold Passages

1. Big Jim McLain: Big Jim McLain is a 1952 political thriller film starring John Wayne and
James Arness as HUAC investigators.

2. True Grit is a 1969 American western film. It is the first film adaptation of Charles Portis’
1968 novel of the same name. The screenplay was written by Marguerite Roberts. The film was
directed by Henry Hathaway and starred Kim Darby as Mattie Ross and John Wayne as U.S.
Marshal Rooster Cogburn. Wayne won his only Academy Award for his performance in this film
and reprised his role for the 1975 sequel Rooster Cogburn.

Comment No information about who was the producer of Big Jim McLain is provided in the gold passages

Table 14: Example of a query from MuSiQue that is not answerable solely based on the provided gold passages.
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J Prompts 1071

J.1 Offline Prompts 1072

Reader

# Instruction

Your task is to construct an RDF (Resource Description Framework) graph from the given passages and named
entity lists.
Respond with a JSON list of triples, with each triple representing a relationship in the RDF graph.
Pay attention to the following requirements:
- Each triple should contain at least one, but preferably two, of the named entities in the list for each passage.
- Clearly resolve pronouns to their specific names to maintain clarity.

Convert the paragraph into a JSON dict containing a named entity list and a triple list.

# Demonstration #1

Paragraph:
“‘
Magic Johnson

After winning a national championship with Michigan State in 1979, Johnson was selected first overall in the
1979 NBA draft by the Lakers, leading the team to five NBA championships during their "Showtime" era.
“‘
{{"named_entities": ["Michigan State", "national championship", "1979", "Magic Johnson",
"National Basketball Association", "Los Angeles Lakers", "NBA Championship"]}}
{{
"triples": [
("Magic Johnson", "member of sports team", "Michigan State"),
("Michigan State", "award", "national championship"),
("Michigan State", "award date", "1979"),
("Magic Johnson", "draft pick number", "1"),
("Magic Johnson", "drafted in", "1979"),
("Magic Johnson", "drafted by", "Los Angeles Lakers"),
("Magic Johnson", "member of sports team", "Los Angeles Lakers"),
("Magic Johnson", "league", "National Basketball Association"),
("Los Angeles Lakers", "league", "National Basketball Association"),
("Los Angeles Lakers", "award received", "NBA Championship"),
]
}}
“‘

# Demonstration #2

Paragraph:
“‘
Elden Ring

Elden Ring is a 2022 action role-playing game developed by FromSoftware. It was directed by Hidetaka Miyazaki with
worldbuilding provided by American fantasy writer George R. R. Martin.
“‘
{{"named_entities": ["Elden Ring", "2022", "Role-playing video game", "FromSoftware", "Hidetaka Miyazaki", "United
States of America", "fantasy", "George R. R. Martin"]}}
{{
"triples": [
("Elden Ring", "publication", "2022"),
("Elden Ring", "genre", "action role-playing game"),
("Elden Ring", "publisher", "FromSoftware"),
("Elden Ring", "director", "Hidetaka Miyazaki"),
("Elden Ring", "screenwriter", "George R. R. Martin"),
("George R. R. Martin", "country of citizenship", "United States of America"),
("George R. R. Martin", "genre", "fantasy"),
]
}}

# Input
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Convert the paragraph into a JSON dict, it has a named entity list and a triple list.

Paragraph:
“‘
{wiki_title}

{passage}

1074

J.2 Online Retrieval Prompts1075

The blue-highlighted portions of the Reader prompt below indicate additional text that is only required1076

when the Gist Memory G(n) is active. When Gist Memory is inactive, these blue sections should be1077

omitted, and the {triples} parameter should be left empty.1078

Reader with and without Gist Memory

Your task is to find facts that help answer an input question.

You should present these facts as knowlege triples, which are structured as ("subject", "predicate", "object").
Example:
Question: When was Neville A. Stanton’s employer founded?
Facts: ("Neville A. Stanton", "employer", "University of Southampton"), ("University of Southampton", "founded in",
"1862")

Now you are given some documents:
{docs}

Based on these documents and some preliminary facts provided below,
find additional supporting fact(s) that may help answer the following question.

Note: if the information you are given is insufficient, output only the relevant facts you can find.

Question: {query}
Facts: {triples}

1079

Reasoning for Termination

# Task Description:
You are given an input question and a set of known facts:
Question: {query}
Facts: {triples}

Your reply must follow the required format:
1. If the provided facts contain the answer to the question, your should reply as follows:
Answerable: Yes
Answer: ...

2. If not, you should explain why and reply as follows:
Answerable: No
Why: ...

# Your reply:

1080

Query Re-writing

# Task Description:
You will be presented with an input question and a set of known facts.
These facts might be insufficient for answering the question for some reason.
Your task is to analyze the question given the provided facts and determine what else information is needed for the next step.

# Example:
1081
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Question: What region of the state where Guy Shepherdson was born, contains SMA Negeri 68?
Facts: ("Guy Shepherdson", "born in", "Jakarta")
Reason: The provided facts only indicate that Guy Shepherdson was born in Jakarta, but they do not provide any information
about the region of the state that contains SMA Negeri 68.
Next Question: What region of Jakarta contains SMA Negeri 68?

# Your Task:
Question: {query}
Facts: {triples}
Reason: {reason}

Next Question:
1082

J.3 Online Question Answering Prompts 1083

The following prompt with retrieved passages combines the QA generation prompts from Gutierrez et al. 1084

and Wang et al.. For the variation without retrieved passages, we omit the preamble and only include the 1085

instruction, highlighted in purple . 1086

Retrieved Passages with In-context Example

As an advanced reading comprehension assistant, your task is to analyze text passages and corresponding questions
meticulously, with the aim of providing the correct answer.
==================
For example:
==================
Wikipedia Title: Edward L. Cahn
Edward L. Cahn (February 12, 1899 – August 25, 1963) was an American film director.

Wikipedia Title: Laughter in Hell
Laughter in Hell is a 1933 American Pre-Code drama film directed by Edward L. Cahn and starring Pat O’Brien. The film’s
title was typical of the sensationalistic titles of many Pre-Code films. Adapted from the 1932 novel of the same name
buy Jim Tully, the film was inspired in part by "I Am a Fugitive from a Chain Gang" and was part of a series of films
depicting men in chain gangs following the success of that film. O’Brien plays a railroad engineer who kills his wife and
her lover in a jealous rage and is sent to prison. The movie received a mixed review in "The New York Times" upon its
release. Although long considered lost, the film was recently preserved and was screened at the American Cinematheque in
Hollywood, CA in October 2012. The dead man’s brother ends up being the warden of the prison and subjects O’Brien’s
character to significant abuse. O’Brien and several other characters revolt, killing the warden and escaping from the prison.
The film drew controversy for its lynching scene where several black men were hanged. Contrary to reports, only blacks were
hung in this scene, though the actual executions occurred off-camera (we see instead reaction shots of the guards and other
prisoners). The "New Age" (an African American weekly newspaper) film critic praised the scene for being courageous
enough to depict the atrocities that were occurring in some southern states.

Wikipedia Title: Theodred II (Bishop of Elmham)
Theodred II was a medieval Bishop of Elmham. The date of Theodred’s consecration unknown, but the date of his death was
sometime between 995 and 997.

Wikipedia Title: Etan Boritzer
Etan Boritzer( born 1950) is an American writer of children ’s literature who is best known for his book" What is God?"
first published in 1989. His best selling" What is?" illustrated children’s book series on character education and difficult
subjects for children is a popular teaching guide for parents, teachers and child- life professionals. Boritzer gained national
critical acclaim after" What is God?" was published in 1989 although the book has caused controversy from religious
fundamentalists for its universalist views. The other current books in the" What is?" series include What is Love?, What is
Death?, What is Beautiful?, What is Funny?, What is Right?, What is Peace?, What is Money?, What is Dreaming?, What
is a Friend?, What is True?, What is a Family?, What is a Feeling?" The series is now also translated into 15 languages.
Boritzer was first published in 1963 at the age of 13 when he wrote an essay in his English class at Wade Junior High School
in the Bronx, New York on the assassination of John F. Kennedy. His essay was included in a special anthology by New York
City public school children compiled and published by the New York City Department of Education.

Wikipedia Title: Peter Levin
Peter Levin is an American director of film, television and theatre.

Question: When did the director of film Laughter In Hell die?
Answer: August 25, 1963.
==================
Given the following text passages and questions, please present a concise, definitive answer, devoid of additional elaborations,
and of maximum length of 6 words.
==================
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Wikipedia Title : {title} {text} for each retrieved passage ...
Question: {question}

Answer:
1088

No Retrieved Passages

Given the following question, please present a concise, definitive answer, devoid of additional elaborations, and of maximum
length of 6 words.

Question: {question}

Answer:
1089
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