
Improving LLM Group Fairness on Tabular Data via
In-Context Learning

Valeriia Cherepanova
Amazon AWS AI

Chia-Jung Lee
Amazon AWS AI

Nil-Jana Akpinar
Amazon AWS AI

Riccardo Fogliato
Amazon AWS AI

Martin Andres Bertran
Amazon AWS AI

Michael Kearns
University of Pennsylvania

Amazon AWS AI

James Zou
Stanford University
Amazon AWS AI

Abstract

Large language models (LLMs) have been shown to be effective on tabular predic-
tion tasks in the low-data regime, leveraging their internal knowledge and ability
to learn from instructions and examples. However, LLMs can fail to generate
predictions that satisfy group fairness, that is, produce equitable outcomes across
groups. Critically, conventional debiasing approaches for natural language tasks
do not directly translate to mitigating group unfairness in tabular settings. In this
work, we systematically investigate four empirical approaches to improve group
fairness of LLM predictions on tabular datasets, including fair prompt optimization,
soft prompt tuning, strategic selection of few-shot examples, and self-refining
predictions via chain-of-thought reasoning. Through experiments on four tabular
datasets using both open-source and proprietary LLMs, we show the effectiveness
of these methods in enhancing demographic parity while maintaining high overall
performance. Our analysis provides actionable insights for practitioners in selecting
the most suitable approach based on their specific requirements and constraints.

1 Introduction

In recent years, the scope of large language models (LLMs) has broadened significantly beyond
traditional natural language processing tasks, with recent research demonstrating their effectiveness
in tackling challenges on tabular data, including predictive tasks [1, 2]. Typically, structured data
is converted into textual format and provided to the language model along with a concise task
description and key features. Notably, it has been shown that language models are particularly
beneficial in scenarios with limited training data, as they can utilize internal knowledge about world
from pre-training combined with textual instructions and few-shot examples to make predictions [3].

Although considerable research has been devoted to exploring and addressing issues of stereotypical
bias and fairness in language models applied to natural language tasks, tabular datasets present distinct
challenges, particularly in group fairness. It is important to differentiate group fairness in the context
of tabular data from conventional notions of fairness in NLP tasks: group fairness in tabular problems
hinges on class labels and the representation of various demographic groups within these labels,
while stereotypical fairness in NLP has primarily focused on bias in model representations. Notably,
achieving fairness in the typical NLP sense does not automatically ensure group-fair predictions in
tabular tasks due to potential disparities in class distributions.

Recent studies have started exploring how language models handle group fairness when applied to
tabular data, revealing noticeable fairness discrepancies among different demographic groups. [4]
and [5] evaluate a few baseline methods for improving group fairness in tabular tasks, including
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Overview of in-context fairness methods

You must follow the instructions to
predict if income of an individual
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...
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exceeds $50K/yr. Generally, individuals
who earn more than $50K/yr tend to
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Bachelors or...

Tuning soft prompt with
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Figure 1: Overview of fairness methods explored in this work. We focus on in-context learning
approaches, including fair prompt optimization and soft prompt tuning, fair few-shot examples, and
self-refinement. For each method, we highlight the specific prompt components optimized in these
approaches using different colors, while components of the prompts highlighted in gray do not change
across strategies.

resampled fine-tuning, and few-shot learning with label flipping and find these methods to have
limited effectiveness. A recent survey paper [6] recognizes the challenge of mitigating inherent biases
in large language models through conventional fine-tuning and few-shot learning and highlights the
need for more effective strategies to address group unfairness in tabular tasks.

In this work we examine four approaches for empirically improving demographic parity of LLMs
when applied to making predictions on tabular datasets. These approaches include in-context methods
such as prompt optimization, soft prompt tuning, few-shot in-context learning, and self-refining
predictions to promote fairness. We empirically evaluate these methods using both open-source and
proprietary models across four tabular datasets, demonstrating their effectiveness. Based on our
analysis, we provide actionable recommendations to practitioners on the most suitable method for
different scenarios, and discuss how these approaches may be adapted to other notions of fairness.

2 Related Work

2.1 Large Language Models on Tabular Data

A growing body of work has applied deep learning algorithms to tabular data [2, 7, 8, 9, 10].
Relevant to our setting, some of these studies have employed LLMs to analyze tabular data that is
serialized into formatted text. They show that descriptive feature names, well-defined instructions,
in-context examples, and chain-of-thought reasoning enhances LLM performance [11, 12, 13]. Some
specifically focus on classification tasks [1, 14, 15, 6, 16], which is also the focus of our work. The
prior knowledge of LLMs allows them to perform better than traditional algorithms such as XGBoost
in low-data regimes [3, 1]. However, LLM predictions can reflect inherent biases, affecting the
fairness of their outcomes [17, 18]. [18] is closely related to our work: they analyze the accuracy
and fairness of LLM predictions, concluding that traditional ML models exhibit fewer disparities.
Although in-context learning and finetuning do not fully close the fairness gap, label-flipping in
in-context examples significantly reduces biases, albeit at the cost of prediction performance. Our
work contributes to this literature by introducing four in-context learning approaches for mitigating
the demographic parity gap in tabular data predictions, demonstrating their effectiveness across
widely-used fairness datasets.
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2.2 Bias and Stereotypes in LLMs

Despite their promising capabilities, language models also exhibit biases and stereotypes [19, 20, 21].
These biases mostly originate from the training data, which often contain historical and societal
prejudices embedded within the text. Biases have been reported with respect to several demographic
groups, e.g., gender, race, ethnicity, and socioeconomic status [22, 23, 24]. With the use of these
models becoming more widespread, these biases have the risk to substantially reinforce harmful
stereotypes and perpetuate existing inequalities, especially when deployed in high-stakes settings [25].
Addressing these biases is essential, and several mitigation strategies have been proposed for this
purpose, including data augmentation and prompt tuning [26, 27, 28, 29, 30, 31]. However, effectively
applying these strategies to the large-scale pretraining corpora remains challenging. Finally, biases
can be hard to detect and several datasets and methods have been proposed to help identify them
[32, 33, 34, 35, 36, 37].

2.3 Fairness on Tabular Data

Much of the work on classification and algorithmic fairness has focused on tabular datasets [38,
39, 40, 41, 42, 43, 44]. Consequently, there is a wide range of research describing the properties
and trade-offs of predictive algorithms on this type of data [45, 46, 47]. Multiple works have
proposed fairness-enhancing techniques for traditional ML algorithms (e.g., logistic regression),
which generally work by debiasing the data, including a fairness constraint in the optimization
problem, or post-processing model predictions [48, 49, 50, 51, 52, 53, 54]. Our work employs
related techniques, although some of them are not directly applicable. The formalization of fairness
definitions has also been extensively discussed [55]. Fairness metrics evaluated on tabular data
typically measure the equality of some target measure across demographic groups, such as accuracy
or recall [56], which fall under the umbrella of group fairness definitions (as opposed to individual
fairness definitions). One such widely-adopted measure, which we also employ in this work, is
demographic parity, which ensures that the frequency of positive predictions is approximately equal
across different demographic groups.

3 Methods

In this work we consider four empirical approaches for improving group fairness of language model
predictions on tabular datasets as illustrated in Figure 1. This section provides a brief overview of
each method, with subsequent sections delving into detailed descriptions and experimental results for
each approach.

Fair Prompt Optimization. We demonstrate the effectiveness of prompt engineering in achieving
group fairness in LLMs and show how prompt optimization can be automated. In particular, we
propose to optimize a fairness-specific prompt (highlighted in blue on the left panel on Figure 1),
appended to the task-specific instructions.

Soft Prompt Tuning. In addition to hard prompt optimization, we explore soft prompt tuning,
which optimizes the prompt directly in the embedding space instead of discrete token space, see
the second-from-left panel in Figure 1. This approach enables direct continuous optimization.
We demonstrate the effectiveness of soft prompt tuning with an objective incorporating fairness
regularization.

Fair Few-Shot Examples. Including class-balanced few-shot examples in-context demonstrated
limited effectiveness in previous studies [4, 5]. We instead propose an approach for strategically
selecting examples by filtering them based on their similarity to test samples and varying the class
label ratios within these examples.

Self-Refinement. When making predictions in batches, we can utilize the chain-of-thought and
self-refinement capabilities of language models to apply post-hoc corrections to predictions, see the
right panel in Figure 1 for an illustration.
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4 Experimental Details

In our experiments, we focus on scenarios with minimal or no training data, where language models
excel by leveraging their inherent knowledge for predictions, often outperforming classical tabular
models [1, 3]. For each sample, we prompt the model with task-specific instructions and relevant
features (see Appendix C for prompting templates). Optionally, we may also include fairness-specific
instructions and few-shot examples, depending on the method used to improve fairness. The answer
is then extracted either by generating a response or by calculating token likelihoods for labels.

In experiments involving prompt selection, we use a small validation set of 50 labeled examples to
assess model accuracy. We then select Pareto-optimal prompts, which represent those where any im-
provement in either accuracy or fairness would necessitate a compromise in the other metric. Accuracy
is assessed on the validation set, while demographic parity is evaluated on the test set to identify these
optimal prompts. We additionally compare our methods against Catboost tabular model trained on 50
examples [57] with fairness constraints applied via Fairlearn’s GridSearch function following [58].

Language Models We conduct experiments using a variety of widely used language models that vary
in size. Due to the computational demands of some methods, we conduct computationally intensive
experiments with smaller models and reserve methods that require advanced reasoning for larger
language models. Our experiments include Llama 3 8B and 70B [59], Mistral 7B [60], Mixtral 8x7B
[61] and Claude Sonnet models [62].

Datasets We explore group fairness of LLMs on a set of publicly available datasets widely used in the
algorithmic fairness literature. For each of the datasets, we focus on ‘gender’ as the protected attribute.
The Adult Income dataset [63], based on the 1994 US Census, predicts whether an individual’s
yearly income exceeds $50k (1 = yes, 0 = no). The German Credit dataset [64] predicts credit
default risk (1 = good, 0 = bad) using individual attributes. The ACS Income & Coverage data [65],
drawn from the US Census, is used for income (1 = yearly income >$50k, 0 = else) and public health
coverage (1 = public health coverage, 0 = else) prediction tasks, focusing on 2018 data from New
York. Additional dataset details are provided in Appendix E.

Serialization and prompts LLMs require textual input, unlike traditional tabular prediction models.
In line with previous work [3, 1], we serialize data points by (1) mapping categorical values to the
respective strings (e.g. gender = 1 is mapped to gender = male), and (2) consolidating column names
and entries into one string per row. Although we assume little to no training data, it is reasonable
to expect that practitioners will provide task-specific instructions to the model to facilitate accurate
predictions. For this, we construct instructions using prototype clustering on the training folds of the
datasets, as suggested by [3]. To make instructions more readable, we use GPT-4 to revise prototype
information into a single summary paragraph. Please, see Appendix C for more details.

Metrics In this work we focus on optimizing demographic parity (DP) which aims to equalize
positive label selection rate across groups, i.e.

E[f(X) | G = g] = E[f(X)]

for a binary predictor f and g ∈ {male, female}. Constraint violation is reported as ratio between the
smallest and largest group level selection rates E[f(X) |G = g] with values closer to 1 indicating
better parity. We use DP primarily because it allows to measure fairness on an unlabeled test set
directly and does not require labeled training data. Although our primary focus is on demographic
parity, the methods we propose can be adapted to other fairness metrics when labeled training data
is available as discussed in section 6. Additionally, while our main objective is demographic parity,
we also evaluate equalized odds which aims to balance false positive and false negative rates across
groups, i.e.

E[f(x) | G = g, Y = y] = E[f(x) | Y = y]
for a binary predictor f , Y ∈ {0, 1}, and g ∈ {male, female}, and report equalized odds ratio
between groups.

5 Experimental Results

5.1 Fair Prompt Optimization

Prompt engineering continues to play an important role in tailoring the capabilities of LLMs to various
tasks [66, 67, 68]. Recently, [69] demonstrated that integrating fairness-specific manually-curated
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Figure 2: Left: Accuracy and demographic parity for manually constructed fair prompts on Adult
dataset, 4 models. Right: Accuracy and demographic parity for fair prompts optimized via a meta-
LLM: red points denote Pareto-optimal fair prompts, the orange square shows the default model’s
performance, and black points depict a CatBoost model optimized on 50 examples with grid search.

instructions in the prompt, such as “it is illegal to discriminate”, can attenuate counterfactual biases
in model predictions. To evaluate the effectiveness of prompt engineering for fairness, we manually
construct a few prompts which are supposed to improve group fairness, such as (1) “Ignore sex
completely when making predictions”, (2) “Assign positive label to females and males at the same
rate.”, (3) “Assign positive label to females slightly more often than to males.”, with the last prompt
coming from the fact that female group is the one disadvantaged. We include the accuracy and
demographic parity for models queried with these prompts for Adult dataset in Figure 2 left panel.

You are a great and creative instruction generator that generates
instructions for downstream language models. You must generate a
one-sentence "fair instruction" to be appended to an existing
general task instruction. The fair instruction should improve
demographic parity (equality of selection rates for males and
females) in the predictions of the downstream model. The following
exemplars show how your fair instruction is used by the
downstream model:

You must follow the instructions to predict if income of an individual
exceeds $50K/yr.

Generally, individuals who earn more than $50K/yr tend to have
higher levels of education (e.g., Bachelors or Prof-school), work in
managerial or specialty occupations, and are married with a
spouse. They also usually work longer hours per week and have
higher capital gains. ... [fair instructions]

Input: workclass: Private; hours per week: 17; sex: Female; age:
42; occupation: Exec-managerial; capital loss: 1485; education:
Bachelors; capital gain: 0; marital status: Married-civ-
spouse; relationship: Wife; 
Output: greater than 50K 

The previous instructions, along with their corresponding accuracy,
demographic parity, and positive label selection rates across
genders, are provided below. You should 1. interpret the
performance scores, 2. analyze what should be changed in the fair
instruction, and 3. provide new short fair instruction to improve
demographic parity, which is very different from the previous ones.
Wrap the new fair instruction within < > tags.
The previous instructions are:

Assign positive label [greater than 50K] to females and males with
equal probability.
Demographic parity ratio is 0.66
Selection rate for Females is 0.23
Selection rate for Males is 0.35
(...more examples..)

Meta-Prompt

Figure 3: Meta-prompt used to iteratively refine
fairness-instructions using a meta-LLM.

We observe that, while these prompts can im-
prove demographic parity in some models, find-
ing a universal “fair instruction” that upholds
group fairness consistently across multiple mod-
els is challenging. Therefore we propose to em-
ploy a prompt optimization framework using a
meta-LLM, designed to dynamically refine fair
instructions.

LLM as a fair prompt engineer Several
works have shown that LLMs can act as prompt
engineers producing performant prompts for
downstream models [70, 71]. We adopt this
approach following [71] and employ meta-LLM
to iteratively refine fairness instructions for the
downstream model based on feedback provided
from the previous iterations. In particular, we
demonstrate the most fair previous instruction
and two randomly selected previous instructions,
along with their demographic parity scores and
selection rates across groups, see example in Fig-
ure 3. We refine fairness instructions using the
meta-model over 100 iterations. For the meta-
LLM we employ the same language model as
the one used downstream to make predictions.

In Figure 2 we present the performance of
Pareto-optimal fair prompts for the Llama 8B
model, along with the performance of a Cat-
Boost model baseline. More plots for Mistral
and Mixtral models are included in Appendix
G. Additionally, Table 1 lists results for the fair
prompts which are Pareto-optimal and achieve
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Table 1: Performance of optimized fair prompts, tuned soft prompts, and few-shot contexts across
3 models and 4 datasets. We report performance of Pareto-optimal instructions achieving the best
validation accuracy and at least 0.9 demographic parity. Bold numbers indicate better accuracy and
demographic parity across methods for each model and dataset.

Adult German Credit ACS Coverage ACS Income

Model Acc DP EO Acc DP EO Acc DP EO Acc DP EO

Catboost + GS 0.76 0.57 0.67 0.66 0.75 0.44 0.63 0.81 0.65 0.75 0.85 0.88

Llama8B Default 0.77 0.78 0.9 0.56 0.8 0.66 0.62 0.73 0.60 0.71 0.88 0.95
Llama8B+FairPrompt 0.77 0.94 0.79 0.57 0.95 0.81 0.67 0.96 0.93 0.74 0.92 0.82
Llama8B+Few-Shot 0.76 0.94 0.77 0.63 0.91 0.85 0.61 0.96 0.9 0.73 0.9 0.91
Llama8B+SoftPrompt 0.73 0.94 0.84 0.66 0.97 0.90 0.59 0.97 0.88 0.69 0.89 0.92

Mistral7B Default 0.83 0.36 0.43 0.62 0.82 0.73 0.67 0.49 0.26 0.76 0.86 0.89
Mistral7B+FairPrompt 0.81 0.55 0.77 0.7 0.9 0.68 0.66 0.94 0.88 0.71 0.92 0.91
Mistral7B+Few-Shot 0.80 0.93 0.68 0.57 0.95 0.92 0.66 0.93 0.83 0.76 0.99 0.59
Mistral7B+SoftPrompt 0.75 0.90 0.62 0.65 0.97 0.90 0.56 0.92 0.88 0.75 0.85 0.91

Mixtral8x7B Default 0.79 0.51 0.57 0.47 0.72 0.65 0.65 0.83 0.75 0.71 0.85 0.96
Mixtral8x7B+FairPrompt 0.78 0.95 0.61 0.58 0.94 0.83 0.64 0.99 0.9 0.72 0.92 0.89
Mixtral8x7B+FewShot 0.76 0.91 0.81 0.46 0.97 0.75 0.64 0.93 0.86 0.73 0.93 0.76

at least 0.9 demographic parity ratio. We observe, that these engineered fair prompts significantly
improve fairness of the models, often without sacrificing much accuracy. In Appendix G we provide
the optimized prompts achieving the best and the worst demographic parity.

5.2 Soft Prompt Tuning

In traditional methods, standard in-processing fairness interventions often involve training machine
learning models with a fairness penalty. This encourages the model to equalize selection rates or,
depending on the penalty, the error rates across demographic groups [48, 52]. Drawing inspiration
from these techniques and parameter-efficient fine-tuning methods, we propose a similar approach that
can be applied to improving group fairness in language models. In particular, rather than optimizing
fair prompts in the discrete space of tokens, as done in the previous section, we suggest optimizing a
soft prompt by fine-tuning tokens in the embedding space. Continuous optimization in the embedding
space allows us to incorporate the fairness penalty into objective directly. Specifically, we fine-tune
50 tokens initialized with task-specific instructions in the embedding space for 20 epochs. This
approach applies a penalty designed to equalize the likelihoods of tokens corresponding to positive
labels across groups within a batch:

|P (Y = 1|A = 0)− P (Y = 1|A = 1)|.

To tune the prompt we use 1000 samples with pseudo-labels obtained by the same language model
in the zero-shot setup, simulating a scenario without labeled data. Similarly to our fair prompt
engineering experiments, we identify Pareto-optimal points among fine-tuning epochs and include
results for Pareto-optimal soft prompts achieving at least 0.9 test demographic parity in Table 1. We
observe that while tuning soft prompts improves demographic parity across all datasets, it results
in suboptimal trade-off with accuracy compared to hard prompt optimization approach. This could
potentially be attributed to the sensitivity of the tuning procedure to hyperparameters or the reliance on
pseudo-labels. Additionally, we include plots illustrating fairness-accuracy tradeoff for Pareto-optimal
soft prompts in Appendix G.

5.3 Fair Few-shot Examples

Prior work [4, 17, 5] has leveraged the in-context learning capabilities of language models for this
problem space. They hypothesize that, when selected appropriately, few-shot examples can effectively
influence the final predictions to more accurately reflect the desired notion of fairness.

For instance, it has been demonstrated that flipping the labels of few-shot examples can effectively
reduce bias, albeit at the expense of significantly lower classification performance [4], while class-
and group- balanced selection does not mitigate the bias [5].
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Table 2: Results for self-refining approach across three models and four datasets. Bold numbers
indicate better demographic parity between the original and refined predictions.

Adult German Credit ACS Coverage ACS Income

Model Acc DP EO Acc DP EO Acc DP EO Acc DP EO

Catboost + GS 0.76 0.57 0.67 0.66 0.75 0.44 0.63 0.81 0.65 0.75 0.85 0.88

Llama70B Default 0.78 0.53 0.59 0.58 0.85 0.61 0.61 0.81 0.69 0.75 0.84 0.99
Llama70B+Self-Refine 0.71 0.89 0.89 0.56 0.92 0.78 0.6 0.76 0.64 0.74 0.87 0.92

Claude Default 0.79 0.50 0.57 0.66 0.93 0.89 0.63 0.77 0.64 0.76 0.82 0.94
Claude+Self-Refine 0.73 0.98 0.74 0.63 0.97 0.66 0.64 0.72 0.61 0.75 0.9 0.88

With a similar goal, we propose a strategy for constructing fair few-shot examples, which differs
from the previous methods in three ways. First, instead of randomly sampling examples from the
training data, we apply the nearest neighbor search to select examples that are most similar to a
current test instance in the feature space1. Also, we always select examples that share sensitive
attribute with the test instance. Secondly, as we assume no access to training data labels, we use
the language models’ default zero-shot predictions as pseudo labels to construct demonstrations
(similarly to soft prompt tuning experiments). Finally, we extensively manipulate the distributions
of positive and negative in-context examples between groups. In particular, we test varying ratios
of positive examples for female test samples, pf = [0.1, 0.3, 0.5, 0.7, 0.9, 1.0], and for male test
samples pm = [0.1, 0.3, 0.5, 0.7, 0.9, 1.0], resulting in 36 ratio pairs. We hypothesise that increasing
the number of positive examples for the minority group increases their selection rate, thereby
promoting better parity with the majority group.
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Figure 4: Accuracy and demographic parity ratio
metrics for prompts containing few-shot examples
with varying number of positive examples across
groups, evaluated on Adult dataset using Llama8B.

Figure 4 illustrates the impact of varying the
ratio of positive examples in the prompt. The x-
axis represents the ratio of positive examples for
female test instances, while the color indicates
the ratio of positive examples used for predic-
tions on male samples. The results are averaged
across 3 random seeds, with the band indicating
the standard deviation across seeds. We observe
that increasing the positive ratio for females sig-
nificantly improves demographic parity, to the
extent that the selection rate for females sur-
passes that for males. Additional figures for
other models and datasets are displayed in Ap-
pendix G. These results confirm that adjusting
the ratio of positive examples in-context is an ef-
fective method for manipulating the prevalence
of positive class predictions, and employing dif-
ferent ratios across protected groups can effec-
tively reduce disparities in selection rates.

Additionally, we compare our nearest-neighbor selection strategy with a baseline selecting examples
randomly while preserving similar label ratios in-context. Appendix Figure 5 shows that including
random in-context examples results in lower demographic parity with larger variance. Also, unlike the
nearest-neighbor approach, there is no apparent trend showing that including more positive samples
boosts the selection rate for any demographic group, highlighting the importance to including only
relevant examples in-context. Finally, in Table 1 we report demographic parity ratio, equalized odds
ratio and accuracy metrics for the Pareto-optimal combination of positive label ratios, which achieves
the best validation accuracy and at least 0.9 demographic parity.

5.4 Self-Refinement

In addition to in-processing methods, fairness literature also includes a wide array of post-processing
techniques [52]. These methods work by altering model outputs directly. We propose an LLM-based

1To compute similarity scores between instances, we use the Jaccard metric as most features are discrete or
categorical.
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post-processing method that leverages the reasoning capabilities of language models, along with
a chain-of-thought process, to refine their own predictions. The self-refinement approach involves
using language models to identify individuals from both minority and majority groups who are near
the “decision boundary”, and then flipping their labels to achieve the desired demographic parity
ratio. Therefore, the prediction process includes two stages:

1. The model makes initial predictions on a batch of data samples.
2. The model then assesses demographic parity in a batch and adjusts predictions to attain the

desired parity, if necessary.

An example prompt used to refine predictions is illustrated in Figure 1 most right panel. Given
that self-refinement approach relies on the advanced reasoning capabilities of language models to
analyze predictions, compute metrics of interest, and adjust individual predictions, we conduct these
experiments with larger models, specifically Llama3 70B and Claude Sonnet models. We make
predictions on a batch of 40 samples, and instruct the model to make adjustments only when the
difference in positive rates across groups exceeds 15%. We report the results of the self-refinement
approach in Table 2. For all models, refined predictions achieve improved demographic parity across
all datasets except for ACS coverage, although this sometimes leads to a notable trade-off in accuracy.
In addition, there is no guarantee for similar individuals to receive similar predictions with this
method because of the ‘correction step’ which is at odds with notions of individual fairness [49].

6 Discussion

We systematically explore four empirical methods to improve group fairness of language model
predictions on tabular datasets. Our experiments across four tabular datasets using multiple language
models demonstrate these approaches effectively mitigate demographic disparities. We discuss the
key takeaways for each method below.
Fair Prompt Optimization can improve not only fairness but also classification performance,
contingent upon the model’s "creativity." This method involves an optimization process that requires
evaluating the prompt on a dataset for a number of iterations. Although the resulting instructions are
interpretable, the reasons why specific instructions yield fairer results are not always clear.
Soft prompt tuning is computationally expensive and sensitive to the choice of hyperparameters.
While this method does not yield interpretable instructions, it enables the integration of common
fairness regularizers in a differentiable way and may be particularly effective for smaller models.
Fair Few Shot Examples is the most interpretable and predictable method, yielding optimal results
across models and datasets when an optimal combination of positive examples ratios is selected.
However, it uses a longer context window and may be more computationally expensive for larger
datasets because of the number of forward passes needed.
Self-refinement requires a model with strong reasoning capabilities and does not guarantee similar
predictions for similar individuals. However, this method offers a computational advantage for larger
models, as predictions are made and adjusted in batches, reducing overall processing time.

We recommend fair few-shot examples and fair prompt optimization as universal approaches achieving
the optimal accuracy tradeoff. Soft prompt tuning can potentially adapt smaller models, while self-
refinement is useful for scenarios with limited budgets and larger language models.
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A Limitations and Potential Risks

Our work has several limitations. Firstly, it exclusively examines in-context approaches and does
not address data pre-processing for bias mitigation or post-hoc methods that modify model outputs
directly [52]. Additionally, we do not consider model training and fine-tuning strategies other than
soft prompt tuning. Finally, we focus on a single notion of fairness, that is demographic parity,
since it can be applied in little to no training data regime, the most practical scenario for language
models on tabular datasets. However, most of the discussed methods can be adapted to optimize for
other fairness notions, such as equalized odds, when labeled training data is available. For example,
the prompt optimization procedure can incorporate alternative fairness metrics in the feedback
component of the meta-prompt. Soft prompt tuning can adopt differentiable proxy regularizers to
enforce desired fairness criteria, and the few-shot examples approach can demonstrate more examples
with ground-truth labels to underrepresented groups.

While the methods explored in this work show promise for improving demographic parity of large
language models on tabular prediction tasks, there are also several potential risks to consider. En-
hancing group fairness may come at the expense of overall predictive performance, and focusing
solely on demographic parity could neglect other important fairness criteria. Moreover, optimizing
for group fairness along one dimension could inadvertently amplify or introduce other biases not
directly measured. As such, practitioners should carefully evaluate the appropriateness and potential
pitfalls of these methods for their specific use case before deploying language models for high-stakes
decision making on tabular data.

B Broader Impact

In-context fairness provides an attractive avenue for steering fair outcomes on large language models.
By addressing biases directly within model operations, this research can mitigate the propagation
of stereotypes and discriminatory behaviors, particularly in sensitive areas such as healthcare and
legal decision-making. Ensuring fairness also builds public trust, encouraging broader adoption and
integration of AI into daily life, while promoting equitable access to resources and opportunities for
all demographic groups.

This paper democratizes access to these methodologies by discussing several alternatives to accom-
plish this goal, and by providing guidelines on when each of these methods can be applied most
effectively.

C Prompt Details

In this section we provide the prompt templates used in the default setup to obtain predictions from
the models. We highlight task instructions in red, and sample for which the prediction is made in
blue. When using an optimized fair prompt, if follows the task instructions. For the fair few-shot
examples experiments, we provide selected examples before the test sample in the prompt.

C.1 Prompt Template for Adult dataset

User: You must follow the instructions to predict if income of an individual exceeds $50K/yr.
Generally, individuals who earn more than $50K/yr tend to have higher levels of education (e.g.,
Bachelors or Prof-school), work in managerial or specialty occupations, and are married with a
spouse. They also usually work longer hours per week and have higher capital gains. On the other
hand, those earning less than or equal to $50K/yr typically have lower levels of education (e.g.,
HS-grad), work in clerical or craft repair occupations, and may be single or married without a spouse.
They also usually work fewer hours per week and have lower capital gains. You must provide an
explanation and include answer enclosed in square brackets at the beginning of your response.
workclass: Private; hours-per-week: 40; sex: Male; age: 38; occupation: Craft-repair; capital-loss: 0;
education: HS-grad; capital-gain: 0; marital-status: Divorced; relationship: Not-in-family.
You must predict if the individual’s income exceeds $50K/yr. Answer with one of the following: [less
than or equal to 50K] or [greater than 50K].
Assistant: Based on the information provided the answer is
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C.2 Prompt Template for German Credit dataset

User: You must follow the instructions to predict the credit risk of a German bank customer based on
their profile data. Higher credit amounts and longer durations often indicate a ’bad’ classification,
particularly for loans intended for new cars or high-value purchases. A negative or low checking status
(either ’<0’ or ’0<=X<200’) is also associated with higher risk. Conversely, ’good’ classifications
tend to involve moderate or lower credit amounts, shorter loan durations, and are frequently for
consumer goods like radios, TVs, or used cars. Surprisingly, having ’no checking’ status tends to
lean towards a ’good’ classification. More people tend to have good credit risk. You must provide an
explanation and include answer enclosed in square brackets at the beginning of your response.
age: 36.0; sex: male; job: skilled; housing: own; savings status: no known savings; checking status:
0<=X<200; credit amount: 2181.0; duration: 30.0; purpose: new car.
You must predict the credit risk of a German bank customer. Answer with one of the following:
[good] or [bad].
Assistant: Based on the information provided the answer is

C.3 Prompt Template for ACS Income dataset

User: You must follow the instructions to predict if income of an individual exceeds $50K/yr.
Individuals who are most likely have income less than or equal to 50K are typically younger,
unmarried, with lower levels of education (high school diploma or some college), and engaged
in lower-skilled occupations such as cashiers, janitors, or administrative assistants. Conversely,
individuals who are older, married, with higher levels of education (bachelor’s or master’s degree),
and are employed in professions such as teachers, managers, physicians, or registered nurses are
more likely to have income greater than 50K. You must provide an explanation and include answer
enclosed in square brackets at the beginning of your response.
Sex: Female; Race: White alone; Educational attainment: Bachelor’s degree; Relationship: Roomer
or boarder; Age: 35.0; Usual hours worked per week past 12 months: 32.0; Marital status: Never
married; Place of birth (Recode): Florida/FL; Class of worker: Employee of a private not-for-profit,
tax-exempt, or charitable organization; Occupation: EDU-Elementary And Middle School Teachers.
You must predict if the individual’s income exceeds $50K/yr. Answer with one of the following: [less
than or equal to 50K] or [greater than 50K].
Assistant: Based on the information provided the answer is

C.4 Prompt Template for ACS Coverage dataset

User: You must follow the instructions to predict whether an individual is covered by public health
insurance. Individuals covered by public health insurance tend to have a regular high school diploma,
have never served in the military, and generally have lower income. In contrast, features such as
being employed, having educational attainment, higher income (above $20,000) and being married
correlate with not being covered by public health insurance. In addition, people with disabilities are
more likely to be covered by public health insurance. You must provide an explanation and include
answer enclosed in square brackets at the beginning of your response.
Sex: Female; Race: White alone; Educational attainment: Associate’s degree; Military service: Never
served in the military; Disability recode: Without a disability; Total person’s income: 0.0; Marital
status: Never married; Employment status recode: Not in Labor Force; Employment status of parents:
N/A (not own child of householder, and not child in subfamily); Gave birth to child within the past
12 months: No.
You must predict if the individual is covered by public health insurance. Answer with one of the
following: [covered] or [not covered].
Assistant: Based on the information provided the answer is

D Additional Experimental Details and Hyperparameters

Hyperparameters for Soft Prompt Tuning . In the soft prompt tuning experiments, we fine-tune
50 tokens initialized with the task instructions for 20 epochs. We employ a learning rate of 1e− 4 for
Llama 8B models and 1e− 5 for Mistral models, allowing the first three epochs for a warm-up with a
linear scheduler. During fine-tuning, we use 1000 train samples with pseudo-labels obtained by using
the language model in a zero-shot setup, we apply demographic parity regularization with a penalty
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Dataset Features Prediction Target
Adult [63]
[CC BY 4.0 license]

workclass, hours per week, gender, age,
occupation, capital loss, education, capital
gain, marital status, and relationship

Yearly income ≥ 50k

German credit [64]
[CC BY 4.0 license]

age, gender, job, housing, savings status,
checking status, credit amount, duration,
and purpose

Good / bad credit

ACS Income [65]
[License]

gender, race, educational attainment,
relationship, age, usual hours worked per
week past 12 months, marital status, place
of birth, class of worker, occupation

Yearly income ≥ 50k

ACS Coverage [65]
[License]

sex, race, educational attainment, military
service, disability recode, total person’s
income, marital status, employment status
recode, employment status of parents, gave
birth to child within the past 12 months

Public health coverage

Table 3: Summary of datasets and selected features
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Figure 5: Accuracy and demographic parity ratio metrics for randomly chosen in-context examples
with varying number of positive examples across groups, evaluated on Adult dataset using Llama8B.

weight of 0.5. We employ a class-balanced sampler and set the batch size to 60 samples for Mistral
and 50 samples for Llama models, which were the largest sizes we could use given the computational
constraints.

E Datasets

We include details on the datasets and features used in our experiments in the Table 3.

F Hardware

We conducted all experiments using 8 Tesla V100 32GB GPUs through AWS. The soft-prompt tuning
experiments required approximately 120 GPU hours per model per dataset, resulting in 950 GPU
hours in total. The prompt optimization experiments consumed around 35 GPU hours per model
per dataset, resulting in 420 GPU hours for three models and four datasets. Fair few-shot examples
experiments took approximately 60 GPU hours per model per dataset for one seed, resulting in 2160
GPU hours of experiments.
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G Additional Results

G.1 Additional Results for Fair Prompt Optimization

In Tables 4, 5 we include optimized fair prompts for each dataset each model. In particular, we
include Pareto-optimal prompts, which achieve the highest and the lowest demographic parity ratio.

G.2 Additional Results for Fair Few-Shot Examples

In Figures 6 and 7, we demonstrate accuracy and demographic parity metrics for the prompts
containing different proportions of positive and negative few-shot examples across demographic
groups. We observe that for all datasets and models, increasing the proportion of positive examples
for a demographic group results in a higher selection rate in that group. Additionally, Figure 5
illustrates the trend in demographic parity for prompts including random examples instead of nearest
neighbors. In contrast to our strategy, including random examples does not significantly influence the
models’ selection rates.

G.3 Comparing Pareto Frontiers

Figure 8 illustrates the Pareto frontiers for prompt optimization, soft prompt tuning, and fair few-shot
examples methods. Specifically, it plots the Pareto-optimal prompts for each method, demonstrating
the trade-offs between accuracy and fairness metrics for each method.
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Figure 6: Accuracy and demographic parity metrics for fair in-context fewshots examples.
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Figure 7: Selection rates for male and female for fair in-context fewshots examples.
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Dataset Model Most fair prompt Least fair prompt
Adult Llama 8B Consider the relationship between

marital status and income, and
ensure that the selection rates for
females and males are balanced
across different marital statuses,
taking into account the potential
impact of marriage on income.
(DPR = 0.999)

Ensure that the selection rates for
females and males are balanced
across different levels of education
(HS-grad, Some-college, Bachelors,
etc.) (DPR = 0.673)

Adult Mistral 7B Predict based on features that are
statistically independent of both
income and gender.
(DPR = 0.553)

Predict with equal probability for
males and females, regardless of
other features. (DPR = 0.308)

Adult Mixtral
8x7B

Predict the income of an individual,
ensuring an equal selection rate for
both females and males by
accounting for gender parity and
other relevant features without bias.
(DPR = 0.994)

Predict the income of an individual
without gender bias, ensuring an
equal probability of assigning the
positive label (greater than 50K) to
both females and males.
(DPR = 0.546)

German
Credit

Llama 8B Consider the impact of job type on
credit risk assessment, especially
for females with moderate or lower
credit amounts and shorter loan
durations, and assign positive label
[good] to females with unskilled or
skilled jobs at a rate that is at least
10% higher than the rate for males
with the same job types.
(DPR = 0.950)

[empty prompt] (DPR = 0.779)

German
Credit

Mistral 7B Modify the instructions to consider
the effect of demographic factors on
credit risk predictions, ensuring that
the selection rates for males and
females are equal for the ’good’
label, while maintaining the existing
risk factors and their associations
with the ’good’ and ’bad’ labels, but
with a focus on mitigating potential
bias towards females in the ’good’
label selection, and giving slightly
more weight to female applicants
with similar risk profiles to males.
(DPR = 0.993)

Modify the instructions to consider
the effect of demographic factors on
credit risk predictions, ensuring that
the selection rates for males and
females are equal for the ’good’
label, while maintaining the existing
risk factors and their associations
with the ’good’ and ’bad’ labels, but
with a focus on mitigating potential
bias towards females in the ’good’
label selection, and giving slightly
more weight to male applicants
with similar risk factors to achieve
parity. (DPR = 0.817)

German
Credit

Mixtral
8x7B

Assign positive label [good] to both
males and females while giving
equal consideration to all relevant
factors, and further emphasize the
importance of unbiased selection by
including a statement that
encourages considering each
applicant as an individual, without
any preconceived notions or
stereotypes based on their
demographic attributes.
(DPR = 0.999)

Assign positive label [good] to both
males and females while giving
equal consideration to all relevant
factors, including credit amount,
loan duration, savings status, job
type, housing status, specific
purchases, and age, to further
enhance demographic parity.
(DPR = 0.518)

Table 4: Optimized Fair Prompts for Adult and German Credit datasets. We include Pareto-optimal
prompts, which achieve the highest and the lowest demographic parity ratio (DPR)
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Dataset Model Most fair prompt Least fair prompt
ACS
Cover-
age

Llama 8B Consider the individual’s
employment status and adjust the
prediction by assigning the positive
label [covered] to males who are
unemployed or have lower income,
and to females who are employed or
have higher income, in order to
achieve a more balanced selection
rate between males and females.
(DPR = 0.998)

Consider the individual’s
employment status and adjust the
prediction to ensure that males and
females with similar income levels
and employment status have a
similar probability of being
assigned the positive label
[covered]. (DPR = 0.409)

ACS
Cover-
age

Mistral 7B Consider the sex feature as a neutral
feature and ensure that it does not
provide an unfair advantage or
disadvantage in the prediction
process (DPR = 0.995)

Consider the sex feature as a
protected feature and ensure that it
does not negatively impact the
selection rate for any gender.
(DPR = 0.819)

ACS
Cover-
age

Mixtral
8x7B

Assign positive label [covered] to
individuals with similar income
levels and educational attainment,
regardless of sex. (DPR = 0.999)

Assign positive label [covered] to
individuals with similar income
levels, while considering sex as a
factor to improve demographic
parity. (DPR = 0.989)

ACS
In-
come

Llama 8B Consider the individual’s
occupation and educational
attainment, and also take into
account the individual’s work
experience and job seniority, as
these factors can significantly
impact income, regardless of gender.
(DPR = 0.922)

Consider the individual’s
occupation and educational
attainment, and also take into
account the number of years of
work experience, as females tend to
have lower median income due to
factors such as part-time work,
career breaks, and occupational
segregation. This may help to
increase the representation of
females in the [greater than 50K]
category. (DPR = 0.870)

ACS
In-
come

Mistral 7B Assign positive label [greater than
50K] to females with a probability
that is 3% higher than that of males,
but not more than 1% greater than
the demographic parity ratio.
(DPR = 0.9812)

Assign positive label [greater than
50K] to females with a probability
that is 1% higher than that of males.
(DPR = 0.861)

ACS
In-
come

Mixtral
8x7B

Consider factors such as occupation,
education, marital status, and
weekly hours worked equally for
both genders when predicting
income levels, and avoid
stereotypes related to caregiving
roles and occupational expectations.
(DPR = 0.916)

Treat occupation as a significant
factor for income prediction, while
considering gender-neutral job titles
and avoiding assumptions about
income based on stereotypical
gender roles. (DPR = 0.744)

Table 5: Optimized Fair Prompts for ACS datasets. We include Pareto-optimal prompts, which
achieve the highest and the lowest demographic parity ratio (DPR)
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Figure 8: Pareto-optimal points for optimized fair prompts (red), soft prompts (blue) and optimized
class ratios for few-shot examples (green) across all datasets and models. Orange square denotes zero-
shot performance of the models, while black points correspond to Catboost trained with GridSearch
baseline.
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