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Abstract001

Linear Sequence Modeling (LSM) like lin-002
ear attention, state space modeling and lin-003
ear RNNs, and Mixture-of-Experts (MoEs)004
have recently emerged as significant architec-005
tural improvements. In this paper, we intro-006
duce Linear-MoE, a production-level system007
for modeling and training large-scale mod-008
els that integrate LSM with MoEs. Linear-009
MoE leverages the advantages of both LSM010
modules for linear-complexity sequence mod-011
eling and MoE layers for sparsely activation,012
aiming to offer high performance with effi-013
cient training. The Linear-MoE system com-014
prises: 1) Modeling subsystem, which provides015
a unified framework supporting all instances016
of LSM. and 2) Training subsystem, which017
facilitates efficient training by incorporating018
advanced parallelism, particularly Sequence019
Parallelism designed for Linear-MoE mod-020
els. Additionally, we explore hybrid models021
that combine Linear-MoE layers with standard022
Transformer-MoE layers with its Sequence Par-023
allelism to further enhance model flexibility024
and performance. Evaluations on two model025
series, A0.3B-2B and A1B-7B, demonstrate026
Linear-MoE achieves efficiency gains while027
maintaining competitive performance on vari-028
ous benchmarks, showcasing its potential as029
a next-generation foundational model archi-030
tecture. Code: https://anonymous.4open.031
science/r/Linear-MoE-AD77032

1 Introduction033

Mixture-of-Experts (MoEs) architectures have034

gained widespread adoption in cutting-edge models035

within industry, with prominent examples includ-036

ing Gemini-1.5 (Reid et al., 2024) and the reported037

use of MoEs in GPT-4 (Chintala, 2023). Other no-038

table large models incorporating MoE techniques039

include Mixtral (Jiang et al., 2024), DeepSeek040

V2 (Liu et al., 2024), Qwen2 (Yang et al., 2024a),041

JetMoE (Shen et al., 2024), Jamba (Team et al.,042

2024), and OLMoE (Muennighoff et al., 2024).043

Most advances on MoE studies primarily concen- 044

trate on modifying the routing mechanism or expert 045

layers, while typically keeping the attention lay- 046

ers unchanged. These attention layers commonly 047

rely on the softmax self-attention mechanism in- 048

troduced in the Transformer architecture (Vaswani 049

et al., 2017). The softmax-based self-attention has 050

proven to be highly effective for sequence model- 051

ing tasks across various data types. However, a 052

significant limitation of this mechanism is its com- 053

putational complexity, which grows quadratically 054

with the input sequence length. This complexity 055

can lead to substantial computational costs, espe- 056

cially during training, making it a challenge for 057

models need to handle long sequences efficiently. 058

Linear sequence modeling (LSM) has recently 059

gained significant attention due to its impressive ef- 060

ficiency in both training and inference. These meth- 061

ods function similarly to recurrent neural networks 062

(RNNs) with matrix-valued hidden states, allowing 063

them to achieve linear-time training and constant- 064

memory inference. This efficiency is largely due 065

to the fact that LSM techniques bypass the com- 066

putation of attention scores and eliminate the need 067

for maintaining a key-value (KV) cache. There 068

are three primary approaches to linear sequence 069

modeling: linear attention (Katharopoulos et al., 070

2020), state space modeling (SSM) (Gu and Dao, 071

2023; Dao and Gu, 2024), and linear RNN (Peng 072

et al., 2023; Qin et al., 2024d). Linear attention 073

is a variation of the traditional softmax attention 074

mechanism, replacing the exponential kernel with 075

a simpler dot product between key and query vec- 076

tors, which enables the use of the right-product 077

kernel trick to reduce computational complexity. 078

SSM approaches, such as Mamba and Mamba2, 079

stem from control theory and represent sequence 080

modeling as dynamic systems. Meanwhile, lin- 081

ear RNN methods address the limitations of tradi- 082

tional RNNs in modeling long contexts by enabling 083

parallel training of RNN models. These different 084
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methods, linear attention, SSM, and linear RNN,085

share a common mathematical foundation and ex-086

hibit similar performance on sequence modeling087

tasks (Dao and Gu, 2024; Peng et al., 2024; Qin088

et al., 2024b; Yang et al., 2024b). In fact, they all089

employ a unified recurrence framework expressed090

as Ms = Ms−1 + M̂s, where Ms denotes the091

memory state and M̂s represents the incremental092

memory update at the s-th token.093

In this paper, We introduce Linear-MoE, a094

production-level system designed for modeling and095

training of large-scale MoE models with LSM mod-096

ules integrated. The Linear-MoE system is com-097

posed of two key subsystems: Modeling and Train-098

ing. The Modeling subsystem provides a unified099

modeling framework for Linear-MoE models. It100

supports three main types of LSM methods: linear101

attention, SSM, and linear RNN. For each type,102

multiple instances are implemented under a uni-103

fied formulation. While the Training subsystem104

is designed to achieve efficient training of Linear-105

MoE models on modern accelerators. In addition106

to supporting state-of-the-art training techniques,107

we incorporate a specialized Sequence Parallelism108

(SP) technique for LSM modules, which is par-109

ticularly effective for handling extremely long in-110

put sequences on Linear-MoE architecture. Im-111

portantly, the system is designed to be extensi-112

ble, enables more advanced sequence modeling113

methods or training techniques integrated in the114

future. Furthermore, we also explore efficient mod-115

eling and training for hybrid Linear-MoE models,116

which combine Linear-MoE layers with standard117

Transformer-MoE layers. For hybrid models, we118

introduce an SP method that employs distinct com-119

putational and communication strategies tailored120

to the different types of layers.121

In empirical studies, we pretrain two series of122

Linear-MoE models on the public SlimPajama cor-123

pus and evaluate their efficiency and performance124

across various benchmarks to assess the effective-125

ness of proposed Linear-MoE architecture.126

2 Linear-MoE System127

2.1 Modeling128

2.1.1 Unified Linear Sequence Modeling129

The standard softmax attention (Vaswani et al.,130

2017), commonly used in transformer models,131

whose parallel computation form during training132

can typically be expressed as:133

O = softmax(QK⊤)V. (1)134

Here, the matrices Q,K,V,O ∈ RN×d corre- 135

spond to the query, key, value, and output matrices, 136

respectively. The matrices Q,K, and V are lin- 137

ear projections of the input matrix X ∈ RN×d, 138

defined as Q = XWQ, K = XWK , and V = 139

XWV , where WQ,WK ,WV ∈ Rd×d are learn- 140

able weight matrices. Here, N and d represent the 141

sequence length and hidden dimension. 142

Linear Attention (Katharopoulos et al., 2020) 143

as one of the representative LSM methods, has 144

emerged as a viable alternative to traditional soft- 145

max attention by implementing two primary modi- 146

fications. First, it eliminates the Softmax(·) oper- 147

ation, instead embedding it within a kernel fea- 148

ture map. Second, it leverages the associative 149

property of matrix multiplication, reconfiguring 150

(QK⊤)V into Q(K⊤V). These changes reduce 151

both the computational and memory complexity 152

from O(N2d) to O(Nd2). This approach is fre- 153

quently referred to as the right-product kernel trick, 154

as it prioritizes matrix product on the right side. 155

While during inference, both softmax self- 156

attention and linear attention handle a single token 157

at each iteration. Given the s-th token xs ∈ R1×d, 158

softmax self-attention computes requiring the stor- 159

age of an expanding set of keys {k1, · · · , ks} and 160

values {v1, · · · , vs} i.e., the KV cache, which leads 161

to a significant memory burden when dealing with 162

long input sequences: 163

qs,ks,vs = xsWQ,xsWK ,xsWV ,

os =

∑s
i=1 exp(qski

⊤)vi∑s
i=1 exp(qsk⊤

i )
.

(2) 164

Linear attention replaces the term exp(qsk
⊤
i ) with 165

a kernel k(x,y) with an associated feature map ϕ, 166

i.e., k(x,y) = ⟨ϕ(x), ϕ(y)⟩. This simplifies the 167

calculation of os as 168

os =

∑s
i=1 ϕ(qs)ϕ(ki)

⊤vi∑s
i=1 ϕ(qs)ϕ(ki)⊤

. (3) 169

Letting Ms =
∑s

i=1 ϕ(ki)
⊤vi and zs = 170∑s

i=1 ϕ(ki)
⊤ where Ms ∈ Rd×d, zs ∈ Rd×1, 171

we can rewrite Eq. (3) as an RNN: 172

Ms = Ms−1 + ϕ(ks)
⊤vs,

zs = zs−1 + ϕ(ks)
⊤,

os =
ϕ(qs)Ms

ϕ(qs)zs
.

(4) 173

Follow-up studies on SSM (e.g., Mamba2) and 174

linear RNNs (e.g., RWKV6, HGRN2), have demon- 175

strated their similarity with linear attention (Dao 176
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Table 1: Instances of Linear Sequence Modeling Methods. All instances listed follow the unified formulation in
Eq. (5). Here, a ∈ R, as ∈ R, as ∈ Rd, A ∈ Rd×d, As ∈ Rd×d represents a fixed constant, a time-dependent
scalar, a time-dependent vector, a time-independent matrix, and a time-dependent matrix, respectively. Note that the
same notation may denote different variables in different instances.

LSM Method Instance Recurrent Update Formulation Gate Choice

Linear Attention BLA Ms = Ms−1 + k⊤
s vs \

Lightning Ms = aMs−1 + k⊤
s vs a ∈ R

RetNet Ms = aMs−1 + k⊤
s vs a ∈ R

GLA Ms = diag{as}Ms−1 + k⊤
s vs as ∈ Rd

DeltaNet Ms = (I− ask
⊤
s ks)Ms−1 + bsk

⊤
s vs as, bs ∈ R

Rebased Ms = Ms−1 + ϕ(ks)
⊤vs \

GFW Ms = As ⊙Ms−1 + k⊤
s vs As ∈ Rd×d

GateLoop Ms = As ⊙Ms−1 + k⊤
s vs As ∈ Rd×d

Gated DeltaNet Ms = as(I− k⊤
s ks)Ms−1 + bsk

⊤
s vs as, bs ∈ R

TTT Ms = Ms−1 + bs∇l(Ms−1;ks,vs) bs ∈ R
Titan Ms = asMs−1 + bs∇l(Ms−1;ks,vs) as, bs ∈ R

SSM * S4 Ms = exp(−(a1⊤)A)⊙Ms−1 + (a1⊤)b⊤vs a,b ∈ Rd,A ∈ Rd×d

Mamba Ms = exp(−(as1
⊤)As)⊙Ms−1 + (as1

⊤)k⊤
s vs as ∈ Rd,As ∈ Rd×d

Mamba2 Ms = exp(−abs)⊙Ms−1 + bsk
⊤
s vs a, bs ∈ R

Linear RNN RWKV6 Ms = diag{as}Ms−1 + k⊤vs as ∈ Rd

HGRN2 Ms = diag{as}Ms−1 + (1− as)
⊤vs as ∈ Rd

* For both S4 and Mamba, the Euler Discretization (Gu et al., 2020) is applied, such that B̄ = ∆B, and the unprojected xs is
denoted as vs for consistency with other formulas.

and Gu, 2024; Peng et al., 2024). In fact, recent177

studies (Qin et al., 2024b; Yang et al., 2024b) have178

suggested that linear attention, state space, and179

linear RNN sequence modeling methods can be180

expressed within a unified recurrence framework181

as:182

M̂s = f(k⊤
s ,vs),

Ms = Θs ⋄Ms−1 + M̂s.
(5)183

In this formulation, M̂s ∈ Rd×d represents the184

memory state corresponding to the s-th input,185

which is a function of k⊤
s and vs. And Θs de-186

notes a coefficient matrix that may be time-varying187

or constant (and also can be a vector or scalar).188

The operator "⋄" can denote either standard matrix189

multiplication or a Hadamard product. We collect190

recent LSM method instances which follow the uni-191

fied formulation in Eq. (5) and list them in Table 1.192

2.1.2 Linear-MoE Architecture193

The Linear-MoE architecture is relatively straight-194

forward, consisting of N× stacked Linear-MoE195

blocks, as depicted in Fig. 1. Each Linear-MoE196

block includes an LSM layer and an MoE layer,197

with a normalization layer preceding each. The198

LSM layer serves as a generalized structure that199

supports various LSM methods, specifically, linear200

attention, SSM, and linear RNN, each encompass-201

ing multiple instance methods. Table 1 provides202

an overview of these LSM method instances, uni- 203

fied under a common recurrence framework. This 204

framework highlights key distinctions between in- 205

stances, primarily in their handling of the prior-step 206

memory state Ms−1 and the computation of the in- 207

cremental memory state M̂s. For the MoE layers, 208

we retain the standard mechanisms of sparse expert 209

activation and routing, as employed in SOTA open- 210

source MoE models. These mechanisms are essen- 211

tial for maintaining an optimal balance between 212

model performance and computational efficiency. 213

In this paper, we refer to models composed ex- 214

clusively of Linear-MoE layers as pure Linear- 215

MoE models. These models achieve high effi- 216

ciency during both training and inference, benefit- 217

ing from the LSM modules embedded in each layer. 218

However, despite these advantages, empirical re- 219

search (Lieber et al., 2024; Ren et al., 2024; Waleffe 220

et al., 2024) has shown that models relying solely 221

on LSM modules tend to underperform on tasks re- 222

quiring strong recall capabilities, such as in-context 223

learning (e.g., five-shot MMLU (Hendrycks et al., 224

2020), Phone-book lookup (Jelassi et al., 2024), 225

Needle In A Haystack (Briakou et al., 2023)) and 226

long-context reasoning. In such cases, a hybrid ar- 227

chitecture that interleaves linear transformer layers 228

with standard transformer layers has proven effec- 229

tive in improving model performance on recall- 230

intensive tasks. 231
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Figure 1: Linear-MoE Architecture. In each Linear-MoE block, there is both an LSM layer and an MoE layer,
with each layer preceded by its own normalization layer. The LSM layer is designed as a flexible abstraction of
LSM methods, including: linear attention, SSM, and linear RNN, which follows a unified recurrence framework.

Based on this prior, we propose a hybrid Linear-232

MoE architecture that combines Linear-MoE lay-233

ers with standard (MoE) transformer layers. A234

practical approach for constructing these hybrid235

models is to periodically substitute certain Linear-236

MoE layers with standard MoE transformer layers237

within the model. For instance, in an 4-layer hy-238

brid Linear-MoE model, denoted by "L" for Linear-239

MoE layers and "N" for normal transformer layers,240

configurations such as "LLLL" or "LNLN" may241

be used, depending on the desired ratio of normal242

transformer layers, which can be adjusted based on243

user preference.244

2.2 Training245

2.2.1 Sequence Parallelism on Linear-MoE246

The existing methods, LASP (Sun et al., 2024) and247

its improved version LASP-2 (Sun et al., 2025), are248

designed specifically to leverage the right-product-249

first property of linear attention techniques for effi-250

cient SP. LASP employs a point-to-point ring-style251

communication pattern, facilitating the exchange252

of incremental memory states across devices. This253

communication pattern is particularly effective for254

managing dependencies while minimizing the data255

transferred between devices, enhancing the scala-256

bility of SP. LASP-2 further refines this approach257

by replacing the ring-style communication with258

an all-gather collective communication operation,259

streamlining the entire communication process.260

This modification not only simplifies the communi-261

cation structure but also improves the parallelism262

of computation and communication.263

In this work, we extend the capabilities of LASP264

series to the Linear-MoE system, allowing for the265

efficient SP training on LSM modules, particularly266

when dealing with extremely long sequences across 267

large-scale distributed clusters. This extension sig- 268

nificantly enhances the scalability and efficiency 269

of training Linear-MoE models with long-context 270

sequences on extensive compute resources. A de- 271

tailed breakdown of the SP algorithm on Linear- 272

MoE, with and without masking, is provided in 273

Appendix A.4. 274

2.2.2 Hybrid Model Sequence Parallelism 275

Hybrid linear sequence modeling models, which 276

combine linear transformer layers (leveraging 277

LSM methods for token mixing) with standard 278

transformer layers (utilizing conventional self- 279

attention for token mixing), have demonstrated 280

substantial improvements in handling longcontext 281

tasks (Lieber et al., 2024; Ren et al., 2024; Waleffe 282

et al., 2024). This hybrid model is particularly ben- 283

eficial for tasks with high recall requirements, in- 284

cluding five-shot MMLU (Hendrycks et al., 2020), 285

Phone-book lookup (Jelassi et al., 2024), and Nee- 286

dle In A Haystack (Briakou et al., 2023), etc.. Our 287

proposed hybrid Linear-MoE models also aim to 288

enhance performance in areas where pure Linear- 289

MoE models have shown limitations, specifically 290

on tasks where recall precision is critical. 291

Applying SP on pure Linear-MoE models is 292

straightforward, as this form of SP operates exclu- 293

sively on the LSM modules, leaving the MoE layers 294

unaffected. In hybrid Linear-MoE models, how- 295

ever, implementing SP becomes more complex due 296

to the interleaving of distinct sequence modeling 297

layers. To effectively optimize SP for these hybrid 298

models, we introduce an integrated approach that 299

incorporates SP across both the linear-MoE and 300

standard transformer layers, thus enhancing overall 301

efficiency. We illustrate the approach in Fig. 2, and 302
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Figure 2: Sequence Parallelism Approach on Hybrid Linear-MoE models. We exemplify the parallelism on the
hybrid layers of LSM and standard attention with both TP and SP (both have a dimension of 2). The communication
operations colored in yellow and green are for TP and SP, respectively. AG/RS: all-gather in forward and reduce-
scatter in backward, RS/AG: reduce-scatter in forward and all-gather in backward, AG/No: all-gather in forward
and no-op in backward, No/AG: no-op in forward and all-gather in backward. Note that the SP communication
operations for linear attention operate on the memory state Ms ∈ Rd×d, while for standard attention, they operate
on states Ks,Vs ∈ RC×d.

explain it as below:303

On LSM Module. The SP for LSM modules304

is implemented via a single collective communica-305

tion operation on the memory state Ms ∈ Rd×d.306

This approach ensures that the communication com-307

plexity does not depend on either the sequence or308

sub-sequence length; rather, it scales only linearly309

with the SP size T , thereby maintaining efficiency310

in distributed setups.311

On Standard Attention Module. Context par-312

allelism (CP) is a SP technique used in Megatron-313

LM that divides input data and activations along314

the sequence dimension, specifically designed for315

standard softmax attention. Traditional CP imple-316

mentations in Megatron-LM rely on a ring-like317

communication-computation overlap (Liu et al.,318

2023). In contrast, our approach for standard atten-319

tion modules adopts the all-gather-based strategy320

used in the pretraining of Llama3 (Dubey et al.,321

2024). Rather than utilizing a ring strategy, we322

perform all-gather communication for Ks and Vs323

tensors across devices, followed by local compu-324

tation of attention output on each device’s chunk325

of Qs. While all-gather communication theoreti-326

cally has higher latency than ring-based methods,327

it offers greater flexibility and adaptability for han-328

dling different attention masks, such as document-329

level masks, making it ideal for varying attention330

patterns. Moreover, the latency of all-gather is331

minimized since the Ks and Vs tensors are no-332

tably smaller than the Qs tensor, especially with333

grouped query attention (Ainslie et al., 2023). Con-334

sequently, the computational time for generating335

attention output significantly outweighs the cost of336

all-gather communication. 337

2.2.3 Hybrid Parallelism 338

SP in Linear-MoE allows for a flexible choice of 339

sequence parallel size that can be set to any factor 340

smaller than or divisible by the total number of 341

distributed nodes (i.e., the world size). This flexi- 342

bility enables splitting input data across both batch 343

and sequence dimensions, creating a combined ap- 344

proach known as data-sequence hybrid parallelism. 345

Standard data parallelism techniques, such as Dis- 346

tributed Data Parallel (DDP) (Li et al., 2020), can 347

integrate seamlessly with SP in Linear-MoE. Addi- 348

tionally, the sharded data parallelism method, like 349

Distributed Optimizer (Korthikanti et al., 2022) in 350

Megatron-Core, is also compatible. 351

Furthermore, the system provides support for TP, 352

PP, and EP specifically tailored for Linear-MoE 353

models. In the case of TP, its application to Linear- 354

MoE models is direct and efficient, as detailed in 355

§A.3. Regarding PP and EP, these parallelism tech- 356

niques operate on Linear-MoE in much the same 357

way as their original versions since they are not 358

involved in the inner computations of the LSM 359

modules but rather work at the level of complete 360

Linear-MoE blocks or MoE layers. Moreover, TP, 361

PP, and EP can be combined with DP and SP as 362

introduced earlier, enhancing flexibility and scala- 363

bility for large distributed setups. 364

2.2.4 Variable Length 365

During pretraining, batches generally consist of se- 366

quences with a uniform length. However, in the 367

finetuning phase or during inference, the model 368

often encounters batches containing sequences of 369
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Figure 3: Linear-MoE System Implementation. The
Linear-MoE system is composed of two main subsys-
tems: Modeling and Training. It is developed in a
non-intrusive manner, utilizing the latest version of
Megatron-Core. All components within the system are
designed with extensibility in mind, encompassing the
LSM modules, base models, examples, and training
technologies. This design allows for future enhance-
ments and expansions of the system.

different lengths. A common approach to handle370

this variation is to right-pad each sequence in the371

batch so that all match the length of the longest372

sequence in that batch. While straightforward, this373

padding strategy can lead to inefficiencies, particu-374

larly when sequence lengths vary greatly within a375

batch. For standard transformers, more advanced376

methods have been introduced to address this issue.377

These methods include techniques like distribut-378

ing workloads across GPUs to avoid padding alto-379

gether (Zeng et al., 2022; Zhai et al., 2023), or pack-380

ing multiple sequences into a single batch while381

adjusting the attention mask as needed (Ding et al.,382

2024; Pouransari et al., 2024). In Linear-MoE, han-383

dling variable-length sequences is simplified by384

processing the entire batch as one continuous long385

sequence, effectively managing varying sequence386

lengths without the need for padding.387

3 Empirical Study388

3.1 Experiment Setup389

Models and Dataset. We conduct experiments390

on two Linear-MoE model series: A0.3B-2B and391

A1B-7B. A0.3B-2B denotes a Linear-MoE model392

containing a total of 2 billion parameters, with 0.3393

billion parameters activated. The same applies394

for the A1B-7B model. Each series consists of395

several model instances, each incorporating a dis-396

Models A0.3B-2B A1B-7B

Hidden Dimension 1024 2048
FFN Dimension 896 1024
Num of Heads 8 16
Num of Layers 12 16

Num of Act Experts 8 8
Num of Experts 64 64

LR 1e-4 1e-5
Minimum LR 1e-5 1e-6
LR Scheduler Cosine Cosine
Seq Length 2048 2048

Training Tokens 15B 100B

Table 2: Linear-MoE Family Models and Training
Configurations. A0.3B-2B indicates that the Linear-
MoE model has a total of 2 billion parameters, with 0.3
billion parameters activated. The same for A1B-7B.
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Figure 4: Training Throughput (Tokens/s). As se-
quence length increases, the throughput of Baseline
declines significantly, whereas LSM models maintain
stable training efficiency.

tinct instance of the LSM module. The specific 397

LSM module instances used in our experiments in- 398

clude: basic linear attention (BLA) (Katharopoulos 399

et al., 2020), Retentive Network (Retention) (Sun 400

et al., 2023), Gated Linear Attention (GLA) (Yang 401

et al., 2023), DeltaNet (Schlag et al., 2021), 402

Mamba2 (Dao and Gu, 2024), HGRN2 (Qin et al., 403

2024d), and RWKV6 (Peng et al., 2023, 2024), all 404

implemented in Triton. These model instances are 405

evaluated against models with standard attention 406

implementation in Megatron-Core (referred to as 407

Baseline) and the FlashAttention-2 (Dao, 2023) 408

implemented in Transformer Engine (in CUDA). 409

To implement the Linear-MoE model instances, 410

we utilize the Qwen2 MoE architecture (Yang et al., 411

2024a) as the base model. All models are pre- 412

trained from scratch on a portion of the SlimPajama 413

dataset (Soboleva et al., 2023). This dataset orig- 414

inally contains 627 billion tokens, we restrict our 415

experiments to the first two chunks of the dataset, 416
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Seq Length × Batch Size 2K × 8 4K × 4 8K × 2 16K × 1

Mem. Thpt. Mem. Thpt. Mem. Thpt. Mem. Thpt.

Baseline 40.74 102.14 41.42 88.60 42.93 66.17 47.08 49.39
FlashAttn-2 38.96 103.91 39.10 101.78 39.57 105.08 41.51 96.16

Basic LA 42.69 115.16 43.85 119.72 42.71 112.66 43.00 114.67
Retention 42.71 117.85 42.66 119.11 42.73 119.16 42.65 118.19

GLA 43.87 113.29 43.73 118.77 43.63 116.34 43.60 110.87
DeltaNet 43.33 116.95 43.34 120.27 43.31 117.43 43.32 109.72
Mamba2 45.63 105.99 45.94 108.13 47.16 102.51 44.97 106.84
HGRN2 46.03 92.58 46.14 95.74 45.56 97.98 44.97 96.02
RWKV6 47.11 137.62 47.12 136.73 47.11 135.60 47.12 134.51

Table 3: Quantitative Training Efficiency Results. We experiment on 8 A100 GPUs and report the max allocated
GPU memory (GB) and throughput (×103 tokens/s) of A0.3B-2B model instances with varying input sequence
lengthes and batch sizes.

MoE Optimization Memory (GB) Time/Iter (ms)

Baseline 35.28 1565.6
Grouped GEMM 35.01 455.4

MegaBlocks 36.90 348.8

EP TP PP Memory (GB) Time/Iter (ms)

1 1 1 35.28 1565.6
8 1 1 22.98 739.4
1 8 1 10.04 6879.0
1 1 8 8.89 1820.2
2 2 2 12.90 1684.9

Table 4: Above: MoE Optimization. Below: Dis-
tributed training efficiency under different paral-
lelism settings. We report the memory usage per GPU
(GB) and elapsed time per iteration (ms) while training
the A0.3B-2B model with a sequence length of 2048
and a batch size of 4, using a node equipped with 8
A100 GPUs. The Baseline refers to the MoE imple-
mentation in Megatron-Core, which is used without any
optimizations.

totaling approximately 100 billion tokens. The417

Qwen2 tokenizer is employed throughout the train-418

ing processes.419

Training Configurations. Table 2 details the420

training configurations for both Linear-MoE model421

series. We employ the Adam optimizer (Kingma422

and Ba, 2014) along with parallelism techniques,423

including TP and EP. Each pretraining run is per-424

formed on a node with eight A100 80G GPUs.425

3.2 Training and Inference Efficiency426

We perform experiments to evaluate the training427

efficiency of the Linear-MoE system, focusing on428

throughput and GPU memory requirements using429

eight A100 GPUs. For training the sparse MoE430

models, we set the EP size as 8. During the experi-431

ments, we maintain a total of 16K input tokens per432

iteration, while varying the input sequence lengths433

across {2K, 4K, 8K, 16K} with corresponding 434

batch sizes of {8, 4, 2, 1}. As illustrated in Table 435

3 and Fig. 4, we observe that the standard atten- 436

tion Baseline shows a significant quadratic increase 437

in memory usage and a decline in throughput as 438

the input sequence lengths grow. FlashAttention-2 439

also demonstrates notable variations in both mem- 440

ory footprint and throughput, when the sequence 441

length reaches 16K. In contrast, the Linear-MoE 442

models, which incorporate LSM, exhibit relatively 443

stable GPU memory consumption and consistent 444

throughput when the sequence length increases, but 445

number of input tokens remains fixed. 446

We also perform experiments to compare the 447

inference efficiency of Linear-MoE (using Basic 448

LA) with the Baseline (using FlashAttention-2). 449

The results, shown in Table 5, reveal that Linear- 450

MoE offers a significant speed advantage when 451

the decoding length exceeds 16K. Additionally, its 452

memory usage remains constant, which is a key 453

benefit resulting from the adoption of LSM. 454

Furthermore, to highlight the efficiency benefits 455

of the Linear-MoE training subsystem, we conduct 456

ablation studies on MoE optimization techniques 457

and parallelism training methods. The results of 458

these experiments are presented in Table 4. It is 459

evident that the implementation of MoE optimiza- 460

tion techniques, specifically Grouped GEMM and 461

MegaBlocks, significantly reduces the elapsed time 462

for each iteration. Additionally, the various paral- 463

lelism training techniques each demonstrate their 464

own advantages in terms of memory footprint and 465

overall training efficiency. 466

3.3 Training Loss and Evaluation 467

To evaluate the overall training performance of the 468

Linear-MoE models, we pretrain the A0.3B-2B and 469

A1B-7B model instances using 15B and 100B to- 470
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Figure 5: Inference Efficiency of A0.3B-2B Model Instances. We variate the decoding length from 1K to 128K
with fixed batch size of 16 on single A800 80GB GPU to evaluate the Baseline w/ FlashAttention-2 and the
Linear-MoE w/ Basic Linear Attention in terms of inference latency time and GPU memory usage.
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Figure 6: Training Loss Curves of A0.3B-2B Model Instances. Left: pure Linear-MoE models; Right: hybrid
Linear-MoE models. Linear-MoE shows competitive training convergence performance compared to the standard
attention Baseline.

kens, respectively. We test both pure and hybrid471

model configurations; for the hybrid models, we in-472

corporate one quarter of standard transformer MoE473

layers throughout the architecture. For instance, in474

the 12-layer A0.3B-2B model, the hybrid config-475

uration follows the pattern "LLLNLLLNLLLN",476

while the 16-layer A1B-7B model adopts the pat-477

tern "LLLNLLLNLLLNLLLN".478

The training loss curves for the A0.3B-2B model479

instances, which include both pure and hybrid480

Linear-MoE models, are presented in Fig. 6. The481

results demonstrate that the pure Linear-MoE ar-482

chitecture achieves competitive convergence per-483

formance compared to the standard attention Base-484

line. Moreover, the hybrid models exhibit more sta-485

ble convergence and consistent performance when486

compared with the Baseline. Additional experi-487

ment results such as benchmark evaluations and488

training loss curves of A1B-7B models can be489

found in Appendix A.6. Both the A0.3B-2B and490

A1B-7B Linear-MoE model series show competi-491

tive performance on various benchmarks, and it is492

verified that hybrid models usually perform better493

than the pure linear models.494

4 Conclusion 495

In this paper, we introduced Linear-MoE, a novel 496

product-level system designed to integrate LSM 497

with MoEs, aiming to advance both the efficiency 498

and scalability of existing large models. By com- 499

bining linear-complexity sequence modeling capa- 500

bilities of LSM with sparsely activated MoE layers, 501

Linear-MoE achieves high performance while ad- 502

dressing computational and memory constraints 503

common in large model training and deployment. 504

The dual subsystems: Modeling and Training, pro- 505

vide a flexible and extensible framework that sup- 506

ports diverse LSM methods and advanced paral- 507

lelism techniques, including specific sequence par- 508

allelism for handling long input sequences effi- 509

ciently. We also explored hybrid models that fur- 510

ther enhance adaptability by incorporating stan- 511

dard Transformer layers. Our experimental results 512

demonstrate that Linear-MoE achieves significant 513

efficiency gains while maintaining strong perfor- 514

mance across various benchmarks. These findings 515

highlight the potential of Linear-MoE as the next 516

generation of foundation model architecture. 517
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Limitations518

Despite the promising results demonstrated in this519

paper, there are several limitations to the Linear-520

MoE framework. First, while the system success-521

fully combines LSM with MoEs to enhance effi-522

ciency, the integration of different LSM methods523

and MoE layers may introduce complexity in hy-524

perparameter tuning, which could impact model525

performance under certain configurations. Addi-526

tionally, the scalability of Linear-MoE in extremely527

large-scale settings, such as beyond the model sizes528

tested in our experiments (A0.3B-2B and A1B-7B),529

remains an area for further investigation. Moreover,530

while the system supports various parallelism tech-531

niques, their effectiveness on diverse hardware ar-532

chitectures, particularly in resource-constrained en-533

vironments, needs more comprehensive evaluation.534

Therefore, future work should focus on further opti-535

mizing the system for a broader set of use cases and536

exploring additional hybrid modeling strategies.537
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A Appendix 866

A.1 Datasets and Benchmarks 867

We pretrain all the models on a portion of the 868

SlimPajama dataset which is sampled to approxi- 869

mately 100 billion tokens. 870

• SlimPajama (Soboleva et al., 2023) is a 871

high-quality, optimized subset of the Red- 872

Pajama dataset, designed for large-scale lan- 873

guage model training. It includes diverse text 874

sources such as Common Crawl, Wikipedia, 875

books, and GitHub code, with a primary focus 876

on English. The dataset is cleaned, dedupli- 877

cated, and optimized for efficiency and perfor- 878

mance. 879

For the benchmark, we tested on these tasks: 880

• WikiText (Merity et al., 2016): A dataset con- 881

sisting of high-quality Wikipedia articles, pri- 882

marily in English, designed for language mod- 883

eling tasks with 62 test samples. The text 884

covers a wide range of topics, including his- 885

tory, science, and culture, and is authored by 886

Wikipedia contributors, who come from di- 887

verse demographic backgrounds. 888

• LAMBADA (Paperno et al., 2016): An 889

English-language dataset for evaluating con- 890

textual understanding in language models 891

with 5153 test samples. It consists of narrative 892

texts sourced from books, requiring models 893

to predict the final word of a passage. The 894

data reflects a mix of literary styles and author 895

demographics. 896

• ARC-Easy & ARC-Challenge (Clark et al., 897

2018): A set of multiple-choice science ques- 898

tions in English, sourced from standardized 899

exams and educational materials with 2376 900

and 1172 test samples. The dataset repre- 901

sents the domain of elementary and high 902

school science, with questions authored by 903

educators and test designers. ARC-Easy in- 904

cludes straightforward questions, while ARC- 905

Challenge contains more difficult ones that 906

require advanced reasoning. 907

• HellaSwag (Zellers et al., 2019): An English- 908

language dataset designed for commonsense 909

reasoning, where models must choose the 910

most plausible continuation of a sentence. The 911

text is derived from activity descriptions (e.g., 912

12



WikiHow), covering everyday scenarios. The913

dataset was constructed adversarially to be914

challenging for language models. It has 10003915

test samples.916

• PiQA (Bisk et al., 2020): A dataset focused on917

physical commonsense reasoning in English918

with 3084 test samples. The text consists of919

everyday tasks and scenarios, requiring mod-920

els to determine the most practical way to921

perform an action. The data is sourced from922

crowdsourced descriptions, reflecting a broad923

range of common human experiences.924

• WinoGrande (Sakaguchi et al., 2019): A925

large-scale English dataset for commonsense926

reasoning, based on the Winograd Schema927

Challenge with 1267 test samples. It tests pro-928

noun resolution in ambiguous contexts, with929

sentences sourced and refined through crowd-930

sourcing. The dataset aims to reduce annota-931

tion biases by diversifying sentence structures932

and topics.933

All datasets used in this work are publicly avail-934

able and have been released by their original cre-935

ators, who are responsible for ensuring privacy pro-936

tection. These datasets are used in accordance with937

their respective licenses and intended purposes. No938

modifications or derivative datasets have been cre-939

ated.940

A.2 Related Work941

A.2.1 Mixture-of-Experts942

MoE (Cai et al., 2024; Zhu et al., 2024) is gaining943

increasing attention in the development of large944

language models (LLMs) due to its ability to scale945

model size while maintaining computational effi-946

ciency. Its key strength lies in the sparse activa-947

tion of experts and routing mechanisms, enabling948

a better balance between model performance and949

training cost. The effectiveness of MoE in modern950

deep learning was first demonstrated in Shazeer951

et al. (2017), where an MoE layer was introduced952

between LSTM layers, resulting in state-of-the-art953

performance on language modeling and machine954

translation benchmarks. Following this, the MoE955

layer was incorporated into the Transformer archi-956

tecture, replacing the feed-forward network (FFN)957

layers. GShard (Lepikhin et al., 2020) applied MoE958

to Transformers, significantly improving machine959

translation across 100 languages. Switch Trans-960

formers (Fedus et al., 2022) further scaled model961

size to trillions of parameters, using a simplified 962

and efficient MoE layer design. However, training 963

MoE models often leads to load imbalance, where 964

only a few experts are heavily utilized, leaving 965

others underutilized. To address this, several strate- 966

gies have been developed to optimize MoE training. 967

These include the BASE layer (Lewis et al., 2021), 968

the HASH layer (Roller et al., 2021), and Expert 969

Choice (Zhou et al., 2022), all of which aim to max- 970

imize model capacity utilization. MoE architec- 971

tures have been widely adopted in industry-leading 972

models, such as Gemini-1.5 (Reid et al., 2024) and 973

reportedly GPT-4 (Chintala, 2023). Other notable 974

examples of LLMs incorporating MoE techniques 975

include Mixtral (Jiang et al., 2024), DeepSeek 976

V2 (Liu et al., 2024), Qwen2 (Yang et al., 2024a), 977

JetMoE (Shen et al., 2024), Jamba (Team et al., 978

2024), and OLMoE (Muennighoff et al., 2024). 979

Despite the advances in MoE, most research has fo- 980

cused on improving FFN layers and routers, while 981

attention mechanisms have remained largely un- 982

changed. There is still much room for exploring 983

how to enhance the efficiency of MoE models by 984

evolving their attention layers. 985

A.2.2 Linear Sequence Modeling 986

Linear Attention. Linear attention encompasses 987

a set of techniques aimed at calculating atten- 988

tion outputs using the "right-product kernel trick," 989

which first computes key-value products, thereby 990

avoiding the quadratic complexity associated with 991

query-key computations. Vanilla linear atten- 992

tion (Katharopoulos et al., 2020) replaces the 993

Softmax attention (Vaswani et al., 2017) with ker- 994

nel methods, reducing the computational complex- 995

ity to linear in relation to sequence length. Building 996

on this, various extensions of linear attention have 997

emerged. For example, TransNormerLLM (Qin 998

et al., 2024a) introduces Lightning Attention, an op- 999

timized linear attention mechanism that speeds up 1000

processing by enhancing IO operations. Lightning 1001

Attention-2 (Qin et al., 2024c) further improves this 1002

by separately handling inter- and intra-block com- 1003

putations to fully exploit the advantages of linear at- 1004

tention on autoregressive tasks. RetNet (Sun et al., 1005

2023) combines a retention mechanism with atten- 1006

tion, offering both parallel training and linear-time 1007

inference. Gated Linear Attention (GLA) (Yang 1008

et al., 2023) introduces a data-independent gating 1009

mechanism and presents a hardware-efficient algo- 1010

rithm for training. DeltaNet (Schlag et al., 2021), 1011

along with its parallelized version (Yang et al., 1012
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2024b), applies a delta-rule-like update to improve1013

performance in long-context scenarios. More re-1014

cently, Gated Slot Attention (GSA) (Zhang et al.,1015

2024), inspired by GLA, introduces a bounded-1016

memory slot control mechanism within the gated1017

linear attention framework, further boosting perfor-1018

mance in tasks requiring strong recall abilities.1019

State Space Modeling. SSM provides a robust1020

framework for capturing the behavior of sequence1021

modeling within dynamic systems, and has demon-1022

strated itself in the field of linear sequence mod-1023

eling. Models such as S4 (Gu et al., 2022b) and1024

its subsequent variants (Gu et al., 2022a; Gupta1025

et al., 2022) have achieved notable success, par-1026

ticularly in long-range synthetic tasks. A recent1027

example is Mamba (Gu and Dao, 2023), a represen-1028

tative SSM model that introduces a state selection1029

mechanism. Mamba addresses the limitation of1030

static dynamics in previous methods, arguing that1031

they do not account for input-specific context se-1032

lection within the hidden state, which is critical for1033

tasks like language modeling. Mamba has shown1034

superior performance compared to Transformers1035

across various model sizes and scales. Mamba has1036

been further refined in its successor, Mamba2 (Dao1037

and Gu, 2024), which integrates a linear attention-1038

like mechanism that improves hardware efficiency1039

during training. Similar to how linear attention1040

uses outer products to expand the state, Mamba21041

leverages a state-space duality that enables paral-1042

lel attention-style computation while maintaining1043

recurrent inference capabilities.1044

Linear RNN. Traditional RNNs struggle with1045

long-context sequence modeling, largely due to1046

their sequential nature during training, which limits1047

their ability to benefit from scaling laws (Sun et al.,1048

2023). To mitigate these issues, Linear RNNs intro-1049

duce parallel training capabilities, achieving com-1050

petitive performance with Transformers of com-1051

parable size. RWKV (Peng et al., 2023, 2024)1052

is an example of a large language model based1053

on linear RNNs, designed to effectively manage1054

long-term dependencies. Furthermore, HGRN (Qin1055

et al., 2024e) emphasizes the importance of data-1056

dependent decay mechanisms in enhancing linear1057

RNN performance, showing how tuning decay pa-1058

rameters can improve learning in long-context sce-1059

narios. The upgraded HGRN2 (Qin et al., 2024d)1060

builds on this by introducing a state expansion1061

mechanism that leverages outer product opera-1062

tions, allowing for better scalability and improved1063

sequence modeling over extended inputs. Both1064

RWKV and HGRN models aim to address the 1065

limitations of traditional RNNs for efficient long- 1066

sequence modeling. 1067

A.3 Tensor Parallelism on Linear-MoE 1068

The core computation mechanism of LSM modules 1069

can be abstracted in the following general form: 1070

O = ϕ(Q)(ϕ(K)⊤V),

Q = XWq,K = XWk,V = XWv,
(6) 1071

where TP is applied by splitting the matrix multi- 1072

plications as follows: 1073

Q = [ϕ(XW1
q), ϕ(XW2

q)],

K = [ϕ(XW1
k), ϕ(XW2

k)],

V = X[W1
v,W

2
v],

O = [O1,O2],

(7) 1074

where the weight matrices Wq, Wk, and Wv are 1075

divided along their columns, producing an output 1076

matrix O that is also split along columns. 1077

The split output [O1,O2] is then multiplied by 1078

an output linear weight matrix that is split along its 1079

rows, resulting in: 1080

O = [O1,O2][W
1
o,W

2
o]
⊤

= O1W
1
o +O2W

2
o,

(8) 1081

which produces a unified output. 1082

As with TP in standard attention, TP for LSM 1083

modules introduces an all-reduce collective com- 1084

munication operation during both the forward and 1085

backward passes. In practical terms, this all-reduce 1086

operation is implemented via two separate steps: 1087

all-gather and reduce-scatter, which together func- 1088

tionally achieve the same result as a single all- 1089

reduce. 1090

A.4 Sequence Parallelism on Linear-MoE 1091

Algorithm 1 SP on Linear-MoE w/o Masking
1: Input: input sequence X, distributed world size W , se-

quence parallel size T = W .
2: Distribute X = [Xt]

T
1 .

3: for chunk t ∈ {1, · · · , T} on ranks {1, · · · ,W} in par-
allel do

4: Calculate Qt = XtWQ, Kt = XtWK , Vt =
XtWV .

5: Compute Mt = K⊤
t Vt.

6: Communicate [Mt]
⊤
1 = AllGather([Mt]

⊤
1 ).

7: Compute M1:T = Sum([Mt]
T
1 ).

8: Compute Ot = QtM1:T .
9: end for

10: return O = [Ot]
T
1 .
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Algorithm 2 SP on Linear-MoE w/ Masking
1: Input: input sequence X, distributed world size W , se-

quence parallel size T = W .
2: Distribute X = [Xt]

T
1 .

3: Initialize mask matrix Ψ, where Ψij = 1 if i ≥ j and
Ψij = −∞ if i < j.

4: for chunk t ∈ {1, · · · , T} on ranks {1, · · · ,W} in par-
allel do

5: Calculate Qt = XtWQ, Kt = XtWK , Vt =
XtWV .

6: Compute Mt = (Kt)
⊤Vt.

7: Communicate [Mt]
⊤
1 = AllGather([Mt]

⊤
1 ).

8: Compute Ot,intra = [(QtK
⊤
t )⊙Ψ]Vt.

9: Compute prefix sum

M1:t−1 = PrefixSum([Mt]
t−1
1 ).

10: Compute Ot,inter = QtM1:t−1.
11: Compute Ot = Ot,intra +Ot,inter.
12: end for
13: return O = [Ot]

T
1 .

A.5 Implementation1092

The implementation of the Linear-MoE system is1093

based on Megatron-Core, an open-source library1094

developed on PyTorch that incorporates optimized1095

GPU techniques and advanced system-level en-1096

hancements. As depicted in Fig. 3, the Linear-MoE1097

system consists of both modeling and training sub-1098

systems, facilitating adaptable model building and1099

efficient training specifically for Linear-MoE mod-1100

els. Leveraging the capabilities of Megatron-Core,1101

the Linear-MoE library is fully compatible with all1102

NVIDIA Tensor Core GPUs, including support for1103

FP8 acceleration on NVIDIA Hopper architectures.1104

The Linear-MoE design approach aims to min-1105

imize any invasive changes to Megatron-Core’s1106

source code. Rather than adding new modules1107

directly, Linear-MoE operates independently, al-1108

lowing users to benefit from the latest LLM prac-1109

tices without disruptions due to updates or changes1110

within Megatron-Core.1111

A.5.1 Modeling Subsystem1112

Linear-MoE abstracts its LSM modules into modu-1113

lar and composable APIs, providing model devel-1114

opers and researchers with extensive flexibility to1115

design and train large-scale custom Linear-MoE1116

models on accelerated computing platforms. The1117

system includes essential building blocks, such as1118

core components for LSM mechanisms, MoE lay-1119

ers and Linear-MoE blocks, normalization tech-1120

niques, and embedding methods. To enhance adapt-1121

ability, LSM mechanisms are organized into three1122

main categories: linear attention, SSM, and linear1123

RNN, with multiple instances available in each. For1124

linear attention, options include basic linear atten- 1125

tion (BLA), Lightning Attention, Retention, GLA, 1126

DeltaNet, Based, and Rebased; for SSM, we pro- 1127

vide Mamba2, the leading SSM model at present; 1128

and for linear RNN, options include HGRN2 and 1129

RWKV6. As LSM techniques evolve, Linear-MoE 1130

will continue to incorporate more LSM methods 1131

to ensure users have access to the latest advance- 1132

ments. 1133

Additionally, Linear-MoE offers vital compo- 1134

nents such as a model library, tokenizers, model 1135

converters, usage examples, and a set of supportive 1136

toolkits. The model library includes instances of 1137

Linear-MoE models that are adapted from state- 1138

of-the-art open-source MoE architectures, includ- 1139

ing Qwen2 MoE, DeepSeekV2 MoE, and Mix- 1140

tral MoE. These adapted instances are designated 1141

as Linear-MoE-Qwen2, Linear-MoE-DeepSeekV2, 1142

and Linear-MoE-Mixtral, respectively. These mod- 1143

els are implemented following Megatron-Core for- 1144

mat, with the standard attention layers replaced by 1145

LSM-based token mixing layers, while maintaining 1146

the original embedding, normalization, and expert 1147

layers unchanged. 1148

A.5.2 Training Subsystem 1149

Advanced parallelism techniques, encompassing 1150

tensor, sequence, pipeline, context, and MoE ex- 1151

pert parallelism, are seamlessly incorporated into 1152

the Linear-MoE system through its design on top of 1153

the Megatron-Core library. This non-intrusive inte- 1154

gration allows Linear-MoE to leverage the robust 1155

training capabilities of Megatron-Core, supporting 1156

large-scale model training across both standard at- 1157

tention layers and MoE expert layers. However, the 1158

inherent parallelism mechanisms, such as TP and 1159

SP, were not originally optimized for LSM mod- 1160

ules. Additionally, Megatron-Core does not fully 1161

support efficient SP for hybrid models containing 1162

both LSM modules and standard attention layers. 1163

To address these gaps, we elaborate on our TP and 1164

SP approaches specifically designed for LSM mod- 1165

ules and hybrid models, as discussed in §2.2. 1166

Further capabilities, including mixed precision, 1167

activation recomputation, distributed optimizer, 1168

distributed checkpointing, and CPU offloading, 1169

are also inherited from Megatron-Core, enhanc- 1170

ing model training flexibility and efficiency. And 1171

Linear-MoE supports 8-bit floating point (FP8) pre- 1172

cision on Hopper GPUs, benefiting from the in- 1173

tegration of NVIDIA’s Transformer Engine (Mi- 1174

cikevicius et al., 2022). This feature optimizes 1175
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memory usage and accelerates performance during1176

both training and inference stages.1177

To enhance the training speed of MoE layers, we1178

incorporate MegaBlocks (Gale et al., 2023) into1179

our Linear-MoE system. MegaBlocks is designed1180

to optimize MoE training on GPUs by reconfig-1181

uring MoE computations using block-sparse op-1182

erations and developing new block-sparse GPU1183

kernels that effectively manage the inherent dy-1184

namism of MoEs. In addition, we also integrate the1185

Grouped GEMM library into Linear-MoE, which1186

introduces grouped GEMM kernels in PyTorch,1187

thereby accelerating the computational processes1188

involved in training MoE models.1189

A.5.3 Evaluation Module1190

In order to facilitate the evaluation on mainstream1191

benchmarks, we have developed offline text gen-1192

eration of Linear-MoE models within the system.1193

Based on this, mature evaluation frameworks such1194

as OpenCompass (Contributors, 2023) and LM-1195

Evaluation-Harness (Gao et al., 2023), are readily1196

available for conducting evaluation tasks on Linear-1197

MoE models. Furthermore, the system facilitates1198

seamless bidirectional conversion between model1199

weights from HuggingFace and Megatron-Core.1200

This functionality enables users to easily leverage1201

pretrained models from HuggingFace for contin-1202

ued pretraining or fine-tuning within the Megatron-1203

Core environment. Additionally, it allows for the1204

assessment of model performance by using Hug-1205

gingFace’s evaluation and inference pipelines on1206

models trained within the Megatron-Core frame-1207

work.1208

A.6 Additional Experiments1209
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Figure 7: Training Loss Curves of A1B-7B Model
Instances.
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Scale Model LSM
Instance

PIQA Hella. Wino. ARC-e ARC-c MMLU Avg. Avg.

acc ↑ acc_norm ↑ acc ↑ acc ↑ acc_norm ↑ acc(5-shot) ↑ ↑ (no MMLU)↑

Baseline Attention 55.77 27.10 50.83 33.04 23.21 23.24 35.53 37.99

A0.3B-2B
15B Tokens

Pure

BLA 64.42 33.41 49.01 48.15 24.32 26.32 40.94 43.86
Retention 62.08 29.14 50.75 42.72 21.50 23.12 39.60 43.39
GLA 65.56 35.29 50.67 47.81 23.04 24.85 41.20 44.47
Mamba2 66.97 37.79 50.20 49.12 24.74 25.85 42.45 45.76
HGRN2 52.50 26.37 49.01 24.83 27.65 25.10 34.24 36.07

Hybrid

BLA 66.76 37.16 49.96 49.62 24.74 25.64 42.31 45.65
Retention 66.21 36.06 51.54 47.18 24.91 23.71 41.60 45.18
GLA 67.71 38.62 49.72 50.51 26.02 25.05 42.94 46.52
Mamba2 66.38 38.81 51.30 50.17 24.91 24.61 42.70 46.31
HGRN2 66.27 36.79 51.46 48.82 25.43 23.19 41.99 45.75

Table 5: A0.3B-2B Evaluation Results on Language Modeling Benchmarks (No Data Corruption). All models
are pretrained from scratch on the same 15B subset of the SlimPajama dataset with the Qwen2 tokenizer. No bench-
mark data corruption in the pretraining dataset. The A0.3B-2B hybrid models have a stack as "LLLNLLLNLLLN",
where "L" represents the Linear-MoE layer, and "N" represents the normal MoE transformer layer.

Scale Model LSM
Instance

PIQA Hella. Wino. ARC-e ARC-c MMLU Avg. Avg.

acc ↑ acc_norm ↑ acc ↑ acc ↑ acc_norm ↑ acc(5-shot) ↑ ↑ (no MMLU)↑

A1B-7B
100B Tokens Pure

BLA 66.65 37.74 50.12 50.80 24.23 23.71 42.21 45.91
GLA 68.17 43.51 51.22 52.48 25.09 24.83 44.22 48.09
Mamba2 69.21 41.86 51.46 52.86 25.17 23.66 44.04 48.11

Table 6: A1B-7B Evaluation Results on Language Modeling Benchmarks (No Data Corruption). All models
are pretrained from scratch on the same 15B subset of the SlimPajama dataset with the Qwen2 tokenizer. No
benchmark data corruption in the pretraining dataset.
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