
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIGH-FIDELITY GENERALIZABLE NEURAL SURFACE
RECONSTRUCTION WITH SPARSE SCENE REPRESEN-
TATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizable neural surface reconstruction has become a compelling technique
at reconstructing 3D scenes from sparse input views without per-scene optimiza-
tion. In these methods, dense 3D feature volumes have proven very effective
as a global scene representation. Unfortunately, this representation severely lim-
its their high-resolution modeling abilities and reconstruction accuraciy because
memory requirements scale cubically with voxel resolution. In this paper, we
propose a novel sparse-representation approach that dramatically improves mem-
ory efficiency and allows for more accurate surface reconstructions. Our method
employs a two-stage pipeline: We first train a neural network to predict voxel
occupancy probabilities from the given posed images, then we restrict feature
computation and volume rendering to the sparse voxels with sufficiently high
occupancy estimates. To support this sparse representation, we develop special-
ized algorithms for efficient sampling, feature aggregation, and spatial querying
that overcome the dense-volume assumptions of existing approaches. Extensive
experiments on standard benchmarks demonstrate that our sparse representation
enables scene reconstruction at a 5123 resolution, compared to the typical 1283
resolution possible with existing methods on similar hardware. We also achieve
superior reconstruction accuracy compared to current state-of-the-art approaches.
Our work establishes sparse neural representations as a promising direction for
scalable, high-quality 3D reconstruction.

1 INTRODUCTION

The emergence of neural implicit representation techniques, starting with the seminal Neural Ra-
diance Fields (NeRF) (Mildenhall et al., 2020) and continuing with Neural Implicit Surfaces
(NeuS) (Yariv et al., 2020; Wang et al., 2021a; Yariv et al., 2021; Li et al., 2023), has greatly boosted
novel view synthesis and multi-view geometry reconstruction. These implicit surface reconstruction
algorithms take posed images as input, and optimize a Signed Distance Function (SDF) to minimize
a volume rendering loss, which yields accurate 3D reconstructions given enough views. A major
drawback, however, is that the optimization must be performed from scratch for every new set of
views, which makes these approaches computationally demanding. Furthermore, accuracy tends to
decline when only a few views are available. Newer 3D Gaussian Splatting-based methods (Kerbl
et al., 2023) are subject to the same limitations (Huang et al., 2024; Yu et al., 2024).

Generalizable approaches to Neural Surface Reconstruction (GNSRs) (Liang et al., 2024; Ren et al.,
2023; Xu et al., 2023; Long et al., 2022; Na et al., 2024; Younes et al., 2024) are designed to re-
move these restrictions. These methods are pre-trained on a large number of scenes. As a result, the
rendering of a novel scene simply becomes a test-time inference procedure, without any optimiza-
tion required. Volume rendering and scene reconstruction are performed by relying on a 3D scene
representation produced by a neural network that takes as input the images. This representation is
typically in the form of a dense volume of high-dimensional features. However, even though they
are much faster, these methods still have yet to achieve their full potential because the necessary
volumetric feature representation is extremely memory-intensive. This drastically constrains their
operational resolution as shown in Tab. 1, and adversely impacts reconstruction quality and detail
preservation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Multi-view Images Occupancy Field @ 1283 Supersampled @ 5123 Reconstructed Surface

Figure 1: Two-Stage Approach. From multiple images, we predict occupancy field that is then
supersampled to build a sparse scene representation. This lets us reconstruct high-fidelity surfaces
by operating at previously unattainable 5123 resolution.

Sparse scene representation is a natural answer to this problem. Since surfaces are mathematically
of measure zero, they occupy only a small fraction of voxels in a discretized 3D space, which may
be leveraged for high-resolution, memory-efficient reconstruction. However, this brings significant
challenges. Even though there has been work in that direction, no truly satisfactory approach exists
yet. For example, SparseNeuS (Long et al., 2022) uses a coarse-to-fine scheme but still has to query
a densified feature volumes, which negates the benefit of doing so.

In this paper, we propose a novel and effective way of bringing sparsity into GNSRs. Specifically,
we introduce a nested two-stage architecture that enables our GNSR to operate at significantly higher
resolutions than previous ones, while maintaining both generalizability across scenes and the ability
to handle cases where only a limited number of views are available. As illustrated by Fig. 1, the two
stages perform the following tasks:

1. Computing occupancy at low resolution. Voxels from a coarse grid are labeled as con-
taining a surface element or not, by training a network using posed images as input. To
avoid missing out parts of the surface, we implemented this so as to avoid false negatives.

2. Computing sparse feature representations at a high resolution. High-dimensional fea-
tures are constructed at a higher-resolution but only within the occupied voxels, where vol-
ume rendering can be performed. This allows for fine-grained neural surface reconstruction
while keeping memory and computational costs at a minimum.

Methods 1283 1923 2563 5123

SparseNeuS (Long et al., 2022) ✓ ✓ ✗ ✗
VolRecon (Ren et al., 2023) ✓ ✗ ✗ ✗
ReTR (Liang et al., 2024) ✓ ✗ ✗ ✗

Ours (SVRecon) ✓ ✓ ✓ ✓

Table 1: Resolutions handled by GNSR algo-
rithms at training time. Crosses indicate that the
memory requirements were too large on a 32GB
NVIDIA Tesla V100 GPU, with the same set-
ting of batch size 1 and 1024 sampled rays for all
methods.

Fig. 2 summarizes our Sparse Volumet-
ric Reconstruction approach, which we dub
SVRecon. While it is is conceptually simple,
the new method requires rethinking and refor-
mulating the algorithms used by existing meth-
ods, which are designed for handling dense rep-
resentations. To this end, we develop new al-
gorithms dedicated to handling sparse feature
volumes to perform ray sampling, feature ag-
gregation, and query operations. These techni-
cal innovations are key to realizing the theoret-
ical memory advantages of our approach while
maintaining computational efficiency.

Testing on public datasets demonstrates that our sparse-representation method is highly effective,
enabling us to operate at a high resolution of 5123 on standard hardware with 32GB of VRAM, thus
improving the final reconstruction accuracy beyond the state-of-the art.

2 RELATED WORKS

Multi-View Stereo. Multi-view stereo (MVS) has long been known to be effective for 3D recon-
struction (Fua, 1997; Hartley & Zisserman, 2000; Shum & Kang, 2000; Seitz et al., 2006; Furukawa
& Ponce, 2009; Lhuillier & Quan, 2005; Kostrikov & Gall, 2014; Kutulakos & Seitz, 2000). Mod-
ern multi-view stereo methods can be categorized into depth-map ones (Yao et al., 2018; 2019; Gu
et al., 2020; Wang et al., 2022; Ding et al., 2022; Cao et al., 2024) and volumetric ones (Ji et al.,
2017; 2020; Kar et al., 2017). Depth-map methods rely on view-dependent frustums as an indirect
model of 3D space, which limits the reconstruction accuracy without providing novel view render-
ing capabilities. Volumetric methods are directly related to our method, as they also operate on a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Multi-view images

F
P

N

Stage 1:

Occupancy
Prediction

Stage 2:

Sparse
Reconstruction

Dense Volume
Construction

3D Occupancy

F
P

N

Sparse Volumes
Construction

Sparse Feature
Aggregation

Volume Rendering
Transformers

Feature Aggregation
and Regression

Figure 2: SVRecon pipeline. First, we build a low-resolution dense 3D feature volume from multi-
view features and predict 3D occupancies. Second, we construct high-resolution sparse feature
volumes where the predicted occupancy warrants it. Finally, volume rendering Transformers are
used to aggregate per-ray sampled features and infer color and depth, enabling scene reconstruction.

volumetric 3D space. Comparatively, our scene representation and volume rendering formulation
makes it possible to recover finer details.
Neural Scene Reconstruction. The success of NeRFs (Mildenhall et al., 2020) has prompted
researchers to examine the use of Neural Implicit Representations for surface reconstruction as an
alternative to MVS. These line of works includes IDR (Yariv et al., 2020), VolSDF (Yariv et al.,
2021), NeuS (Wang et al., 2021a), and Neuralangelo (Li et al., 2023), which are able to recover fine
geometry given dense input views. More recently, SparseCraft (Younes et al., 2024) proposes to use
stereopsis cues regularization to enhance surface reconstruction qualities under sparse input views.
However, all these methods are not generalizable and need to be trained per scene.
Generalizable Surface Reconstruction. Many generalizable approaches have been proposed to
dispense with intensive per-scene optimization. These methods include volumetric methods such
as SparseNeuS (Long et al., 2022), VolRecon (Ren et al., 2023), ReTR (Liang et al., 2024); and
frustum-based 3D representations (Na et al., 2024; Xu et al., 2023). However, all of these methods
have to balance reconstruction quality against storage overhead due to the cost of their global scene
representations, which our method improves upon. We note that SparseNeuS bears some similarities
to our method in its coarse-to-fine scheme. However, their formulation still relies on densified
feature volumes and thus cannot be seen as a sparse representation, their method limitations are also
identified in our experiment by direct comparison. Please refer to Tab. 1 for a detailed comparison
of admissible resolutions of different methods.
Gaussian Splatting. Gaussian splatting (Kerbl et al., 2023) have emerged as a powerful alternative
to NeRF methods for novel view synthesis. The same trend is at work for 3D reconstruction, with
the advent of methods such as 2D Gaussian Splatting (Huang et al., 2024) and Gaussian Opacity
Fields (Yu et al., 2024). There are also recent attempts at making Gaussian Splatting generaliz-
able (Zhang et al., 2025). However, generalizable surface reconstruction is still an open problem for
Gaussian Splatting based methods due to the inherent difficulty to model surfaces with Gaussians.

3 BACKGROUND: GENERALIZABLE NERFS

We now briefly review the general formulation of the original and generalizable NeRFs. In both
cases, the goal is to reconstruct a scene captured by a set of posed images I = {(Ii, πi)}Mi=1, where
Ii ∈ RH×W×3 and πi ∈ R3×4 denote the projection matrix associated with the i-th view.

Given I as input, the aim is to learn a scene representation function F and a rendering function R

F :(x,d) → f , (1)

R :{(xi, fi)}Ni=1 → (C,D), (2)

where F maps a 3D location x ∈ R3 and viewing direction d ∈ S2 to a feature vector f ∈ RC , and
R is a function that takes ray-sampled feature vectors as input and outputs a rendered color C and
optionally a depth value D.

In the original NeRF, f directly encodes an emitted color and a volume density, R is a handcrafted
volume rendering function. The scene representation function F is implemented by a network with

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

weights λ. Learning them requires per-scene minimization of the photometric loss

argmin
λ

∑
Ci∈I

L(Ci − Ĉi) , (3)

where L is usually taken to be square norm.

In a generalizable NeRF, the feature vector f is high-dimensional and does not have physical mean-
ings. The handcrafted rendering function R is replaced by one implemented by a network with
weights ϕ, while F uses a different architecture that allows for generalization and has weights θ.
The weights θ and ϕ are learned by training on a large corpus of scenes D = {(Ii,Mi)}Nt

i=1, where
Mi denotes the ground-truth depth map corresponding to image Ii. This involves minimizing

argmin
θ,ϕ

∑
Ci,Di∈D

L(Ci − Ĉi) + L(Di − D̂i) . (4)

The key advantage over a vanilla NeRF is that, given the novel scene I, scene representation func-
tion F can be obtained via direct inference without the need of per-scene optimization as in Eq. 3.
We adopt this general formulation for our method. The main drawback is that having to store a
dense feature volume as scene representation and having to perform computations on it is memory
intensive, hence the resolution limitations of Tab. 1.

4 METHODOLOGY

We now present our SVRecon approach to generalizable NeRFs that requires far less memory and
can therefore be handle larger resolutions. Our main contribution lies in replacing the scene rep-
resentation function F of Eq. 1 by one that produces a sparse representation and that we denote
as S : (x,d) → f . As discussed in the introduction, S operates in two stages. It first estimates
occupancy in a low resolution—-typically 1283—-volume. The occupied voxels are then supersam-
pled to a higher resolution, typically 5123, and the high-dimensional features f are computed within
the resulting high-resolution voxels, as depicted by Fig. 2. The sparse representation creates chal-
lenges in volume rendering because the ray sampling, querying, and feature aggregations have to be
redesigned to handle sparse volumes instead of dense ones, which will also be discussed.

Note that, in theory at least, instead of adopting the simple occupancy prediction described above,
we could have used a more sophisticated octree-like structure, a popular choice to represent 3D
geometry sparsely. However, the variable-resolution structure of octrees would have made volume
rendering even more complex for no obvious gain.

In the remainder of this section, we first introduce the representation we use in both stages for indi-
vidual voxels and the corresponding features. We then present the two stages to compute our sparse
scene representation S. Finally, we discuss the learning of the θ and ϕ parameters by minimizing
Eq. 4 given such a sparse representation, under a volume rendering framework.

4.1 REPRESENTING VOXELS AND FEATURES

At low-resolution we use a dense volume while we use a sparse one at high-resolution. Yet, we
represent voxels in the same way in both cases. Given the center point x of a voxel, we first project
it onto the images to obtain M -view features

{fIi(πi(x))}Mi=1, (5)
by bilinear interpolation, where fIi denotes image features computed by using the Feature Pyramid
Network (Lin et al., 2017a). We then write the feature vector associated to x as

V(x) = MeanVar({fIi(πi(x))}Mi=1) , (6)
where MeanVar denotes the concatenation of per-channel mean and variance computed from the M -
view features, and V denotes the raw dense/sparse feature volumes before a 3D global aggregation
process. We take the dimension of V(x) to be the base feature channel Cf .

4.2 SPARSE SCENE REPRESENTATION

We now described the two stages—first occupancy prediction and then supersampling the occupied
voxels—involved in building a sparse scene representation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Occupancy Prediction Assuming that a scene bounding box is given, we voxelize it using a pre-
defined voxel resolution. Due to memory constraints, the resolution cannot be too high. We compute
the feature vector using Eq. 6 for each voxel, resulting in a dense feature volume Vd ∈ RC×K3

,
where K denotes the resolution. We then use a 3D U-Net (Ronneberger et al., 2015) Ψ followed by
a linear regression head R to go from raw features Vd to the occupancy prediction O ∈ RK3

. We
write

O = R(Ψ(Vd)) (7)

To train Ψ and R, we rely on the ground-truth surfaces to estimate ground-truth occupancies Ogt. In
practice, we generate point clouds by merging the ground truth depth maps of each input view. This
works better than using the ground-truth point cloud of the scene, which may contain points that are
occluded in the input views and thereby impossible to predict. Since the overwhelming majority of
voxels are empty in 3D space, we minimize a focal loss (Lin et al., 2017b) with focusing parameter
γ = 2 during training to counteract the large class-imbalance. We take it to be

Lfc = −
∑
i,j,k

(1− pijk)
γ log(pijk) (8)

where

pijk =

{
Oijk if Ogt

ijk = 1

1−Oijk if Ogt
ijk = 0

At inference time, we simply threshold the occupancy predictions and apply a dilation process to
yield the final binary predictions Õ = dilate(I(O ≥ τ)). The predicted occupancy is critical to the
performance of our method. We prioritize recall in our method by using a small τ and employing a
dilation process to ensure least geometry loss. See Supp. A.2 for more details.

Supersampling. The output Õ ∈ RK3

is a low-resolution occupancy field. For scene represen-
tation purposes, we supersample the occupied voxels by increasing the resolution of them while
ignoring the empty ones. Specifically, for a given voxel, the supersampling operation is performed
by placing s × s × s regular-grid samples within it, lifting the resolution from K3 to (sK)3. Af-
ter supersampling, each voxel will be divided into mini-voxels, which we take and follow Eq. 6 to
construct volumetric representations, resulting in raw 3D sparse feature volumes Vs ∈ RN×C×s3 ,
where N denotes the number of occupied voxels. We denote each s× s× s block as a mini-volume.

We use the SparseUNet implementation from the sparse convolution library torchsparse (Tang
et al., 2023) to perform 3D feature aggregation, as shown in the middle of the bottom row of Fig. 2.
The sparse scene representation S is obtained as S = Ψ(Vs) , where S ∈ RN×C×s3 and Ψ denotes
the 3D SparseUNet.

4.3 SPARSE VOLUMETRIC RECONSTRUCTION

Minimizing the losses of Eq. 4, requires repeating evaluating R given sparse scene representation S,
which means that R must handle efficiently the sparse nature of our representation. This means that
the mechanisms for ray sampling. querying volume locations, and volume rendering used by R have
to be redesigned to handle sparse volumes instead of dense ones.

Ray Sampling. Sampling along the ray has to be adapted because the only meaningful samples
are those within occupied voxels. For any given ray, we detect its intersections with every occupied
voxel and confine the sampling to ray fragments within occupied ones. We take an arbitrary sampled
ray to be r(ti) = o+ tid, i = 1, 2, ..., Ns, where ti denotes the samples, o and d denote ray origin
and ray direction respectively.

Querying S. The volume rendering process is predicated on the ability to continuously query at
arbitrary continuous locations along 3D rays, which is easy to achieve in a dense volume but not
sparse ones due to their irregularity. Here we propose a simple yet effective algorithm to query the
sparse feature volumes efficiently as shown in Alg. 1. The key to make our query algorithm very
efficient is our specific data struture: our sparse volumes are a collection of small regular volumes
spanning the occupied voxels. We pre-compute a dense lookup table H to encode the order of stored
small volumes in memory and then perform the operations below. Please refer to Supp. A.1 for more
details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Querying Sparse Volumes

1: Input: Querying point x, lookup table H ∈ K3, sparse feature volumes S ∈ RN×s3×C .
2: Find corner points surrounding x, denote their coordinates {vi

g}8i=1 at scale (sK)3.
3: Convert {vi

g}8i=1 at scale (sK)3 to {vi
o}8i=1 at scale K3 plus local shift {vi

l}8i=1 at scale s3.
4: Get corner features from memory by S[H[vi

o],v
i
l , :].

5: Perform trilinear interpolation with corner features.
6: Output: Interpolated feature fvol.

Reference ReTRUFORecon Ours(SVRecon) Ours(Occupancy)

S
c
a
n
2
4

S
c
a
n
6
3

S
c
a
n
9
7

S
c
a
n
1
0
5

Figure 3: Sparse-view surface reconstructions on DTU test scenes. In the middle columns, we
show shaded surfaces for UFORecon, ReTR, and our approach. In the rightmost column, we show
the occupancies predicted by the first stage of our method at resolution 1283. Voxels are shrunk
slightly for visualization purposes. The red rectangles highlight the region with visible differences.

Rendering Function R. We adopt the generalized volume rendering equation of (Liang et al.,
2024) to model R. Specifically, the augmented feature representation for a ray sample ti is
fri = cat(fvol, fproj , β), where β denotes positional encoding (Wang et al., 2021b), cat(·) denotes
concatenation, fvol denotes queried feature from S, and fproj denotes the aggregated projection
features of Eq. 5 using a Transformer network (Ren et al., 2023). We write

C(r), D (r) = C

(
Ns∑
i=1

σ

(
q(f tok)k(focci)⊤√

D

)
v(fri)

)
,

N∑
i=1

σ

(
q(f tok)k(fri)

⊤
√
D

)
ti (9)

where σ denotes the softmax operation, f tok is a learnable token, focci denotes occlusion-aware
feature derived from fri , q(·), k(·), v(·) are linear layers, and C(·) is an MLP. To learn the network
weights, we minimize the loss function

L = Lcolor + αLdepth =
1

Ns

Ns∑
i=1

∥C (r)− Cg (r)∥2 + α
1

Nd

Nd∑
i=1

|D (r)−Dg (r) |, (10)

where Cg (r) and Dg (r) are ground truth color and depth, respectively, α denotes a weight coeffi-
cient to balance the two terms, Ns the number of sampled rays and Nd the number of rays with valid
depth.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Scan Mean (CD) ↓ 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
COLMAP 1.52 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14
TransMVSNet 1.35 1.07 3.14 2.39 1.30 1.35 1.61 0.73 1.60 1.15 0.94 1.34 0.46 0.60 1.20 1.46
VolSDF 3.41 4.03 4.21 6.12 1.63 3.24 2.73 2.84 1.63 5.14 3.09 2.08 4.81 0.60 3.51 2.18
NeuS 4.00 4.57 4.49 3.97 4.32 4.63 1.95 4.68 3.83 4.15 2.50 1.52 6.47 1.26 5.57 6.11
SparseNeuS-ft 1.27 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 0.99 0.87 0.54 1.15 1.18
SparseCraft 1.04 1.17 1.74 1.80 0.70 1.19 1.53 0.83 1.05 1.42 0.78 0.80 0.56 0.44 0.77 0.84
PixelNeRF 6.18 5.13 8.07 5.85 4.40 7.11 4.64 5.68 6.76 9.05 6.11 3.95 5.92 6.26 6.89 6.93
IBRNet 2.32 2.29 3.70 2.66 1.83 3.02 2.83 1.77 2.28 2.73 1.96 1.87 2.13 1.58 2.05 2.09
MVSNeRF 2.09 1.96 3.27 2.54 1.93 2.57 2.71 1.82 1.72 2.29 1.75 1.72 1.47 1.29 2.09 2.26
SparseNeuS 1.96 2.17 3.29 2.74 1.67 2.69 2.42 1.58 1.86 1.94 1.35 1.50 1.45 0.98 1.86 1.87
VolRecon 1.38 1.20 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27
ReTR 1.17 1.05 2.31 1.50 0.96 1.20 1.54 0.89 1.34 1.30 0.87 1.06 0.77 0.59 1.06 1.11
C2F2NeuS 1.11 1.12 2.42 1.40 0.75 1.41 1.77 0.85 1.16 1.26 0.76 0.91 0.60 0.46 0.88 0.92
UFORecon 1.00 0.79 2.03 1.33 0.87 1.11 1.19 0.74 1.22 1.14 0.71 0.89 0.59 0.56 0.90 1.02
SVRecon 1.00 0.72 1.98 1.44 0.83 1.12 1.40 0.72 1.27 1.06 0.76 0.94 0.56 0.44 0.87 0.93

Table 2: Quantitative evaluation results of sparse-view reconstructions on 15 testing scenes of
DTU dataset using Chamfer Distances. We test and report results using released codes for VolRe-
con, ReTR, and UFORecon, other results are sourced from these papers. From top to bottom, the
baseline methods are from different categories: 1) Multi-view Stereo (MVS) methods; 2) neural im-
plicit reconstruction methods (requiring per-scene optimization); 3) generalizable neural rendering
methods; 4) generalizable surface reconstruction methods. We use bold to indicate best perfor-
mance, and underline to indicate the second-best. ReTR is the closest baseline and also the one we
built our approach upon.

Scan AUC@15◦ ↑ 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
VolRecon 8.4 8.3 7.0 14.2 12.1 5.7 8.2 7.8 5.0 5.8 6.6 10.8 3.8 11.9 8.5 10.5
ReTR 16.3 20.0 11.5 26.3 20.5 14.7 14.8 15.7 9.4 12.7 12.1 19.9 14.4 21.8 15.2 15.4
UFORecon 11.8 14.6 8.3 14.4 15.8 8.1 11.3 11.8 6.5 7.5 9.6 16.4 10.4 15.6 13.5 13.9
SVRecon 21.0 26.3 14.6 28.8 26.4 18.5 18.1 20.3 11.4 15.3 14.9 26.3 19.6 29.3 22.2 22.9

Table 3: Quantitative evaluation results of sparse-view reconstructions on 15 testing scenes of
DTU dataset using Normal Consistency. We test and report results using released codes from the
compared methods. We use bold to indicate best performance.

5 EXPERIMENTAL RESULTS

In this section, we begin by outlining our experimental setup, including datasets and implementation
details. Next, we assess our approach both qualitatively and quantitatively on generalizable surface
reconstruction against state-of-the-art competitors. We also provide evaluation results to demon-
strate the effectiveness of our occupancy prediction network. We finally present results to evaluate
the generalization ability of our method without retraining and conduct analyses for different ele-
ments in our method.

Datasets. As in previous works (Liang et al., 2024; Ren et al., 2023; Xu et al., 2023; Na et al.,
2024), we use the DTU (Aanæs et al., 2016) dataset for training and main evaluation. It consists of
high-resolution images of 124 different scenes under 7 lighting conditions captured under controlled
laboratory conditions, each accompanied by accurate camera matrix and laser-scanned ground truth
depth map. We use the same evaluation protocol as in earlier work and 3 views as input for each one
of the 15 test scenes. In addition to DTU, we also use BlendedMVS (Yao et al., 2020) and Tanks
and Temples (Knapitsch et al., 2017) dataset to evaluate the generality of our approach.

Implementation Details. We use M = 4 input views with resolution 640 × 512 in training,
and M = 3 input views with resolution 800 × 600 in testing, consistent with previous works. In
volumetric feature construction Sec. 4.1, we use C = 32 feature channels. Our model is trained for
16 epochs using Adam optimizer (Kingma & Ba, 2014) the learning rate is set to 10−4. Please refer
to Supp. A.2 for more details.

5.1 COMPARATIVE RESULTS ON DTU

We first present our evaluation metrics and the baselines we compare against. We then report quan-
titative results in Tab. 2 and Tab. 3, along with qualitative ones in Fig. 3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Scan Mean 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
Precision 23.0 28.0 26.2 26.1 23.9 26.7 26.6 23.6 24.7 29.0 26.0 22.5 13.2 18.9 16.4 13.3
Recall 96.8 98.5 91.2 90.4 98.4 92.4 94.7 99.1 97.0 98.1 97.0 97.7 98.3 99.8 99.3 99.9
Space Occupation (Ours) 1.89 2.00 2.06 1.80 1.63 2.13 1.57 1.57 2.35 2.02 2.24 1.58 1.96 1.55 1.91 2.01
Space Occupation (GT) 0.45 0.57 0.59 0.52 0.39 0.62 0.44 0.37 0.60 0.60 0.60 0.36 0.26 0.29 0.32 0.27

Table 4: Evaluation results of occupancy predictions on 15 testing scenes of DTU dataset. We
use precision and recall to quantify the performance of occupancy prediction. We also provide space
efficiency statistics defined as the ratio between number of occupied voxels and number of all voxels.
All reported results are in percentage.

Evaluation Metrics. Chamfer Distances between predicted surfaces and ground truth point clouds
have been extensively used and is a standard metric to evaluate surface reconstruction quality. Un-
fortunately, it lacks awareness of local geometry and density and as a result, does not accurately
quantify proper recovery of fine-scale details and reconstructed surface smoothness. Thus, we also
report a Normal Consistency metric that accounts for surface quality. To evaluate it, we first extract
3D meshes from predicted depth maps and ground truth depth maps using TSDF fusion (Curless &
Levoy, 1996) and Marching Cube (Lorensen & Cline, 1987). We then compute the angular differ-
ences between normals at closest vertices in the two meshes, and use Area Under the Curve (AUC)
up to 15◦ in percentage to measure the overall normal consistency robustly. In Fig. 5 in Supp., we
show the angular differences on a specific example.

Results. As reported in Tabs. 2 and 3, in terms of Chamfer distance, our method is on par with
UFORecon and they both outperform all other methods. However, as can be clearly seen in Fig. 3,
the surfaces produced by UFORecon are much rougher than ours. We introduce the normal consis-
tency metric to measure this qualitative but important difference, since Chamfer distance alone does
not capture that property. In terms of that metric, we do much better than UFORecon because, by
using a high-resolution volumetric representation, we get much more regular and smoother surfaces.
ReTR is the closest baseline to us in methodology and we clearly do better on all metrics and for all
scenes. In Fig. 3, this manifests itself by the fact that our reconstructed surfaces are much smoother
than UFORecon and devoid of small artifacts that ReTR creates.

5.2 OCCUPANCY PREDICTION

Occupancy prediction is the first stage in our method and the second stage depends on it being
accurate. We therefore evaluate it by itself.

Evaluation Metrics. In essence, it is a classification problem for which Precision and Recall can
be used as evaluation metrics. To quantify the savings of our sparse feature volumes scheme in
storage, we also compute a Space Occupation metric, taken to be the ratio between number of
occupied voxels and number of all voxels.

There is in general a trade-off between precision and recall, however in our surface reconstruction
problem, we prioritize recall and compromise precision such that surface geometry is preserved as
much as possible. In practice, 1) we use a conservative threshold of 0.1 to determine the occupied
voxels from the occupancy prediction from the network O; 2) we then further dilate the occupied
voxels using a cubic 3× 3× 3 kernel to obtain the final occupancy prediction results.

Results. We report our quantitative in Tab. 4, and provided qualitative ones in Fig. 3. We achieve
a 96.8% average Recall, ensuring the preservation of surface geometry. The false negatives mostly
come from the textureless table in the scenes, which is very hard to reconstruct and does not take
part in the standard evaluation. The Precision is on average at 23.0%, resulting in Space Occupa-
tion at 1.89%, 4.2 times of the optimal Space Occupation at 0.45%. This demonstrates the strong
performance of our occupancy prediction method, which recalls most of the surface by keeping only
1.89% of the voxels on average.

5.3 FURTHER ANALYSES

Memory Consumption. We consider only the second stage here, as the first stage of occupancy
prediction can be run seperately beforehand and does not consume much memory. Practically, our
method consumes around 30 GB memory to train with batch size as 1, 1024 sampled rays and 32
feature channels in the second stage. This is a moderate requirement for modern GPUs, but also

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Reference ReTR Ours(SVRecon)Reference ReTR Ours(SVRecon)

Figure 4: We apply our method, pretrained only on the DTU dataset, to scenes from Tanks and
Temples (top) and BlendedMVS (bottom) datasets. The high-quality reconstructed surfaces
highlight the strong generalization ability of our method. The red rectangles highlight the detail-
preserving ability of our method.

prevents us from lifting the resolution even more. In testing, the memory requirment is eased even
more to around 12 GB with the same setting.

Impact of Different Resolutions. The resolution is of critical importance in the task of surface
reconstruction. To verify this point, we use the same occupancy prediction results as in our main
experiment and vary the times of supersampling in the second stage of our method. We test our
method at 1, 2 times of supersampling, leading to resolutions at 1283 and 2563. Compared to the
adopted resolution in our method at 5123, the tested resolutions are only lower, because we cannot
lift the resolution even more due to memory consumption constraints. The results are presented in
Tab. 5. As we can see, there is an abrupt improvement in performance from 1283 to 2563, and a
mild improvement from 2563 to 5123. Overall, this validates the intuitition that the performance
will increase as the resolution increases.

Settings Mean (CD) ↓
Resolution @ 1283 1.27
Resolution @ 2563 1.04

Number of Views @ 5 0.96
Number of Views @ 4 0.99

Base Feature Channels @ 16 1.15
Ours (SVRecon) 1.00

Table 5: A study on the impact of dif-
ferent settings on the final performance
of our method, including resolution,
number of input views and number of
base feature channels.

Number of Views. While our method is trained on
M = 4 input views, it is not restricted to this setting
due to the mean and variance feature construction oper-
ation as in section 4.1. In addition to the M = 3 setting
in our main experiment, We also test the performance of
our method with M = 4 and M = 5 input views, and
the results are given in table 5. It can be observed that the
surface reconstruction quality increases with more input
views, as more scene information becomes available.

Number of Base Feature Channels. The number of
feature channels is crucial in determining the effective-
ness of scene feature representations. However, more fea-
ture channels will also incur more memory burden. In our main experiment, we use Cf = 32 base
feature channels in volumetric feature construction. We also test the performance of our method
with Cf = 16 base feature channels, and the results are provided in table 5. It shows that reducing
the number of base channels will degrade the performance.

Generalization Ability. To validate the generalization ability of our method in surface reconstruc-
tion, we apply our method, pretrained only on DTU dataset, to scenes from BlendedMVS (Yao et al.,
2020) and Tanks and Temples (Knapitsch et al., 2017). In this experiment, we use M = 5 in-
put views, the visualization is given in Fig. 4. It can be seen that our method generates surfaces with
finer details than ReTR, demonstrating the strong generalization ability.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a two-stage neural surface reconstruction method based on the efficient
scene representation of sparse feature volumes. In the first stage, our method is capable of perform-
ing accurate occupancy prediction, retaining only around 1.9% of all voxels as occupied voxels and
greatly reducing the memory burden. In the second stage, our method can reconstruct high-quality
surfaces by conducting feature-based volume rendering on the constructed sparse feature volumes
at a high resolution 5123. Extensive experiments have demonstrated the superiority of our method
compated to a variety of existing methods in terms of surface reconstruction quality. In the future,
we will explore more efficient schemes that generalizes to realistic unbounded scenes with arbitrary
number of views.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
Large-scale data for multiple-view stereopsis. IJCV, 120:153–168, 2016.

Chenjie Cao, Xinlin Ren, and Yanwei Fu. Mvsformer++: Revealing the devil in transformer’s details
for multi-view stereo. arXiv Preprint, 2024.

Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. In Conference on Computer graphics and Interactive Techniques, pp. 303–312, 1996.

Yikang Ding, Wentao Yuan, Qingtian Zhu, Haotian Zhang, Xiangyue Liu, Yuanjiang Wang, and
Xiao Liu. Transmvsnet: Global context-aware multi-view stereo network with transformers. In
CVPR, pp. 8585–8594, 2022.

P. Fua. From Multiple Stereo Views to Multiple 3D Surfaces. International Journal of Computer
Vision, 24(1):19–35, August 1997.

Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereopsis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 99, 2009.

Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan. Cascade cost
volume for high-resolution multi-view stereo and stereo matching. In CVPR, pp. 2495–2504,
2020.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University
Press, 2000.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In ACM SIGGRAPH, pp. 1–11, 2024.

Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu Fang. Surfacenet: An end-to-end 3d
neural network for multiview stereopsis. In ICCV, pp. 2307–2315, 2017.

Mengqi Ji, Jinzhi Zhang, Qionghai Dai, and Lu Fang. Surfacenet+: An end-to-end 3d neural net-
work for very sparse multi-view stereopsis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(11):4078–4093, 2020.

A. Kar, C. Häne, and J. Malik. Learning a Multi-View Stereo Machine. In Advances in Neural
Information Processing Systems, pp. 364–375, 2017.

B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Transactions on Graphics, 42(4), July 2023.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In arXiv Preprint, 2014.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and Temples: Benchmark-
ing Large-Scale Scene Reconstruction. ACM TOG, 36(4), 2017.

I. Kostrikov and J. Gall. Depth Sweep Regression Forests for Estimating 3D Human Pose from
Images. In British Machine Vision Conference, 2014.

K.N. Kutulakos and S.M. Seitz. A Theory of Shape by Space Carving. International Journal of
Computer Vision, 38(3):197–216, July 2000.

Maxime Lhuillier and Long Quan. A quasi-dense approach to surface reconstruction from uncali-
brated images. IEEE TPAMI, 27(3):418–433, 2005.

Z. Li, T. Müller, A. Evans, R. Taylor, M. Unberath, M. Liu, and C. Lin. Neuralangelo: High-Fidelity
Neural Surface Reconstruction. In Conference on Computer Vision and Pattern Recognition,
2023.

Yixun Liang, Hao He, and Yingcong Chen. Retr: Modeling rendering via transformer for general-
izable neural surface reconstruction. NeurIPS, 36, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature Pyramid Networks
for Object Detection. In Conference on Computer Vision and Pattern Recognition, 2017a.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal Loss for Dense Object Detection. In
International Conference on Computer Vision, 2017b.

Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang. Sparseneus: Fast
generalizable neural surface reconstruction from sparse views. In ECCV, pp. 210–227. Springer,
2022.

W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface Construction
Algorithm. In ACM SIGGRAPH, pp. 163–169, 1987.

Ben Mildenhall, S. P. P., M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis. In European Conference on Computer
Vision, 2020.

Youngju Na, Woo Jae Kim, Kyu Beom Han, Suhyeon Ha, and Sung-Eui Yoon. Uforecon: Gen-
eralizable sparse-view surface reconstruction from arbitrary and unfavorable sets. In CVPR, pp.
5094–5104, 2024.

Yufan Ren, Fangjinhua Wang, Tong Zhang, Marc Pollefeys, and Sabine Süsstrunk. Volrecon: Vol-
ume rendering of signed ray distance functions for generalizable multi-view reconstruction. In
CVPR, pp. 16685–16695, 2023.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image
Segmentation. In Conference on Medical Image Computing and Computer Assisted Intervention,
pp. 234–241, 2015.

S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A Comparison and Evaluation of
Multi-View Stereo Reconstruction Algorithms. In Conference on Computer Vision and Pattern
Recognition, pp. 519–528, 2006.

H. Shum and S. B. Kang. Review of Image-Based Rendering Techniques. In Visual Communications
and Image Processing, pp. 2–13, 2000.

Haotian Tang, Shang Yang, Zhijian Liu, Ke Hong, Zhongming Yu, Xiuyu Li, Guohao Dai, Yu Wang,
and Song Han. Torchsparse++: Efficient training and inference framework for sparse convolution
on gpus. In IEEE/ACM International Symposium on Microarchitecture, pp. 225–239, 2023.

Fangjinhua Wang, Silvano Galliani, Christoph Vogel, and Marc Pollefeys. Itermvs: Iterative proba-
bility estimation for efficient multi-view stereo. In CVPR, pp. 8606–8615, 2022.

P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. Neus: Learning Neural Implicit Sur-
faces by Volume Rendering for Multi-View Reconstruction. In Advances in Neural Information
Processing Systems, 2021a.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T
Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-
view image-based rendering. In CVPR, pp. 4690–4699, 2021b.

Luoyuan Xu, Tao Guan, Yuesong Wang, Wenkai Liu, Zhaojie Zeng, Junle Wang, and Wei Yang.
C2f2neus: Cascade cost frustum fusion for high fidelity and generalizable neural surface recon-
struction. In ICCV, pp. 18291–18301, 2023.

Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for unstruc-
tured multi-view stereo. In ECCV, pp. 767–783, 2018.

Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, and Long Quan. Recurrent mvsnet for
high-resolution multi-view stereo depth inference. In CVPR, pp. 5525–5534, 2019.

Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan.
BlendedMVS: A Large-Scale Dataset for Generalized Multi-View Stereo Networks. In CVPR,
pp. 1790–1799, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman. Multiview Neural
Surface Reconstruction by Disentangling Geometry and Appearance. In Advances in Neural
Information Processing Systems, 2020.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume Rendering of Neural Implicit Sur-
faces. In NeurIPS, 2021.

Mae Younes, Amine Ouasfi, and Adnane Boukhayma. Sparsecraft: Few-shot neural reconstruction
through stereopsis guided geometric linearization. In ECCV, pp. 37–56. Springer, 2024.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient adaptive surface
reconstruction in unbounded scenes. ACM TOG, 43(6):1–13, 2024.

Chuanrui Zhang, Yingshuang Zou, Zhuoling Li, Minmin Yi, and Haoqian Wang. Transplat: Gen-
eralizable 3D Gaussian Splatting from Sparse Multi-View Images With Transformers. In AAAI,
volume 39, pp. 9869–9877, 2025.

A APPENDIX

A.1 QUERYING SPARSE VOLUMES.

Hereafter, we will use coarse-voxel to indicate a voxel at occupancy prediction resolution K3, and
fine-voxel to indicate a mini-voxel in each mini-volume effectively at resolution (sK)3. To explain
the algorithm, we first define a global grid frame, an occupancy grid frame and a local grid frame.
The global grid frame is a hypothetical one at the resolution (sK)3, corresponding to the densified
sparse feature volume and each vertice representing a fine-voxel center point. The occupancy grid
frame is at the resolution of occupancy prediction K3, each vertice representing a coarse-voxel
center point. Each occupied voxel spans a mini-volume with a local grid frame at resolution s3,
where each vertice represents a fine-voxel center point as well. For an arbitrary query location
p, we need to get the associated features of its eight adjacent vertices from S to perform trilinear
interpolation to obtain p’s feature representation. We detail on this functionality in the following.

Knowing the size of a coarse-voxel, it is straightforward to find p’s nearest vertices in global
grid frame and compute their global coordinates {vg | vg ∈ {0, 1, ..., sK − 1}3}. Knowing the
supersampling rate s, we can easily convert the global coordinates into occupancy coordinates
{vo | vo ∈ {0, 1, ...,K−1}3} and local grid coordinates {vl | vl ∈ {0, 1, ..., S−1}3}. Now we con-
sider the data structure of sparse feature volumes S ∈ RN×C×s3 . To query the features associated
with vertices, we can use directly local grid coordinates for indexing in the last three dimensions.
The problem now reduces to finding the right mini-volme index in the first dimension from occu-
pancy coordinates, for which we propose to use a mapping function H : {0, 1, ...,K − 1}3 → Z+

to map vo to the sought index n. For that purpose, we define a regular tensor as the dense lookup
table that encodes mapped values in its entries. The tensor H ∈ RK3

is at a low resolution, initial-
ized with values of -1 that points to a dummy feature. Then we simply apply boolean indexing in
PyTorch to encode mini-volume indexes, i.e. H[O] = {0, 1, ..., N − 1}. The boolean indexing is
consistent with S in its creation, such that n = H[vo] can be used to index S in the first dimension.
Having the associated features of the eight adjacent vertices, trilinear interpolation can be performed
for the query result, which completes the query process. Given a 3D query point p with coordi-
nates [xp, yp, zp] in a sparse scene containing N voxels {v1, ..., vN}, we need to determine the index
i ∈ {1, ..., N} of the sparse voxel vi containing p. To this end, we construct a 3D hash table H
such that H(xp, yp, zp) = i, mapping spatial coordinates to their corresponding voxel indices. It
can be done by performing boolean indexing on an 3D array with “False” values everywhere except
for each position of the sparse voxels.

A.2 MORE IMPLEMENTATION DETAILS.

Method Configurations. For occupancy prediction, the voxel grid resolution is set to 1283. After
binarizing the initial predictions using threshold τ = 0.1, a morphological dilation process is fur-
ther applied to the prediction results to maximize the recall of geometry. In the second stage, we
supersample each occupied voxel by s = 4 times in our experiments, leading to resolutions at 5123.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Scan24 UFORecon Ours(SVRecon)GT Normal Map

Figure 5: Normal Consistency evaluation on scan24 from the DTU dataset. The normal differ-
ences are visualized using colors. Errors in the range [0◦, 15◦] are color coded linearly from white
to red. Error larger than 15◦ are shown in green. Our SVRecon method significantly outperforms
UFORecon in Normal Consistency.

S
c
a
n
2
4

S
c
a
n
1
0
5

Figure 6: Novel view synthesis examples of our SVRecon method on scan24 and scan105 from the
DTU dataset. The details are preserved well for the foreground object.

In ray sampling, we sample 64 points per-ray both in training and testing. Our model is trained
on 4 A100 GPUs for 16 epochs. To reconstruct the surface, we follow the existing works (Liang
et al., 2024; Ren et al., 2023; Xu et al., 2023; Na et al., 2024) to define a virtual rendering viewpoint
corresponding to each view by shifting the original camera coordinate frame by 25mm along its
x-axis, and then use TSDF fusion (Curless & Levoy, 1996) to merge the rendered depth maps in a
volume and extract the mesh from it using Marching Cube (Lorensen & Cline, 1987).

Network Architectures. We use Feature Pyramid Network (FPN) for image feature extraction.
To obtain projection features from 3D points, we interpolate on the 1/2 resolution feature map from
FPN. For 3D sparse feature volumes we use a sparse UNet architecture, with 4 encoder layers at
dimension [32, 64, 128, 256], bottleneck layer at dimension 256, and decoder layers at dimension
[256, 128, 64, 32].

Dilation after Network Occupancy Prediction. To maximize recall, we first use a thresold τ =
0.1 to binarize sthe occupancy predictions from the network. Then we apply a dilation process on
the binary occupancy fields. In the dilation process, we apply convolution with a 3 × 3 × 3 kernel
on the occupancy fields to compute a score for each voxel, and then set a threshold 33 ∗ 0.1 to
binarize the occupancy fields again as the final occupancy prediction results. By doing this, more
voxels near the originally predicted voxels are included to improve recall. The process is written as
Õ = dilate(I(O ≥ τ)).

A.3 MORE VISULIZATIONS.

Normal Consistency Visualization. We visualize an example of normal consistency evaluation
in Fig. 5.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Novel View Synthesis. Our method can also perform novel view syntheiss using the trained vol-
ume rendering network, some visual examples are presented in Fig. 6. Due to our sparse represen-
tation, the background is not modeled in the results.

14

	Introduction
	Related Works
	Background: Generalizable NeRFs
	Methodology
	Representing Voxels and Features
	Sparse Scene Representation
	Sparse Volumetric Reconstruction

	Experimental Results
	Comparative Results on DTU
	Occupancy Prediction
	Further Analyses

	Conclusion and Future Work
	Appendix
	Querying Sparse Volumes.
	More Implementation Details.
	More Visulizations.

