Under review as a conference paper at ICLR 2026

HIGH-FIDELITY GENERALIZABLE NEURAL SURFACE
RECONSTRUCTION WITH SPARSE SCENE REPRESEN-
TATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizable neural surface reconstruction has become a compelling technique
at reconstructing 3D scenes from sparse input views without per-scene optimiza-
tion. In these methods, dense 3D feature volumes have proven very effective
as a global scene representation. Unfortunately, this representation severely lim-
its their high-resolution modeling abilities and reconstruction accuraciy because
memory requirements scale cubically with voxel resolution. In this paper, we
propose a novel sparse-representation approach that dramatically improves mem-
ory efficiency and allows for more accurate surface reconstructions. Our method
employs a two-stage pipeline: We first train a neural network to predict voxel
occupancy probabilities from the given posed images, then we restrict feature
computation and volume rendering to the sparse voxels with sufficiently high
occupancy estimates. To support this sparse representation, we develop special-
ized algorithms for efficient sampling, feature aggregation, and spatial querying
that overcome the dense-volume assumptions of existing approaches. Extensive
experiments on standard benchmarks demonstrate that our sparse representation
enables scene reconstruction at a 5123 resolution, compared to the typical 128>
resolution possible with existing methods on similar hardware. We also achieve
superior reconstruction accuracy compared to current state-of-the-art approaches.
Our work establishes sparse neural representations as a promising direction for
scalable, high-quality 3D reconstruction.

1 INTRODUCTION

The emergence of neural implicit representation techniques, starting with the seminal Neural Ra-
diance Fields (NeRF) (Mildenhall et al., 2020) and continuing with Neural Implicit Surfaces
(NeuS) (Yariv et al.} 2020; /Wang et al.,|2021a;|Yariv et al., 2021} |L1 et al.,[2023)), has greatly boosted
novel view synthesis and multi-view geometry reconstruction. These implicit surface reconstruction
algorithms take posed images as input, and optimize a Signed Distance Function (SDF) to minimize
a volume rendering loss, which yields accurate 3D reconstructions given enough views. A major
drawback, however, is that the optimization must be performed from scratch for every new set of
views, which makes these approaches computationally demanding. Furthermore, accuracy tends to
decline when only a few views are available. Newer 3D Gaussian Splatting-based methods (Kerbl
et al.,[2023)) are subject to the same limitations (Huang et al., 2024; [Yu et al.| 2024).

Generalizable approaches to Neural Surface Reconstruction (GNSRs) (Liang et al.||[2024; Ren et al.,
2023} Xu et al.l 2023 |[Long et al., 2022; Na et al., 2024; [Younes et al., [2024) are designed to re-
move these restrictions. These methods are pre-trained on a large number of scenes. As a result, the
rendering of a novel scene simply becomes a test-time inference procedure, without any optimiza-
tion required. Volume rendering and scene reconstruction are performed by relying on a 3D scene
representation produced by a neural network that takes as input the images. This representation is
typically in the form of a dense volume of high-dimensional features. However, even though they
are much faster, these methods still have yet to achieve their full potential because the necessary
volumetric feature representation is extremely memory-intensive. This drastically constrains their
operational resolution as shown in Tab. [T} and adversely impacts reconstruction quality and detail
preservation.

Under review as a conference paper at ICLR 2026

Multi-view Images Occupancy Field @ 1283 Supersampled @ 5123 Rec;)nstmcted Surface
Figure 1: Two-Stage Approach. From multiple images, we predict occupancy field that is then
supersampled to build a sparse scene representation. This lets us reconstruct high-fidelity surfaces
by operating at previously unattainable 5123 resolution.

Sparse scene representation is a natural answer to this problem. Since surfaces are mathematically
of measure zero, they occupy only a small fraction of voxels in a discretized 3D space, which may
be leveraged for high-resolution, memory-efficient reconstruction. However, this brings significant
challenges. Even though there has been work in that direction, no truly satisfactory approach exists
yet. For example, SparseNeuS (Long et al.|[2022) uses a coarse-to-fine scheme but still has to query
a densified feature volumes, which negates the benefit of doing so.

In this paper, we propose a novel and effective way of bringing sparsity into GNSRs. Specifically,
we introduce a nested two-stage architecture that enables our GNSR to operate at significantly higher
resolutions than previous ones, while maintaining both generalizability across scenes and the ability
to handle cases where only a limited number of views are available. As illustrated by Fig.[I] the two
stages perform the following tasks:

1. Computing occupancy at low resolution. Voxels from a coarse grid are labeled as con-
taining a surface element or not, by training a network using posed images as input. To
avoid missing out parts of the surface, we implemented this so as to avoid false negatives.

2. Computing sparse feature representations at a high resolution. High-dimensional fea-
tures are constructed at a higher-resolution but only within the occupied voxels, where vol-
ume rendering can be performed. This allows for fine-grained neural surface reconstruction
while keeping memory and computational costs at a minimum.

Fig.] summarizes our Sparse Volumet-

ric Reconstruction approach, which we dub Methods 128% [1927 | 256° | 512
SVRecon. While it is is conceptually simple, SparseNeuS (Long etal.[2022) | v | v/ | X | X
h thod . thinki d refi VolRecon (Ren et al.[[2023) v X X X
the new method requires rethinking and refor- ReTR (Liang et al|2024) vl x| x| x
mulating the algorithms used by existing meth- Ours (SVRecon) v iv v |V

ods, which are designed for handling dense rep-

resentations. To this end, we develop new al- Table 1: Resolutions handled by GNSR algo-
gorithms dedicated to handling sparse feature rithms at training time. Crosses indicate that the
volumes to perform ray sampling, feature ag- Mmemory requirements were too large on a 32GB
gregation, and query operations. These techni- NVIDIA Tesla V100 GPU, with the same set-
cal innovations are key to realizing the theoret- ting of batch size 1 and 1024 sampled rays for all
ical memory advantages of our approach while methods.

maintaining computational efficiency.

Testing on public datasets demonstrates that our sparse-representation method is highly effective,
enabling us to operate at a high resolution of 5123 on standard hardware with 32GB of VRAM, thus
improving the final reconstruction accuracy beyond the state-of-the art.

2 RELATED WORKS

Multi-View Stereo. Multi-view stereo (MVS) has long been known to be effective for 3D recon-
struction (Fual |[1997;|Hartley & Zissermanl,|[2000; |[Shum & Kang, |2000; Seitz et al., 2006} Furukawa
& Poncel, [2009; [Lhuillier & Quanl 2005}, Kostrikov & Gall, 2014} [Kutulakos & Seitz, [2000). Mod-
ern multi-view stereo methods can be categorized into depth-map ones (Yao et al.l 2018 2019} |Gu
et al., 2020; [Wang et al., [2022; Ding et al., 2022; |Cao et al., [2024) and volumetric ones (Ji et al.,
2017;2020; [Kar et al.| 2017). Depth-map methods rely on view-dependent frustums as an indirect
model of 3D space, which limits the reconstruction accuracy without providing novel view render-
ing capabilities. Volumetric methods are directly related to our method, as they also operate on a

Under review as a conference paper at ICLR 2026

view imanee mmeommegeo. 3D Occupancy
Multi-view images W e | Ly
P A 1 -~~~
Aty sty iy i; AT
Stage 1: DCEHSQIVD‘[U"‘Q 3 E,i/:) Feature Aggregation L___{/:V:
onstruction 1 d . 1
--= ——=(i and Regression - --
Occupancy N] A N I Ve LY
Prediction i ___-?,lf.] inieh 7_*__(7{]
-) e W
1 17 ! . 1 Y
I | [
supe‘samp\mg
Stage 2: Sparse Volumes L_{ Wi} Sparse Feature | _{ _| Volume Rendering
Sparse | Construction %2_747' Aggregation Transformers
|) R
Reconstruction | L _‘2_“,’71'?‘2'3{ £ A =—
: P ~$= 1
| T
| (TR0 TR O

Figure 2: SVRecon pipeline. First, we build a low-resolution dense 3D feature volume from multi-
view features and predict 3D occupancies. Second, we construct high-resolution sparse feature
volumes where the predicted occupancy warrants it. Finally, volume rendering Transformers are
used to aggregate per-ray sampled features and infer color and depth, enabling scene reconstruction.

volumetric 3D space. Comparatively, our scene representation and volume rendering formulation
makes it possible to recover finer details.

Neural Scene Reconstruction. The success of NeRFs (Mildenhall et al., 2020) has prompted
researchers to examine the use of Neural Implicit Representations for surface reconstruction as an
alternative to MVS. These line of works includes IDR (Yariv et al., 2020), VolSDF (Yariv et al.,
2021)), NeuS (Wang et al.,|2021a)), and Neuralangelo (L1 et al., [2023)), which are able to recover fine
geometry given dense input views. More recently, SparseCraft (Younes et al., 2024) proposes to use
stereopsis cues regularization to enhance surface reconstruction qualities under sparse input views.
However, all these methods are not generalizable and need to be trained per scene.

Generalizable Surface Reconstruction. Many generalizable approaches have been proposed to
dispense with intensive per-scene optimization. These methods include volumetric methods such
as SparseNeuS (Long et al., 2022), VolRecon (Ren et al.| 2023), ReTR (Liang et al., |2024); and
frustum-based 3D representations (Na et al., 2024} | Xu et al.,|2023). However, all of these methods
have to balance reconstruction quality against storage overhead due to the cost of their global scene
representations, which our method improves upon. We note that SparseNeuS bears some similarities
to our method in its coarse-to-fine scheme. However, their formulation still relies on densified
feature volumes and thus cannot be seen as a sparse representation, their method limitations are also
identified in our experiment by direct comparison. Please refer to Tab. [I] for a detailed comparison
of admissible resolutions of different methods.

Gaussian Splatting. Gaussian splatting (Kerbl et al.| 2023) have emerged as a powerful alternative
to NeRF methods for novel view synthesis. The same trend is at work for 3D reconstruction, with
the advent of methods such as 2D Gaussian Splatting (Huang et al.} 2024) and Gaussian Opacity
Fields (Yu et all 2024). There are also recent attempts at making Gaussian Splatting generaliz-
able (Zhang et al.|[2025). However, generalizable surface reconstruction is still an open problem for
Gaussian Splatting based methods due to the inherent difficulty to model surfaces with Gaussians.

3 BACKGROUND: GENERALIZABLE NERFS

We now briefly review the general formulation of the original and generalizable NeRFs. In both

cases, the goal is to reconstruct a scene captured by a set of posed images Z = {(I;, 7;)} M, where

I, € REXW>3 and ; € R3*4 denote the projection matrix associated with the i-th view.

Given 7 as input, the aim is to learn a scene representation function F and a rendering function R
F:(x,d) —f, (1)
R{(x;,£)}Y, — (C,D), 2)

where F maps a 3D location x € R3 and viewing direction d € S? to a feature vector f € R®, and

R is a function that takes ray-sampled feature vectors as input and outputs a rendered color C' and
optionally a depth value D.

In the original NeRF, f directly encodes an emitted color and a volume density, R is a handcrafted
volume rendering function. The scene representation function F is implemented by a network with

Under review as a conference paper at ICLR 2026

weights A. Learning them requires per-scene minimization of the photometric loss

arg min E L(C; — CAQ) , 3)
CieT
where L is usually taken to be square norm.

In a generalizable NeRF, the feature vector f is high-dimensional and does not have physical mean-
ings. The handcrafted rendering function R is replaced by one implemented by a network with
weights ¢, while F uses a different architecture that allows for generalization and has weights 6.
The weights 6 and ¢ are learned by training on a large corpus of scenes D = {(Z;, M;)} fv:‘l, where

M; denotes the ground-truth depth map corresponding to image Z;. This involves minimizing

arg min Z L(C; —C)+L(D; — D). 4)
02 ¢,Diep
The key advantage over a vanilla NeRF is that, given the novel scene Z, scene representation func-
tion F can be obtained via direct inference without the need of per-scene optimization as in Eq.
We adopt this general formulation for our method. The main drawback is that having to store a
dense feature volume as scene representation and having to perform computations on it is memory
intensive, hence the resolution limitations of Tab.

4 METHODOLOGY

We now present our SVRecon approach to generalizable NeRFs that requires far less memory and
can therefore be handle larger resolutions. Our main contribution lies in replacing the scene rep-
resentation function F of Eq. [l| by one that produces a sparse representation and that we denote
as S : (x,d) — f. As discussed in the introduction, S operates in two stages. It first estimates
occupancy in a low resolution—-typically 1283—-volume. The occupied voxels are then supersam-
pled to a higher resolution, typically 5123, and the high-dimensional features f are computed within
the resulting high-resolution voxels, as depicted by Fig.[2] The sparse representation creates chal-
lenges in volume rendering because the ray sampling, querying, and feature aggregations have to be
redesigned to handle sparse volumes instead of dense ones, which will also be discussed.

Note that, in theory at least, instead of adopting the simple occupancy prediction described above,
we could have used a more sophisticated octree-like structure, a popular choice to represent 3D
geometry sparsely. However, the variable-resolution structure of octrees would have made volume
rendering even more complex for no obvious gain.

In the remainder of this section, we first introduce the representation we use in both stages for indi-
vidual voxels and the corresponding features. We then present the two stages to compute our sparse
scene representation S. Finally, we discuss the learning of the # and ¢ parameters by minimizing
Eq. 4| given such a sparse representation, under a volume rendering framework.

4.1 REPRESENTING VOXELS AND FEATURES

At low-resolution we use a dense volume while we use a sparse one at high-resolution. Yet, we
represent voxels in the same way in both cases. Given the center point x of a voxel, we first project
it onto the images to obtain M -view features

{ffi (WZ(X)) ij\ih %)
by bilinear interpolation, where f;, denotes image features computed by using the Feature Pyramid
Network (Lin et al.| 2017a). We then write the feature vector associated to x as

V (x) = MeanVar({fy, (mi(x))}}Z,) , (6)
where MeanVar denotes the concatenation of per-channel mean and variance computed from the M -

view features, and V denotes the raw dense/sparse feature volumes before a 3D global aggregation
process. We take the dimension of V(x) to be the base feature channel C'y.

4.2 SPARSE SCENE REPRESENTATION

We now described the two stages—first occupancy prediction and then supersampling the occupied
voxels—involved in building a sparse scene representation.

4

Under review as a conference paper at ICLR 2026

Occupancy Prediction Assuming that a scene bounding box is given, we voxelize it using a pre-
defined voxel resolution. Due to memory constraints, the resolution cannot be too high. We compute
the feature vector using Eq. |§I for each voxel, resulting in a dense feature volume V,; € RE*K 3,
where K denotes the resolution. We then use a 3D U-Net (Ronneberger et al.,[2015) ¥ followed by

a linear regression head R to go from raw features V4 to the occupancy prediction O € RX °. We
write

O =R(¥(Va)))

To train ¥ and 2R, we rely on the ground-truth surfaces to estimate ground-truth occupancies Q9. In
practice, we generate point clouds by merging the ground truth depth maps of each input view. This
works better than using the ground-truth point cloud of the scene, which may contain points that are
occluded in the input views and thereby impossible to predict. Since the overwhelming majority of
voxels are empty in 3D space, we minimize a focal loss (Lin et al.,[2017b) with focusing parameter
~ = 2 during training to counteract the large class-imbalance. We take it to be

Lie==> (1=pi)" log(pijx) ®
igik
where .
: gt __
S (E
ijk s

At inference time, we simply threshold the occupancy predictions and apply a dilation process to

yield the final binary predictions O = dilate(I(O > 7)). The predicted occupancy is critical to the
performance of our method. We prioritize recall in our method by using a small 7 and employing a
dilation process to ensure least geometry loss. See Supp. [A.2]for more details.

Supersampling. The output O € RX * is a low-resolution occupancy field. For scene represen-
tation purposes, we supersample the occupied voxels by increasing the resolution of them while
ignoring the empty ones. Specifically, for a given voxel, the supersampling operation is performed
by placing s x s x s regular-grid samples within it, lifting the resolution from K3 to (sK)3. Af-
ter supersampling, each voxel will be divided into mini-voxels, which we take and follow Eq. [6]to

. . . . 3
construct volumetric representations, resulting in raw 3D sparse feature volumes V, € RN XCxs",
where N denotes the number of occupied voxels. We denote each s X s X s block as a mini-volume.

We use the SparseUNet implementation from the sparse convolution library torchsparse (Tang
et al.| [2023) to perform 3D feature aggregation, as shown in the middle of the bottom row of Fig.[2|

The sparse scene representation S is obtained as S = W(Vy) , where S € RY xOxs* and W denotes
the 3D SparseUNet.

4.3 SPARSE VOLUMETRIC RECONSTRUCTION

Minimizing the losses of Eq.] requires repeating evaluating R given sparse scene representation S,
which means that R must handle efficiently the sparse nature of our representation. This means that
the mechanisms for ray sampling. querying volume locations, and volume rendering used by R have
to be redesigned to handle sparse volumes instead of dense ones.

Ray Sampling. Sampling along the ray has to be adapted because the only meaningful samples
are those within occupied voxels. For any given ray, we detect its intersections with every occupied
voxel and confine the sampling to ray fragments within occupied ones. We take an arbitrary sampled
raytober(t;) = o+ t;d, i = 1,2, ..., N,, where t; denotes the samples, o and d denote ray origin
and ray direction respectively.

Querying S. The volume rendering process is predicated on the ability to continuously query at
arbitrary continuous locations along 3D rays, which is easy to achieve in a dense volume but not
sparse ones due to their irregularity. Here we propose a simple yet effective algorithm to query the
sparse feature volumes efficiently as shown in Alg. [I] The key to make our query algorithm very
efficient is our specific data struture: our sparse volumes are a collection of small regular volumes
spanning the occupied voxels. We pre-compute a dense lookup table H to encode the order of stored
small volumes in memory and then perform the operations below. Please refer to Supp.[A.T|for more
details.

Under review as a conference paper at ICLR 2026

Algorithm 1 Querying Sparse Volumes

1: Input: Querying point x, lookup table H € K3, sparse feature volumes S € RNxs*xC
2: Find corner points surrounding x, denote their coordinates {v }¥_; at scale (sK)?.
3: Convert {v}}}_; atscale (sK)? to {vi}}_, at scale K 3 plus local shift {vi{}3_; at scale s>.
4: Get corner features from memory by S[H[v}], v}, :].
5: Perform trilinear interpolation with corner features.
6: Output: Interpolated feature f,,;.

<

N

o

[

(&

w

™

©

c

3

(2]

N~

D

c

3

2]

0 4

=1

i

N 2
@ =<

Reference UFORecon Ours(SVRecon) Ours(Occupancy)

Figure 3: Sparse-view surface reconstructions on DTU test scenes. In the middle columns, we
show shaded surfaces for UFORecon, ReTR, and our approach. In the rightmost column, we show
the occupancies predicted by the first stage of our method at resolution 1283. Voxels are shrunk
slightly for visualization purposes. The red rectangles highlight the region with visible differences.

Rendering Function R. We adopt the generalized volume rendering equation of
to model R. Specifically, the augmented feature representation for a ray sample t; is
f7 = cat(f,o1, fproj, 5), Where 3 denotes positional encoding (Wang et al., [2021b), cat(-) denotes
concatenation, f,,; denotes queried feature from S, and f,,.,; denotes the aggregated projection

features of Eq. [5|using a Transformer network (Ren et al, [2023). We write

N, tok oce\ T N tok r\ T
R S e) DI o L PO

where o denotes the softmax operation, ftok is a learnable token, f°¢ denotes occlusion-aware
feature derived from f7, q(-), k(-), v(-) are linear layers, and C(-) is an MLP. To learn the network
weights, we minimize the loss function

N, Ng
1 1
L= Looor + Lgepmn = 3~ ; 1€ (1) = Cy @), + ag- ; D (r) =Dy (r)], (10)

where Cj (r) and D, (r) are ground truth color and depth, respectively, o denotes a weight coeffi-
cient to balance the two terms, /N, the number of sampled rays and N4 the number of rays with valid
depth.

Under review as a conference paper at ICLR 2026

Scan Mean (CD)] 24 37 40 55 63 65 69 8 97 105 106 110 114 118 122
COLMAP 152 090 289 163 108 218 194 161 130 234 128 1.10 142 076 117 1.14
TransMVSNet 135 107 314 239 130 135 161 073 160 115 094 134 046 060 120 1.46
VoISDF 341 403 421 612 163 324 273 284 163 514 309 208 481 060 351 2.18
NeuS 4.00 457 449 397 432 463 195 468 383 415 250 152 647 126 557 6.11
SparseNeuS-ft 1.27 129 227 157 088 161 186 106 127 142 107 099 087 054 115 118
SparseCraft 1.04 117 174 180 070 1.19 153 083 105 142 078 080 056 044 077 084
PixeINcRF 6.18 513 807 585 440 711 464 568 676 905 611 395 592 626 689 693
IBRNet 232 229 370 266 183 3.02 283 1.77 228 273 196 187 213 158 205 2.09
MVSNeRF 2.09 196 327 254 193 257 271 182 172 229 175 172 147 129 209 226
SparseNeuS 1.96 217 329 274 167 260 242 158 186 194 135 150 145 098 186 187
VolRecon 1.38 120 259 156 1.08 143 192 111 148 142 105 1.19 138 074 123 127
ReTR 1.17 105 231 150 096 120 154 089 134 130 087 106 077 059 106 1.11
C2F2NeuS 111 112 242 140 075 141 177 085 116 126 076 091 060 046 088 092
UFORecon 1.00 079 203 133 087 L11 119 074 122 114 071 089 059 056 090 1.02
SVRecon 1.00 072 198 144 083 112 140 072 127 106 076 094 056 044 087 093

Table 2: Quantitative evaluation results of sparse-view reconstructions on 15 testing scenes of
DTU dataset using Chamfer Distances. We test and report results using released codes for VolRe-
con, ReTR, and UFORecon, other results are sourced from these papers. From top to bottom, the
baseline methods are from different categories: 1) Multi-view Stereo (MVS) methods; 2) neural im-
plicit reconstruction methods (requiring per-scene optimization); 3) generalizable neural rendering
methods; 4) generalizable surface reconstruction methods. We use bold to indicate best perfor-
mance, and underline to indicate the second-best. ReTR is the closest baseline and also the one we
built our approach upon.

Scan AUC@15° 1 24 37 40 55 63 65 69 8 97 105 106 110 114 118 122
VolRecon 8.4 83 7.0 142 121 57 82 78 50 58 6.6 108 38 119 85 105
ReTR 16.3 200 11.5 263 205 147 148 157 94 127 121 199 144 218 152 154

UFORecon 11.8 146 83 144 158 81 113 118 65 75 9.6 164 104 156 135 139
SVRecon 21.0 26.3 14.6 28.8 26.4 185 18.1 203 114 153 149 26.3 19.6 29.3 22.2 22.9

Table 3: Quantitative evaluation results of sparse-view reconstructions on 15 testing scenes of
DTU dataset using Normal Consistency. We test and report results using released codes from the
compared methods. We use bold to indicate best performance.

5 EXPERIMENTAL RESULTS

In this section, we begin by outlining our experimental setup, including datasets and implementation
details. Next, we assess our approach both qualitatively and quantitatively on generalizable surface
reconstruction against state-of-the-art competitors. We also provide evaluation results to demon-
strate the effectiveness of our occupancy prediction network. We finally present results to evaluate
the generalization ability of our method without retraining and conduct analyses for different ele-
ments in our method.

Datasets. As in previous works (Liang et al.| [2024; |Ren et al. [2023; Xu et al} 2023} Na et al.,
2024), we use the DTU (Aanzs et al.l |2016) dataset for training and main evaluation. It consists of
high-resolution images of 124 different scenes under 7 lighting conditions captured under controlled
laboratory conditions, each accompanied by accurate camera matrix and laser-scanned ground truth
depth map. We use the same evaluation protocol as in earlier work and 3 views as input for each one
of the 15 test scenes. In addition to DTU, we also use BlendedMVS (Yao et al.,|2020) and Tanks
and Temples (Knapitsch et al.,[2017)) dataset to evaluate the generality of our approach.

Implementation Details. We use M = 4 input views with resolution 640 x 512 in training,
and M = 3 input views with resolution 800 x 600 in testing, consistent with previous works. In
volumetric feature construction Sec. we use C' = 32 feature channels. Our model is trained for
16 epochs using Adam optimizer (Kingma & Ba, 2014) the learning rate is set to 10~%. Please refer
to Supp. for more details.

5.1 COMPARATIVE RESULTS ON DTU

We first present our evaluation metrics and the baselines we compare against. We then report quan-
titative results in Tab.[2]and Tab.[3] along with qualitative ones in Fig.

Under review as a conference paper at ICLR 2026

Scan Mean 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
Precision 23.0 28.0 262 261 239 267 266 236 247 290 260 225 132 189 164 133
Recall 96.8 985 912 904 984 924 947 99.1 97.0 981 97.0 97.7 983 998 993 99.9
Space Occupation (Ours) 1.89 2,00 2.06 180 1.63 213 157 157 235 202 224 158 196 155 191 201

Space Occupation (GT) 045 057 059 052 039 062 044 037 060 0.60 060 036 026 029 032 027

Table 4: Evaluation results of occupancy predictions on 15 testing scenes of DTU dataset. We
use precision and recall to quantify the performance of occupancy prediction. We also provide space
efficiency statistics defined as the ratio between number of occupied voxels and number of all voxels.
All reported results are in percentage.

Evaluation Metrics. Chamfer Distances between predicted surfaces and ground truth point clouds
have been extensively used and is a standard metric to evaluate surface reconstruction quality. Un-
fortunately, it lacks awareness of local geometry and density and as a result, does not accurately
quantify proper recovery of fine-scale details and reconstructed surface smoothness. Thus, we also
report a Normal Consistency metric that accounts for surface quality. To evaluate it, we first extract
3D meshes from predicted depth maps and ground truth depth maps using TSDF fusion (Curless &
Levoy, [1996) and Marching Cube (Lorensen & Cline, [1987). We then compute the angular differ-
ences between normals at closest vertices in the two meshes, and use Area Under the Curve (AUC)
up to 15° in percentage to measure the overall normal consistency robustly. In Fig. [5|in Supp., we
show the angular differences on a specific example.

Results. As reported in Tabs. 2| and [3| in terms of Chamfer distance, our method is on par with
UFORecon and they both outperform all other methods. However, as can be clearly seen in Fig. [3
the surfaces produced by UFORecon are much rougher than ours. We introduce the normal consis-
tency metric to measure this qualitative but important difference, since Chamfer distance alone does
not capture that property. In terms of that metric, we do much better than UFORecon because, by
using a high-resolution volumetric representation, we get much more regular and smoother surfaces.
ReTR is the closest baseline to us in methodology and we clearly do better on all metrics and for all
scenes. In Fig. 3] this manifests itself by the fact that our reconstructed surfaces are much smoother
than UFORecon and devoid of small artifacts that ReTR creates.

5.2 OCCUPANCY PREDICTION

Occupancy prediction is the first stage in our method and the second stage depends on it being
accurate. We therefore evaluate it by itself.

Evaluation Metrics. In essence, it is a classification problem for which Precision and Recall can
be used as evaluation metrics. To quantify the savings of our sparse feature volumes scheme in
storage, we also compute a Space Occupation metric, taken to be the ratio between number of
occupied voxels and number of all voxels.

There is in general a trade-off between precision and recall, however in our surface reconstruction
problem, we prioritize recall and compromise precision such that surface geometry is preserved as
much as possible. In practice, 1) we use a conservative threshold of 0.1 to determine the occupied
voxels from the occupancy prediction from the network O; 2) we then further dilate the occupied
voxels using a cubic 3 x 3 x 3 kernel to obtain the final occupancy prediction results.

Results. We report our quantitative in Tab. |4} and provided qualitative ones in Fig.[3| We achieve
a 96.8% average Recall, ensuring the preservation of surface geometry. The false negatives mostly
come from the textureless table in the scenes, which is very hard to reconstruct and does not take
part in the standard evaluation. The Precision is on average at 23.0%, resulting in Space Occupa-
tion at 1.89%, 4.2 times of the optimal Space Occupation at 0.45%. This demonstrates the strong
performance of our occupancy prediction method, which recalls most of the surface by keeping only
1.89% of the voxels on average.

5.3 FURTHER ANALYSES

Memory Consumption. We consider only the second stage here, as the first stage of occupancy
prediction can be run seperately beforehand and does not consume much memory. Practically, our
method consumes around 30 GB memory to train with batch size as 1, 1024 sampled rays and 32
feature channels in the second stage. This is a moderate requirement for modern GPUs, but also

Under review as a conference paper at ICLR 2026

Reference ReTR Ours(SVRecon) Reference ReTR Ours(SVRecon)

Figure 4: We apply our method, pretrained only on the DTU dataset, to scenes from Tanks and
Temples (top) and BlendedMVS (bottom) datasets. The high-quality reconstructed surfaces
highlight the strong generalization ability of our method. The red rectangles highlight the detail-
preserving ability of our method.

prevents us from lifting the resolution even more. In testing, the memory requirment is eased even
more to around 12 GB with the same setting.

Impact of Different Resolutions. The resolution is of critical importance in the task of surface
reconstruction. To verify this point, we use the same occupancy prediction results as in our main
experiment and vary the times of supersampling in the second stage of our method. We test our
method at 1, 2 times of supersampling, leading to resolutions at 128° and 2563. Compared to the
adopted resolution in our method at 5123, the tested resolutions are only lower, because we cannot
lift the resolution even more due to memory consumption constraints. The results are presented in
Tab. [5Sl As we can see, there is an abrupt improvement in performance from 1282 to 2563, and a
mild improvement from 2563 to 5123. Overall, this validates the intuitition that the performance
will increase as the resolution increases.

Number of Views. While our method is trained on

M = 4 input views, it is not restricted to this setting Settings Mean (CD) |
. . B 3

due to the mean and variance feature construction oper- posouon @ an ool

ation as in section[4.1] In addition to the M = 3 setting Number of Views @ 5 0.96

: : : Number of Views @ 4 0.99

in our main experiment, We also test thc? perfoymance of Base Foamre Chanee ¥ @ 16 15

our method with M = 4 and M = 5 input views, and Ours (SVRecon) 1.00

the results are given in table[5] It can be observed that the))
surface reconstruction quality increases with more input Table 5: A study on the impact of dif-

views, as more scene information becomes available. ferent settings on the final performance
of our method, including resolution,

number of input views and number of
base feature channels.

Number of Base Feature Channels. The number of
feature channels is crucial in determining the effective-
ness of scene feature representations. However, more fea-
ture channels will also incur more memory burden. In our main experiment, we use Cy = 32 base
feature channels in volumetric feature construction. We also test the performance of our method
with C'y = 16 base feature channels, and the results are provided in tableEl It shows that reducing
the number of base channels will degrade the performance.

Generalization Ability. To validate the generalization ability of our method in surface reconstruc-
tion, we apply our method, pretrained only on DTU dataset, to scenes from BlendedMvS
[2020) and Tanks and Temples (Knapitsch et al.,[2017). In this experiment, we use M = 5 in-
put views, the visualization is given in Fig.] It can be seen that our method generates surfaces with
finer details than ReTR, demonstrating the strong generalization ability.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a two-stage neural surface reconstruction method based on the efficient
scene representation of sparse feature volumes. In the first stage, our method is capable of perform-
ing accurate occupancy prediction, retaining only around 1.9% of all voxels as occupied voxels and
greatly reducing the memory burden. In the second stage, our method can reconstruct high-quality
surfaces by conducting feature-based volume rendering on the constructed sparse feature volumes
at a high resolution 5123. Extensive experiments have demonstrated the superiority of our method
compated to a variety of existing methods in terms of surface reconstruction quality. In the future,
we will explore more efficient schemes that generalizes to realistic unbounded scenes with arbitrary
number of views.

Under review as a conference paper at ICLR 2026

REFERENCES

Henrik Aanzs, Rasmus Ramsbgl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
Large-scale data for multiple-view stereopsis. IJCV, 120:153-168, 2016.

Chenjie Cao, Xinlin Ren, and Yanwei Fu. Mvsformer++: Revealing the devil in transformer’s details
for multi-view stereo. arXiv Preprint, 2024.

Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. In Conference on Computer graphics and Interactive Techniques, pp. 303-312, 1996.

Yikang Ding, Wentao Yuan, Qingtian Zhu, Haotian Zhang, Xiangyue Liu, Yuanjiang Wang, and
Xijao Liu. Transmvsnet: Global context-aware multi-view stereo network with transformers. In
CVPR, pp. 8585-8594, 2022.

P. Fua. From Multiple Stereo Views to Multiple 3D Surfaces. International Journal of Computer
Vision, 24(1):19-35, August 1997.

Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereopsis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 99, 2009.

Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan. Cascade cost
volume for high-resolution multi-view stereo and stereo matching. In CVPR, pp. 2495-2504,
2020.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University
Press, 2000.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In ACM SIGGRAPH, pp. 1-11, 2024.

Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu Fang. Surfacenet: An end-to-end 3d
neural network for multiview stereopsis. In ICCV, pp. 2307-2315, 2017.

Mengqi Ji, Jinzhi Zhang, Qionghai Dai, and Lu Fang. Surfacenet+: An end-to-end 3d neural net-
work for very sparse multi-view stereopsis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(11):4078-4093, 2020.

A. Kar, C. Hine, and J. Malik. Learning a Multi-View Stereo Machine. In Advances in Neural
Information Processing Systems, pp. 364-375, 2017.

B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Transactions on Graphics, 42(4), July 2023.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In arXiv Preprint, 2014.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and Temples: Benchmark-
ing Large-Scale Scene Reconstruction. ACM TOG, 36(4), 2017.

I. Kostrikov and J. Gall. Depth Sweep Regression Forests for Estimating 3D Human Pose from
Images. In British Machine Vision Conference, 2014.

K.N. Kutulakos and S.M. Seitz. A Theory of Shape by Space Carving. International Journal of
Computer Vision, 38(3):197-216, July 2000.

Maxime Lhuillier and Long Quan. A quasi-dense approach to surface reconstruction from uncali-
brated images. IEEE TPAMI, 27(3):418-433, 2005.

Z.Li, T. Miiller, A. Evans, R. Taylor, M. Unberath, M. Liu, and C. Lin. Neuralangelo: High-Fidelity
Neural Surface Reconstruction. In Conference on Computer Vision and Pattern Recognition,
2023.

Yixun Liang, Hao He, and Yingcong Chen. Retr: Modeling rendering via transformer for general-
izable neural surface reconstruction. NeurlPS, 36, 2024.

10

Under review as a conference paper at ICLR 2026

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature Pyramid Networks
for Object Detection. In Conference on Computer Vision and Pattern Recognition, 2017a.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal Loss for Dense Object Detection. In
International Conference on Computer Vision, 2017b.

Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang. Sparseneus: Fast
generalizable neural surface reconstruction from sparse views. In ECCV, pp. 210-227. Springer,
2022.

W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface Construction
Algorithm. In ACM SIGGRAPH, pp. 163169, 1987.

Ben Mildenhall, S. P. P., M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis. In European Conference on Computer
Vision, 2020.

Youngju Na, Woo Jae Kim, Kyu Beom Han, Suhyeon Ha, and Sung-Eui Yoon. Uforecon: Gen-
eralizable sparse-view surface reconstruction from arbitrary and unfavorable sets. In CVPR, pp.
5094-5104, 2024.

Yufan Ren, Fangjinhua Wang, Tong Zhang, Marc Pollefeys, and Sabine Siisstrunk. Volrecon: Vol-
ume rendering of signed ray distance functions for generalizable multi-view reconstruction. In
CVPR, pp. 16685-16695, 2023.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image

Segmentation. In Conference on Medical Image Computing and Computer Assisted Intervention,
pp. 234-241, 2015.

S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A Comparison and Evaluation of
Multi-View Stereo Reconstruction Algorithms. In Conference on Computer Vision and Pattern
Recognition, pp. 519-528, 2006.

H. Shum and S. B. Kang. Review of Image-Based Rendering Techniques. In Visual Communications
and Image Processing, pp. 2—13, 2000.

Haotian Tang, Shang Yang, Zhijian Liu, Ke Hong, Zhongming Yu, Xiuyu Li, Guohao Dai, Yu Wang,
and Song Han. Torchsparse++: Efficient training and inference framework for sparse convolution
on gpus. In IEEE/ACM International Symposium on Microarchitecture, pp. 225-239, 2023.

Fangjinhua Wang, Silvano Galliani, Christoph Vogel, and Marc Pollefeys. Itermvs: Iterative proba-
bility estimation for efficient multi-view stereo. In CVPR, pp. 8606-8615, 2022.

P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. Neus: Learning Neural Implicit Sur-
faces by Volume Rendering for Multi-View Reconstruction. In Advances in Neural Information
Processing Systems, 2021a.

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T
Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-
view image-based rendering. In CVPR, pp. 4690-4699, 2021b.

Luoyuan Xu, Tao Guan, Yuesong Wang, Wenkai Liu, Zhaojie Zeng, Junle Wang, and Wei Yang.
C2f2neus: Cascade cost frustum fusion for high fidelity and generalizable neural surface recon-
struction. In ICCV, pp. 1829118301, 2023.

Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for unstruc-
tured multi-view stereo. In ECCV, pp. 767-783, 2018.

Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, and Long Quan. Recurrent mvsnet for
high-resolution multi-view stereo depth inference. In CVPR, pp. 5525-5534, 2019.

Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan.
BlendedMVS: A Large-Scale Dataset for Generalized Multi-View Stereo Networks. In CVPR,
pp- 1790-1799, 2020.

11

Under review as a conference paper at ICLR 2026

L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman. Multiview Neural
Surface Reconstruction by Disentangling Geometry and Appearance. In Advances in Neural
Information Processing Systems, 2020.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume Rendering of Neural Implicit Sur-
faces. In NeurIPS, 2021.

Mae Younes, Amine Ouasfi, and Adnane Boukhayma. Sparsecraft: Few-shot neural reconstruction
through stereopsis guided geometric linearization. In ECCV, pp. 37-56. Springer, 2024.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient adaptive surface
reconstruction in unbounded scenes. ACM TOG, 43(6):1-13, 2024.

Chuanrui Zhang, Yingshuang Zou, Zhuoling Li, Minmin Yi, and Haoqian Wang. Transplat: Gen-
eralizable 3D Gaussian Splatting from Sparse Multi-View Images With Transformers. In AAAI,
volume 39, pp. 9869-9877, 2025.

A APPENDIX

A.1 QUERYING SPARSE VOLUMES.

Hereafter, we will use coarse-voxel to indicate a voxel at occupancy prediction resolution K2, and
fine-voxel to indicate a mini-voxel in each mini-volume effectively at resolution (sK)3. To explain
the algorithm, we first define a global grid frame, an occupancy grid frame and a local grid frame.
The global grid frame is a hypothetical one at the resolution (sK)3, corresponding to the densified
sparse feature volume and each vertice representing a fine-voxel center point. The occupancy grid
frame is at the resolution of occupancy prediction K3, each vertice representing a coarse-voxel
center point. Each occupied voxel spans a mini-volume with a local grid frame at resolution s3,
where each vertice represents a fine-voxel center point as well. For an arbitrary query location
p, we need to get the associated features of its eight adjacent vertices from S to perform trilinear
interpolation to obtain p’s feature representation. We detail on this functionality in the following.

Knowing the size of a coarse-voxel, it is straightforward to find p’s nearest vertices in global
grid frame and compute their global coordinates {v, | v, € {0,1,...,sK — 1}3}. Knowing the
supersampling rate s, we can easily convert the global coordinates into occupancy coordinates
{vo | vo € {0,1,..., K —1}3} and local grid coordinates {v; | v; € {0,1,...,S—1}3}. Now we con-
sider the data structure of sparse feature volumes S € RV xCxs® T query the features associated
with vertices, we can use directly local grid coordinates for indexing in the last three dimensions.
The problem now reduces to finding the right mini-volme index in the first dimension from occu-
pancy coordinates, for which we propose to use a mapping function H : {0,1,..., K — 1}3 — Z*
to map v, to the sought index n. For that purpose, we define a regular tensor as the dense lookup
table that encodes mapped values in its entries. The tensor H € RX * is at a low resolution, initial-
ized with values of -1 that points to a dummy feature. Then we simply apply boolean indexing in
PyTorch to encode mini-volume indexes, i.e. H[O] = {0, 1, ..., N — 1}. The boolean indexing is
consistent with S in its creation, such that n = HJv,| can be used to index S in the first dimension.
Having the associated features of the eight adjacent vertices, trilinear interpolation can be performed
for the query result, which completes the query process. Given a 3D query point p with coordi-
nates [, Yp, 2p| in a sparse scene containing N voxels {v1, ..., un }, we need to determine the index
1 € {1,..., N} of the sparse voxel v; containing p. To this end, we construct a 3D hash table H
such that H(x,, yp, 2,) = ¢, mapping spatial coordinates to their corresponding voxel indices. It
can be done by performing boolean indexing on an 3D array with “False” values everywhere except
for each position of the sparse voxels.

A.2 MORE IMPLEMENTATION DETAILS.

Method Configurations. For occupancy prediction, the voxel grid resolution is set to 1283, After
binarizing the initial predictions using threshold 7 = 0.1, a morphological dilation process is fur-
ther applied to the prediction results to maximize the recall of geometry. In the second stage, we
supersample each occupied voxel by s = 4 times in our experiments, leading to resolutions at 5123,

12

Under review as a conference paper at ICLR 2026

Scan24 GT Normal Map UFORecon Ours(SVRecon)

Figure 5: Normal Consistency evaluation on scan24 from the DTU dataset. The normal differ-
ences are visualized using colors. Errors in the range [0°, 15°] are color coded linearly from white
to red. Error larger than 15° are shown in green. Our SVRecon method significantly outperforms
UFORecon in Normal Consistency.

Scan24

Scan105

Figure 6: Novel view synthesis examples of our SVRecon method on scan24 and scan105 from the
DTU dataset. The details are preserved well for the foreground object.

In ray sampling, we sample 64 points per-ray both in training and testing. Our model is trained
on 4 A100 GPUs for 16 epochs. To reconstruct the surface, we follow the existing works
et al. 2024} [Ren et al.| 2023}, [Xu et al.}, 2023} [Na et al.,[2024) to define a virtual rendering viewpoint
corresponding to each view by shifting the original camera coordinate frame by 25mm along its
x-axis, and then use TSDF fusion (Curless & Levoyl [1996) to merge the rendered depth maps in a
volume and extract the mesh from it using Marching Cube (Lorensen & Clinel, |1987).

Network Architectures. We use Feature Pyramid Network (FPN) for image feature extraction.
To obtain projection features from 3D points, we interpolate on the 1/2 resolution feature map from
FPN. For 3D sparse feature volumes we use a sparse UNet architecture, with 4 encoder layers at
dimension [32,64, 128, 256], bottleneck layer at dimension 256, and decoder layers at dimension
[256, 128, 64, 32].

Dilation after Network Occupancy Prediction. To maximize recall, we first use a thresold 7 =
0.1 to binarize sthe occupancy predictions from the network. Then we apply a dilation process on
the binary occupancy fields. In the dilation process, we apply convolution with a 3 x 3 x 3 kernel
on the occupancy fields to compute a score for each voxel, and then set a threshold 33 * 0.1 to
binarize the occupancy fields again as the final occupancy prediction results. By doing this, more
voxels near the originally predicted voxels are included to improve recall. The process is written as
O = dilate(I(O > 7)).

A.3 MORE VISULIZATIONS.

Normal Consistency Visualization. We visualize an example of normal consistency evaluation
in Fig.[j]

13

Under review as a conference paper at ICLR 2026

Novel View Synthesis. Our method can also perform novel view syntheiss using the trained vol-
ume rendering network, some visual examples are presented in Fig.[6] Due to our sparse represen-
tation, the background is not modeled in the results.

14

	Introduction
	Related Works
	Background: Generalizable NeRFs
	Methodology
	Representing Voxels and Features
	Sparse Scene Representation
	Sparse Volumetric Reconstruction

	Experimental Results
	Comparative Results on DTU
	Occupancy Prediction
	Further Analyses

	Conclusion and Future Work
	Appendix
	Querying Sparse Volumes.
	More Implementation Details.
	More Visulizations.

