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Abstract

Vision-Language Models (VLMs) have shown remarkable progress in visual un-
derstanding in recent years. Yet, they still lag behind human capabilities in specific
visual tasks such as counting or relational reasoning. To understand the underlying
limitations, we adopt methodologies from cognitive science, analyzing VLM per-
formance along core cognitive axes: Perception, Attention, and Memory. Using
a suite of tasks targeting these abilities, we evaluate state-of-the-art VLMs, in-
cluding GPT-40. Our analysis reveals distinct cognitive profiles: while advanced
models approach ceiling performance on some tasks (e.g. category identification),
a significant gap persists, particularly in tasks requiring spatial understanding or
selective attention. Investigating the source of these failures and potential methods
for improvement, we employ a vision-text decoupling analysis, finding that mod-
els struggling with direct visual reasoning show marked improvement when rea-
soning over their own generated text captions. These experiments reveal a strong
need for improved VLM Chain-of-Thought (CoT) abilities, even in models that
consistently exceed human performance. Furthermore, we demonstrate the po-
tential of targeted fine-tuning on composite visual reasoning tasks and show that
fine-tuning smaller VLMs moderately improves core cognitive abilities. While
this improvement does not translate to large enhancements on challenging, out-of-
distribution benchmarks, we show broadly that VLM performance on our datasets
strongly correlates with performance on established benchmarks like MMMU-Pro
and VQAV2. Our work provides a detailed analysis of VLM cognitive strengths
and weaknesses and identifies key bottlenecks in simultaneous perception and rea-
soning while also providing an effective and simple solution.

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1 Introduction

A hallmark of human intelligence is the capacity for logical reasoning to solve problems and make
decisions. Replicating these abilities in artificial beings has been a longstanding goal in the field
of artificial intelligence. Recent advancements have demonstrated that large language models can
sometimes exhibit reasoning capacity deemed comparable to humans, functioning effectively as few-
shot or even zero-shot reasoners [I-2]. Innovations such as chain-of-thought (CoT) prompting and
majority voting have further enhanced these models, enabling them to approach, and in some cases
rival, human-level reasoning capabilities, as evidenced by their performance on tasks like coding
challenges and the ARC benchmark [5-7].

Building on the success of large language models (LLMs), vision-language models (VLMs) have
emerged to address vision-language tasks. These large-scale models integrate pre-trained LLMs
with vision models, such as Vision Transformers (ViTs), enabling them to proficiently handle tasks
like visual question answering and scene description [8-14].

_Perception Memory Attention Composite Visual Reasoning
I i !

[N b Il
H r I . " t :
Obj1 Objt o - ’ : : Obj1 o . :

) i ) 4 !

delay! Obj3 Obi3 !

!

!

frames. Objd Obija
(Mem-Cat-R) (Mem-Dist-Cat-R)

Figure 1: PAM Dataset. a) Relationship between different cognitive abilities underlying reason-
ing. b) Different components of the PAM dataset and example tasks from each. Green and blue
correspond to Category and Location tasks respectively. A complete list of examples is provided in
Appendix Figures AT T-AT3.

State-of-the-art (SOTA) vision-language models (VLMs) have been evaluated across a wide range of
benchmarks spanning diverse task domains such as simple object recognition, document understand-
ing, and general reasoning tasks [[5-T¥]. Prominent benchmarks like MMMU-Pro, MMBench, and
MME primarily assess cognitive reasoning at a high level, focusing on specific tasks such as coding
and mathematical problem-solving [[9-21].

Despite their strengths, VLMs continue to struggle with visual decision-making and reasoning tasks
[22-D5]. Campbell et al. [Pf] show that even state-of-the-art models perform poorly on multi-object
reasoning, such as counting or identifying objects, highlighting persistent deficits in visual binding,
a key perceptual ability [274]. Spatial reasoning remains another unsolved VLM challenge [Z8-
30, 23, B1].

Evidently, most of these VLM evaluations ultimately deviate from human cognitive science, where
researchers break intelligence down into core facultiesPerception, Attention, and Memorythat under-
lie higher-level functions like reasoning, decision-making, planning, and, more broadly, intelligence
[32-35]. In humans, Perception refers to fine-grained sensory encoding [B&], Memory to maintain-
ing information despite distraction [B7], and Attention to selecting goal-relevant inputs [38]. By
reframing VLM evaluation around these core abilities, we can pinpoint which cognitive mecha-
nisms fail and whether deficits in tasks like spatial reasoning arise from encoding, maintenance, or
selection. Here, we adopt that perspective and probe various VLMs through the lens of cognitive
science.

Our contributions are as follows:
1. Systematically analyzing the cognitive profiles of state-of-the-art VLMs using the

procedurally-generated Perception-Attention-Memory (PAM) and Composite Visual Rea-
soning (CVR) datasets.

2. Identifying specific weaknesses, particularly the pervasive difficulty with spatial informa-
tion (localization) and selective attention, even in top-performing models.



3. Investigating the nature of the reasoning bottlenecks using a VLM-only vision-text decou-
pling paradigm, revealing that limitations often stem from the integration of visual infor-
mation rather than solely from perceptual encoding or language-based reasoning.

4. Demonstrating that targeted fine-tuning on diverse cognitive reasoning tasks can signifi-
cantly enhance core cognitive abilities in VLMs, while also generally validating that im-
provements on PAM and CVR tasks translate to broader gains in visual reasoning perfor-
mance.

2 Related Works

The rapid development and success of large transformer-based language models have inspired re-
searchers to extend these architectures and scaling frameworks to other multi-task domains. Many
of these domains involve multi-modal data, including visual imagery, video, audio, real or virtual
sensory inputs, and language. Integrating large language models (LLMs) directly into VLMs has
shown major success across various multi-task vision-language applications [39-42, T4, T7].

Shortly after the release of early VLMs such as GPT-4 Vision, Gemini, Flamingo, and the original
LLaVA [0, 8, &3, 7], researchers began assessing their vision-language capabilities. Commonly
evaluated skills include image classification, captioning, scene description, and visual question an-
swering (VQA). Datasets like InfoVQA and VQAv2 focus on visual understanding grounded in
general world knowledge [[[9, 44, &5, IR], while others target specialized domains, testing models
on scientific reasoning, mathematics, and document comprehension [I6, &6, [, &7].

While some of these datasets involve reasoning about visual information, more complex reasoning
and cognitive evaluations have since emerged to measure these features more extensively. Prominent
examples include MMMU, MMBench, and MME [[9-2T]. These benchmarks adopt a comprehen-
sive approach to evaluating reasoning and cognitive skills in state-of-the-art VLMs. MME and
MMBench categorize their tasks into reasoning and perception, with both groups sampling diverse
contextual domains. However, these benchmarks fail to rigorously evaluate low-level cognitive abil-
ities necessary for visual reasoning.

Beyond these broad vision-language benchmarks, recent studies have focused on testing VLMs on
more narrow cognitive domains. BlindTest [48] measures the abilities of VLMs to solve visual geo-
metric tasks. VCog-Bench [A9] takes inspiration from early neuro-developmental cognitive tests and
evaluates VLMs on their ability to solve abstract logic puzzles and pattern recognition tasks. VisFac-
tor from [50] measures similar highly abstract visual reasoning abilities. Schulze Buschoff et al. [51]
focus their cognitive evaluations on intuitive physics, causal reasoning, and intuitive psychology. Vi-
sual abductive reasoning is another related area of research[62, 53]. It focuses on the inference of a
hidden cause for a give observation, which differs from our focusing on logical reasoning. However,
by far the most commonly measured cognitive domain is spatial reasoning [28-30, 73, B1].

While all of these studies highlight important weaknesses within specific domains, they fall short of
providing a comprehensive evaluation of VLMs’ cognitive visual reasoning. Specifically, they (1)
fail to assess core cognitive abilities and their interrelations; (2) focus mainly on single- or few-image
tasks; and (3) rely heavily on abstract stimuli that are likely underrepresented in VLM training data.
Our work addresses these weaknesses through a systematic evaluation of Perception, Memory, and
Attention, their integration in complex visual reasoning tasks, and introduces methods to improve
VLM visual reasoning abilities overall.

3 Methods

3.1 Data Source

We utilize the iWISDM task environment [?7] to generate all cognitive tasks and fine-tuning data
in this study. This environment enables the procedural generation of an effectively limitless number
of vision-language decision-making tasks. In this study, we leverage iWISDM to generate tasks
with varying levels of complexity, aligning with the requirements of each cognitive axis in the PAM
dataset. These tasks range from simple single-object localization to more complex ones requiring
logical reasoning and object comparisons across image sequences. The PAM dataset consists of
tasks manually designed to isolate core cognitive abilities. The CVR dataset was generated using



iWISDM to produce complex, composite reasoning problems. Together they provide a wholistic set
of tasks that allow us to systematically analyzing the cognitive profiles of state-of-the-art VLMs.

We used ShapeNet objects [54], which include images of 3D-rendered everyday objects taken at vari-
ous viewing angles. There are 8 object categories and 8 unique objects for each category, and objects
are placed in one of four possible locations: top left, top right, bottom left, and bottom right. While
not fully naturalistic, these familiar objects enable the measurement of low-level cognitive abilities
in a controlled setting, while largely avoiding the issue of limited training-data representation that
affects more abstract stimuli such as simple geometric shapes used in prior work [29, B0].

3.2 Cognitive tasks for Perception, Attention, & Memory (PAM)

The PAM dataset includes three categories of tasks which measure individual cognitive abilities:
Perception (Perc), Attention (Att), and Memory (Mem) (Figure ).

* Perception. The Perception tasks assess a model’s immediate access to specific visual
object properties according to the task instruction. These tasks contain one or more object
frames and require the agent to be able to identify visual object properties, such as spatial
location.

* Attention. The Attention tasks assess a model’s ability to select the task-relevant ob-
ject from multiple distractors within individual image frames. There are two variants of
attention-based tasks: (1) Spatial attention tasks, where the target is specified by its lo-
cation (e.g. "top-right"); (2) Feature attention tasks where the target is specified by its
category (e.g. "chair"). In both cases, the model must ignore irrelevant objects and report
or compare the cued object’s property.

* Memory. The Memory tasks assess a model’s ability to retain and recall visual object
information across irrelevant image inputs. Specifically, each trial contains one or more
object frames followed by blank or distractor frames. The agent must encode the target’s
properties on the initial frame and accurately report them when prompted after the interrup-
tion.

For each type of task, there are two task variants: Report (R) and Compare (C). These refer to
whether the task requires the agent to report an object property or requires the agent to compare two
objects by their properties. The type of property which is required to report or compare is either
object location (Loc) or object category (Cat). See Figure [l and Appendix Figures AT I-ATH for
example task trials.

To probe how VLMs’ PAM scores relate to their more general visual reasoning capabilities, we ad-
ditionally evaluate each model on a set of composite visual reasoning tasks (CVR) that each involve
various combinations of the different cognitive abilities. The CVR tasks were randomly generated
using the iWISDM AutoTask framework. The three levels of complexity, Low (L), Medium (M),
and High (H), were generated following the AutoTask parameters outlined in Lei et al. [22] and can
be found in Appendix Table B~Z. Altogether, we tested each model on 22 vision-language tasks
(see Appendix Table B~23 for the full list).

3.3 Vision Language Models

We tested seven different vision language models: InternVL2.5-8B [535], LLaVa-OneVision-7B
[66], MiniCPM-V-2.6-8B [57], Qwen2.5-VL-7B [14], GPT-40-Mini, and GPT-4o [I0]. These mod-
els were chosen as a representative state-of-the-art set of open-source (MiniCPM-V, InternVL2.5,
LLaVa-OneVision, and Qwen2.5-VL) and proprietary (GPT-40 and GPT-40-Mini) model series. We
focused on evaluating smaller open-source models, as they often achieve performance comparable
to their larger counterparts while offering greater computational efficiency and broader practical us-
ability. However, to gain more insight into whether our evaluations on open-source models revealed
properties that were due to their smaller size rather than other factors, we performed further tests on
Qwen2.5-VL-72B, the largest size of this model.

GPT-40 and GPT-40-Mini were evaluated with the official API. All variations of Qwen2.5-VL and
LLaVa-OneVision were hosted with llama-factory [68] and evaluated with the OpenAl-style API.
The InternVL-2.5 and MiniCPM-V 2.6 were deployed using Hugging Face Transformers. All mod-
els were evaluated with a (near-)identical task prompt template: the prompt describes the tasks and



possible answers, includes the trial’s instructions and images, and suggests Chain-of-Thought rea-
soning (see Appendix Figure A_TT Tl for the full prompt and OpenAl API code). After the VLMs are
run on the benchmark task, the responses are passed to a Qwen2.5-72B LLM, which is prompted to
extract the final answers given a list of possible answers. From these final answers, accuracy scores
are calculated for all benchmarks. The GPT-40-Mini and GPT-40 results were collected using gpt-
40-mini-2024-07-18 and gpt-40-2024-08-06 snapshots provided by OpenAl.

3.4 Decoupling Vision & Text via Captioning

Aside from GPT-4o, our findings show notable disparities in cognitive performance between open-
source models and humans on visual reasoning tasks. To address this, we performed a set of experi-
ments designed to enhance the core cognitive and visual reasoning abilities of Qwen2.5-VL-7B via
vision-text decoupling. Implemented through prompt modifications, we vary the required processing
of visual information as well as reasoning load through three methods:

e PC (Pre-captioned): All images in the task prompt are replaced with ground truth captions
containing both category and location object information. This method allows us to confirm
whether any visual reasoning weaknesses on our datasets result from the LLM not being
able to sufficiently understand the semantics of the prompt instructions and questions.”

* SC (Self-captioning): In separate conversations, models are instructed to caption an image
with information on object category and location. These model self-captions are then used
to replace images within a given task prompt. This method is related to the decoupling
method from [59]; however, unlike the Prism framework, our method does not rely on a
separate LLM to perform the text-only reasoning.

* SC-I (Self-captioning-Interleaved): Instead of simply replacing images with model self-
captions, we interleave the captions between the images such that all task images are fol-
lowed by their corresponding self-caption.

Qwen2.5-VL-7B was selected as the primary VLM for these experiments due to its substantial
performance gap relative to both GPT-40 and humans, while also holding its status as the most recent
open-source model in our evaluation set. To ensure the generality of our findings, we also applied
the key vision-text decoupling experiments to GPT-40 and to the larger 72B size of Qwen2.5-VL.

Example prompts and Python code for our captioning methods can be found in Appendix BTTI.

4 Results

4.1 Cognitive Evaluation of VLMs with PAM Dataset

We first evaluated selected VLMs and humans (see Section B for details) on the PAM dataset,
split by Location and Category subtask types. The results listed in Table 0 present the average
accuracies on each task group (see Appendix Table B~Z for more granular performance scores).
Overall, GPT-40 performed best, with scores nearing human levels, while GPT-40-Mini closely
followed, matching human levels on category tasks. Between the four compact open-source models,
performances were extremely dependent on the cognitive axis being probed. Both open-source and
proprietary models showed the pre-established weakness for spatial-based visual reasoning, with
open-source models and GPT-40-Mini expressing large performance gaps between location and
category task variants.

In addition to task accuracy, we recorded human response times to provide context on the perceived
difficulty of these tasks (see Appendix Table A2Tl). The response times clearly correlate with task
complexity; for instance, the average time for a high-complexity category CVR task (77.21s) was
more than ten times longer than for a simple perception task (7.39s). Interestingly, humans con-
sistently took longer to solve category-based tasks than their location-based counterparts, a pattern
that contrasts with the performance of most VLMs, which struggle more with spatial reasoning. A
difference likely reflecting the abundance of object category based task training data in comparison
to spatial task data.

The PC method’s ground-truth captions are made from the iWISDM task trial meta-data.



Table 1: Average PAM and CVR scores across all tasks for various open-source models, closed-
source models, and human performance. Scores are presented as mean percentage accuracy (4
standard deviation). Best performance for open-source models for each task is bolded. Best perfor-
mance overall for each task is underlined.

Task LLaVa MiniCPMYV InternVL Qwen-7B 40-Mini 4o Human

Percep. (Cat) 71.00%°11 8267428 72.67+502 83,67+418 89,00+3-55 90.33+3-36 93 754555
Percep. (Loc) 67.00%5:29 39.00%549 75,00+488 44.33%5-59 57 67+5:56 89 00+3-55 97,50+3-98
Feature Attn. 62.00%259 54.30%2:65 ¢4,67+255 55.85+2:65 71,85+240 87 19+1.78 9g.75+3-27
Spatial Attn.  54.52%2:65 58 67262 6(,89+2-60 57 48+2.63 68 81+2:47 75.93+2.28 9g 75+3-27
Memory (Cat) 66.83%1:51 73 68+1:41 61.20+1:56 78,59+1-31 88 96+1:00 9] 474089 96 gg+2-88
Memory (Loc) 50.83%1:63 39 11+159 48 75+1.63 49 9p+1.61 57 9g+1.62 g3 47+1.21 96 95+3.10

CVR-Cat-L.  46.00%7-88 62.00=7-68 52.00%7-89 60.00+7-75 §1.33+6-21 91,33+4.56 g9 50+11.60
CVR-Loc-L  66.00%7-50 50.00E7-90 46.00%7-88 56.0017-85 51.33£7-90 66,00£7-50 92 50+8-64
CVR-Cat-M  44.00%7-85 49 33%7:90 38 00*+7-68 54,00+7-88 72.00%7-12 96.67+3-07 95,00+7-56
CVR-Loc-M  58.00%7-82 59.33+7-77 50.00%7-90 49 33£7-90 51 33+7.90 g9 ¢7+6.04 7() 0p+13-68
CVR-Cat-H 24.00%481 37,00+5-43 37.33%5-44 39.33+549 63 (0+5-43 83,67%4-18 72, 50%13-36
CVR-Loc-H 20.00%%51 31.00%521 36,33+5-41 29 33+5.13 39 ¢7+5.50 g4 67+5-38 75,00+13-00

4.1.1 VLM Perception

Consistent with prior literature, our perception tasks reveal that VLMSs are much better at object cat-
egorization than they are at object localization. GPT-4o, representing the top proprietary VLMs, had
the smallest gap between these subtask types. However, its miniature variant (GPT-40-Mini), as well
as all tested open-source models, showed significant weaknesses on tasks requiring the perception of
spatial object information. Interestingly, taking a look at the granular results of Table B2, we see
significant variations in performance between Perception comparison (C) and report (R) task types.
For example, LLaVA-OneVision-7B achieves 88% accuracy and exceeds humans on Perc-Loc-R,
but achieves only 46% on Perc-Loc-C. While an opposite bias can be seen for other models and for
category variants. These results reveal that VLMs not only have pervasive perception limitations
but also harbor granular biases that seem to vary greatly depending on specific task requirements
and structure. The fact that many VLMs find report tasks more difficult than comparison tasks is
surprising, and as shown below, these peculiar biases also appear to be prevalent in VLM Attention
and Memory abilities.

4.1.2 VLM Attention

The Attention tasks proved more of a challenge for the proprietary models. While still the best model
tested, here we observed GPT-40’s first major gap with human performance. Specifically, GPT-40
struggles with attending to task-relevant objects while ignoring irrelevant ones. This was especially
true for spatial attention, where relevant objects are specified by their location. All open-source
models performed far below human levels. We had expected the differences between Feature and
Spatial Attention performances to be smaller than those between the Location and Category variants
of the other task types. This is because both of these Attention task variants require simultaneous
understanding of location and category. In contrast to GPT-4o0, the compact models largely met that
expectation of similar performance between Feature and Spatial Attention task variants.

4.1.3 VLM Memory

Finally, for Memory, most models perform similarly to their evaluation on Perception, suggesting a
robustness to additional irrelevant frames. GPT-40 outperforms all models once again, reaching
human-level accuracy on the Category variant. However, like Spatial Attention, location-based
Memory tasks revealed another gap remaining between humans and GPT-40. GPT-40-Mini follows
a similar pattern, with exceptional category-based Memory task performance and weak location-
based Memory task performance. Similar biases are present for all other models. A granular look
with Appendix Table B~ZT also reveals GPT-4o struggles more with Memory comparison tasks
when the delay frames contain irrelevant objects.
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Figure 2: Scatter plots comparing average PAM task performance against average CVR task per-
formance across all models. Each point represents a different model or Qwen2.5-VL-7B LoRA
versions. The x-axis shows the average accuracy on the specified PAM task category (averaging Loc
and Cat), and the y-axis shows the CVR accuracy score.

4.2 Evaluating VLMs on Composite Visual Reasoning

With their core cognitive abilities established, we turned to assessing how well the models perform
composite visual reasoning (CVR) tasks. For this, we tested all models on the set of procedurally
generated CVR tasks of varying levels of complexity (Table M). We find that GPT-40 was consis-
tently the strongest model across all complexities, even exceeding humans on most tasks. GPT-
40-Mini managed to perform near this level on the low-complexity category variant. However, a
significant gap emerged in all other CVR tasks. The open-source models demonstrate pronounced
drops in performance with increasing complexity of the tasks. Interestingly, GPT-40 seems to be
better at solving CVR tasks that have Medium-level complexity than Low-level complexity. This
difference could be due to a CoT bias towards if-then-else operations, which are excluded from the
Low complexity task generation. However, a detailed analysis inspecting the outputs of GPT-40
across these two complexities would be needed to confirm this.

Relative to the PAM evaluation, GPT-40 performed much worse on the location-based variants com-
pared to their category-based counterparts. This may stem from small performance differences in
PAM tasks compounding within the more demanding CVR setting, leading to larger gaps. The result
highlights the importance of addressing even minor biases in core cognitive abilities.

4.2.1 Relationship Between PAM & CVR

Intuitively, models with stronger memory, attention, and perception abilities should also perform
better on tasks that require a combination of these skills. Since our CVR tasks are designed to engage
exactly these abilities in combination, we plot each model’s PAM performance against its CVR
performance, as shown in Figure D. All performances on all three core cognitive axes showed strong
correlation to CVR task performance. Memory task performance stands out with a correlation of
0.94. This is likely due to the abundance of Memory comparison-based subtasks (i.e comparing two
objects with irrelevant images in between), contained within CVR tasks. Furthermore, models’ PAM
and CVR accuracies are significantly correlated to their performance on widely used benchmarks
such as MMMU-Pro (Figures BZ7TI), which further validates the effectiveness of the evaluations
presented here.

4.3 What It Takes for a VLM to Reason

Our results reveal substantial gaps in cognitive performance between open-source models and hu-
mans on visual reasoning tasks. In this section, we explore ways to enhance the core reasoning
abilities of VLMs. We start by testing a series of prompt modifications to assess how different
levels of vision-text decoupling affect Qwen2.5-VL-7B. These experiments introduce a simple yet
effective strategy to boost visual reasoning while also highlighting key architectural bottlenecks. We
then evaluate the impact of supervised LoRA fine-tuning on Qwen2.5-VL-7B using a separate set of
CVR tasks.



4.3.1 Decoupling Vision & Text via Captioning

Table 2: PAM and CVR performance of Qwen2.5-VL-7B using different captioning methods. The
Base column shows absolute percentage accuracies (£ standard deviation). Subsequent columns
show the percentage change in accuracy from the Base method (£ standard deviation). Positive
changes are shown in green, and negative changes in red. Asterisks denote statistical significance: *
p <0.05, ** p < 0.01, *** p < 0.001.

Task Base SC SC-1 PC
Perception (Cat)  83.67+%18 +1.33F404 -6.17%5.76 -2.00+4-37
Perception (Loc) ~ 44.33%5:59 428 67#+5:00 +10.17%6:84 +55.00%F1-11
Feature Attention 55.85%2:65 402 (Q###+2.21 -1.74%3.25 2220k #xE2.21
Spatial Attention ~ 57.48%2:63 1 ]g | 5kx£2.29 -1.70%3-24 +8.52%2:52

Memory (Cat) 78.59FL3L 44 7Ll 5 o LTS 46 97l LS
Memory (Loc) 4222161 426 ot .5l 417 (74196 447 300 1.00

CVR-Cat-L 60.00£7-75 +2.67£7-65 +1.00%9-39 +1.33%7.70

CVR-Loc-L 56.00+7-85 +8.67+7:56 +0.00%9-55 +12.67%7:34
CVR-Cat-M 54.00+7-88 +3.33+7.82 +7.00%9-39 +12.67%7-46
CVR-Loc-M 49.33+7.90 +10.00E7-77 +2.67%9-61 +10.67%7-75
CVR-Cat-H 39.33+5.49 +6.00%5-60 +6.67%6-84 +13.00%5-62
CVR-Loc-H 2033%513 4 17.33%+£5.61 +7.17%6-61 +32.00%%5-48

Considering the well-established reasoning abilities of LLMs, we used self-captioning and pre-
captioning methods to investigate the source of poor visual reasoning in VLMs through vision-text
decoupling. The results for these experiments are displayed in Table O; for a fully granular look,
please see Appendix Table B=27. We also evaluated one-shot prompting, however this approach did
not yield a significant performance boost compared to other methods, a finding that aligns well with
previous literature [b0, BT].

Our pre-captioning method led to the largest and most consistent performance gains across the PAM
tasks, with these performance gains also reflected in CVR tasks. Most importantly, the SC method
also led to significant improvements on all task sets across PAM and CVR datasets.

The PC results suggest that the underlying language model components of Qwen2.5-VL-7B are
capable of interpreting the semantics of cognitive task instructions and performing the required rea-
soning. Replacing images with self-generated captions (SC) of those same images proved to be a
simple yet effective strategy for enhancing Qwen2.5-VL-7B’s cognitive performance. The compa-
rable performance between PC and SC indicates that the model can caption at least single images
with sufficient accuracy to support PAM and CVR tasks. Therefore, any performance differences
between PC and SC are likely attributable to the core language model’s ability to translate visual
tokens into accurate captions.

Notably, the largest performance gains by far for the SC method compared to the baseline were
for location tasks. Across both PAM and CVR results, applying SC to location-only tasks saw an
average accuracy improvement of 18.31% compared to 3.54% for category tasks. This stark differ-
ence suggests that the bottleneck of VLM spatial reasoning may stem from inadequate CoT training.
Two key observations support this: (1) Qwen2.5-VL-7B can accurately describe object locations
from visual inputs, and use those descriptions to answer location-based Perception questions, and
(2) Qwen2.5-VL-7B fails at the same questions when no text-based location information is provided.
These simple observations point to a core limitation in current CoT strategies, even for single-image
spatial reasoning, and likely explain the near-chance performance on multi-image CVR and PAM
location tasks. By contrast, it is unclear why this bottleneck affects category tasks less. A likely
reason is the abundance of object recognition data in VLM training.

To assess the broader applicability of our self-captioning (SC) method for improving VLM perfor-
mance, we conducted additional experiments on GPT-40 and the largest variant of Qwen2.5-VL.
The results, presented in Table B3 and B3, demonstrate that the effectiveness of the SC method
extends beyond Qwen2.5-VL-7B. These findings further confirm our CoT diagnosis, showing that
comparable improvements can be gained in larger and SOTA proprietary VLMs.



Finally, we used the SC-I method on Qwen2.5-VL-7B to test the effect of including images in the
model’s input on its performance. In this setup, the model is provided with its self-caption descrip-
tions interleaved between the corresponding images. This method saw significant improvements on
location-only PAM tasks and almost all CVR tasks. However, on category-only PAM tasks, the ad-
dition of images decreased performance relative to the baseline. Furthermore, SC-I improvements
were significantly smaller than those of the image-free SC method. These results suggest the inclu-
sion of images alone leads to diminished reasoning abilities, likely resulting from attention capacity
(see Attention Analysis in Appendix B) or interference issues. These results align with recent
mechanistic interpretability findings from [[28] that show attention limitations are a contributing fac-
tor to spatial reasoning weaknesses in VLMs.

4.3.2 Fine-tuning VLMs

Table 3: PAM and CVR performance of Qwen2.5-VL-7B base model and fine-tuned variants using
LoRA with different amounts of training data. The Base column shows absolute percentage accu-
racies (£ standard deviation). Subsequent columns show the percentage change in accuracy from
the Base method (&4 standard deviation). Positive changes are shown in green, and negative in red.
Asterisks denote statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

Task Base LoRA 1k LoRA 10k LoRA 100k
Perception (Cat)  83.67+%18 +2.00%3-97 +2.67%3-89 +6.00%%3-46
Perception (Loc) ~ 44.33%559  417.00%548 +26.33+5:13 +34.33%+4.62
Feature Attention  55.85%2:05 40 74%##£2.26 9] 4##xt2.23 16 gpkiit2.37
Spatial Attention ~ 57.48%2:03 424 50#usE2.05 199 5pseent2 18 417 92 50
Memory (Cat) 78.59%13L 40 35wkl 26 -3.20%%1-38 +3.68+#+1-22
Memory (Loc) ~ 42.22%161 4]0.78##sE1.63 499 70sssEL56 197 Q150
CVR-Cat-L 60.00%7-75 -11.33%7:90 -9.33+7.90 +8.00+7-38
CVR-Loc-L 56.00+7-85 +0.00%7-85 -5.33%7:90 +10.00%7-50
CVR-Cat-M 54.00%7-88 +1.33%7-86 +6.67E7-72 +8.67E7-65
CVR-Loc-M 49.33%7-90 +7.33%7:83 -8.67E777 +4.67%7-88
CVR-Cat-H 39.33%5:49 49 33%:£5.62 +26.675E533 498 67+E5-25
CVR-Loc-H 29.33%513  49,67%549 +36.67%E533 444 333F4.96

We investigated whether fine-tuning Qwen2.5-VL-7B on random CVR tasks leads to improvements
on the core cognitive tasks of the PAM dataset (Perception, Attention, and Memory; Table B). To
prove the generalization of the fine-tuning, we also performed LoRA fine-tuning on Qwen2.5-VL-
32B model on the same data (see Table A—6T). We used supervised fine-tuning with LoRA on ran-
domly generated CVR tasks (please see Section A3 for method details). We found that fine-tuning
on even 1,000 trials yields large gains in performance on core cognitive tasks, and the performance
gains further increase with additional data. Similar to our method of self-captioning, fine-tuning ap-
pears to disproportionately improve location-based PAM task performance. Unsurprisingly, training
on 100,000 held-out CVR task trials improved CVR task performance the most.

While these results are promising, standard LoRA methods are known to be prone to overfitting
[62-64]. To mitigate this risk and make sure no severe overfitting has occurred in the Qwen2.5-VL-
7B model during fine-tuning, we experimented with several dropout rates. Our training runs with
lower dropout ratios (0.0 and 0.1) experienced overfitting, resulting in a rise in the validation loss
during training. Consequently, we selected a dropout rate of 0.2 for our final models. To further
assess generalization, we benchmark the LoRA fine-tuned models along with the base model on
MMBench, MMMU-Pro and VQAv2. Table B3, B33 shows that supervised LoRA fine-tuning
on CVR tasks can provide modest improvements to MMBench and VQAv2. However, performance
on MMMU-Pro slightly decreases when fine-tuned on smaller dataset sizes.

5 Discussion

This work provides a detailed analysis of the cognitive capabilities of modern VLMs by systemat-
ically evaluating them along the core axes of Perception, Attention, and Memory, using the PAM



dataset, as well as on combinations of these abilities via the CVR dataset. Our findings reveal dis-
tinct cognitive profiles: SOTA models like GPT-40 demonstrate strong perceptual abilities for object
categories and reasonable memory, but exhibit significant weaknesses in processing spatial informa-
tion and performing comparative judgments across frames or objects. The spatial reasoning deficit
in particular is a pervasive issue across most VLMs tested.

Our analyses strongly suggest that a primary bottleneck lies not in the fundamental reasoning ca-
pacity of the underlying LLM, nor purely in low-level visual perception, but rather in the effective
integration of visual features into the reasoning process. Models often possess the visual information
(as shown by self-captioning success) but struggle to utilize it correctly when solving tasks directly
from images. A limitation that a sufficiently robust CoT strategy should be able to overcome. These
same analyses provided a simple vision-text decoupling method for which this bottleneck can be
easily mitigated. We demonstrate that this method leads to consistent visual reasoning performance
gains, even for a SOTA VLM that already rivals human-level performance.

Fine-tuning VLMs on a small dataset of random visual reasoning tasks also led to substantial im-
provements along all cognitive axes while yielding slight gains on out-of-distribution benchmarks.
We believe it is likely that more sophisticated methods of fine-tuning, such as Reinforcement Learn-
ing with CoT reward [b63], could lead to improved generalization. This hypothesis is supported by
high correlations when comparing model PAM and CVR accuracy against established benchmarks
like MMMU-Pro and VQAV2, which can be found in Figures B~71 and B—&. This is an important
finding that further validates our evaluation datasets and approach.

6 Limitations

Our study has several limitations that future work should address: 1) The stimulus set used to gener-
ate test samples consisted of synthetic objects from only eight categories of everyday items. Future
evaluations could incorporate a wider variety of objects, including more diverse and natural visual
categories. 2) Visual frames in our benchmarks featured uniformly colored backgrounds, consistent
with practices in cognitive science and neuroscience. However, future studies could adopt more
naturalistic settings where objects are embedded in complex scenes. Leveraging generative image
models may offer a promising avenue for creating such stimuli [66-68]. 3) For feasibility, we re-
stricted our fine-tuning experiments to the Qwen2.5-VL model and used up to 100k trials. Expand-
ing these experiments to larger models and datasets could yield additional insights. Generative task
environments, such as those proposed by Lei et al. [2Z], provide a convenient framework for scaling
data to arbitrarily large sizes. 4) Our fine-tuning experiments consisted of tasks with a random level
of complexity. While fine-tuning on these tasks already resulted in improvements on the cognitive
benchmarks, we expect that a more balanced data distribution would be even more helpful. Future
studies could perform fine-tuning on more complexity-balanced task datasets. 5) The self-captioning
(SC) method, while effective at improving performance, introduces a computational trade-off. Our
analysis shows that this method has roughly double the inference runtime compared to the standard
direct-input approach, which could be a critical factor in real-world applications. A breakdown of
this analysis is provided in Appendix BTT.
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The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations of our work are extensively discussed in the Limitations section
of the paper.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details of all analyses are clearly explained in the methods section and the
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-

tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: The paper does not provide open access to the code or data. However, it

includes sufficiently detailed methodological descriptions in the Methods section and the
appendix.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The data generation procedure for both train and validation are clearly ex-
plained in the Methods section.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: Each modeling experiment was performed three times and all results are re-
ported with a standard deviation. However the number of samples was insufficient to per-
form statistical significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The hardware used for training the model is specified in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully complies with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We extensively discuss the importance of evaluating VLMs and the relevance
of our contribution in the Introduction section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No new data or model is released.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets used in our research are properly cited in the manuscript.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.
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14.

15.

16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [Yes]

Justification: Experiment details and screenshots depicting the provided instructions as well
as a trial example can be found in Section B21l.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: The study was carried out under an existing IRB approved protocol.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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A Appendix

A.1 Task Examples

Perception Category Perception Location

5 H
& &
V4
observe object 1 in frame 1, category of object 1? observe object 1 in frame 1, location of object 1?
Answer: cars Answer: bottom right
:
8 §
observe object 1 in frame 1, observe object 1 in frame 1,
observe object 2 in frame 2, observe object 2 in frame 2,
category of object 2 equals category of object 1? location of object 2 equals location of object 1?
Answer: false Answer: true

Figure A.1.1: Example trials from Perception Category (Perc-Cat-R & Perc-Cat-C) and Localization
(Perc-Loc-R & Perc-Loc-C) tasks. Each task consists of two variations: Report where the agent is
tasked with reporting the object’s property; and Compare where the agent is tasked with comparing
that property between two objects on separate frames.

Feature Attention
Spatial Attention

Report | 1 Distraction

Report | 1 Distraction

observe object 1 in frame with category: planes,
location of object 1?
Answer: bottom left

observe object 1 in frame 1 with location: top right,
category of object 1?
Answer: cars

Compare | 4 Distractions
Compare | 5 Distractions

observe object 1 in frame 1 with location: top left, observe object 1 in frame 1 with category: cars,
observe object 2 in frame 2 with location: bottom left, observe object 2 in frame 2 with category: boats,

category of object 2 equals category of object 1? location of object 2 equals location of object 1?

Answer: false Answer: false

Figure A.1.2: Example trials from Spatial (Att-Spa-R & Att-Spa-C) and Feature Attention (Att-Feat-
R & Att-Feat-C) tasks. Each task consists of two variations: Report, where the agent is tasked with
reporting the object’s property, and Compare, where the agent is tasked with comparing that property
between two objects on separate frames.
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Memory w/ Object Distractions - Location

..

observe object 1 in frame 1, observe object 2 in frame 2, observe object 3 in frame 3,
observe object 4 in frame 4, observe object 5 in frame 5, location of object 1?
Answer: bottom left

HSAE

observe object 1 in frame 1, observe object 2 in frame 2, observe object 3 in frame 3,
observe object 4 in frame 4, observe object 5 in frame 5,
location of object 5 equals location of object 1?
Answer: true

Compare | 3 Distractions

Memory w/ Object Distractions - Category

g
N
5
5y
=4
observe object 1 in frame 1, observe object 2 in frame 2,
observe object 3 in frame 3, category of object 1?
Answer: cars
=]
S —~
PN
E
o
] =
o
£ ;! !
je}
[}

observe object 1 in frame 1, observe object 2 in frame 2,
observe object 3 in frame 3,
location of object 3 equals location of object 1?

Answer: true

Figure A.1.3: Example trials from Memory with Distractors Category (Mem-Dis-Cat-R & Mem-
Dis-Cat-C) and Memory with Distractors Location (Mem-Dis-Loc-R & Mem-Dis-Loc-C) Memory
tasks. Each task consists of two variations: Report, where the agent is tasked with reporting the
object’s property, and Compare, where the agent is tasked with comparing that property between
two objects on separate frames.
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Memory Category

)

©

[=]

I~

H

&

observe object 1 in frame, delay, category of object 1?
Answer: couches

£

3 4

I~

B

g

£ ﬂ
S

observe object 1 in frame 1, delay, observe object 2 in frame 4,
category of object 1 equals category of object 2?

Answer: false

Memory Location

E\. 2

3

[=]

H

2 il
observe object 1 in frame 1, location of object 1?

Answer: top left

£

3

[=]

-

B

:

g ﬁ

g

o

observe object 1 in frame 1, delay, observe object 2 in frame 5,
location of object 1 equals location of object 2?
Answer: true

Figure A.1.4: Example trials from Memory Category (Mem-Cat-R & Mem-Cat-C) and Location
(Mem-Loc-R & Mem-Loc-C) tasks. Each task consists of two variations: Report where the agent is
tasked with reporting the object’s property, and Compare where the agent is tasked with comparing
that property between two objects on separate frames.
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Composite Visual Reasoning (Category)

V’! f
+ + + + +
a
|

delay, observe object 1 in frame 2, delay, observe object 2 in frame 4, observe object 3 in frame 5, observe object 4 in frame 6,
category of object 4 equals category of object 3 or category of object 2 equals category of object 1?

Answer: false
= ~ -
+ + + + + +
S ES

delay, observe object 1 in frame 2, observe object 2 in frame 3, observe object 3 in frame 4, observe object 4 in frame 5, observe object 5 in frame 6,
observe object 6 in frame 7, observe object 7 in frame 8, if category of object 4 not equals category of object 3, then category of object 7 not equals category of object 6
or category of object 5 not equals cars? else category of object 2 not equals category of object 1?
Answer: false

|
+ + + + + + +
§ » " ¢ 4

delay, observe object 1 in frame 2, observe object 2 in frame 3, observe object 3 in frame 4, observe object 4 in frame 5, observe object 5 in frame 6,
observe object 6 in frame 7, observe object 7 in frame 8, observe object 8 in frame 9, if category of object 4 not equals category of object 3
or category of object 2 equals boats, then category of object 8 equals category of object 7 or category of object 6 equals category of object 5? else category of object 1?
Answer: true

S
g

High Complexity

Composite Visual Reasoning (Location)

S

T |
+ + + + +

observe object 1 in frame 1, observe object 2 in frame 2, delay, observe object 3 in frame 5, observe object 4 in frame 6,
location of object 4 not equals location of object 3 or location of object 2 equals location of object 1?
Answer: false

-
+ + + + +
o -
1 —

observe object 1 in frame 1, observe object 2 in frame 2, observe object 3 in frame 3, delay, observe object 4 in frame 5, observe object 5 in frame 6,
delay, observe object 6 in frame 8, if location of object 5 not equals location of object 4, then location of object 6 not equals top left?
else location of object 3 not equals top left and location of object 2 not equals location of object 1?
Answer: false

+ + + +

High Complexity

observe object 1 in frame 1, observe object 2 in frame 2, observe object 3 in frame 3, observe object 4 in frame 4, delay, observe object 5 in frame 7,
observe object 6 in frame 8, observe object 7 in frame 9, if location of object 6 equals location of object 5 or location of object 4 not equals location of object 3,
then location of object 2 equals location of object 1? else location of object 7?

Answer: false

Figure A.1.5: Example trials from Composite Visual Reasoning Category (CVR-Cat-H/M/L) and
Location (CVR-Loc-H/M/L) tasks. These tasks were randomly generated into three sets of varying
complexities: High (H), Medium (M), and Low (L).
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A.2 Human Baseline Details

To establish human baselines, eight people were tasked with performing all 22 different task types
across the PAM and CVR datasets. Each subject solved 5 trials of every task, providing a total of
880 human accuracy data points. No compensation was given to subjects.

Welcome!

In this experiment you will be shown a series of stimuli
and a set of instructions.

The images will be ordered left-to-right and
top-to-bottom. PLEASE interpret them in this order.

Your goal is to observe the images, read the

instructions, and respond correctly to the question
contained in the instructions.

The instructions will be shown below the images, with a
list of possible responses displayed at the very bottom.
Please ONLY respond with one of the provided possible

1 it : : cars,
responses observe object 1 in frame 1 with category: lighting, observe object 2 in frame 2 with category: cars, location of

object 2 equals location of object 17

Press 'space' to begin the experiment

Possible answers: 1: true 2: false

Figure A.2.1: Screenshots of human subject instructions (left) and a task trial example (right).

Table A.2.1: Average human response time across all task types.

Task Mean Response Time (s)
Perception (Cat) 7.39%1.56
Perception (Loc) 5.77+1-12
Feature Attention 11.34+1.78
Spatial Attention 10.79%1-:89
Memory (Cat) 9.67+1-30
Memory (Loc) 8.15+1:05
CVR-Cat-L 30.68+6-47
CVR-Loc-L 23.39+6.83
CVR-Cat-M 43.81+17-41
CVR-Loc-M 34361974
CVR-Cat-H 77.21%25:90
CVR-Loc-H 41.44+10.84

A.3 Supervised VLM Fine-tuning on Composite Visual Reasoning

As an additional attempt to improve visual reasoning, we performed fine-tuning experiments on
Qwen2.5-VL-7B. The model was fine-tuned with a supervised objective to output only the correct
final answer. This meant the model would likely learn to solve the tasks without the use of any CoT.
This presents an interesting contrast to our captioning experiments. Qwen2.5-VL-7B was selected
as the VLM for these experiments for the same reasons provided in Section B4.

To achieve this, we used iWISDM [27] to generate task sets of varying sizes: 100, 1,000, and 10,000
tasks. For each task, 10 trials were generated, resulting in training sets comprising 1,000, 10,000,
and 100,000 trials, respectively.

The CVR tasks generated for LoRA fine-tuning have similar AutoTask [?2] generation parameters
to those used for the CVR evaluation tasks. However, while the distributions should be similar, the
fine-tuning tasks have a lower bound of complexity to avoid overfitting to complex instructions. It
is also important to note that there is no overlap between the training and CVR evaluation datasets.

We chose to keep the ViT vision encoder of Qwen2.5-VL-7B frozen during fine-tuning. This deci-
sion was based on prior studies showing that the vision encoder and vision projection components
already capture sufficient visual information [A8]. However, the vision projector was unfrozen dur-
ing fine-tuning as it offers a lightweight yet potentially impactful set of vision-text alignment weights
to adapt. As such, the nonlinear MLP vision token projection in Qwen2.5-VL-7B was unfrozen dur-
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ing training along with the core LLM. All fine-tuning experiments were performed on 4 NVIDIA
A5000 GPUs. Please see Appendix Table B34 for training hyperparameter details.

Table A.3.1: The iWISDM AutoTask parameters used to generate the fine-tuning task sets.

# of allowed and/or

operators in task operators

# of switch  # of trial
frames

root operators boolean operators

0-2 0-1 3-9

IsSame, And, Or,
NotSame, GetLoc,
GetCategory

IsSame, And, Or,
NotSame

Table A.3.2: MMBench & MMMU-Pro benchmarking scores (%) before and after LoRA fine-

tuning.
N_tasks 0 (base) 100 1k 10k
N_trials 0 (base) 1000 10k 100k
MMBench 82.85 83.41 83.63 83.30
MMMU-Pro 34.36 33.70 33.83 34.94

Table A.3.3: Benchmarking scores for Qwen2.5-VL-7B and Qwen2.5-VL-72B on the VQAv2
dataset with different caption techniques and finetuning configurations.

7B Models 72B Models
Base SC LoRA 1k LoRA 10k LoRA 100k Base SC
Accuracy (%) 60.07 65.07 63.96 64.44 65.84 71.09 72.02

Table A.3.4: Overview of the hyperparameters for Qwen2.5-VL-7B-Instruct LoORA Fine-tuning.

N_tasks 100 1000 10000
N_trials 1000 10000 100000
N_epochs 10
Batch_size 1
Gradient_accum 32
Scheduler Cosine
Peak_LR 4e-05
Warmup 1 7 70
Mixed_precision bf16
Optimizer AdamW(0.01)
LoRA_rank 8
LoRA_alpha 16
LoRA_dropout 0.2

LoRA_targets

vision projector, LLM
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A.4 Granular Results & Details

Table A.4.1: Average granular accuracy (%) comparison across all tasks and models. Scores are
presented as mean percentage accuracy (+ standard deviation). LLaVa: LLaVa-OneVision-7B;
MiniCPM: MiniCPM-V-2.6-8B; InternVL: InternVL2.5-8B; Qwen 7B: Qwen2.5-VL-7B; Qwen
72B: Qwen2.5-VL-72B; 40-Mini: GPT-40-Mini; 40: GPT-40; human: Human subjects.

Task LLaVa MiniCPM InternVL Qwen 7B Qwen 72B 40-Mini 40 human

Mem-Cat-R ~ 82.40%27268.40%332 62 40%346 76,53 %3038 2+3-3587 47+2:37 g7 g7%2:34 100.00**38
Mem-Cat-C =~ 52.93%3:5678 27%2:9565 7(£3-4083 1327492 023998 80082 99 60+0-52 97 50%6-22
Mem-Loc-R  56.80%3-5425 87%3-1354 80+3-5533 20+3-36 69 80+*0176.13%3:05 96 40%135 9500756
Mem-Loc-C  47.60%35749.07%3-5759.60%3-5052.13%3-57 62 20423 52 40357 87.33%2:38 100.00%-38
Perc-Cat-R 82.00%16:1274 67%6-9974 00+6-96 74 67%6-9081 00+ 7-6382.00%6-12 80.67162° 97.50%6-22
Perc-Cat-C 60.00=77590.67F4 71 71.33E71792 67F42597.00%3 71 96.00%3-30 100.00% 125 90.00%-5°
Perc-Loc-R 88.00%5:2230.67%7:2076.00%6 78 33,3376 64.00%2% 66.00% 750 93.33%4:09 95 (E7-56
Perc-Loc-C 46.00F7-8847.33%7-8974 0069655 3378677 081649 33790 g4 7£5.76 100, 00E%32
CVR-Cat-H  24.00%%8137.00%54337.33%54439 33+549 69 g3+6-33 3 (9543 g3 g7+4:18 73 50+13.36
CVR-Loc-H  20.00%%5131.00%52136.33%54129 33%5:134() 97%6:7439 74550 g4 7+5:38 75 o130
CVR-Cat-M  44.00%7-8549.33%7:9038 00%7-68 54,00%7-38 88.00F5-41 72.00F 712 96.67%3:07 95.00% 756
CVR-Loc-M  58.00%7-8259 33%7:7750,00% 79049 3379048 0*9-6151.33%+7:90 g9 7+6:04 70 0o*13-68
CVR-Cat-L  46.00F7-8862.00F76%52.00F78960.00=7-7>80.00= 777 81.33%6-21 91 33%4:56 gp 50+11.60
CVR-Loc-L  66.00%7°050.00%7-9046.00%7-8% 56.00%7:8552.00%9:61 51.33%7-90 66.00%7-50 92.50%8-64
Att-Feat-R 88.00%3:0161.11%44978.67%3 7858 67453 85.6739783 561342 96.22%1:80 97 50%6-22
Att-Feat-C 49.00%3-2650.89%3-26 57 675322 54 44%3:2577 83%3:3266 00309 82 6712:47 100.00F438
Att-Spa-R 59.5674:5259 447459 64 (44249 33%4-6078 (046777 331386 78 4443-79 g7 5(0+6-22
Att-Spa-C 52.00%3-2661 78%3:1759 33432061 56%3-1781 g3+3-0864 56%3-12 74 674284 1((,00F*-38
Mem-Dis-Cat-R 86.0072-2771.89%2:9344 00*32478.5612:6885.50%2-82 87 67%215 88.33%+2:10 92 50+8-64
Mem-Dis-Cat-C 53.11%2:6675 26%2:30 69 78+2-4577 78+2:2289 g0+1-9885 19+1:89 g1 g4+1:53 97 50%6-22
Mem-Dis-Loc-R 56.00%32430.89%30134 33%3:1034 11£3.0963 61%38463 11%3:15 94 33%1:52 100 00+*38
Mem-Dis-Loc-C52.00%2:66 50 67%2:66 55 33+2:65 5] 41+2.6654 1g+3.255] 33+2.66 77 63£2.22 g() o+9-55
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Table A.4.2: Average granular accuracy (%) comparison of Qwen2.5-VL-7B using different caption-
ing methods. Scores are presented as mean percentage accuracy (+ standard deviation).

Task Base SC SC-1 PC One Shot
Mem-Cat-R 76.53%3:03 80001286 69.60+402 8587249  78.53+2.93
Mem-Cat-C 82.13+274 91 (7%205  7640%3-71 93 87EL7T3  86.80F2-42
Mem-Loc-R 33.20%3:36 72.00%3-21  63.40F421  97.47+115 3 p7E3.34
Mem-Loc-C 52.13%357 69 73E3:28 59 20F4-29 96 00FL42  50.80%3-57
Perc-Cat-R 74.67%6-90  76.67%6.72 6500919 80.67F6-29  76.67+6-72
Perc-Cat-C 02.671425 93331409 90 (0t5-96 @) g7E6.04  g( OE4-84
Perc-Loc-R 33.33E746 73 33£7.01 58 )0£9-50 99 33£L.78 7 33+7.07
Perc-Loc-C 55.33E7:86 72 g7E7-07 51 00E9-61 99 33EL.78 g4 00785
CVR-Cat-H 39.33E549  4533%5.60 46 0r06-84 52 33E562 37 33+5.22
CVR-Loc-H 29.33%5:13 46 67%5-61 36 50+06.61 g1 33£548 30, (0*5-16
CVR-Cat-M 54.00%7-88  5733E782 g1 00F9-39  66.67F746  58.00%7-80
CVR-Loc-M 4933790 59 33E7.77 57 00961 60.00E775  44.00%7-85
CVR-Cat-L 60.00E775  62.6717-65  61.00%939  1.33E770  61.33%£7-70
CVR-Loc-L 56.00E7-85  64.67F7-56  56,00%9-55  68.67F734  58.00%7-80
Att-Feat-R 58.671453  8(0.44%3-66 46 (0E5-60 99 78+0.60 58 gg+4.53
Att-Feat-C 54.44%325 7656276 58 17E3.93 g7 9pE3.06 54 opE3-25
Att-Spa-R 4933+4.60 77 pp+413 4 67E552  83.78%3-40 5 11+4.60
Att-Spa-C 61.56%3-17 7733273 3334384 57114323 6] go+317
Mem-Dis-Cat-R ~ 78.56+268  79.56%2:63 66 00+3-78 7544+28L 77 67+2.72
Mem-Dis-Cat-C ~ 77.78+2:22 83.33+1.99 78 56+2.68 g5 56+1.88 () gg+2.42
Mem-Dis-Loc-R  34.11F3:09 75561280 65 67£3.79 94 44%1.51 99 56+2.98
Mem-Dis-Loc-C ~ 51.41%2:66 7081242 59 89+3.20 g9 93+1.61  5) 77+2.66

Table A.4.3: Cognitive benchmark tasks, their abbreviations, and chance levels.

Task Abbreviation LS?;I}%Z)
Perception Category Report Perc-Cat-R 13
Perception Category Compare Perc-Cat-C 50
Perception Location Report Perc-Loc-R 25
Perception Location Compare Perc-Loc-C 50
Feature Attention Report Att-Feat-R 25
Feature Attention Compare Att-Feat-C 50
Spatial Attention Report Att-Spa-R 13
Spatial Attention Compare Att-Spa-C 50
Memory Category Report Mem-Cat-R 13
Memory Category Compare Mem-Cat-C 50
Memory Location Report Mem-Loc-R 25
Memory Location Compare Mem-Loc-C 50
Memory with Distractors Category Report Mem-Dis-Cat-R 13
Memory with Distractors Category Compare Mem-Dis-Cat-C 50
Memory with Distractors Location Report Mem-Dis-Loc-R 25
Memory with Distractors Location Compare Mem-Dis-Loc-C 50
Composite Visual Reasoning Category High CVR-Cat-H 7
Composite Visual Reasoning Location High CVR-Loc-H 7
Composite Visual Reasoning Category Medium CVR-Cat-M 50
Composite Visual Reasoning Location Medium CVR-Loc-M 50
Composite Visual Reasoning Category Low CVR-Cat-L 50
Composite Visual Reasoning Location Low CVR-Loc-L 50
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Table A.4.4: The iWISDM AutoTask parameters used to generate the PAM tasks. No and/or opera-
tors, boolean operators and switch operators are allowed in these tasks.

Complexity # of trial frames # of distractors root operators
Perception Category Report 1 0 GetCategory
Perception Category Compare 2 0 IsSame
Perception Location Report 1 0 GetLoc
Perception Location Compare 2 0 IsSame
Feature Attention Report 1 1-3 GetLoc
Feature Attention Compare 2 1-7 IsSame
Spatial Attention Report 1 1-3 GetCategory
Spatial Attention Compare 2 1-7 IsSame
Memory Category Report 2-6 0 GetCategory
Memory Category Compare 3-7 0 IsSame
Memory Location Report 2-6 0 GetLoc
Memory Location Compare 3-7 0 IsSame
Memory with Distractors Category Report 2-7 1-6 GetCategory
Memory with Distractors Category Compare 3-11 1-9 IsSame
Memory with Distractors Location Report 2-7 1-6 GetLoc
Memory with Distractors Location Compare 3-11 1-9 IsSame
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Table A.4.5: The iWISDM AutoTask parameters used to generate the CVR tasks. The Cat and Loc
task variants are obtained by allowing object feature selection of either Category or Location.

# of allowed
. and/or # of switch # of trial # of root boolean
Complexity . .
operators in operators frames distractors operators operators
task
IsSame, And, IsSame, And,
Low ! 0 6 0 Or, NotSame Or, NotSame
. IsSame, And, IsSame, And,
Medivm 1 1 8 0 Or, NotSame Or, NotSame
IsSame, And,
. Or, NotSame, IsSame, And,
High 1-2 1 9 0 GetLoc, Or, NotSame
GetCategory
IsSame, And,
. . Or, NotSame, IsSame, And,
High-Distractor 1-2 1 12 4 GetLoc. Or., NotSame
GetCategory

A.5 Captioning Method Validation

Table A.5.1: PAM and CVR performance of Qwen2.5-VL-72B using different captioning methods.
The Base column shows absolute percentage accuracies (+ standard deviation). Subsequent columns
show the percentage change from the Base method. Positive changes are shown in green, negative
in red. SC: Self-captioning, PC: Pre-captioned. Asterisks denote statistical significance: * p < 0.05,

**p<0.01, #** p < 0.001.

Task Qwen 72B Base Qwen SC Qwen PC
Perception (Cat) 89.00+4:36 -2.67%3:89 +2.00%4:00
Perception (Loc) 70.50%6-27 +9.17%4:54 +29.50%0:94
Feature Attention 80.44%2-59 +8.15##EL.70 419 p)u#skE0.43
Spatial Attention 80.56+2:58 +5.44%%E185 L5 gkl 29
Memory (Cat) 87.69+1-29 -1.42#%1.10 +6.593#s#:#£0.91
Memory (Loc) 58.44+197 1177wk EL 39 436 474088
CVR-Cat-L 80.00E777 -4.67%6.84 +20.00%1-85
CVR-Loc-L 52.00+9-61 +30.67%6-04 +47.00%2-64
CVR-Cat-M 88.00+0-41 -11.33%6.72 +6.00%4-85
CVR-Loc-M 48.00%9-61 +28.67+6.72 +42.00%5-96
CVR-Cat-H 69.83+6-33 -7.83+5-46 +8.17%5-71
CVR-Loc-H 4(.97+6-74 +24.36%5-35 +50.03+4-00
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Table A.5.2: PAM and CVR performance of GPT-40 using different captioning methods. The Base
column shows absolute percentage accuracies (£ standard deviation). Subsequent columns show
the percentage change from the Base method. Positive changes are shown in green, negative in red.
SC: Self-captioning, PC: Pre-captioned. Asterisks denote statistical significance: * p < 0.05, ** p <
0.01, *** p < 0.001.

Task 40 Base 40 SC 40 PC
Perception (Cat) ~ 90.33%3:36 -2.00%3-64 +0.67+3-26
Perception (Loc) ~ 89.00%+3-55 +8.33+1.91 +11.00%+0-63

Feature Attention 87.19%178 18 8Q#iutl.04 |19 gpuiit0.14
Spatial Attention ~ 75.93%2:28  4]533##xE151 4]0 g5uikt1.08
Memory (Cat) 91.47+0-89 4] 73081 +3 44p04£0.70
Memory (Loc) 83471121 19 o081 419 pouesis£0.66

CVR-Cat-L 91.33+4.56 +2.00%4-09 +8.67+1:25
CVR-Loc-L 66.00£7-50 427.33+4.09 +34.00+1-25
CVR-Cat-M 96.67+3-07 -7.33+4.98 +0.67%2-81
CVR-Loc-M 82.67+6-04 +7.33+4.84 +14.67%2:81
CVR-Cat-H 83.67+418 -2.00+4-37 +2.67%3-89
CVR-Loc-H 64.67%538  118.67F421 +30.33%%2.52

A.6 Additional Fine-tuning Results

Table A.6.1: PAM and CVR performance of Qwen2.5-VL-32B base model and fine-tuned variants
using LoRA with different amounts of training data. The Base column shows absolute percentage
accuracies (£ standard deviation). Subsequent columns show the percentage change in accuracy
from the Base method (&£ standard deviation). Positive changes are shown in green, and negative in
red. Asterisks denote statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

Task 32B Base  32B LoRA 1k 32B LoRA 100k

Memory (Cat) 85.38*113 ] 91E119 +2.6]#EL04
Memory (Loc) ~ 48.89%L63 48 4qussdl 6L 16 g(psnEl 5o

Perception (Cat)  87.67%373 -1.33+3-89 -1.00%3-85
Perception (Loc) ~ 49.67%5:62  4]9.33%5:21 +29.67++4:57
Feature Attention 76.13%227  _]],]3%+2.54 -10.31%%+2:53
Spatial Attention ~ 80.98+2:09 -0.54%2:12 +1.52%2.03
CVR-Cat-H 59.39+5.52 -6.06%5-61 +16.94%E479
CVR-Loc-H 35.33%5.38 +5.33+5.52 +26.33%£5-47
CVR-Cat-M 72.67E707  _19.33%+7.88 -4.67%738
CVR-Loc-M 46.00%+7-88 +6.00£7-89 +15.33%7.70
CVR-Cat-L 83.33%5:95 04 67E7T8 -18.00%7-53
CVR-Loc-L 48.67E790  410.00%778 +15.33%7-59

A.7 PAM & CVR vs MMMU-Pro Performance
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Figure A.7.1: Scatter plots comparing average PAM task (Perception, Attention, Memory) perfor-
mance and CVR task performance against MMMU-Pro performance across all models. Each point
represents a different model configuration. The x-axis shows the average accuracy on the specified
PAM task category (averaging Loc and Cat), and the y-axis shows the overall MMMU-Pro accuracy.

A.8 PAM & CVR vs VQAvV2 Performance
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Figure A.8.1: Scatter plots comparing average PAM task (Perception, Attention, Memory) perfor-
mance and CVR task performance against VQAv2 performance across different variants of Qwen2.5
VL models. Each point represents a different configuration. The x-axis shows the average accu-

racy on the specified PAM task category (averaging Loc and Cat), and the y-axis shows the overall
VQAV2 accuracy.

A.9 Attention Image Capacity Analysis

To investigate potential attention capacity limitations introduced by the presence of images during
reasoning, we compared the average attention allocated to ground-truth caption tokens across the
chain-of-thought (CoT) tokens generated by Qwen2.5-VL-7B in both PC (pre-captioned) and PC-1
(pre-captioned with images) trials. Appendix Figure B9 shows the inclusion of images signif-
icantly reduces the attention a given ground-truth caption token receives while the model outputs
a CoT. These findings may reflect a potential attention capacity issue imposed by images during
reasoning, which improvements during CoT training could remedy.
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Figure A.9.1: Comparison of average Qwen2.5-VL-7b attention scores for ground-truth caption
tokens across CoT tokens during PC and PC-I prompts of PAM tasks.

A.10 Inference Runtime Analysis

To assess the computational overhead of our proposed Self-Captioning (SC) method, we measured
the average inference runtime and compared it against the baseline direct-input method. We con-
ducted these analyses on a Qwen2.5-VL-7B model running on a single NVIDIA A5000 GPU. We
timed 10 trials for each task. The results, detailed in Table B—T{1l, show that the SC method incurs a
significant runtime cost, taking approximately twice as long as the base method for both simple and
complex tasks.

Table A.10.1: Inference runtime comparison for the Self-Captioning (SC) vs. Base method on
Qwen2.5-VL-7B. Runtimes are reported in seconds (4 standard deviation).

Task Base SC

Mem-Cat-R 1.81 146 555+2.13
Mem-Cat-C 206+ 1.8 537+1.59
Mem-Loc-R 1.60 £1.20 5.27£1.99
Mem-Loc-C 220+£1.72 540+1.29
Perc-Cat-R 1.54 £1.16 3.21 £0.59
Perc-Cat-C 1.96 =143 4.61 £0.60
Perc-Loc-R 1.54 4090 2.66 +1.04
Perc-Loc-C 207 £1.13 3.69 +£0.39
CVR-Cat-H 6.58 +4.67 14.66 +2.86
CVR-Loc-H 6.33 £5.12 14.62 £2.60
CVR-Cat-M 476 £4.05 12.59 +1.94
CVR-Loc-M 6.70 =4.12 13.06 £2.10
CVR-Cat-L 3.58 329 10.54 +2.17
CVR-Loc-L 2.83 +£3.12 10.76 = 1.55
Att-Feat-R 274 +1.72 4.06 £ 0.89
Att-Feat-C 291 £+£159 6.09+1.80
Att-Spa-R 3.06 190 4.66+1.27
Att-Spa-C 278 +£1.52 5.89+1.46
Mem-Dis-Cat-R  3.31 =249 6.96 +2.55
Mem-Dis-Cat-C~ 3.21 =3.18 9.12 +2.89
Mem-Dis-Loc-R  2.77 £2.45 6.51 =245
Mem-Dis-Loc-C  3.28 2292 8354225

A.11 Prompt & Script Examples

36



"messages": [

{

"role": "user",

"content": "In this task, we will show you a series of frame images. Each frame will
either be blank (delay frame) or contain one or more 3D objects. The objects will
always be from one of eight categories: benches, boats, cars, chairs, couches,
lighting, planes, and tables. For each category, there are eight unique objects that
could be used in the task. Any object sampled will be displayed as an image taken
from a random viewing angle. The objects will be placed in one of four locations:
top left, top right, bottom left, and bottom right. If there are multiple objects

on a single frame, only one of them would be specified in the task instruction

by either its location or its category. A written instruction will be provided.

Your goal is to follow the instructions and answer the question contained in the
instructions. Answers will always be one of the following: true, false, bottom right,
bottom left, top left, top right, benches, boats, cars, chairs, couches, lighting,
planes, tables.

Please solve the following task:

Task instruction: observe object 1 in frame 1, observe object 2 in frame 2,

observe object 3 in frame 3, observe object 4 in frame 4, observe object 5

in frame 5, delay, observe object 6 in frame 7, delay, observe object 7 in frame 9,
if identity of object 3 equals identity of object 2, then location of object 7

not equals location of object 6 and identity of object 5 equals identity of object 47
else location of object 17

Here are the corresponding frames: <image><image><image><image><image><image><image>
<image><image>

What is the correct answer to this task? (bottom right, bottom left, top left, top right).
Provide your answer here: "

A

}
]’

"role": "assistant",
"content": "top right"

"images": [

../trialO/frames/epochO.png",
../trial0/frames/epochO.png",
../trial0/frames/epochO.png",
../trial0/frames/epochO.png",
../trial0/frames/epochO.png",
../trial0/frames/epochO.png",
../trial0/frames/epochO.png",
../trial0/frames/epochO.png",
../trial0/frames/epochO.png"

Figure A.11.1: Supervised LoRA Fine-tuning Prompt Example

"Frame 1: A chairs located at the top left",
"Frame 2: A chairs located at the top right",
"Frame 3: A benches located at the top left",
"Frame 4: A benches located at the bottom right",
"Frame 5: A boats located at the bottom left",
"Frame 6: A benches located at the bottom right",
"Frame 7: delay frame",

"Frame 8: delay frame",

"Frame 9: A planes located at the top left"

Figure A.11.2: Pre-caption example
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def caption_image(image_path, model, config):
# Prepare a prompt asking the model to caption the image:
caption_prompt = [

"role": "user",
"content": [
{

Iltypell . Iltextll s

"text": "Please provide a concise caption for the given image, \
including what the location of each the object in the images \
are and what the category of each object is. Each image either \
is blank (a delay frame) or contains one or more 3D objects from

-\
one of eight categories: benches, boats, cars, chairs, couches,
-\

lighting, planes, and tables. The object is placed in one of
— four \
locations: top left, top right, bottom left, or bottom right."
oA

"type": "image_url",

"image_url": {"url":

— f'"data:image/png;base64,{encode_image(image_path)}"}
}

]

1},
]

# Call the model to get a caption

response = model.chat.completions.create(
model=config.get("oai-model", "gpt-4o-mini"),
messages=caption_prompt,
max_tokens=1024

)

# The model's caption ts expected in the response.
caption = response.choices[0] .message.content.strip()
return caption

Figure A.11.3: Code for Self-captioning

38



def evaluate_model(task_base, trial_num, model, config):
trial_base = f'"{task_base}/trial{trial_num}/frames/"
task_info_path = os.path.join(trial_base, "new_task_info.json")

with open(task_info_path, 'r') as file:
data = json.load(file)

# Extract the instruction and answers
instruction = datal['new_instruction']
answers = datal['answers']

# Find the tmages

pattern = 'epoch*.png'

matching_files = [f for f in os.listdir(trial_base) if fnmatch.fnmatch(f,
— pattern)]

matching_files.sort()

images = [os.path.join(trial_base, file) for file in matching_files]

captions = []

for image_path in images:
caption = caption_image(image_path, model, config)
captions.append(caption)

# Now we have a list of captions, one per frame

# Incorporate these captions into the final prompt

# Instead of sending tmages to the model in the final task, we send their
— captions:

# Prepare the final evaluation prompts

# The prompt should now describe that we have textual descriptions of each
—  frame:

possible_answers = reduce(lambda x, y: f"{x}, {y}",

— get_all_possible_ans(answers[-1]))

prompts = [
£f"""In this task, we will show you a series of frames described by captions

— instead of direct images. Each frame either is blank (a delay frame) or
— contains a 3D object from one of eight categories: benches, boats, cars,
— chairs, couches, lighting, planes, and tables. The object is placed in
— one of four locations: top left, top right, bottom left, or bottom

— right.

A written instruction is provided, and you must follow that instruction to
— find the correct answer. The valid answers are always one of the
— following: true, false, bottom right, bottom left, top left, top right,
— benches, boats, cars, chairs, couches, lighting, planes, tables.

Task instruction: {instruction}

Here are the frame captions:

nnn
B

"\n".join([f"Frame {i+1}: {cap}" for i, cap in enumerate(captions)]) +
o n \n\nu + \

f" What is the correct answer to this task? ({possible_answersl}). Think
— step-by-step, analyze each frame and provide your answer

< here:\nAnswers:\nLet's think step by step."

Figure A.11.4: Example for Evaluation (Part 1/2).
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messages = [

{
"role": "user",
"content": [
{
lltype": lltextll ,
"text": prompts[0],
},
{
lltypeﬂ: lltextll ,
"text": prompts[1],
},
]
}

]

print (messages)
instruction = instruction.join([f"Frame {i+1}: {cap}" for i, cap in enumerate(captions)])

# Get the response for the final evaluation
response = model.chat.completions.create(
model=config.get("oai-model", "gpt-4o-mini"),
messages=messages,
max_tokens=config.get ("max_new_tokens", 50),

)

return instruction, answers[-1], response.choices[0] .message.content

Figure A.11.5: Example for Evaluation (Part 2/2).
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