
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRIMPHORMER: LEVERAGING PRIMAL REPRESENTA-
TION FOR GRAPH TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Transformers (GTs) have emerged as a promising approach for graph rep-
resentation learning. Despite their successes, the quadratic complexity of GTs
limits scalability on large graphs due to their pair-wise computations. To funda-
mentally reduce the computational burden of GTs, we introduce Primphormer,
a primal-dual framework that interprets the self-attention mechanism on graphs
as a dual representation and then models the corresponding primal representation
with linear complexity. Theoretical evaluations demonstrate that Primphormer
serves as a universal approximator for functions on both sequences and graphs,
showcasing its strong expressive power. Extensive experiments on various graph
benchmarks demonstrate that Primphormer achieves competitive empirical results
while maintaining a more user-friendly memory and computational costs.

1 INTRODUCTION

Graph representation learning has been successfully applied in various fields, including social net-
work analysis (Li et al., 2023), traffic prediction (Dong et al., 2023), and drug discovery (Liu et al.,
2023), among others. While much of the research in graph representation learning has focused on
Message Passing Neural Networks (MPNNs) which rely on local message-passing mechanisms,
MPNNs face inherent limitations such as over-smoothing (Nguyen et al., 2023), over-squashing
(Giraldo et al., 2023), and limited expressivity (Xu et al., 2019; Morris et al., 2019).

To overcome the limitations, Graph Transformers (GTs) which allow each node to globally attend
to all other nodes is proposed to enable the learning of long-range dependencies within the graph
(Rampasek et al., 2022; Dwivedi et al., 2022b; Chen et al., 2022). Although GT is a promising
approach, it has a notable drawback in the quadratic complexity, i.e., pair-wise computations in
self-attention mechanisms, preventing their practical use.

The key to reducing the quadratic complexity is to use computationally efficient attention mecha-
nisms. Linear attentions like Performer (Choromanski et al., 2021) and BigBird (Zaheer et al., 2020)
have been integrated into GTs. However, they need to introduce additional computational overhead,
which becomes the dominating source of computation for medium-sized graphs (Rampasek et al.,
2022). An alternative approach is sparse attention. Shirzad et al. (2023) introduced Exphormer, a
sparse attention mechanism that exchanges information only across edges. The efficiency of Ex-
phormer benefits from the sparsity of graphs. However, its computational complexity increases to
quadratic with the number of nodes as graphs become denser, thereby limiting its scalability.

To fundamentally enhance the scalability of GTs, it is crucial to avoid pair-wise computations,
prompting us to consider the primal-dual relationship in kernel machines. Examples of models
leveraging this relationship include the support vector machine (Cortes & Vapnik, 1995), the least
squares support vector machine (Suykens & Vandewalle, 1999), and the kernel principal component
analysis (Mika et al., 1999). The primal-dual relationship represents pair-wise symmetric similarity
in duality as an inner product of feature mappings in the primal space. By solving optimization
problems in the primal space with these feature mappings, quadratic complexity can be avoided.

When constructing the primal representation of the self-attention mechanism, we encounter an es-
sential problem that attention scores are inherently asymmetric, violating the Mercer condition (Mer-
cer, 1909), which causes the classical primal-dual discussion to fail. Recent research on primal-dual
relationships has sought to explore methods for accommodating asymmetry in kernel machines

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(Suykens, 2016; He et al., 2023a). In Chen et al. (2023), the self-attention on sequences was in-
terpreted through kernel singular value decomposition. This approach collects data information
through uniformly sampling the sequence under an inductive bias assumption that sequences are
ordered. However, this assumption does not hold for graphs, as the graph structure is determined by
the edges, and the arrangement or ordering of nodes is not explicitly specified, making it unsuitable
for graph-based learning tasks.

Our contributions. We propose a novel primal representation for graph Transformers, named Prim-
phormer. This method supports asymmetry in self-attention on graphs by introducing an asymmetric
kernel trick. It avoids costly pair-wise computations and storage overhead without introducing addi-
tional heavy computational burden. The primal-dual analysis reveals that Primphormer can leverage
graph information to adjust the basis of outputs, thereby potentially enhancing the model’s capacity.
Since Primphormer is a new architecture for GTs, we are also interested in its expressive power. To
explore this, we prove that Primphormer serves as a universal approximator for arbitrary continuous
functions on a compact domain. Through extensive experiments on various graph benchmarks, we
show that Primphormer competes with or surpasses state-of-the-art (SOTA) results while maintain-
ing a more user-friendly memory and computational costs.

2 METHODS

Notations. A graph is denoted as G = (V,E) where V,E are the node and edge sets. |V | = N ,
|E| = M denote the numbers of nodes and edges, respectively. [N] := {1, · · · , N}. We take
a,a,A to be a scalar, a vector, and a matrix. The inner product of two vectors is written as ⟨·, ·⟩.
The infinite norm of functions is written as ∥ · ∥∞. The set size is denoted as | · |. R denotes the set
of real numbers. R+ denotes the set of real and positive numbers. vec(A) denotes the vectorization
of the matrix A, formed by stacking the columns of A into a single column vector. ⊗ denotes the
Kronecker product. Ns ≪ N denotes a small number. 1 and 0 denote vectors with all 1 and 0,
respectively. X := [x1, · · · ,xN] ∈ Rd×N is the embedding matrix for nodes where xi ∈ Rd is the
embedding of the i-th node.

2.1 ATTENTION MECHANISM ON GRAPHS

An attention mechanism on a graphG treats nodes V as tokens and is modeled by a fully connected,
directed graph that encodes the geometry of G in the positional encoding. Its directed edges denote
a directed interaction or similarity between two nodes i, j, computed by the inner product in the
attention mechanism. Mathematically, we define the attention mechanism as follows,

κ(xi,xj) = σ (⟨q(xi), k(xj)⟩) , oi =
∑N

j=1
v(xj)κ(xi,xj), i, j ∈ [N], (2.1)

where κ(xi,xj) is the attention score of node i to node j and oi is the attention output of vertex i. σ
is an activation function. We denote q(x) := Wqx, k(x) := Wkx, and v(x) := Wvx for queries,
keys, and values, respectively, and Wq,Wk,Wv ∈ Rm×d are learnable weights.

It is worth noting that the attention score is computed for every pair of nodes, leading to memory
and computational costs of O(N2), which becomes prohibitively expensive for large graphs. Many
computationally efficient attention mechanisms are proposed to tackle this issue (Zaheer et al., 2020;
Choromanski et al., 2021; Zhuang et al., 2023). Exphormer (Shirzad et al., 2023), a sparse graph
transformer, is specifically designed for functions on graphs, which facilitates information exchange
across real and expander edges, reducing the memory and computational cost to O(N +M). How-
ever, Exphormer fails its efficiency when dealing with denser graphs, where its computational com-
plexity increases to O(N2) as graphs become denser, limiting its scalability.

Such quadratic complexity also exists in kernel machines, where the kernel matrix preserves pair-
wise similarities in the dual space. For large-scale problems, it is more practical to contemplate
feature representation in the primal space to circumvent quadratic complexity (Fan et al., 2008).
One can refer to the representer theorem (Kimeldorf & Wahba, 1971), which delineates the optimal

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

solution between the primal and dual spaces,

g(xi) =
∑N

j=1
αjκ(xi,xj) =

∑N

j=1
αj⟨ϕ(xi),ϕ(xj)⟩

= ⟨ϕ(xi),
∑N

j=1
αjϕ(xj)⟩ := ⟨ϕ(xi),w⟩,

(2.2)

where αj ∈ R and w ∈ Rp are variables in the dual and primal spaces. ϕ : Rd → Rp is the
associated feature mapping of the kernel κ. For vector dual variables αj , we can apply (2.2) to each
dimension of αj ∈ Rs. Mathematically we have,

g̃(xi) =

N∑
j=1

αjκ(xi,xj) =

N∑
j=1

αj⟨ϕ(xi),ϕ(xj)⟩ =
N∑
j=1

vec
(
αjϕ(xi)

⊤ϕ(xj)
)

(a)
=

N∑
j=1

(
ϕ(xj)

⊤⊗αj

)
ϕ(xi) =

〈
N∑
j=1

ϕ(xj)⊗α⊤
j ,ϕ(xi)

〉
:= ⟨W ,ϕ(xi)⟩,

(2.3)

where (a) comes from the vectorization property of the Kronecker product (Graham, 2018) and
W ∈ Rp×s. The output g̃ in the dual space and the attention output share a similar formulation,
indicating that the attention mechanism could potentially be represented in the primal space.

However, the attention score is inherently asymmetric, which violates the Mercer condition (Mer-
cer, 1909). Several works studied this issue and provided a mathematical foundation for allowing
asymmetry, as the following definition,

Definition 1 (Asymmetric kernel trick, (Wright & Gonzalez, 2021; Lin et al., 2022; He et al., 2023a;
Chen et al., 2023)). An asymmetric kernel trick from reproducing kernel Banach spaces (RKBS) with
the associated kernel function κ(·, ·) : X × Z → R can be defined by the inner product of two real
measurable feature maps from a pair of Banach spaces BX ,BZ on X ,Z:

κ(x, z) = ⟨ϕq(x),ϕk(z)⟩, ∀x ∈ X ,ϕq ∈ BX , z ∈ Z,ϕk ∈ BZ . (2.4)

2.2 PRIMPHORMER

Here, we elaborate on the construction of Primphormer. A unique characteristic of the aforemen-
tioned kernels is their asymmetry, denoted as κ(x,y) ̸= κ(y,x). This can be understood as a
directional similarity from a query to a key, providing a pair of directed similarities between x,y.
Consequently, for each input x, the output should be computed by considering aspects of both
queries and keys: e(x) :=

∑
j hjκ(x,xj) and r(x) :=

∑
i hiκ(xi,x). It is intriguing to in-

vestigate a suitable primal representation, as we recognize the resemblance in formulation between
attention outputs and the dual representation in kernel machines, both associated with an asymmetric
kernel. To address this, we present an optimization problem to explore its primal-dual relationship,

min
We,Wr,ei,rj

J =
1

2

N∑
i=1

e⊤i Λei +
1

2

N∑
j=1

r⊤j Λrj − Tr(W⊤
e Wr)

s.t. ei = fXWeϕq(xi), i ∈ [N],

rj = fXWrϕk(xj), j ∈ [N],

(2.5)

where We,Wr ∈ RNs×p are the projection weights, Λ ∈ Rs×s
+ represents a diagonal regularization

coefficient matrix. ϕq(·),ϕk(·) : Rd → Rp correspond to the feature maps of queries and keys,
respectively. The expected primal representations are the projection scores ei, rj ∈ Rs in the con-
straints. fX ∈ Rs×Ns is a data-dependent projection and is defined by fX := F +BX1s1

⊤
Ns

with
data-independent projections F ∈ Rs×Ns and B ∈ Rs×d. In graph representation learning, fX
serves as a virtual node (Cai et al., 2023) that aggregates information of each node in the graph.

The objective function J minimizes the coupling term and the squares of e, r regarding queries and
keys by introducing a variational principle of asymmetric kernels as discussed by Suykens (2016).
Below, we present the theorem on the solution to the dual problem of the primal problem (2.5),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 1 (Duality of the optimization (2.5)). The dual problem of the optimization (2.5) under
the Karush-Kuhn-Tucker (KKT) conditions is the following linear system,

KHrFX = HeΣ,

K⊤HeFX = HrΣ,
(2.6)

which collects the solutions corresponding to the non-zero entries in Λ such that Σ := Λ−1.
He := [he1 , . . . ,heN]⊤ ∈ RN×s, and Hr := [hr1 , . . . ,hrN]⊤ ∈ RN×s are dual variables.
K corresponds to the attention score, induced by Kij := ⟨ϕq(xi),ϕk(xj)⟩. The detailed proofs,
Lagrangian, and KKT conditions are provided in Appendix C.1.

MPNN ATTN

Feed

𝝓𝑞(𝑋) 𝝓𝑘(𝑋) 𝝓𝑣(𝑋)

𝜿attn = 𝝓𝑞 𝑋 ,𝝓𝑘(𝑋)

𝒐 = 𝜿attn𝝓𝑣(𝑋)

𝑋Output from previous layer

𝝓𝑘(𝑋)

𝒆 = 𝒇𝑋𝑾𝒆𝝓𝑞 𝑋

𝒐 = 𝑾c 𝒆; 𝒓

𝑋

𝝓𝑞(𝑋) 𝒇𝑋

𝒓 = 𝒇𝑋𝑾𝒓𝝓𝑘 𝑋

OutputOutput Output
(a) (b) (c)

Figure 1 Illustrations of the architectures in one layer. a) The GPS architecture. b) The standard
self-attention architecture. The attention score κattn is induced by two feature mappings ϕq and ϕk

involving pair-wise computations. c) Primphormer eliminates the need for pair-wise computations
by introducing the primal representation, resulting in a new computationally efficient GT.

Primal and dual relationship. The KKT conditions (C2) yields a fact that the optimized projections
Wr and We in the primal space are composed of all the tokens,

We =
∑N

j=1
f⊤Xhrjϕk(xj)

⊤,

Wr =
∑N

i=1
f⊤Xheiϕq(xi)

⊤.

(2.7)

According to the primal-dual relationship between (2.5) and (2.6), and by applying (2.7) to the pro-
jection scores e, r, we can formulate them in the following two ways: (a) the primal representation
under KKT conditions, and (b) the dual representation as the standard self-attention mechanism,

Primal :

{
e(x) = fXWeϕq(x),

r(x) = fXWrϕk(x),
Dual :


e(x) =

∑N

j=1
h̃rjκ(x,xj),

r(x) =
∑N

i=1
h̃eiκ(xi,x),

(2.8)

where FX := fXf
⊤
X , and h̃rj := FXhrj , h̃ei := FXhei . In the primal space, we integrate token

information into the projection weights Wr and We (2.7), representing self-attention through linear
projection to avoid pair-wise computations. The data-dependent projection fX inside serves as a vir-
tual node aggregating information across all graph nodes, intended to introduce graph information to
each node. Correspondingly, in the dual space, the attention score is computed using an asymmetric
kernel trick, denoted as κ(xi,xj) := ⟨ϕq(xi),ϕk(xj)⟩, and the data-adaptive basis h̃rj , h̃ei act as
values, forming a standard self-attention formulation. These values are influenced by fX , leading
to an auto-correlation projection FX without centering fX . This auto-correlation projection FX is
significantly affected by the mean value of fX , i.e., the virtual node. This offers a new perspective
on bridging virtual nodes and the self-attention mechanism.

Chen et al. (2023) introduced an alternative form of primal-dual relationship for sequence data. Its
data-dependent projection is uniformly sampled from sequences under an inductive bias assumption
that sequences are ordered, which is natural to sequences but not graphs. Sequences are inherently

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ordered, and thus such sub-sequences contain semantic information from the original sequence. In
contrast, for graph data, their structure is dictated by the edges, and the arrangement or ordering
of nodes is not explicitly specified, rendering this method unsuitable for graph data. Moreover, its
data-dependent projection is integrated into the kernel trick as a data-adaptive weight, incapable of
altering the space where potential outputs may lie. In contrast, our data-adaptive basis aggregates
graph information in the form of virtual nodes and directly influences the basis of outputs, as shown
in equation (2.8), potentially enhancing the model’s capacity.

Model architecture. The Transformer layer consists of two core components: the self-attention
module and the feed-forward module which is applied token-wise (Vaswani et al., 2017). In this
paper, we consider GPS, a powerful GT architecture that merges the MPNN and Transformer layers
(Rampasek et al., 2022). We replace the self-attention module in the Transformer layer with our pri-
mal representation and name our method Primphormer. Illustrations of Primphormer’s architecture
are shown in Figure 1, with detailed algorithms presented in Appendix D.

Complexity analysis. The primal representation is a more user-friendly approach in terms of
both time and memory costs. The dual representation requires O(N2s) time complexity and
O(N2 + Ns) memory complexity. In contrast, the primal representation only requires O(Nps)
time complexity and O(2Nss + 2Np) memory complexity with Ns ≪ N making an efficient
self-attention mechanism feasible. The final output is obtained by concatenating two projection
scores o(x) := [e(x); r(x)]. To align with the user-dependent dimension do, a compatibility ma-
trix Wc ∈ Rdo×2s can be further applied to the output score.

3 THEORETICAL RESULTS

In this section, we provide the main theorems of Primphormer. The proof details can be found in
Appendix C.

3.1 ZERO-VALUED OBJECTIVE

In the implementation of Primphormer, our goal is to reach the KKT point. Theorem 1 establishes
that when the KKT conditions are met, the dual representation of Primphormer aligns with the
standard self-attention formulation. However, solving the linear system (2.6) in the dual space in-
troduces a cubic computational complexity. To efficiently approach the KKT points, we introduce
the following theorem,

Theorem 2 (Zero-valued objective with stationary solutions). The solutions of He,Hr,Σ in the
dual space (2.6) lead to a zero-valued objective J in the primal space (2.5).

The essence of Theorem 2 lies in the necessity for the primal objective value to be zero under
the KKT conditions, suggesting an alternative optimization approach instead of solving the dual
problem. Therefore, we implement Primphormer by jointly minimizing an additional loss towards
zero as follows,

L = Ltask + η
∑

l
J2
l , (3.1)

where η ∈ R+ is a regularization coefficient, Ltask is the task-oriented loss and the final term sums
up the primal objective loss (2.5) across layer l. Through regularization of this additional loss,
the self-attention mechanism can be effectively represented in the primal space upon achieving a
zero-valued objective.

3.2 UNIVERSAL APPROXIMATION

By substituting the self-attention layer with our primal representation, we obtain a new network
architecture. Subsequently, the first question that intrigues us concerns expressivity, particularly
delving into which functions can be uniformly approximated utilizing our network. Here, we
demonstrate that Primphormer allows universal approximation for continuous functions on both
sequences and graphs. The proofs of these theorems rely on a mild assumption: let feature spaces be
X ,Y ⊆ Rd and let X be a compact set. We first introduce the concept of permutation equivariance
and then show that Primphormer is a universal approximator.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 2 (Permutation equivariance, (Hutter, 2020; Alberti et al., 2023)). A continuous
sequence-to-sequence function f : XN → YN is equivariant to the order of elements in a sequence
if for each permutation π : [N]→ [N],

f
([
xπ(1), · · · ,xπ(N)

])
=
[
fπ(1)(X), · · · , fπ(N)(X)

]
,

where XN ∋ X = [x1, · · · ,xN] is a sequence of N elements. We denote f ∈ FN
eq(X ,Y) if f

conforms to this definition.

We are now ready to state the universal approximation property of Primphormer on permutation
equivariant sequence-to-sequence functions.

Theorem 3. For any function f ∈ FN
eq(X ,Y) and for each ϵ > 0 there exists a Primphormer TPri

such that
sup

X∈XN

∥f(X)− TPri(X)∥∞ < ϵ. (3.2)

Next, we develop the theorem for any continuous sequence-to-sequence function, stating that with
a positional encoding E ∈ Rd×N , a Primphormer TPE(X) = TPri(X + E) can approximate any
continuous sequence-to-sequence functions on the compact domain.

Theorem 4. For any continuous function f : [0, 1]d×N → Rd×N and for each ϵ > 0 there exists a
Primphormer with the positional encoding TPE such that

sup
X∈XN

∥f(X)− TPE(X)∥∞ < ϵ. (3.3)

Theorems 3, 4 provide universal approximation properties for functions on sequences. In the realm
of graph learning, an interesting question arises: does the universality extend to functions on graphs?

Universal approximator for functions on graphs. To answer the question, we construct node and
edge Primphormers on graphs. For an input graph G, the edge Primphormer processes input as a
sequence of ordered pairs ((i, j), σij) where i ≤ j, i, j ∈ [N] and an edge indicator σij . It is evi-
dent that any permutation on these pairs describes the same graph. Considering the set of functions
f : RN×(N−1) → RN×(N−1) with permutation equivariance, Theorem 3 asserts that the function
f can be approximated with arbitrary accuracy by Primphormer on edge input. Similarly, the node
Primphormer takes an identity matrix as input and the padded adjacency matrix as a positional en-
coding which can be interpreted as a one-hot encoding of each node’s neighbors. Considering the set
of continuous functions f : [0, 1]N×N → RN×N , Theorem 4 states that f can be approximated as
closely as desired by an appropriate Primphormer on node inputs. These results indicate that Prim-
phormer can offer an approximate solution to the graph isomorphism problem, although they do not
imply the existence of efficient algorithms for solving this problem. For more detailed explorations,
we recommend referring to Kreuzer et al. (2021).

4 EXPERIMENTAL RESULTS

In this section, we evaluate the empirical performance of Primphormer on various graph bench-
marks. To ensure diversity, datasets are collected from different sources, a detailed description of
which can be found in Appendix A. In particular, we conducted experiments on the benchmark
datasets including the image-based graph datasets CIFAR10, MNIST, COCO-SP, and PascalVOC-
SP; the synthetic SBM datasets PATTERN and CLUSTER; the code graph dataset MalNet-Tiny; the
molecular datasets including Peptides-Func, Peptides-Struct, and PCQM-Contact (Dwivedi et al.,
2022a; Freitas et al., 2021; Dwivedi et al., 2022b; 2023); and the large-scale ogbn-products dataset
(Hu et al., 2020). In our experiments, we use feature maps defined as ϕq(x) := q(x)/∥q(x)∥2 and
ϕk(x) := k(x)/∥k(x)∥2 as used by Chen et al. (2023).

Long-range graph benchmark. We conducted experiments on the long-range graph benchmark
(LRGB, Dwivedi et al. (2022b)) to evaluate the models’ capabilities in learning long-range depen-
dencies within input graphs. Table 1 presents the results of Primphormer with several baselines.
Our approach outperforms the baselines on three of the five datasets while showing competitive
performance on the rest of the datasets.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

GNN benchmark datasets. We also evaluate our method with broader baselines on graph bench-
mark datasets, namely CIFAR10, MNIST, CLUSTER, PATTERN, and the code graph dataset
MalNet-Tiny (Dwivedi et al., 2023; Freitas et al., 2021), as reported in Table 2. It is observed that
Primphormer achieves SOTA results on MNIST and the second-best performance on two additional
datasets, showcasing its strong performance across various dataset types.

Table 1 Comparison of Primphormer with baselines on the long-range graph benchmark. Best results
are colored in first, second, third.

Model PascalVOC-SP COCO-SP Peptides-Func Peptides-Struct PCQM-Contact
F1↑ F1↑ AP↑ MAE↓ MRR↑

GCN 0.1268 ± 0.0060 0.0841 ± 0.0010 0.5930 ± 0.0023 0.3496 ± 0.0013 0.3234 ± 0.0006
GINE 0.1265 ± 0.0076 0.1339 ± 0.0044 0.5498 ± 0.0079 0.3547 ± 0.0045 0.3180 ± 0.0027
GatedGCN 0.2873 ± 0.0219 0.2641 ± 0.0045 0.5864 ± 0.0077 0.3420 ± 0.0013 0.3218 ± 0.0011
GatedGCN+RWSE 0.2860 ± 0.0085 0.2574 ± 0.0034 0.6069 ± 0.0035 0.3357 ± 0.0006 0.3242 ± 0.0008

Trans.+LapPE 0.2694 ± 0.0098 0.2618 ± 0.0031 0.6326 ± 0.0126 0.2529 ± 0.0016 0.3174 ± 0.0020
SAN+LapPE 0.3230 ± 0.0039 0.2592 ± 0.0158 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3350 ± 0.0003
SAN+RWSE 0.3216 ± 0.0027 0.2434 ± 0.0156 0.6439 ± 0.0075 0.2545 ± 0.0012 0.3341 ± 0.0006
GraphGPS 0.3748 ± 0.0109 0.3412 ± 0.0044 0.6535 ± 0.0041 0.2500 ± 0.0005 0.3337 ± 0.0006
Exphormer 0.3975 ± 0.0037 0.3455 ± 0.0009 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3637 ± 0.0020

Primphormer 0.3980 ± 0.0075 0.3438 ± 0.0046 0.6612 ± 0.0065 0.2495 ± 0.0008 0.3757 ± 0.0079

Table 2 Comparison of Primphormer with baselines on GNN benchmark datasets. Best results are
colored in first, second, third.

Model CIFAR10 MalNet-Tiny MNIST CLUSTER PATTERN
Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑

GCN 55.71 ± 0.381 81.0 90.71 ± 0.218 68.50 ± 0.976 71.89 ± 0.334
GIN 55.26 ± 1.527 88.98 ± 0.557 96.49 ± 0.252 64.72 ± 1.553 85.39 ± 0.136
GAT 64.22 ± 0.455 92.10 ± 0.242 95.54 ± 0.205 70.59 ± 0.447 78.27 ± 0.186
GatedGCN 67.31 ± 0.311 92.23 ± 0.650 97.34 ± 0.143 73.84 ± 0.326 85.57 ± 0.088
PNA 70.35 ± 0.630 - 97.94 ± 0.120 - -
DGN 72.84 ± 0.417 - - - 86.68 ± 0.034

CRaWL 69.01 ± 0.259 - 97.94 ± 0.050 - -
GIN-AK+ 72.19 ± 0.130 - - - 86.85 ± 0.057

SAN - - - 76.69 ± 0.650 86.58 ± 0.037
K-Subgraph SAT - - - 77.86 ± 0.104 86.85 ± 0.037
EGT 68.70 ± 0.409 - 98.17 ± 0.087 79.23 ± 0.348 86.82 ± 0.020
GraphGPS 72.30 ± 0.356 93.50 ± 0.410 98.05 ± 0.126 78.02 ± 0.180 86.69 ± 0.059
Exphormer 74.69 ± 0.125 94.02 ± 0.209 98.55 ± 0.039 78.07 ± 0.037 86.74 ± 0.015

Primphormer 74.13 ± 0.241 93.62 ± 0.242 98.56 ± 0.042 78.01 ± 0.162 86.68 ± 0.056

Efficiency validation. Primphormer leverages the primal representation for GTs to reduce com-
putational burden. As the aforementioned results demonstrate the promising performance of Prim-
phormer, we further validate its efficiency by comparing it to other computationally efficient at-
tention mechanisms within the GPS architecture (Rampasek et al., 2022). The selected mecha-
nisms include linear attention models BigBird (Zaheer et al., 2020) and Performer (Choromanski
et al., 2021), a sparse attention mechanism, Exphormer (Shirzad et al., 2023), the sequence-specific
Primal-Atten (Chen et al., 2023), and the full attention mechanism. We conduct the experiments on
CIFAR10, MalNet-Tiny, PascalVOC, Peptides-Func and a large-scale graph ogbn-products. Since
ogbn-products is too large to be loaded into GPU, we use the random partitioning method previously
used by Wu et al. (2022; 2023). The results across the five datasets are reported in Tables 3 and 4.

As shown in Table 3, Primphormer demonstrates superior performance over other attention mecha-
nisms such as BigBird, Performer, and Prim-Atten, while also exhibiting competitive performance
with Exphormer. Table 4 presents a comparison of running time and peak memory usage across dif-
ferent methods. Primphormer demonstrates superior performance in both running time and memory
consumption compared to other approaches. For example, in the MalNet-Tiny dataset, linear atten-
tion mechanisms introduce significant computational overhead. While Prim-Atten offers good effi-
ciency, its performance on graph tasks lags due to its sequence-specific nature. Both Primphormer

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3 Comparison of attention mechanisms in GPS. Best results are colored in first, second, third.
OOM means out of memory.

Model CIFAR10 MalNet-Tiny PascalVOC-SP Peptides-Func OGBN-products
GPS Accuracy↑ Accuracy↑ F1↑ AP↑ Accuracy↑
MPNN-only 69.95 ± 0.499 92.23 ± 0.650 0.3016 ± 0.0031 0.6159 ± 0.0048 74.25 ± 0.214s

+Transformer 72.31 ± 0.344 93.50 ± 0.410 0.3736 ± 0.0158 0.6535 ± 0.0041 OOM
+BigBird 70.48 ± 0.106 92.34 ± 0.340 0.2762 ± 0.0069 0.5854 ± 0.0079 73.82 ± 0.412
+Performer 70.67 ± 0.338 92.64 ± 0.780 0.3724 ± 0.0131 0.6475 ± 0.0056 74.30 ± 0.211
+Prim-Atten 71.57 ± 0.256 92.97 ± 0.228 0.3173 ± 0.0055 0.6447 ± 0.0046 74.47 ± 0.134
+Exphormer 74.69 ± 0.125 94.02 ± 0.209 0.3975 ± 0.0037 0.6527 ± 0.0043 74.67 ± 0.179

+Primphormer 74.13 ± 0.241 93.62 ± 0.242 0.3980 ± 0.0075 0.6612 ± 0.0065 74.89 ± 0.281

Table 4 Efficiency comparisons on running time and peak memory consumption.

Model Time (s/epoch) Peak memory usage (GB)

GPS CIFAR. MalNet. Pascal. Func. prod. CIFAR. MalNet. Pascal. Func. prod.

MPNN-only 20.3 24.5 15.7 4.8 21.1 2.31 1.92 4.18 2.45 11.97

+Transformer 28.0 232.4 35.6 12.8 - 3.81 35.32 7.82 8.46 OOM
+BigBird 55.2 325.6 52.3 51.9 93.9 2.81 2.71 4.99 4.99 17.29
+Performer 50.8 73.5 49.7 21.7 22.7 10.5 11.59 6.14 7.71 16.14
+Prim-Atten 32.1 62.5 25.7 7.9 22.6 2.74 2.58 4.74 3.38 13.63
+Exphormer 44.5 62.1 35.2 7.6 25.4 5.54 10.38 7.35 4.81 31.09

+Primphormer 32.6 61.9 25.3 7.7 22.1 2.74 2.86 4.72 3.41 13.35

and Exphormer, designed for graphs, exhibit similar running times. Nevertheless, Primphormer con-
sumes less memory as its complexity depends solely on the number of nodes, whereas Exphormer’s
complexity is controlled by the number of nodes and edges. In the ogbn-products dataset, which
comprises approximately 2 millions nodes and 61 millions edges, Primphormer showcases the most
efficient results compared with other methods.

In summary, our experiments demonstrate that (a) Primphormer achieves SOTA results in many
cases, and (b) Compared to other computationally efficient attention mechanisms, Primphormer
exhibits competitive performance while maintaining user-friendly memory and computational costs.

5 RELATED WORK

Graph Transformers. Transformers have demonstrated success in natural language processing
(Vaswani et al., 2017) and computer vision tasks (Liu et al., 2021). Recently, researchers have
explored the application of Transformers in graph representation learning to address issues such as
over-smoothing (Nguyen et al., 2023) and over-squashing (Giraldo et al., 2023) observed in MPNNs.
Graph Transformers operate on a fully connected graph where nodes are pairwise connected, en-
coding the original graph structure into positional encodings. Spectral Attention Networks (SAN)
(Kreuzer et al., 2021) introduce conditional attention for both real and virtual edges and implement
Laplacian positional encoding for nodes. Graphormer (Ying et al., 2021) and GraphiT (Mialon et al.,
2021) incorporate relative positional encodings based on pairwise graph distances and diffusion ker-
nels, respectively. GPS proposes a framework that combines MPNNs with attention mechanisms
(Rampasek et al., 2022).

The quadratic complexity in traditional GTs has motivated the development of computationally ef-
ficient attention mechanisms. Nodeformer (Wu et al., 2022) utilizes the kernelized Gumbel softmax
operator to facilitate information propagation between all pairs of nodes efficiently. Difformer (Wu
et al., 2023) introduces a diffusion-based Transformer model with linear complexity, although their
attention mechanisms are limited to nodes in randomly sampled mini-batches. Another strategy is
the sparse Transformer, which enhances computational efficiency by restricting node interactions.
Exphormer (Shirzad et al., 2023) limits interactions across real and expander edges, achieving linear

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

complexity to the number of nodes and edges. However, the efficiency of Exphormer diminishes as
graphs become denser. A survey on efficient Transformers is given by Fournier et al. (2023).

Primal-dual relationship. The quadratic complexity also arises in kernel machines in duality and
can be circumvented by transferring a dual problem to its primal form. Models such as the support
vector machine (Cortes & Vapnik, 1995), least squares support vector machine (Suykens & Vande-
walle, 1999), and kernel principal component analysis (Mika et al., 1999) exhibit this characteristic.
The associated pair-wise kernels are symmetric and positive-definite, whereas attention scores are
inherently asymmetric, violating the Mercer condition (Mercer, 1909). Recent research has explored
a new primal-dual perspective to accommodate such asymmetry in kernel machines. To incorporate
asymmetric kernel functions, Lin et al. (2022) propose an asymmetric kernel trick from a pair of
RKBSs. He et al. (2023b) convert an asymmetric kernel to a complex-valued Hermitian function
by the magnetic transform. Suykens (2016) introduces a novel variational principle to dissect the
primal-dual relationship concerning the singular value decomposition of an asymmetric kernel ma-
trix, a concept further extended to classification tasks by He et al. (2023a). This variational principle
is also leveraged by Chen et al. (2023) to interpret attention mechanisms in sequences. However, due
to the distinctions between sequences and graphs, this model is unsuitable for graph-based learning.

6 CONCLUSION

In this paper, we propose Primphormer, a new framework for graph Transformers. Primphormer
models the self-attention mechanism on graphs in the primal space, avoiding pair-wise computa-
tions, which enables an efficient variant of graph Transformers. Our primal-dual analysis shows
that Primphormer can be implemented by introducing an additional primal objective loss. Due to its
efficiency in both runtime and memory storage, Primphormer has the potential to support larger and
deeper neural networks and enable larger batch sizes, enhancing model capacity and generalization
ability. Primphormer also benefits from strong expressive power, serving as a universal approxima-
tor for functions on both sequences and graphs. Experimental results on various graph benchmarks
demonstrate the effectiveness and efficiency of the proposed Primphormer.

An interesting avenue for future work is exploring how edge features can be incorporated into Prim-
phormer’s structure. Edge features can be added to attention scores in an entry-wise manner as
data-adaptive kernels (Liu et al., 2020). Exploring the primal representation of these kernels allows
us to incorporate edge information into attention mechanisms, potentially resulting in a stronger
GT. Additionally, fine-tuning schemes like LoRA (Hu et al., 2022) are promising for large models.
Studying LoRA from a primal-dual perspective may lead to more efficient fine-tuning methods.

REFERENCES

Silas Alberti, Niclas Dern, Laura Thesing, and Gitta Kutyniok. Sumformer: Universal approxi-
mation for efficient transformers. In Topological, Algebraic and Geometric Learning Workshops
2023, 2023.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
transformer. In International Conference on Machine Learning, pp. 3408–3430. PMLR, 2023.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph rep-
resentation learning. In International Conference on Machine Learning, 2022.

Yingyi Chen, Qinghua Tao, Francesco Tonin, and Johan A. K. Suykens. Primal-attention: Self-
attention through asymmetric kernel svd in primal representation. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
formers. In International Conference on Learning Representations, 2021.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Guimin Dong, Mingyue Tang, Zhiyuan Wang, Jiechao Gao, Sikun Guo, Lihua Cai, Robert Gutierrez,
Bradford Campbel, Laura E Barnes, and Mehdi Boukhechba. Graph neural networks in iot: A
survey. ACM Transactions on Sensor Networks, 19(2):1–50, 2023.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022a.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022b.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A practical survey on faster and
lighter transformers. ACM Computing Surveys, 55(14s):1–40, 2023.

Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for graph
representation learning. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2021.

Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros. On the
trade-off between over-smoothing and over-squashing in deep graph neural networks. In Proceed-
ings of the 32nd ACM International Conference on Information and Knowledge Management,
2023.

Alexander Graham. Kronecker products and matrix calculus with applications. Courier Dover
Publications, 2018.

Mingzhen He, Fan He, Lei Shi, Xiaolin Huang, and Johan A. K. Suykens. Learning with asymmetric
kernels: Least squares and feature interpretation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(8):10044–10054, 2023a.

Mingzhen He, Fan He, Ruikai Yang, and Xiaolin Huang. Diffusion representation for asymmetric
kernels via magnetic transform. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023b.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In Thirty-
fourth International Conference on Neural Information Processing Systems, 2020.

Marcus Hutter. On representing (anti) symmetric functions. arXiv preprint arXiv:2007.15298, 2020.

Boris A Khesin and Serge L Tabachnikov. ARNOLD: Swimming Against the Tide: Swimming
Against the Tide, volume 86. American Mathematical Society, 2014.

George Kimeldorf and Grace Wahba. Some results on Tchebycheffian spline functions. Journal of
Mathematical Analysis and Applications, 33(1):82–95, 1971.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In Advances in Neural Infor-
mation Processing Systems, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based recommen-
dation in social networks. Neurocomputing, 549:126441, 2023.

Rong Rong Lin, Hai Zhang Zhang, and Jun Zhang. On reproducing kernel banach spaces: Generic
definitions and unified framework of constructions. Acta Mathematica Sinica, English Series, 38
(8):1459–1483, 2022.

Fanghui Liu, Xiaolin Huang, Chen Gong, Jie Yang, and Li Li. Learning data-adaptive non-
parametric kernels. Journal of Machine Learning Research, 21(208):1–39, 2020.

Yunchao Lance Liu, Yu Wang, Oanh Vu, Rocco Moretti, Bobby Bodenheimer, Jens Meiler, and
Tyler Derr. Interpretable chirality-aware graph neural network for quantitative structure activity
relationship modeling in drug discovery. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In International Conference on Machine Learning, 2023.

James Mercer. Functions of positive and negative type, and their connection with the theory of
integral equations. Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, 83(559):69–70, 1909.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Sebastian Mika, Bernhard Schölkopf, Alex Smola, Klaus-Robert Müller, Matthias Scholz, and Gun-
nar Rätsch. Kernel PCA and de-noising in feature spaces. In Proceedings of the 1998 Conference
on Advances in Neural Information Processing Systems II, 1999.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on Artificial Intelligence, 2019.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-
ternational Conference on Machine Learning, 2023.

Ladislav Rampasek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Advances in
Neural Information Processing Systems, 2022.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, 2023.

Johan A. K. Suykens. Svd revisited: A new variational principle, compatible feature maps and
nonlinear extensions. Applied and Computational Harmonic Analysis, 40(3):600–609, 2016.

Johan A. K. Suykens and Joos Vandewalle. Least squares support vector machine classifiers. Neural
Processing Letters, 9:293–300, 1999.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassess-
ing the long-range graph benchmark. arXiv preprint arXiv:2309.00367, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matthew A Wright and Joseph E Gonzalez. Transformers are deep infinite-dimensional non-mercer
binary kernel machines. arXiv preprint arXiv:2106.01506, 2021.

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In Advances in Neural Information Pro-
cessing Systems, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (graph) transformers induced by energy constrained diffusion. In International Confer-
ence on Learning Representations, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos, Ruslan Salakhutdinov, and
Alexander J Smola. Deep sets. In Proceedings of the Thirty-first International Conference on
Neural Information Processing Systems, 2017.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. In Advances in Neural Information Processing Systems, 2020.

Bohan Zhuang, Jing Liu, Zizheng Pan, Haoyu He, Yuetian Weng, and Chunhua Shen. A survey
on efficient training of transformers. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A DATA DESCRIPTIONS

Here, we introduce the datasets in the experiments. A summary of the dataset statistics is shown in
Tab. A1.

CIFAR10 and MNIST. CIFAR10 and MNIST are the graph equivalents of the image classification
datasets of the same name. A graph is created by constructing the 8-nearest neighbor graph of the
SLIC superpixels of the image. These are both 10-class graph classification problems (Dwivedi
et al., 2023).

PascalVOC-SP and COCO-SP. These are similar graph versions of image datasets, but they are
larger images and the task is to perform node classification, i.e., semantic segmentation of super-
pixels. These graphs are larger, and the tasks are more complex than CIFAR10 and MNIST (Dwivedi
et al., 2022a).

CLUSTER and PATTERN. PATTERN and CLUSTER are node classification problems. Both
are synthetic datasets that are sampled from a Stochastic Block Model (SBM), is a popular way to
model communities. In PATTERN, the prediction task is to identify if a node belongs to one of the
100 possible predetermined sub-graph patterns. In CLUSTER, the goal is to classify nodes into six
different clusters with the same distribution (Dwivedi et al., 2023).

MalNet-Tiny. Malnet-Tiny is a smaller dataset generated from a larger dataset for identifying mal-
ware based on function call graphs from Android APKs. The tiny dataset contains 5000 graphs,
each with up to 5000 nodes. The task is to predict the graph as being benign or from one of four
types of malware (Freitas et al., 2021).

Peptides-Func, Peptides-Struct, and PCQM-Contact. These datasets are molecular graphs in-
troduced as a part of the Long Range Graph Benchmark (LRGB). On PCQM-Contact, the task is
edge-level, and we need to rank the edges. Peptides-Func is a multi-label graph classification task
with 10 labels. Peptides-Struct is graph-level regression of 11 structural properties of the molecules
(Dwivedi et al., 2022a;b).

OGBN-products. The ogbn-products dataset is an undirected and unweighted graph, representing
an Amazon product co-purchasing network. Nodes represent products sold in Amazon, and edges
between two products indicate that the products are purchased together. Specifically, node features
are generated by extracting bag-of-words features from the product descriptions followed by a Prin-
cipal Component Analysis to reduce the dimension to 100. The task is to predict the category of
a product in a multi-class classification setup, where the 47 top-level categories are used for target
labels (Hu et al., 2020). We use the random partitioning method with ten partitions as previously
utilized in Wu et al. (2022; 2023).

Table A1 Dataset statistics

Dataset Graphs Avg. nodes Avg.edges Task level Class Metric

MNIST 70,000 70.6 564.5 graph 10 Acc
CIFAR10 60,000 117.6 941.1 graph 10 Acc
PATTERN 14,000 118.9 3039.3 inductive node 2 Acc
CLUSTER 12,000 117.2 2150.9 inductive node 6 Acc
MalNet-Tiny 5,000 1,410.3 2,859.9 graph 5 Acc

PascalVOC-SP 11,355 479.4 2710.5 inductive node 21 F1
COCO-SP 123,286 476.9 2710.5 inductive node 81 F1
PCQM-Contact 529,434 30.1 61.0 inductive link link ranking MRR
Peptides-func 15,535 150.9 307.3 graph 10 AP
Peptides-struct 15,535 150.9 309.3 graph 11 MAE
OGBN-products 1 2,449,029 61,859,140 node 47 Acc

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B HYPERPARAMETERS

Our selection of hyperparameters was guided by the instructions in GPS (Rampasek et al., 2022)
and Exphormer (Shirzad et al., 2023). Further details can be found in Tables. A3- A4.

In our model, we introduced additional hyperparameters, the dimensions of the data-dependent pro-
jection, denoted asNs and its low rank s, and the regularization coefficient η. We utilized grid search
to explore these hyperparameters across Ns, s ∈ {20, 30, 40, 50, 60}, and η ∈ {0.1, 0.01}. For the
remaining hyperparameters, we conducted a linear search for each parameter to determine the best
values. Throughout all experiments, we employed CustomGatedGCN as the MPNN module along-
side Primphormer except for ogbn-products dataset where we use GCN. To ensure fair comparisons,
we maintained a similar parameter budget to that of GraphGPS.

Table A4 presents the hyperparameters used in our efficiency experiments. To maintain consis-
tency in our evaluations of various attention mechanisms, we applied the same parameters for a fair
comparison.

Table A2 Hyperparameters used in Primphormer for datasets: PascalVOC-SP, COCO-SP, Peptides-
Func, Peptides-Struct, PCQM-Contact.

Hyperparmeter PascalVOC-SP COCO-SP Peptides-Func Peptides-Struct PCQM-Contact

#Layers 6 7 4 4 7
Hidden dim 80 56 96 96 64
Heads 1 2 4 4 4
Dropout 0.15 0.0 0.1 0.15 0.0
Attention dropout 0.5 0.5 0.1 0.5 0.56

PE LapPE LapPE RWSE RWSE LapPE
PE dim 16 16 16 20 16

Batch size 200 150 200 200 128
Learning rate 1e-3 1e-3 1e-3 1e-3 3e-4
#Epochs 300 300 250 250 250
Weight decay 1e-5 1e-2 1e-2 1e-2 0.0

Ns 30 20 30 40 30
η 0.1 0.1 0.1 0.1 0.1
s 30 20 30 40 30

#Parameters 508305 315305 470693 468783 386526

Table A3 Hyperparameters used in Primphormer for datasets: CIFAR10, MNIST, MalNet-Tiny,
PATTERN, CLUSTER.

Hyperparmeter CIFAR10 MNIST MalNet-Tiny PATTERN CLUSTER

#Layers 3 4 5 6 12
Hidden dim 52 40 84 48 52
#Heads 1 1 1 1 1
Dropout 0.15 0.1 0.15 0.0 0.15
Attention dropout 0.5 0.5 0.5 0.5 0.5

PE ESLapPE ESLapPE - ESLapPE ESLapPE
PE dim 8 8 - 8 10

Batch size 200 200 64 128 48
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3
#Epochs 300 300 300 200 300
Weight decay 1e-2 1e-5 1e-3 1e-5 1e-5

Ns 20 30 50 30 40
η 0.1 0.1 0.1 0.1 0.1
s 20 30 50 30 40

#Parameters 112957 101714 519605 208387 499386

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table A4 Hyperparameters used in Table. 4.

Hyperparmeter CIFAR10 MalNet-Tiny PasvalVOC-SP Peptides-Func ogbn-products

#Layers 5 5 4 4 2
Hidden dim 40 64 96 96 128
Batch size 128 4 32 128 -

C PROOFS OF THEORETICAL RESULTS

In this section, we provide the proofs of theoretical results in this paper.

C.1 PROOF DETAILS OF THEOREM 1

The Lagrangian of (2.5) is defined by,

L(We,Wr, ei, rj ,hei ,hrj) =
1

2

N∑
i=1

e⊤i Λei +
1

2

N∑
j=1

r⊤j Λrj − Tr(W⊤
e Wr)

−
N∑
i=1

h⊤
ei

(
ei − fXWeϕq(xi)

)
− h⊤

rj

(
rj − fXWrϕk(xj)

)
,

(C1)
where hei ,hrj ∈ Rss are dual variable vectors corresponding to the equality constraints regarding
the projection scores ei and rj .

By taking the partial derivatives to the Lagrangian (C1), the Karush-Kuhn-Tucker (KKT) conditions
lead to the following equalities,

∂L
∂We

= 0⇒Wr =

N∑
i=1

f⊤Xheiϕq(xi)
⊤

∂L
∂Wr

= 0⇒We =

N∑
j=1

f⊤Xhrjϕk(xj)
⊤

∂L
∂ei

= 0⇒ Λei = hei , i ∈ [N]

∂L
∂rj

= 0⇒ Λrj = hrj , j ∈ [N]

∂L
∂hei

= 0⇒ ei = fXWeϕq(xi), i ∈ [N]

∂L
∂hrj

= 0⇒ rj = fXWrϕk(xj), j ∈ [N].

(C2)

By eliminating the primal variables We and Wr, we have,

N∑
j=1

FXhrjϕk(xj)
⊤ϕq(xi) = Λ−1hei , i ∈ [N],

N∑
i=1

FXheiϕq(xi)
⊤ϕk(xj) = Λ−1hrj , j ∈ [N],

(C3)

where FX := fXf
⊤
X ∈ Ss×s

+ is the auto-correlation matrix. It can be expressed in the following
matrix form, [

0N×N [ϕq(xi)
⊤ϕk(xj)]

[ϕk(xj)
⊤ϕq(xi)] 0N×N

] [
He

Hr

]
FX =

[
He

Hr

]
Λ−1, (C4)

with He := [he1 , . . . ,heN]⊤ ∈ RN×s, and Hr := [hr1 , . . . ,hrN]⊤ ∈ RN×s.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then it can be noticed that the KSVD optimization problem in the dual space yields the following
generalized eigenvalue problem with an asymmetric kernel K,

KHrFX = HeΣ,

K⊤HeFX = HrΣ,
(C5)

which collects the solutions corresponding to the non-zero entries in Λ such that Σ ≜ Λ−1. The
asymmetric kernel matrix K, induced by Kij := ⟨ϕq(xi), ϕk(xj)⟩,∀i, j ∈ [N], corresponds to the
attention matrix.

C.2 DERIVATION OF SCORES (2.8) IN THE PRIMAL AND DUAL SPACES

With the derivations and KKT conditions of the primal-dual optimization above, the primal and dual
representation for the self-attention can be formulated as follows,

Primal :

{
e(x) = fXWeϕq(x),

r(x) = fXWrϕk(x).
(C6)

Dual :


e(x) = fXWeϕq(xi) =

∑N

j=1
FXhrjϕk(xj)

⊤ϕq(x),

r(x) = fXWrϕk(xi) =
∑N

i=1
FXheiϕq(xi)

⊤ϕk(x).

(C7)

Then, the primal and dual representations for self-attention can be folumated as follows,

Primal :

{
e(x) = W⊤

e|Xϕq(x),

r(x) = W⊤
r|Xϕk(x),

Dual :


e(x) =

∑N

j=1
h̃rjκ(x,xj),

r(x) =
∑N

i=1
h̃eiκ(xi,x),

(C8)

where W⊤
e|X := fXWe ∈ Rs×p, W⊤

r|X := fXWr ∈ Rs×p and h̃rj := FXhrj , h̃ei := FXhei are
values for self-attention, respectively.

C.3 PROOF DETAILS OF THEOREM 2

Proof. Based on the KKT conditions (C2) and (2.6), the objective on stationary points is,

J =
1

2

∑N

i=1
e⊤i Λei +

1

2

∑N

j=1
r⊤j Λrj − Tr

(
W⊤

e Wr

)
=

1

2

∑N

i=1

(
Λ−1hei

)⊤
ΛΛ−1hei +

1

2

∑N

j=1

(
Λ−1hrj

)⊤
ΛΛ−1hrj

− Tr

((∑N

j=1
ϕk(xj)h

⊤
rjfX

)
·
(∑N

i=1
f⊤Xheiϕq(xi)

⊤))
=

1

2

∑N

i=1
h⊤
eiΛ

−1hei +
1

2

∑N

j=1
h⊤
rjΛ

−1hrj − Tr
(∑

i,j
ϕk(xj)h

⊤
rjFXheiϕq(xi)

⊤
)

=
1

2
Tr
(
HeΣH⊤

e

)
+

1

2
Tr
(
HrΣH⊤

r

)
− Tr

(∑
i,j
ϕq(xi)

⊤ϕk(xj)h
⊤
rjFXhei

)
=

1

2
Tr
(
HeΣH⊤

e

)
+

1

2
Tr
(
HrΣH⊤

r

)
− Tr

(
KHrFXH⊤

e

)
=

1

2
Tr
(
KHrFXH⊤

e

)
+

1

2
Tr
(
K⊤HeFXH⊤

r

)
− Tr

(
KHrFXH⊤

e

)
=

1

2
Tr
(
K⊤HeFXH⊤

r

)
− 1

2
Tr
(
KHrFXH⊤

e

)
=

1

2
Tr
(
HeFXH⊤

r K⊤)− 1

2
Tr
(
KHrFXH⊤

e

)
=

1

2
Tr
((

HeFXH⊤
r K⊤)⊤)− 1

2
Tr
(
KHrFXH⊤

e

)
=

1

2
Tr
(
KHrFXH⊤

e

)
− 1

2
Tr
(
KHrFXH⊤

e

)
= 0.

(C9)
This completes the proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.4 PROOF DETAILS OF THEOREM 3

Proof. The proof follows ideas in (Alberti et al., 2023). We first introduce the Sumformer S and
we divide the approximation into two parts: 1) approximate f by a S and 2) approximate S by a
Primphormer TPri.

Definition 3 (Sumformer). Let d′ ∈ N and let there be two functions ϕ : X → Rd′
, ψ : X ×Rd′ →

Y . A Sumformer is a sequence-to-sequence function S : XN → YN which is evaluated by first
computing

Ξ :=

N∑
k=1

ξ(xk), (C10)

and then
S ([x1, · · · ,xN]) := [ψ(x1,Ξ), · · · , ψ(xN ,Ξ)] . (C11)

Theorem 5 (Universal approximation of Sumformer). For each function f ∈ FN
eq(X ,Y) and for

each ϵ > 0 there exists a Sumformer S such that

sup
X∈XN

∥f(X)− S(X)∥∞ < ϵ. (C12)

We divide the approximation into two steps by the triangular inequality: 1) approximate f by a
Sumformer S and 2) approximate S by a Primphormer TPri.

sup
X∈XN

∥f(X)−TPri(X)∥∞ ≤ sup
X∈XN

∥f(X)−S(X)∥∞+ sup
X∈XN

∥S(X)−TPri(X)∥∞. (C13)

According to Theorem 5, we know that there exists a Sumformer S which approximates f to an
error of ϵ/2. This Sumformer has the inherent latent dimension d′.

Secondly, we turn to the second term and construct a Primphormer that is able to approximate
Sumformer to ϵ/2 error. The structure of Transformer is X + FC (X +Att(X)) where FC and
Att are the fully-connected and self-attention modules, respectively. The attention map Att(X) of
Primphormer is calculated in the primal space (2.8) and the rest of the architecture in Primphormer
stays the same. Here, we follow the proof idea proposed in (Alberti et al., 2023) and refer readers to
this work for detailed information on the theoretical result.

We have the input X = [x1, · · · ,xN] ∈ XN with xi ∈ Rd. Set the attention in the first layers
to zero, we obtain the feed-forward layers without attention. We first map X with a feed-forward
transformation to [

x1 · · · xN

x1 · · · xN

]
∈ R2d×N . (C14)

Then, a two-layer feed-forward network can be constructed to act as the identity on the first N
components while approximating the function ξ in Sumformer (Hornik et al., 1989; Alberti et al.,
2023). We have. [

x1 · · · xN

ξ(x1) · · · ξ(xN)

]
∈ R(d+d′)×N . (C15)

Before getting to the second step, we we add a linear mapping withW =

[
0d×1 Id 0d×d′ 0d×d′

0d′×1 0d′×d Id′ 0d′×d′

]⊤
∈ R(1+d+2d′)×(d+d′),

b =
[
1N 0N×(d+2d′))

]⊤ ∈ R(1+d+2d′)×N ,

(C16)

and get an output after the first step: 1 · · · 1
x1 · · · xN

ξ(x1) · · · ξ(xN)
0d′×1 · · · 0d′×1

 ∈ R(1+d+2d′)×N . (C17)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Secondly, we turn to attention scheme to represent the sum Ξ =
∑N

i=1 ξ(xi) defined in the definition
(3). Set Wq = Wk = [e1,0(1+d+2d′)×(d+2d′)] with e1 = [1,01×(d+2d′)]

⊤. we have,

ϕq(X1) = ϕk(X1) =
[
1N×1,0N×(d+2d′)

]⊤ ∈ R(1+d+2d′)×N . (C18)

Let the data-dependent projection f(X) = BX1N1⊤
Ns

with B = [0d′×1,0d′×d, Id′ ,0d′×d′], we
have,

f(X) =

Ns︷ ︸︸ ︷[
N∑
i=1

ξ(xi), · · · ,
N∑
i=1

ξ(xi)

]
= [Ξ, · · · ,Ξ] ∈ Rd′×Ns . (C19)

Let We = Wr = [e1,0(1+d+2d′)×(Ns−1)]
⊤, the projection scores in (2.8) are{

e(X1) = f(X1)Weϕq(X1) = [Ξ, · · · ,Ξ] ∈ Rd′×N .

r(X1) = f(X1)Wrϕk(X1) = [Ξ, · · · ,Ξ] ∈ Rd′×N .
(C20)

To fit the dimension of the output, we concatenate the projection scores [e(X1); r(X1)] ∈ R2d′×N ,
and choose a compatibility matrix Wc = [0(1+d+d′)×2d′ ; 1

2Id′ , 12Id′] ∈ R(1+d+2d′)×2d′
, such that

o(X1) = Wc

[
e(X1)

r(X1)

]
=

[
0(1+d+d′)×1 · · · 0(1+d+d′)×1

Ξ · · · Ξ

]
∈ R(1+d+2d′)×N . (C21)

Then apply a residual connection and obtain the same output as outlined in (Alberti et al., 2023), 1 · · · 1
x1 · · · xN

ξ(x1) · · · ξ(xN)
Ξ · · · Ξ

 ∈ R(1+d+2d′)×N . (C22)

Because only the attention map Att(X) is changed in the architecture and the rest stays the same, the
construction ofψ is as same as that in (Alberti et al., 2023), i.e.,O(N(1ϵ)

dN/N !) feed-forward layers
for approximating ψ in the discontinuous case and two feed-forward layers for approximating ψ in
the continuous case. Above all, we can construct a Primphormer that approximates the Sumformer
to ϵ/2 error.

C.5 PROOF DETAILS OF THEOREM 4

Proof. The proof can be done in a similar way as Theorem 3. Firstly, let the target function f(X) :=
[g(x1, {x2, · · · ,xN}), · · · , g(xN , {x1, · · · ,xN−1})]. Since the target function f is continuous, its
component functions f1, · · · , fN , i.e., g, are also continuous. The compactness ofX shows thatXN

is also compact and therefore g is uniformly continuous. Without loss of generality, let the compact
support of g be contained in [0, 1]d×N . Then we can define a piece-wise constant function g by

g(X) =
∑

P∈Gδ

g(P)1{X ∈ CP }, (C23)

where the grid Gδ := {0, δ, · · · , 1 − δ}d×N for some δ := 1
∆ with ∆ ∈ N consisting of cubes

CP =
∏N

i=1

∏d
k=1[Pi,k,Pi,k + δ). Because g is uniformly continuous, for each ϵ > 0, there exists

a δ > 0 such that
sup

X∈XN

∥g(X)− g(X)∥∞ < ϵ. (C24)

Secondly, choose the positional encoding

E =


0 1 2 · · · N − 1
0 1 2 · · · N − 1
...

...
...

...
0 1 2 · · · N − 1

 ∈ Rd×N . (C25)

After applying the quantization, the output is in the following set,

Hδ :=
{
P +E ∈ Rd×N |P ∈ Gδ

}
. (C26)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Then the i-th column of X + E is in the range [i − 1, i)d, meaning that the entries corresponding
to different tokens lie in disjoint intervals. More precisely, for any H ∈ Gδ , its i-th column Hi ∈
[i− 1 : δ : i− δ].

Consider a vector u = 1−δ
Nδ−d+1 ×

(
1, δ−1, · · · , δ−d+1

)
∈ Rd. It is easy to check that for any

H ∈ Gδ , the map l(Hi) = u⊤Hi is one-to-one,

u⊤Hi ∈

[
(1− δ)(i− 1)

Nδ−d+1

d−1∑
k=0

δ−k :
(1− δ)
Nδ−d

:
(1− δ)i
Nδ−d+1

d−1∑
k=0

δ−k − (δ−d − 1)

Nδ−d−1

]
. (C27)

Therefore, for each column Hi, the image of l(Hi) is in an interval disjoint from the other columns.
We can know that l(Hi) can be thought as a “column id” for different columns, for any permutation
π : [N]→ [N],

l
(
Hπ(1)

)
< l
(
Hπ(2)

)
< · · · < l

(
Hπ(N)

)
. (C28)

Besides, it can be easily checked that the image of l lies within the interval [0, 1],

0 ≤ l
(
Hπ(1)

)
< l
(
Hπ(2)

)
< · · · < l

(
Hπ(N)

)
< 1. (C29)

Next, we want to represent g using an appropriate S. Without loss of generality, we choose the
k-th component of f , i.e., g(xk, {xi|i ̸= k, i ∈ [N]}). Assign each grid point H a coordinate
χ(H) = b ∈ [0, 1]N by the construction of the function l. Let b = [l(Hi)|i ∈ [N]] ∈ [0, 1]N .
The map χ is bijective and there are finitely many b. We can enumerate all b using a function
µ : [0, 1]N → N. This function could be represented by the Kolmogorov-Arnold representation
theorem (Khesin & Tabachnikov, 2014; Zaheer et al., 2017), as stated below,

Theorem 6 (Kolmogorov-Arnold representation). Let f : [0, 1]N → R be an arbitrary multivariate
continuous function iff it has the representation,

f(x1, · · · ,xN) = ρ

(
N∑

n=1

λnϕ(xn)

)
(C30)

with continuous outer and inner functions ρ : R2N+1 → R and ϕ : R→ R2N+1. The inner function
ϕ is independent of the function f .

Now, we can utilize Theorem 6 to find the representation for the function µ,

µ(b) = ρ

(
N∑

n=1

λnϕ(bn)

)
. (C31)

Define Ξ :=
∑N

n=1 ξ(bn) =
∑N

n=1 λnϕ(bn) and a quantization function q such that bn = l(q(xn+
En)). It is feasible because bn varies for different indices, as claimed in “column id” (C28). Now
we can recover the grid H ,

H = χ−1 ◦ µ−1 ◦ ρ(Ξ). (C32)
We then define the function ψ such that the related S is equal to g:

ψ(xk,Ξ) := g
(
ι(χ−1 ◦ µ−1 ◦ ρ(Ξ)−E)

)
, (C33)

with ι : P 7→ (Pk,Pi ̸=k) to fit the input requirement of g. Since we chose g to uniformly approxi-
mate g, i.e., each component of f up to ϵ error, it implies that S with a positional encoding uniformly
approximates f up to ϵ error.

Thirdly, we need to prove the universal approximation between a Sumformer and a Primphormer
after adding a positional encoding. The proof (C.4) still holds because it only involves the archi-
tecture. We can claim that there exists a Primphormer with a positional encoding TPE uniformly
approximating a Sumformer S.

Above all, we end the proof by using the triangular inequality,

sup
X∈XN

∥f(X)− TPE(X)∥∞ ≤ sup
X∈XN

∥f(X)− S(X)∥∞ + sup
X∈XN

∥S(X)− TPE(X)∥∞ < ϵ.

(C34)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D PSEUDO-CODE

Algorithm 1 PyTorch-like Pseudo-Code for Primphormer Module.

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import global_mean_pool
from torch_geometric.utils import to_dense_batch

class Primphormer(nn.Module):
def __init__(self, in_dim, out_dim, n_heads, Ns, low_rank):

super().__init__()
self.d_keys = out_dim // n_heads # key dimension.
self.q_proj = nn.Linear(in_dim, out_dim) # query
self.k_proj = nn.Linear(in_dim, out_dim) # key
self.vn_proj = nn.Linear(in_dim, out_dim) # virtual node
self.n_heads = n_heads

self.We = nn.Parameter(nn.init.orthogonal_(torch.Tensor(Ns, n_heads, self.d_keys)))
self.Wr = nn.Parameter(nn.init.orthogonal_(torch.Tensor(Ns, n_heads, self.d_keys)))
self.Lambda = nn.Parameter(nn.init.uniform_(torch.Tensor(n_heads, low_rank)))
self.concate_weight = nn.Linear(2*low_rank, self.d_keys)

def feature_map(self, Q, K):
Q = F.normalized(Q, p=2, dim=-1)
K = F.normalized(K, p=2, dim=-1)
return Q, K

def propagate_vn(self, batch, h):
h = self.vn_proj(h)
h_vn = global_mean_pool(h, batch.batch).unsqueeze(1) # aggregate by the virtual node.
fx = h_vn + batch.fx # update f_X by the virtual node.
return fx

def forward(self, batch):
x = batch.x
x_dense, mask = to_dense_batch(x, batch.batch)
B, M = mask.shape # batch, maximal #nodes
fx = self.propagate_vn(batch, x)
Q = self.q_proj(x_dense).view(B, M, self.n_heads, -1)
K = self.k_proj(x_dense).view(B, M, self.n_heads, -1)
Q, K = self.feature_map(Q, K)

compute data-dependent projections
We_X = torch.einsum(’bdv,vhe->bdhe’, fx.transpose(2, 1), self.We)
Wr_X = torch.einsum(’bdv,vhe->bdhe’, fx.transpose(2, 1), self.Wr)

compute projection scores
escore = torch.einsum(’bmhd,bhde->bmhe’, Q, We_X.permute(0, 2, 3, 1))[mask]
rscore = torch.einsum(’bmhd,bhde->bmhe’, K, Wr_X.permute(0, 2, 3, 1))[mask]

score = torch.cat((escore, rscore), dim=-1)
out = self.concate_weight(score).contiguous()
out = out.view(-1, self.n_heads * self.d_keys) # final output
batch.fx = fx #update for the next layer

loss_escore = (torch.einsum(’nhd,hd->nhd’, escore,
self.Lambda).norm(dim=-1,p=2)**2).mean() / 2

loss_rscore = (torch.einsum(’nhd,hd->nhd’, rscore,
self.Lambda).norm(dim=-1,p=2)**2).mean() / 2

loss_trace = torch.einsum(’dhe,ehk->dhk’, self.We.permute(2, 1, 0),
self.Wr).mean(dim=1).trace()

loss_svd = (loss_escore + loss_rscore - loss_trace) ** 2

return out, loss_svd

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 2 Algorithm for Primphormer in the GPS architecture.

Input: Graph G = (V,E) with N nodes and M edges; Adjacency matrix A ∈ RN×N ; Node
features X ∈ Rdn×N , Edge features E ∈ Rde×M ; Node and edge encoders; Local message
passing model instance MPNNe; Primphormer model instance Prim; Positional encoding func-
tion fPE; Layers l ∈ [L− 1].

Output: Node representations XL ∈ Rd×N and edge representations EL ∈ Rd×M for down-
stream tasks.

1: Pnode,Pedge ← ∅;
2: Pnode,Pedge ← fPE(X,E)
3: X1 ←

⊕
node (NodeEncoder(X),Pnode)

4: E1 ←
⊕

edge (EdgeEncoder(E),Pedge)
5: for l = 1, · · · , L− 1 do
6: X̂ l+1

M ,El+1 ← MPNNl
e

(
X l,El,A

)
7: X̂ l+1

P ← Priml
(
X l
)

8: X l+1
M ← BatchNorm

(
Dropout

(
X̂ l+1

M

)
+X l

)
9: X l+1

P ← BatchNorm
(
Dropout

(
X̂ l+1

P

)
+X l

)
10: X l+1 ← MLPl

(
X l+1

M +X l+1
P

)
11: end for
12: return XL and EL

E ADDITIONAL EXPERIMENTS

We also conduct experiments to compare against more models (Ma et al., 2023; Tönshoff et al.,
2023). Notably, Tönshoff et al. (2023) introduced an additional data preprocessing step (feature
normalization, FN), which is parallel to our method and can be implemented similarly. We report
the experimental results in Tables A5 and A6.

Table A5 Comparisons between our method and GRIT(Ma et al., 2023).

Model CIFAR10 MNIST

GPS ACC↑ Time(s/epoch) Memory(GB) ACC↑ Time(s/epoch) Memory(GB)

Primphormer 74.13 ± 0.241 32.6 2.74 98.56 ± 0.042 43.7 1.71

GRIT(Ma et al., 2023) 76.46 ± 0.881 158.8 22.8 98.11 ± 0.111 70.1 7.69

Table A6 Comparisons w/o FN between our method and GPS(Tönshoff et al., 2023).

F1↑ Ours GPS Ours+FN GPS+FN

Pascal-VOC 0.3980 ± 0.0075 0.3748 ± 0.0109 0.4602 ± 0.0077 0.4440 ± 0.0065
COCO-SP 0.3438 ± 0.0046 0.3412 ± 0.0044 0.3903 ± 0.0061 0.3884 ± 0.0055

21

	Introduction
	Methods
	Attention mechanism on graphs
	Primphormer

	Theoretical Results
	Zero-valued objective
	Universal approximation

	Experimental results
	Related Work
	Conclusion
	Data Descriptions
	Hyperparameters
	Proofs of theoretical results
	Proof details of Theorem 1
	Derivation of scores (2.8) in the primal and dual spaces
	Proof details of Theorem 2
	Proof details of Theorem 3
	Proof details of Theorem 4

	pseudo-code
	Additional experiments

