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Abstract
Recent work has applied differential privacy (DP)
to adapt large language models (LLMs) for sensi-
tive applications, offering theoretical guarantees.
However, its practical effectiveness remains un-
clear, partly due to LLM pretraining, where over-
laps and interdependencies with adaptation data
can undermine privacy despite DP efforts. To
analyze this issue in practice, we investigate pri-
vacy risks under DP adaptations in LLMs using
state-of-the-art attacks such as robust membership
inference and canary data extraction. We bench-
mark these risks by systematically varying the
adaptation data distribution, from exact overlaps
with pretraining data, through in-distribution (IID)
cases, to entirely out-of-distribution (OOD) ex-
amples. Additionally, we evaluate how different
adaptation methods and different privacy regimes
impact the vulnerability. Our results show that
distribution shifts strongly influence privacy vul-
nerability: the closer the adaptation data is to
the pretraining distribution, the higher the practi-
cal privacy risk at the same theoretical guarantee,
even without direct data overlap. We find that
parameter-efficient fine-tuning methods, such as
LoRA, achieve the highest empirical privacy pro-
tection for OOD data. Our benchmark identifies
key factors for achieving practical privacy in DP
LLM adaptation, providing actionable insights
for deploying customized models in sensitive set-
tings. Looking forward, we propose a structured
framework for holistic privacy assessment beyond
adaptation privacy, to identify and evaluate risks
across LLMs’ full pretrain-adapt pipeline.

1. Introduction
The use of pretrained large language models (LLMs) for
sensitive downstream tasks, such as medical decision mak-
ing, has grown rapidly (Labrak et al., 2024; Chen et al.,
2023; Van Veen et al., 2024). To offer protection for the
private data used to adapt the LLMs to these sensitive tasks,
differential privacy (DP) (Dwork, 2006; Dwork et al., 2014)
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Figure 1. Setup for Privacy Auditing of DP-LLM Adaptations.
We perform our audits based on the privately adapted LLM’s
output, either by using RMIA (Carlini et al., 2022) as the strongest
state-of-the-art membership inference attack, or by relying on data
extraction attacks. For the latter, we include canary data into the
adaptation set and measure its exposure.

has emerged as a gold standard (Yu et al., 2021; 2022; Li
et al., 2022; Duan et al., 2023a; Mehta et al., 2023). How-
ever, adapting a pretrained LLM with DP may not always
provide the anticipated privacy protections (Tramèr et al.,
2024). The challenge arises from potential overlap or com-
plex interdependencies between data used to pretrain the
LLMs and the adaptation dataset. The problem is exac-
erbated by the fact that for most LLMs, their pretraining
datasets are not disclosed (OpenAI, 2023; Qwen et al., 2025;
Touvron et al., 2023), rendering a structured reasoning of
the interdependencies with the private adaptation data im-
possible.

While prior work has investigated privacy risks stemming
from LLM pretraining (Carlini et al., 2023a;b), post-hoc
leakage in non-private adaptations (Zhu et al., 2024), or
auditing DP adaptations via synthetic canaries (Panda et al.,
2024), we still lack a structured understanding of the em-
pirical privacy risks of DP adaptations. This is a critical
gap. Without a clear understanding of the practical risks,
LLM practitioners are left with little guidance on how to
privately apply LLMs in privacy-sensitive settings, includ-
ing critical questions like: which adaptation method to use,
what pretrained model is best given the private adaptation
data distribution, and what privacy levels will be protective
enough.
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To close this gap, we conduct a comprehensive benchmark
evaluation that sheds light on the empirical leakage intro-
duced by DP adaptations. We evaluate a wide range of
private adaptation strategies, including full and last-layer
DP fine-tuning (Li et al., 2022), parameter-efficient fine-
tuning (PEFT) methods such as DP-LoRA (Hu et al., 2022;
Yu et al., 2022), DP-Prefix Tuning (Liu et al., 2021), as well
as DP prompting schemes (Duan et al., 2023a). To assess
leakage, we focus on the Robust Membership Inference At-
tack (RMIA) (Zarifzadeh et al., 2024), which represents
the strongest state-of-the-art threat model for auditing LLM
privacy, and complement this with data extraction attacks
(Tramèr et al., 2022; Carlini et al., 2021; 2019) to evalu-
ate more severe forms of information leakage. A general
overview of privacy auditing for adapted LLMs is provided
in Figure 1.

We systematically analyze a spectrum of possible distribu-
tions for the adaptation data with respect to the pretrain-
ing data—ranging from data perfectly overlapping with
the pretraining data, over IID scenarios, to entirely OOD
examples—to understand the possible privacy implications
for all setups. Our benchmark spans six datasets drawn
from diverse domains, four adaptation methods, and six pre-
trained LLMs of different sizes and architectures, enabling
comprehensive comparisons across setups. We further ana-
lyze a broad spectrum of privacy regimes from no privacy to
high privacy, enabling structured reasoning about the result-
ing risks. Our study is guided by a central question: What
are the empirical privacy risks for the adaptation data that
result from DP adaptations?

Looking ahead, we highlight the need to jointly audit privacy
risks from pretraining and adaptation and their interplay, as
LLMs may leak information from either stage. To address
this, we propose a new structured framework for holistic
privacy assessment across the full pretrain-adapt pipeline. It
defines four key audit stages: (1) pretraining, (2) adaptation,
(3) their joint interaction, and (4) post-adaptation auditing
of pretraining. To formally ground these audits and make
them instantiatable, we redefine each stage’s membership
inference game (Yeom et al., 2018; Jayaraman et al., 2020).
We hope this formalization and our practical insights from
the benchmark will guide researchers in developing future
assessments and help practitioners deploy customized LLMs
responsibly in sensitive domains.

2. Background and Related Work
Differential Privacy. The mathematical framework of
DP (Dwork, 2006) formalizes the intuition that privacy guar-
antees can be obtained when a randomized mechanismM
executed on two neighboring datasets D, D′ that differ in

only one data point, yields roughly the same result, i.e.,

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ. (1)

The privacy parameter ε specifies how much the result
can differ, and δ is the probability of failure to meet that
guarantee. There are two canonical algorithms to imple-
ment DP guarantees in machine learning (ML): DPSGD
(Differentially Private Stochastic Gradient Descent) algo-
rithm (Abadi et al., 2016), which extends standard stochastic
gradient descent with clipping and noising gradients, and
PATE (Private Aggregation of Teacher Ensembles) (Paper-
not et al., 2017; 2018), which is an inference time algorithm
that privately transfers knowledge from an ensemble of
teachers to a public student model.

Private Adaptations of LLMs. LLMs are pretrained on
extensive amounts of public data, followed by adaptations
to private downstream tasks. The existing methods for pri-
vate LLM adaptations fall into two categories: (1) private
tuning methods, such as PrivateLoRA (Yu et al., 2022) or
PromptDPSGD (Duan et al., 2023a), that rely on access to
the LLM gradients and are based on the DPSGD algorithm,
and (2) private in-context learning (ICL) methods, such
as DP-ICL (Wu et al., 2024) or PromptPATE (Duan et al.,
2023a), which require only API (black-box) access to the
LLM and are based on PATE. See Appendix A.1 for details.

Membership Inference Attacks. A membership inference
attack (MIA) (Shokri et al., 2017; Zarifzadeh et al., 2024;
Shi et al., 2024b; Carlini et al., 2022) aims to determine
whether a specific data point can be identified as part of a
model’s training set. This approach plays a crucial role in
applications ranging from privacy assurance (Steinke et al.,
2023) to identifying protected or copyrighted content em-
bedded in pretraining data (Shafran et al., 2021). While
most MIA research has focused on supervised learning set-
tings (Carlini et al., 2022), new advancements reveal their
broader relevance. Duan et al. (2023b) revealed a discrete-
prompt-based MIA, disclosing vulnerabilities in proprietary
LLMs like GPT-3, which risk leaking private information
through prompt-based queries (Duan et al., 2023a). See
Appendix A.2 for an in-depth discussion of the existing
attacks.

Canary Exposure and Data Extraction Attacks. An al-
ternative to membership inference attacks (MIAs) for eval-
uating privacy leakage in machine learning models is to
measure the exposure of training data. Given a universe
of candidates U and an attacker’s ranking Ẑ by likelihood
of membership, the exposure of a target sample z ∈ U is
defined as:

exposure(z, Ẑ) = log2 |U| − log2
(
rank(z; Ẑ)

)
. (2)

This score is maximal when z is ranked most likely and
zero when ranked least likely. In a complementary vein,

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Benchmarking Empirical Privacy Protection for Adaptations of Large Language Models

extractability quantifies how readily a model emits a secret
string when prompted. A suffix s is said to be extractable
with k tokens of context if there exists some prefix p of
length k such that, under greedy decoding, the model out-
puts s immediately following p. When s is sufficiently long
and random, its extractability serves as a practical metric
of memorization in LLMs. Further discussion appears in
Appendix A.3.

Benchmarking Privacy Vulnerabilities. Zhu et al. (2024)
introduced PrivAuditor, which systematically and empiri-
cally evaluates the privacy leakage from LLM adaptations.
In contrast to our work, they focus on non-private adapta-
tions only. Li et al. (2024a) evaluated the privacy leakage of
private LLMs adaptations through empirical privacy attacks,
such as data extraction, MIAs, and embedding-level privacy
attacks. This benchmark focuses mostly on tradeoffs be-
tween privacy and utility, highlighting the complexity of
balancing them. Contrary to our work, this work does not
explore the relationship between the pretraining data and
the fine-tuning one. LLM-PBE (Li et al., 2024b) empirically
evaluates privacy risks throughout the LLM lifecycle, in-
cluding pretraining, fine-tuning, and querying. Zhou et al.
(2025) investigated potential data leakage across widely
used software engineering benchmarks.

3. Experimental Setup
We begin by detailing the setup used for our benchmark.
Further details are presented in Appendix B.

Models and Pretraining Data. Our work primarily fo-
cuses on the Pythia family of models trained on the Pile
dataset (Gao et al., 2020), and the GPT-Neo family (Black
et al., 2021). To benchmark the effects over various model
sizes, we use Pythia 1.4B, Pythia 1B, Pythia 410M, Pythia
160M, Pythia 70M, GPT Neo 1.3B, and GPT Neo 125 M.
The Pile dataset (Gao et al., 2020) is an 800GB collection
of diverse English-language datasets, including text from
sources such as books, academic papers, or source code
repositories. In all cases where a specific model is not ex-
plicitly mentioned, we use Pythia 1B as the default model.

Adaptation Datasets. We categorize the datasets used
in our experiments into in-distribution (IID) and out-of-
distribution (OOD), depending on their relationship to the
pretraining data. IID datasets come from the same distri-
bution as the pretraining data, and we identify two cases:
one with a full overlap between pretraining and adaptation
data, where we use data directly from the pretraining set for
the adaptations, and one with no overlap, where the data
is sourced from the corresponding validation set from the
pretraining distribution. We focus on the following Pile sub-
sets for the IID datasets: BookCorpus2, GitHub, and Enron

Emails (Klimt & Yang, 2004). In contrast, OOD datasets
are derived from a different distribution and do not overlap
with pretraining data. Thereby, we choose SAMSum (Gliwa
et al., 2019), and GermanWiki (Ger). We elaborate more in
Appendix B.1.

Adaptation Methods. We evaluate different types of adap-
tations, including fine-tuning of all model parameters (Li
et al., 2022), or the last layer (i.e., the head) and PEFT meth-
ods, such as LoRA (Hu et al., 2022; Yu et al., 2022) and
Prefix Tuning (Liu et al., 2021; Duan et al., 2023a). Consid-
ering a Pythia 1B model, we train 1B parameters for Full
Fine-Tuning, 1M for LoRA, 130M for Prefix Tuning, and
100M for last-layer (Head) Fine-Tuning. Since membership
inference success is highly dependent on the train-test gap,
for a fair comparison of the privacy leakage, we ensure sim-
ilar evaluation perplexities, in particular, similar validation
loss values at the end of the adaptation’s training for specific
datasets across adaptation methods, see Appendix B.2.

Membership Inference. For membership inference, we
rely on the strongest state-of-the-art attack, namely RMIA
(Robust Membership Inference Attack) (Zarifzadeh et al.,
2024). We use its offline version because it is computa-
tionally effective and does not require training customized
reference models for each targeted sample (as in the online
version of the attack). We also leverage a single reference
model for our experiments, as the authors show strong MIA
performance even with a single reference model. We con-
sider different types of reference models. Unless explicitly
stated, we focus on using a “shadow” model (adaptation),
in our case Pythia 1B, which is trained in the same way as
the target model, but on a different split of the same fine-
tuning data. We also evaluate the Reference method (Carlini
et al., 2021), which calibrates the target model’s loss us-
ing a reference model, and compare against Min-K% as a
reference-less baseline attack. As with RMIA, we report the
best AUC from a grid search over Min-K%’s parameter K.
See Appendix B.4 for a detailed description of the setup.

Canary Exposure and Data Extraction Attacks. To
evaluate memorization, we insert adversarial canaries into a
small portion of the adaptation data and estimate their expo-
sure using two approximation methods: sampling and distri-
bution modeling. Both approaches perform similarly when
using 256 non-member canaries, and we adopt sampling
for efficiency. Moreover, when considering k-extractable
memorization, we set k = 10 tokens. A detailed description
of the data extraction setup is provided in Appendix B.5.

4. Benchmark design and experiments
To address our benchmark’s central question—What are
the empirical privacy risks to adaptation data under DP
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adaptations?—we break it down into five concrete research
questions.

4.1. RQ1: How does the relationship (overlapping, IID,
OOD) between adaptation and pretraining datasets
impact data privacy?

Motivation. The pretrain-adapt paradigm uses LLMs pre-
trained on large public datasets, which are then adapted to
smaller, often sensitive, private datasets using DP methods.
While DP offers formal guarantees, its practical effective-
ness under the pretrain-adapt paradigm remains unclear—
particularly how the relationship and interplay between
adaptation and pretraining data (e.g., overlapping, IID, or
OOD) influences actual privacy leakage.

Summary of Findings. Our results show that (1) privacy
risks increase when the adaptation data distribution is closer
to the pretraining data, even if there is no direct overlap. (2)
Surprisingly, IID data from the pretraining validation set
leaks as much as directly overlapping data, underscoring
distributional closeness as the main driver of risk.

Detailed Results. We present our main results in Table 1
and Table 2. We focus our discussion on Pythia-1B, and fur-
ther expand it for the other models in Appendix C.1. They
show that the average AUC is generally higher in IID set-
tings than OOD in all attacks and adaptations. For instance,
looking at RMIA (shadow) using ε = 8, we observe that
the average AUC is between 0.7 and 0.9 in the IID setting,
while it is between 0.63 and 0.87 for the OOD setting. More
detailed analyses for different attack setups and more pri-
vacy regimes are depicted in Appendix C.1. We also identify
distributional closeness as a key risk factor, as overlapping
data leaks similarly to IID. Moreover, our results indicate
that under both a strong attack and in more practical scenar-
ios, moderate privacy regimes (e.g., ε = 8) still present a
real threat of privacy leakage from IID. On the other hand,
under this regime, privacy leakage from the OOD is mostly
observed with a strong attack. Moreover, in Appendix C.4,
Figure 8 shows over the training epochs the Overlap (Train)
and IID data (Val) privacy leakage, and further highlights
a similar privacy leakage between Overlap and IID data
across the whole training run. We also analyze the impact of
subset characteristics on privacy leakage in Appendix C.3,
and we discover that the pretraining dataset size and com-
plexity influence the privacy leakage in the training datasets.
We observe that privacy leakage increases with both the
size and complexity of the subsets. Larger datasets produce
more IID results than smaller subsets, further validating our
findings.

4.2. RQ2: Which DP adaptation method is the most
protective?

Motivation. It is known that the type of adaptation has
a significant impact on the utility of the final model (Zhu
et al., 2024). However, different adaptations might also offer
disparate empirical protection at the same formal privacy
guarantee, motivating our empirical comparison.

Summary of Findings. While LoRA provides much bet-
ter empirical privacy protection in non-private settings com-
pared to other adaptations, the differences become more
subtle under the DP regime. Despite this, LoRA consis-
tently achieves a relatively low AUC, whereas the other
adaptations show varying trends depending on the dataset
or privacy budget.

Detailed Results. Specifically, as shown in Table 1 for
OOD datasets with ε = 8, the most vulnerable adapta-
tions are Full and Head Fine-Tune. On the other hand, for
IID data, the strongest protection provides Head Fine-Tune,
which is marginally better LoRA. With stronger privacy
guarantees, LoRA is the most private for OOD datasets
with an AUC score of 0.58, thus slightly better than Full
Fine-Tune. On the other hand, while adapting to the IID
dataset, LoRA outperforms other adaptations. Notably, Full
Fine-Tune and Head Fine-Tune show much lower privacy
protection in these settings.

4.3. RQ3: Are the same adaptations robust against data
extraction?

Motivation. Data extraction attacks are even more severe
than MIAs. Therefore, it is crucial to evaluate the protec-
tiveness of DP adaptations against this stronger threat.

Summary of Findings. We find that Prefix Tuning is the
most vulnerable adaptation method in this setting. On the
other hand, LoRA and Head Fine-Tune in both cases, with
and without DP guarantees exhibit resistance against data
extraction.

Detailed Results. We report detailed results in Ap-
pendix C.2. In particular, Table 3 and Table 4 show that for
ε = 0.1 the exposure is around 1.44, close to random guess-
ing. We also noticed a limited influence on the choice of the
canary prefix type. Moreover, the adversarial prefix is the
main source of privacy leaks, with the interaction between
the prefix and the individual sample playing a smaller role,
see Figure 9 in Appendix C.5.
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Table 1. Membership Inference for OOD Adaptations. We audit only the adaptations and assume the same pretrained LLM is used
for all adaptations. We present the AUC scores obtained with RMIA MIAs for the Pythia 1B model adapted on different datasets with
ε ∈ {0.1, 8,∞}.

Adaptation
Dataset SAMSum GermanWiki Average

MIA ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix Tuning 1.00 0.62 0.63 1.00 0.64 0.61 1.00 0.63 0.62
LoRA 0.86 0.69 0.50 1.00 0.59 0.66 0.93 0.64 0.58
Full Fine-Tune 1.00 0.82 0.62 1.00 0.71 0.55 1.00 0.77 0.59
Head Fine-Tune 1.00 0.98 0.62 1.00 0.76 0.70 1.00 0.87 0.66
Average 0.97 0.78 0.59 1.00 0.67 0.63 0.98 0.73 0.61

Reference (Pythia 1B)

Prefix Tuning 0.93 0.50 0.51 0.92 0.50 0.50 0.92 0.50 0.50
LoRA 0.51 0.51 0.51 0.82 0.51 0.51 0.66 0.51 0.51
Full Fine-Tune 0.94 0.51 0.51 0.99 0.51 0.50 0.96 0.51 0.51
Head Fine-Tune 0.97 0.52 0.51 0.98 0.51 0.50 0.97 0.51 0.50
Average 0.84 0.51 0.51 0.93 0.51 0.50 0.88 0.51 0.51

Table 2. Membership Inference for in-distribution (IID) Adaptations using the setup from Table 1.

Adaptation
Dataset Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val Average

MIA ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix Tuning 1.00 0.89 0.56 1.00 0.90 0.55 1.00 0.93 0.63 1.00 0.88 0.58 1.00 0.90 0.58
LoRA 1.00 0.70 0.52 1.00 0.69 0.53 1.00 0.74 0.52 1.00 0.73 0.52 1.00 0.71 0.52
Full Fine-Tune 1.00 0.75 0.77 1.00 0.75 0.76 1.00 0.78 0.80 1.00 0.91 0.66 1.00 0.80 0.75
Head Fine-Tune 1.00 0.72 0.73 1.00 0.72 0.72 1.00 0.80 0.74 1.00 0.57 0.65 1.00 0.70 0.71
Average 1.00 0.77 0.65 1.00 0.76 0.64 1.00 0.81 0.67 1.00 0.77 0.60 1.00 0.78 0.64

Reference (Pythia 1B)

Prefix Tuning 0.93 0.56 0.52 0.97 0.57 0.50 0.97 0.53 0.51 0.97 0.54 0.50 0.96 0.55 0.51
LoRA 0.89 0.52 0.52 0.97 0.51 0.51 0.92 0.51 0.50 0.97 0.55 0.51 0.94 0.52 0.51
Full Fine-Tune 1.00 0.54 0.52 1.00 0.54 0.52 0.99 0.54 0.52 0.98 0.59 0.50 0.99 0.55 0.51
Head Fine-Tune 0.98 0.57 0.52 1.00 0.56 0.51 0.99 0.66 0.50 0.99 0.54 0.50 0.99 0.58 0.51
Average 0.95 0.55 0.52 0.98 0.55 0.51 0.97 0.56 0.51 0.98 0.55 0.50 0.97 0.55 0.51

Table 3. Canary Exposure for OOD datasets. Prefix Tuning and Full Fine-Tuning adaptation methods have a higher exposure on OOD
datasets than the other adaptation approaches like LoRA and Head Fine-Tuning. We audit only the adaptations and assume the same
pretrained LLM is used for all adaptations. We present the exposure scores obtained using the model loss for the Pythia 1B model adapted
to different OOD datasets with ε ∈ {0.1, 8,∞}. The exposure differs between the adaptations only for ε =∞ and approaches random
guessing (values close to 1.44) for ε ∈ {0.1, 8}.

Adaptation
Dataset SAMSum German Wiki Average

Canary Prefix Type ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1

Random

Prefix Tuning 7.35 1.72 1.82 6.07 1.81 1.40 6.71 1.76 1.61
LoRA 1.85 1.76 1.76 3.34 1.43 1.41 2.59 1.60 1.58
Full Fine-Tune 6.91 1.77 1.75 5.76 1.43 1.43 6.33 1.60 1.59
Head Fine-Tune 1.88 1.75 1.77 4.44 1.43 1.42 3.16 1.59 1.59
Average 4.50 1.75 1.77 4.90 1.53 1.42 4.70 1.64 1.59

Rare

Prefix Tuning 6.44 1.41 1.55 5.22 1.82 2.11 5.83 1.61 1.83
LoRA 1.54 1.49 1.52 2.47 1.81 1.79 2.01 1.65 1.66
Full Fine-Tune 4.28 1.51 1.53 4.13 1.81 1.81 4.21 1.66 1.67
Head Fine-Tune 1.54 1.56 1.52 3.65 1.81 1.80 2.60 1.69 1.66
Average 3.45 1.49 1.53 3.87 1.81 1.88 3.66 1.65 1.70

Table 4. Canary Exposure for IID datasets. We use the same setup as in Table 3 and observe the same trends, with higher privacy
leakage for Prefix tuning and Full Fine-Tuning than for LoRA and Head Fine-Tuning.

Adaptation
Dataset Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val Average

Canary Prefix Type ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1

Random

Prefix Tuning 8.00 2.02 1.24 8.00 1.69 1.59 7.86 1.88 1.22 5.80 0.91 1.58 7.41 1.63 1.41
LoRA 3.65 2.06 2.05 3.19 1.55 1.55 3.22 1.89 1.88 2.04 0.67 0.67 3.03 1.54 1.54
Full Fine-Tune 6.59 2.04 4.00 6.45 1.60 3.88 6.52 1.91 3.07 4.38 0.70 4.00 5.98 1.56 3.74
Head Fine-Tune 2.81 2.03 1.84 2.34 1.58 1.59 2.70 1.89 1.85 1.20 0.69 0.75 2.26 1.55 1.51
Average 5.26 2.04 2.28 5.00 1.61 2.15 5.08 1.89 2.01 3.35 0.74 1.75 4.67 1.57 2.05

Rare

Prefix Tuning 8.00 1.39 0.93 7.94 1.39 2.06 7.79 1.60 1.17 6.13 1.15 1.93 7.47 1.38 1.52
LoRA 3.24 1.54 1.54 2.48 1.30 1.30 2.31 1.67 1.67 2.15 1.24 1.23 2.55 1.44 1.44
Full Fine-Tune 5.40 1.54 3.23 4.87 1.31 2.82 4.73 1.68 4.52 4.05 1.27 1.79 4.76 1.45 3.09
Head Fine-Tune 2.64 1.53 1.46 1.97 1.30 1.45 2.18 1.67 1.54 1.73 1.22 1.10 2.13 1.43 1.39
Average 4.82 1.50 1.79 4.32 1.32 1.91 4.25 1.65 2.23 3.52 1.22 1.51 4.23 1.42 1.86

4.4. RQ4: How important is the attacker’s knowledge of
the pretrained model?

Motivation. The attacker’s knowledge of the pretrained
model plays a crucial role in the success of MIAs, as it
enables them to select more relevant reference models and

non-member data for training, which is one of the main
challenges of MIAs (Watson et al., 2022; Carlini et al.,
2022). We investigate various setups, including an attacker
who has access to a shadow model from the same pretraining
distribution as the adapted LLM, a similar model, and no
access to external models. This helps us characterize the
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Figure 2. The effect of the pretraining data subsets’ size and com-
plexity on the incurred privacy leakage from the corresponding
LLM adaptations. We evaluate the leakage using AUC, and the
adaptations are tuned with ε = 8.

landscape of potential real-world risks and setups.

Summary of Findings. MIAs’ performance highly de-
pends on the attacker’s knowledge of the target model and
pretraining data. In particular, RMIA performs best when
a shadow model shares architecture, initialization weights,
and training data distribution. Meanwhile, RMIAs’ effec-
tiveness rapidly deteriorates as shadow models are trained
on different distributions or architectures. Particularly, we
observe that when a shadow model trained on the same
distribution of the target model is unavailable, using the pre-
trained model is the second-best choice, followed by models
of the same family and similar size.

Detailed Results. To simulate attackers with various back-
ground knowledge, in this setting, we also consider other
“shadow” models: Pythia 14M, Pythia 160M, Pythia 1B,
Pythia 2.8B (Biderman et al., 2023), GPT-neox (Black
et al., 2021), OLMo-1B (Groeneveld et al., 2024), and GPT-
2 (Radford et al., 2019). The MIA performance is close to
random for private adaptations with ε = 8. Furthermore, as
shown in Figure 3, while the MIA’s performance for Pythia
1B is higher on IID data, the choice of reference model has
little effect when attacking models adapted on OOD data,
even with architectural differences between the model and
the reference model i.e., GPT-Neo 1.3B and OLMo 1B.

As we can see in Figure 10, the choice of reference model
has a small impact when attacking models fine-tuned on
OOD data, even when architectural differences exist, such
as between GPT-Neo 1.3B and OLMo-1B. On the other

hand, the MIA achieves higher success rates on IID data
when targeting the Pythia 1B model. Moreover, as in the
other case, Figure 11 (in Appendix D) shows that the privacy
leakage is similar between IID and the corresponding over-
lapping data. We show further experiments in Appendix D.

4.5. RQ5: How does adaptation change the pretraining
dataset vulnerability?

Motivation. DP adaptations only guarantee protection for
the adaptation dataset. Yet, adapting the model to other
data, while introducing noise, can also affect the pretrain-
ing leakage. This is an important aspect to study, as also
pretraining data can be private (Tramèr et al., 2024), e.g.,
private conversations with ChatGPT used to improve the
models, or emails used to pretrain Gemini. Therefore, we
also empirically investigate how adapting pretrained LLMs
affects the leakage of pretraining data.

Summary of Findings. Our findings show that the choice
of adaptation method impacts the privacy of pretraining
data. Specifically, our evaluation shows that Prefix Tuning
reduces the leakage of memorized pretraining data from
adapted language models, especially in high-privacy set-
tings. However, for the other adaptations, this effect is neg-
ligible, and the adapted model retain most of the pretraining
memorization.

Detailed Results. We evaluate the effect of OOD and IID
adaptation data on the leakage of memorized pretraining
data from the adapted LLM. Specifically, as we show in
Figure 4, Prefix Tuning significantly reduces leakage, partic-
ularly in high-privacy regimes. The number of memorized
samples often remains above 460 for the other adaptation
methods. For Prefix Tuning, the number of memorized
samples is often lower than 460 and goes down to around
430 with ε = 0.1, thus suggesting that adaptation partially
mitigates the pretraining memorization.

5. Discussion of our Results
Our findings reveal a complex interplay between pretraining
and adaptation data. This significantly affects the privacy
risks under DP adaptations. Below, we discuss the implica-
tions of these findings when adapting pretrained LLMs to
sensitive domains using DP.

Disparate Leakage Based on Distribution. Our results
demonstrate that the distributional closeness between pre-
training and adaptation data is a key factor influencing em-
pirical privacy leakage under DP. Adaptations using IID
data—data from the same distribution but not seen during
pretraining—consistently showed the highest vulnerability.
This presents a fundamental trade-off: while adapting a
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Figure 4. Fewer memorized samples after prefix tuning. There are fewer verbatim generations of training samples after the prefix
tuning, especially for small ε values. We present the number of memorized samples from the Pile that remain memorized after adapting
Pythia 1B on Bookcorpus2 val and SAMSum datasets. The evaluation was done for ε = {0.1, 1, 3, 8, 50, 100,∞}. We present the x-axis
using a log scale.

model already pretrained on similar data is often beneficial
for utility, it simultaneously increases privacy risk.

Disparate Leakage Based on Adaptation Method. We
also observe that not all DP adaptation methods offer equal
protection, even when enforcing the same formal level guar-
antee, expressed in the same ε. This aligns with earlier
findings in the non-private regime, where privacy-utility
trade-offs differ across methods (Zhu et al., 2024). In our ex-
periments, LoRA appeared most consistently robust against
privacy attacks, while Prefix Tuning showed the least vul-
nerability to extraction attacks. These differences are highly
relevant for practice: in addition to choosing methods that
optimize downstream performance, practitioners should also
consider empirical privacy leakage. The attacks we use in
this paper offer a way to assess and understand such risks
under realistic conditions.

Choosing a Privacy Regime. We find that in moderate
privacy regimes, e.g., ε = 8, sensitive adaptation data still
experiences significant practical vulnerability against both
MIAs and data extraction attacks. This highlights the neces-
sity to perform private LLM adaptations in the high-privacy
regime, i.e., with low ε to achieve practical protection.

Reliance on Accurate Shadow Model. We show that
attackers gain a substantial advantage when they have ac-
cess to the original pretrained LLM used during adaptation.
Shadow models instantiated with the same pretrained model
as the adapted LLM’s base consistently achieved higher
attack success. This is especially concerning given the rise
of adapting publicly available LLMs, which makes strong
shadow models easily accessible to adversaries. These find-
ings further underscore the need for stringent privacy set-
tings in DP adaptations.
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Towards a Holistic Privacy Auditing for LLMs Our
results suggest that privacy assessments should not treat
pretraining and adaptation in isolation. The strong inter-
dependence between these stages demands holistic analy-
sis. Motivated by this insight, we introduce a structured
framework in the next section that formalizes how privacy
assessments and audits under the pretrain-adapt paradigm
should be conducted. We hope this framework encourages
the development of privacy assessment methods that match
the complexity of modern private LLM pipelines.

6. Towards Holistic Privacy Audits under the
Pretrain-Adapt Learning Paradigm

6.1. From Stages to Adversary Game under
Pretrain-Adapt Privacy Auditing

S

D

Pretraining Data S
and  S′ = S ∪ {𝑥}

Adaptation Data D
and D′ = D ∪ {𝑥}

Auditing for Pretrain-Adapt Paradigm 
for S, D, S’, and D’

Standard Auditing 
for D vs D’

S

D’ x

S’ S’x x

D’ xD

Standard Auditing 
for D vs D’

Figure 5. Setup for Joint Adaptation auditing (3). We consider
different datasets for pretraining and adaptation, distinguishing
it from standard ML privacy auditing (Nasr et al., 2023; Zanella-
Beguelin et al., 2023) by considering pretraining data.

While our understanding of empirical privacy risks has
grown, we recognize the need to go further and adopt more
nuanced approaches to tackle privacy risks posed during
adapting LLMs. Therefore, we formalize a framework to
assess privacy risks holistically for LLMs and their pretrain-
adapt paradigm. In total, we identify four different stages
of auditing that need to be considered (see Figure 6) under
the pretrain-adapt paradigm, namely (1) audit pretraining,
(2) audit adaptations, (3) joint audit of pretraining and adap-
tations, and (4) post-adaptation auditing of the pretraining,
as shown in Figure 6. Based on them, we formalize how
to instantiate these audits and contrast them with standard
privacy auditing.

Privacy audits can be modeled as an adversarial game
G (Yeom et al., 2018; Jayaraman et al., 2020) where the
main task is to guess if a given data point x was in a model’s
training set or not. This game can, therefore, also be re-
ferred to as the membership inference game. We define

S
Pretraining Data S

Adaptation Data D

S S

DD D

1 2 3 4

Figure 6. Stages of Auditing. We analyze four stages of auditing:
1 Audit Pretraining, 2 Audit Adaptations, 3 Joint Auditing

of Pretraining and Adaptations, 4 Post-Adaptation Auditing of
the Pretraining.

the adversarial game G analogous to the one for standard
ML, yet take two datasets, S the pretraining data, and D the
adaptation data into account. Additionally, we denote the
pretraining procedure by T and the adaptation procedure by
T ′. We mark the deviations to the original game in blue.

1. The challenger samples a
R←− {0, 1} and b

R←− {0, 1}
(where a and b are binary variables)

2. The challenger trains a model θ T←− S̃, θ0, where S̃ = S
if a = 0, otherwise S̃ = S ∪ {x}

3. The challenger adapts θ such that θ′ T’←− D̃, where D̃ =
D if b = 0, otherwise D̃ = D ∪ {x}

4. The challenger sends θ′ to the attacker

5. The attacker guesses â, b̂← A(θ, θ′, x)

Whether the attacker has to guess both â, b̂ and what back-
ground knowledge they have, i.e., whether they get access
to both θ and θ′ depends on the auditing stage. We detail the
attacker’s background knowledge and guesses—formulated
as hypotheses with a null hypothesis H0 and an alterna-
tive hypothesis HA—for the four auditing stages from our
taxonomy.

(1) Auditing pretraining resembles standard ML auditing,
targeting privacy leakage from pretrained models. Differ-
ences arise from larger datasets and models, limiting both
DP protection efficacy (Carlini et al., 2023a) and applica-
bility of auditing techniques like MIA (Duan et al., 2024).
In this setting, the challenger releases the pretrained model
θ to the attacker. The attacker’s goal is to correctly guess
whether x was in the pretraining data S. Their guesses â,
are over the random variable a.

H0 : a = 0 HA : a = 1

8
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(2) Auditing adaptation a new pretrain-adapt paradigm as-
pect, detects adaptation dataset leakage from adapted LLMs.
The key differentiating factor of privacy audits in standard
ML is using a pretrained model that the adaptations are
trained on instead of a random initialization. We assume the
same pretrained model is used for all the considered adapta-
tions in an adaptation audit. In this setting, the challenger
releases only the adapted model θ′ to the attacker. The at-
tacker does not know whether x ∈ S or not and considers
only the adaptation. Their guesses b̂, are, hence, over the
random variable b.

H0 : b = 0 HA : b = 1

(3) Joint auditing evaluates combined leakage from both
pretraining and adaptation datasets in the adapted LLM.
Typical privacy preservation involves non-DP-trained LLMs
with DP-trained adaptations. In this setting, the challenger
releases both the pretrained model θ and the adapted θ′

to the attacker. Depending on the attacker’s background
knowledge, we consider three possible cases

1. The attacker knows that x /∈ S and guesses b.

H0 : (a, b) = (0, 0) HA : (a, b) = (0, 1)

2. The attacker knows that x ∈ S and guesses b.

H0 : (a, b) = (1, 0) HA : (a, b) = (1, 1)

3. The attacker knows that the target sample x is either in
both (pretraining and adaptation sets) or neither of them
and guesses (a, b).

H0 : (a, b) = (0, 0) HA : (a, b) = (1, 1)

(4) Post-Adaptation Auditing evaluates how the (private)
adaptations influence the potential protection of the data
points used for pretraining, which is usually conducted with-
out any formal guarantees. Changes to the model behavior
induced through adaptations or noise added during their
training might influence the effective exposure of pretrain-
ing data from model predictions. In this setting, the chal-
lenger releases both the pretrained θ and the adapted θ′. It is
known that the target sample x is not in D and the attacker
guesses a.

H0 : (a, b) = (0, 0) HA : (a, b) = (1, 0)

In essence, auditing pretraining considers only the pretrain-
ing itself. Similarly, auditing the adaptations considers the
adaptations themselves. On the other hand, the joint adap-
tation reasons about both pretraining and adaptation sets.
Finally, the post-adaptation auditing is only for the pretrain-
ing set, but the applied adaptation influences the auditing.

6.2. Practical Application of Holistic Audits

Our new perspective on the pretrain-adapt paradigm gives
both practitioners and researchers clearer insights into each
threat model’s risks. Formalizing the auditing setup sup-
ports systematic reasoning about privacy risks, thus clarify-
ing the guarantees that different methods need to provide.
Therefore, our formalization allows for creating a unified in-
terface for measuring privacy leakage, regardless of whether
its source is pretraining or adaptation data. Moreover, our
work demonstrates that looking at pretraining and adapta-
tion components separately can lead to a false impression
of privacy. The connection between these stages affects
privacy leakage, which makes comprehensive auditing es-
sential within pretrain-adapt paradigm. We believe that
developing and sharing tools that support all privacy assess-
ment stages, from threat modeling and risk quantification to
mitigation, will empower the research community to more
effectively define risks and allow for the reduction of privacy
risks in practice.

7. Conclusions
In this work, we benchmark the practical privacy risks that
arise under DP adaptations of LLMs within the pretrain-
adapt paradigm. Our comprehensive empirical analysis con-
firms the theoretical concern that pretraining significantly
amplifies the privacy risks associated with the adaptation
data. We find that the closeness of adaptation and pre-
training data distributions plays a critical role: even in the
absence of overlap, higher distributional similarity results
in increased privacy leakage. Additionally, we observe that
the choice of adaptation method impacts privacy leakage,
with PEFT methods, such as LoRA, offering significantly
lower privacy risks while maintaining strong utility. Fur-
thermore, we show Prefix Tuning can reduce the leakage of
pretraining data, likely due to the added input noise during
private adaptation. Our findings highlight the need for strin-
gent DP constraints (e.g., ε < 0.1) to mitigate privacy risks
in LLM adaptations effectively. It also motivates the need
for holistic privacy assessments under the pretrain-adapt
paradigm and takes the first step towards it by formalizing
such an assessment over the different stages. This work lays
a foundational framework for future research efforts aimed
at safeguarding privacy within the pretrain-adapt paradigm.
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Tramèr, F., Shokri, R., San Joaquin, A., Le, H., Jagielski,
M., Hong, S., and Carlini, N. Truth serum: Poison-
ing machine learning models to reveal their secrets. In
Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2779–2792,
2022.
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A. Background
A.1. Private LLM Adaptations

Differentially Private Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016) is a widely used method for incorporating
DP into deep learning. However, while applied to NLP tasks, DP-SGD can exhibit several limitations, particularly in model
utility, increased memory usage, or slower convergence during training. These limitations motivate the exploration of
alternative DP adaptation techniques.

Full DP Fine-Tuning. One approach to differentially private (DP) adaptation is to fine-tune the entire model using
the DPSGD algorithm (Abadi et al., 2016; Li et al., 2022; Yu et al., 2022). This method updates all model parameters
while ensuring that each gradient step satisfies DP guarantees through gradient clipping and noise addition. Full-model
DP fine-tuning provides high adaptability and task-specific performance. However, it is computationally expensive and
memory-intensive, especially for large language models (LLMs), due to the need to compute, clip, and perturb gradients for
all layers (Li et al., 2022).

DP Head Fine-Tuning. An alternative strategy is to fine-tune only the final layer (often called the classification or
task-specific “head”) of the model using DP-SGD. This significantly reduces the number of trainable parameters, leading
to lower memory usage and faster training. Despite its simplicity, DP Head Fine-Tuning can still achieve competitive
performance on certain tasks while providing formal privacy guarantees. However, its adaptability is limited, particularly
when deeper model layers need task-specific adjustments.

DP low-rank adaptation (LoRA). LoRA (Hu et al., 2022) is an efficient technique for adapting LLMs that introduces
low-rank matrices into each layer of a frozen pretrained model. Instead of updating the full weight matrix W ∈ Rd×k, LoRA
learns a low-rank approximation ∆W = AB, where A ∈ Rd×r, B ∈ Rr×k, and r ≪ min(d, k). The adapted weights
become W ′ = W +AB, with only A and B being trainable. DP LoRA (Yu et al., 2021) extends this approach by applying
DPSGD to the low-rank parameters. This ensures that the adaptation remains privacy-preserving, making LoRA suitable for
sensitive-data applications with formal DP guarantees.

DP Prompting. Introducing a small set of additional parameters, typically under 1% of the LLMs total parameters,
DP Prompting applies these only within the model’s input space. These parameters may be added at the level of token
embeddings (soft prompts (Liu et al., 2021; 2022)) or to all (attention) layers of the LLM (prefix-tuning (Lester et al., 2021;
Li & Liang, 2021)). Duan et al. (2023a) proposed PromptDPSGD, which adapts the DPSGD algorithm (Abadi et al., 2016)
for use with soft prompts.

A.2. MIAs

The following section provides a more detailed description of MIAs used in our benchmark.

Min-K% Min-K% (Shi et al., 2024a) is a recently proposed black-box MIA for large language models. The intuition is that
an unseen sample is likely to have low-probability tokens. The MIA score is defined as

Min-K%(x) =
1

|S|
∑
xi∈S

log p(xi|x1, ..., xi−1), (3)

where S is the set of K% tokens with the smallest loss.

Reference This approach (Carlini et al., 2021) uses a reference model to calibrate the MI score as follows

Ref(x) =
L(x|θ)
L(x|θref)

, (4)

where L(x|θ) indicates the loss of the target sample x on the model θ. θref represents the reference model used.

Robust Membership inference attack (RMIA) RMIA outperforms previous methods by optimizing the null hypothesis
and using a reference model along with population data, requiring only one reference (shadow) model at a time, unlike
previous methods (Carlini et al., 2022) which required hundreds. RMIA has two hyperparameters, a threshold γ and a
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scaling factor α. The adapted RMIA score (Equation (5)) calculation for LLMs for text generation is based on comparing
loss values rather than output probabilities. For this reason, we have to, instead of comparing prediction probabilities or
logits, compare the loss of the target data point against the loss of reference models on population data (Equation (6)) and
flip to a minority voting approach, where the decision is based on how much lower the loss of the target data is compared to
the population data.

ScoreMIA(x; θ) = Pr
z∼π

(LRθ(x, z) ≥ γ) (5)

LRθ(x, z) = L(θ|x)− L(θ|z) (6)

A.3. Canary Exposure and Data Extraction Attacks

Following Carlini et al. (2019); Tramèr et al. (2022), let U be the universe of candidate samples and let Ẑ be the attacker’s
ranking of U by model-assigned likelihood. For a target z ∈ U ,

exposure(z, Ẑ) := log2 |U| − log2
(
rank(z; Ẑ)

)
. (7)

This metric ranges from 0 (least likely) to log2 |U| (most likely). To compute it efficiently when |U| is large, one can use:
(1) sampling, which estimates exposure on a random subset of U , or (2) distribution modeling, which approximates the
distribution of model scores (e.g. via a skewed normal) to interpolate ranks. The expected exposure of an unmemorized
canary is 1

ln 2 ≈ 1.44 (Jagielski, 2023). Complementing exposure-based metrics, Carlini et al. (2023b) introduce a contextual
extraction framework to assess memorization and data extraction attacks. Let f be a generative model and s a secret suffix.
We say s is extractable with k tokens of context if there exists a prefix p of length k such that, under greedy decoding,

f(p) = [p ∥ s].

When s is long and random, its successful extraction indicates memorization. One can vary k to characterize how much
context the model needs before regurgitating s verbatim.

B. Additional Details on the Setup
B.1. Datasets

For the IID datasets, we focus on the following Pile subsets: BookCorpus2, consisting of publicly available books, GitHub,
a set of open-source code repositories, and Enron Emails (Klimt & Yang, 2004), various emails. The OOD datasets we
choose for our experiments are: SAMSum (Gliwa et al., 2019), an English-language dialogue summarization dataset, and
GermanWiki (Ger), a large set of German Wikipedia entries. These OOD datasets were selected because of their different
degrees of variation from the original distribution of the Pile dataset. Although SAMSum shares the same language (English),
its general dialogue format, followed by the dialogue summary, is not present in the pretraining set. GermanWiki, on the
other hand, presents wide syntactic and lexical variation from the pretraining dataset.

B.2. Adaptations

We focus on four types of adaptations: Prefix Tuning, LoRA, Full Fine-Tune, and Head Fine-Tune. We train all the models
using Adam with the privatization gradient method of DPSGD (Abadi et al., 2016). For the Adam optimizer, we use the
default HuggingFace hyperparameters except for the learning rate. For Prefix Tuning, we fix a prefix length of 64, while for
LoRA, a rank r = 8 and α = 16 For DP-SGD, following existing work (Li et al., 2022), we set the gradient clipping value
to 0.1. Moreover, in all settings, we consider sentence-level DP, meaning that we concatenate all strings in the dataset and
split them into 256 token chunks, corresponding to sentence-level privacy.

B.3. Hyperparameters

For each task, model, and privacy budget, we performed a hyperparameter optimization using a random search strategy.
Specifically, we explored the following ranges:

• Learning Rate: 1× 10−6, 3× 10−6, 1× 10−5, 3× 10−5, 5× 10−5, 8× 10−5, 1× 10−4, 3× 10−4, 1× 10−3, 5× 10−3;
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• Number of training epochs: 1, 2, 3, 5, 10, 15, 16, 20, 30, 32;

• Batch size: 4, 8, 16, 32, 64;

Our objective during hyperparameter search is to ensure comparable evaluation perplexities, specifically targeting similar
validation loss values after adaptation training across different methods for specific datasets.

B.4. MIA

The adopted offline mode (see Algorithm 1) shrinks from the need to retrain reference models per query, thus relying on
pretrained LLMs, which are computationally expensive to train. For most experiments, we used just one reference model
(k = 1), thus demonstrating the power of RMIA attack and highlighting data leakage, especially from pretrained data. For
an ablation on the RMIA hyperparameters choice, see Figure 13 in Appendix H.

Algorithm 1 MIA score calculation with offline RMIA (Zarifzadeh et al., 2024) adapted to LLMs.
Input: k reference models Θ, target sample x, threshold γ, scaling factor α, population dataset π,
Output: ScoreMIA(x; θ)

1: Randomly choose a subset Z from the population dataset
2: C ← 0
3: L(x)OUT ← 1

k

∑
θ′∈Θ L(x|θ′)

4: L(x)← 1
2 ((1 + α)L(x)OUT + (1− α))

5: Ratiox ← L(x|θ)
L(x)

6: for each sample z in Z do
7: L(z)← 1

k

∑
θ′∈Θ L(z|θ′)

8: Ratioz ← L(z|θ)
L(z)

9: if Ratiox/Ratioz<γ then
10: C ← C + 1
11: end if
12: end for
13: return ScoreMIA(x; θ)← C

|Z|

B.5. Canary Exposure

We add an adversarial prefix to p = 1% of the adaptation data. If not specified otherwise, we set the number of canary
tokens to k = 10 and the canary prefix length l = 10. To measure exposure, we generate 256 new canary prefixes from the
same canary type and prepend them to the target sample x whose exposure we want to measure. The resulting 256 samples
can be considered as a form of non-members. On expectation, all canary prefixes are equally (un)likely. However, if the
model is more confident about the one prefix it saw during adaptation than it is about the other 256 prefixes, it means that
the model must have memorized this prefix and that it was part of the adaptation data. Given that there are two ways of
approximating exposure (sampling and distribution modeling) as discussed in Section 2, we assess both of them to find
whether one approach is more suitable. This ablation in Figure 12, Appendix F shows that the two approximations perform
similarly when using 256 non-member canaries. In our experiments, we evaluated using sampling as an approximation since
it is computationally cheaper.

Canary Types The random canary prefix is the simplest type of canary prefix, and it is composed of completely random
tokens sampled uniformly from the token universe T . The common and rare prefixes comprise the most and least frequently
occurring tokens, respectively, excluding special tokens e.g., padding and end-of-string tokens. We count the total number
of token occurrences in the adaptation dataset to measure the frequencies. Then, we choose the top k tokens from a list
sorted in ascending or descending order for rare and common, respectively. Note that, for both common and rare, each
adaptation dataset naturally has its own set of distinct prefix tokens. We also select the random tokens independently over
each adaptation dataset for symmetry. The invisible canary prefix utilizes imperceptible Unicode symbols or space-like
tokens, such as zero-width spaces or zero-width non-joiners, which are nearly undetectable by humans, thus incorporating
the design approach known from other adversarial attacks (Boucher et al., 2021). Compared to the other canary types, the set
of tokens is the same for each dataset. Again, we randomly sample k imperceptible symbols to prepend as a canary prefix.
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Canary Adaptation Set Generation. Algorithm 2 describes the procedure to construct the adaptation dataset with canary
prefixes. Note that concat(a,b) concatenates two strings, and the tokens universe T represents the set of all the tokens
accepted by the LLM. We prepend the canaries to a small fraction p of the adaptation dataset prior to performing the
adaptation. To each selected sample, we add l many tokens, randomly drawn with replacement from the respective k canaries
in the canary prefix sets. We do not combine tokens from our four different types of canary prefixes and consider each
separately.

Algorithm 2 Adding canary prefixes to the adaptation dataset.
Input: D adaptation dataset, t canary prefix type, l canary prefix length, k number of selected canaries, p canary prefix probability, T
token universe.
Output: D̃ modified adaptation dataset
1: if t = “random” then
2: C ← Randomly sample k tokens from T
3: else if t = “rare” then
4: C ← Select the k least frequent tokens from D
5: else if t = “common” then
6: C ← Select the k most frequent tokens from D
7: else if t = “invisible” then
8: C ← Randomly sample k invisible tokens from T
9: end if

10: D0, D1 ← Randomly split D in two datasets s.t. each
sample is with probability p in D1

11: D̃1 ← {}
12: for each sample x ∈ D1 do
13: y ← Sample with replacement l tokens from C
14: D̃1 ← D̃1 ∪ {concat(y, x)}
15: end for
16: return D0 ∪ D̃1

B.6. Extractable Memorization

Another privacy concern shown in prior work (Carlini et al., 2023b) is the memorization of samples during pretraining of an
LLM. We analyze how adaptations can reduce the effect of memorizing pretraining data. The definition of a memorized
sample follows k-extractability (Carlini et al., 2023b). Here, we have a prompt p of length k and a suffix s. If the generation
of a model given prompt p generates exactly s, the sequence consisting of p and s concatenated is memorized.

We report the number of identified memorized samples for each Pile subset and Pythia 1B in Table 29 (Appendix G).
Furthermore, we also rely on samples from the Pile reported as memorized in Pythia 2.8B by prior work (Chang et al., 2024).
This set of memorized samples consists of 505 sequences, and we refer to it as Mem Pile.

B.7. Computional setup

We conduct most of our experiments on a single 40GB NVIDIA A100 GPU. However, for larger models, we utilized a single
NVIDIA A100 80GB Tensor Core GPU. The training time of the adaptations varies depending on the applied adaptation
method, the model size, the hyperparameters, and whether DP is applied.

C. Additional Experiments
C.1. MIAs

Table 5 and Table 6 present the MIA performance on OOD and IID datasets for the Pythia 1B model. We repeat these
experiments with other models from the Pythia (Biderman et al., 2023) and GPT Neo (Black et al., 2021) families to
broaden our study. Our findings include results for Pythia 1.4B (Table 7-Table 8), Pythia 410M (Table 9-Table 10), Pythia
160M (Table 11-Table 12), Pythia 70M (Table 13-Table 14), GPT Neo 1.3B (Table 15-Table 16), and GPT Neo 125M
(Table 17-Table 18). Our results indicate a privacy risk while adapting LLMs, and an attacker has advantages such as
architectural knowledge, direct data access, and an exact understanding of the data split, thus allowing for a powerful attack
vector. LoRA and Prefix are consistently less prone to MIA among most of the evaluated models and datasets than Full
Fine-Tuning and Head-Fine-Tuning.
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Figure 7. The protection against MIA even for out-of-distribution (OOD) data requires tight privacy with ε < 0.1 for all the
adaptations. The x-axis represents the privacy budget with a log scale, and the y-axis is the AUC score. The evaluation was done for
ε = {0.1, 0.5, 1, 3, 8, 50}.

Overall, we observe a similar pattern between Pythia 1B, and the other evaluated models. For instance, for Pythia 410M
(Table 9 - Table 10), looking at RMIA (shadow) using ε = 8, we observe that the average AUC is 0.83, while for IID it
is 0.9. Similarly, for Pythia 160M (Table 11 - Table 12), the average AUC is 0.71 for OOD and 0.81 for IID data. These
results follow our general trend that IID data taken from the pretraining validation set leaks just as much as data that directly
overlaps, thus suggesting distributional closeness as the determining factor of privacy risk. Occasionally, we observe an
anomaly, like the AUC for SAMSum in Table 7 being better under a privacy regime (ε = 8) than without privacy protection.
This behavior is a consequence of the fact that the loss is higher for the ε =∞ than for ε = 8. We prioritize having similar
loss values across different adaptations for the given dataset and privacy budget. However, in some cases, the span of
hyperparameters is too large to ensure that we have a similar loss across different ε values.

Going further, we also evaluate protection under varying privacy budgets, specifically ε ∈ {0.1, 0.5, 1, 3, 8, 50}. As
illustrated in Figure 7, effective defense against privacy attacks, such as MIA, even for OOD data, requires a tight privacy
bound of ε ≤ 0.1 for all adaptation strategies evaluated.

Table 5. Membership Inference for OOD Adaptations. We audit only the adaptations and assume the same pretrained LLM is used for
all adaptations. We present the AUC scores obtained with reference, and Min-K% MIAs for the Pythia 1B model adapted on different
datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset SAMSum GermanWiki Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix Tuning 1.00 0.62 0.63 1.00 0.64 0.61 1.00 0.63 0.62
LoRA 0.86 0.69 0.50 1.00 0.59 0.66 0.93 0.64 0.58
Full Fine-Tune 1.00 0.82 0.62 1.00 0.71 0.55 1.00 0.77 0.59
Head Fine-Tune 1.00 0.98 0.62 1.00 0.76 0.70 1.00 0.87 0.66
Average 0.97 0.78 0.59 1.00 0.67 0.63 0.98 0.73 0.61

RMIA (Pythia 1B)

Prefix Tuning 0.94 0.51 0.51 0.91 0.50 0.50 0.92 0.50 0.51
LoRA 0.51 0.51 0.51 0.81 0.51 0.51 0.66 0.51 0.51
Full Fine-Tune 0.94 0.51 0.51 0.98 0.51 0.51 0.96 0.51 0.51
Head Fine-Tune 0.96 0.52 0.51 0.97 0.51 0.50 0.97 0.52 0.50
Average 0.84 0.51 0.51 0.92 0.51 0.50 0.88 0.51 0.51

Reference (Pythia 1B)

Prefix Tuning 0.93 0.50 0.51 0.92 0.50 0.50 0.92 0.50 0.50
LoRA 0.51 0.51 0.51 0.82 0.51 0.51 0.66 0.51 0.51
Full Fine-Tune 0.94 0.51 0.51 0.99 0.51 0.50 0.96 0.51 0.51
Head Fine-Tune 0.97 0.52 0.51 0.98 0.51 0.50 0.97 0.51 0.50
Average 0.84 0.51 0.51 0.93 0.51 0.50 0.88 0.51 0.51

Min-K%

Prefix Tuning 0.84 0.51 0.51 0.71 0.50 0.50 0.78 0.50 0.50
LoRA 0.51 0.51 0.50 0.61 0.51 0.51 0.56 0.51 0.51
Full Fine-Tune 0.83 0.51 0.50 0.88 0.51 0.50 0.86 0.51 0.50
Head Fine-Tune 0.92 0.51 0.50 0.87 0.51 0.51 0.89 0.51 0.50
Average 0.77 0.51 0.50 0.77 0.50 0.51 0.77 0.51 0.50

C.2. Exposure

Table 19 and Table 20 show the exposure performance of the four types of canary prefixes. With canary exposure, we do not
use any shadow or reference models. Therefore, the results are often close to random guessing when using DP for LLM
adaptations. However, the results for canary exposure are still much higher than for Min-K%, the closest MIA method
executed with the same assumptions.
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Table 6. Membership Inference for in-distribution (IID) Adaptations. We use the same setup as in Table 5.
Adaptation

Dataset Bookcorpus2 Val Bookcorpus2 Train Github val Enron Val Average
MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix Tuning 1.00 0.89 0.56 1.00 0.90 0.55 1.00 0.93 0.63 1.00 0.88 0.58 1.00 0.90 0.58
LoRA 1.00 0.70 0.52 1.00 0.69 0.53 1.00 0.74 0.52 1.00 0.73 0.52 1.00 0.71 0.52
Full Fine-Tune 1.00 0.75 0.77 1.00 0.75 0.76 1.00 0.78 0.80 1.00 0.91 0.66 1.00 0.80 0.75
Head Fine-Tune 1.00 0.72 0.73 1.00 0.72 0.72 1.00 0.80 0.74 1.00 0.57 0.65 1.00 0.70 0.71
Average 1.00 0.77 0.65 1.00 0.76 0.64 1.00 0.81 0.67 1.00 0.77 0.60 1.00 0.78 0.64

RMIA (Pythia 1B)

Prefix Tuning 0.91 0.56 0.51 0.97 0.57 0.50 0.96 0.54 0.52 0.98 0.54 0.51 0.95 0.55 0.51
LoRA 0.87 0.52 0.52 0.96 0.51 0.51 0.91 0.51 0.50 0.98 0.56 0.51 0.93 0.52 0.51
Full Fine-Tune 0.99 0.54 0.52 1.00 0.54 0.52 0.99 0.53 0.52 0.99 0.59 0.50 1.00 0.55 0.51
Head Fine-Tune 0.96 0.57 0.52 0.99 0.56 0.51 0.99 0.65 0.52 1.00 0.54 0.50 0.99 0.58 0.51
Average 0.94 0.55 0.52 0.98 0.55 0.51 0.96 0.56 0.51 0.99 0.56 0.51 0.97 0.55 0.51

Reference (Pythia 1B)

Prefix Tuning 0.93 0.56 0.52 0.97 0.57 0.50 0.97 0.53 0.51 0.97 0.54 0.50 0.96 0.55 0.51
LoRA 0.89 0.52 0.52 0.97 0.51 0.51 0.92 0.51 0.50 0.97 0.55 0.51 0.94 0.52 0.51
Full Fine-Tune 1.00 0.54 0.52 1.00 0.54 0.52 0.99 0.54 0.52 0.98 0.59 0.50 0.99 0.55 0.51
Head Fine-Tune 0.98 0.57 0.52 1.00 0.56 0.51 0.99 0.66 0.50 0.99 0.54 0.50 0.99 0.58 0.51
Average 0.95 0.55 0.52 0.98 0.55 0.51 0.97 0.56 0.51 0.98 0.55 0.50 0.97 0.55 0.51

Min-K%

Prefix Tuning 0.78 0.51 0.50 0.70 0.51 0.50 0.65 0.52 0.52 0.66 0.51 0.52 0.70 0.51 0.51
LoRA 0.67 0.51 0.51 0.63 0.50 0.50 0.61 0.52 0.52 0.65 0.51 0.51 0.64 0.51 0.51
Full Fine-Tune 0.87 0.51 0.51 0.82 0.50 0.50 0.77 0.52 0.52 0.78 0.51 0.51 0.81 0.51 0.51
Head Fine-Tune 0.75 0.51 0.51 0.72 0.50 0.51 0.64 0.52 0.52 0.70 0.51 0.51 0.70 0.51 0.51
Average 0.77 0.51 0.51 0.72 0.50 0.50 0.67 0.52 0.52 0.70 0.51 0.51 0.71 0.51 0.51

Table 7. Membership Inference for OOD Adaptations using Pythia 1.4B. We present the AUC scores obtained with reference, and
Min-K% MIAs for the Pythia 1.4B model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Samsum German Wiki Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.58 0.77 0.54 1.00 0.85 0.56 0.79 0.81 0.55
LoRA 0.53 0.79 0.51 1.00 0.82 0.64 0.76 0.81 0.58
Full Fine-Tune 1.00 0.99 0.62 1.00 1.00 0.90 1.00 1.00 0.76
Head Fine-Tune 0.95 1.00 0.85 1.00 0.90 0.89 0.97 0.95 0.87
Average 0.76 0.94 0.63 1.00 0.89 0.75 0.88 0.89 0.69

RMIA (Pythia 1B)

Prefix 0.52 0.52 0.51 0.92 0.53 0.50 0.72 0.53 0.51
LoRA 0.50 0.54 0.50 0.97 0.51 0.50 0.74 0.52 0.50
Full Fine-Tune 1.00 0.52 0.50 1.00 0.58 0.51 1.00 0.55 0.51
Head Fine-Tune 0.51 0.56 0.51 0.92 0.61 0.52 0.71 0.59 0.51
Average 0.63 0.54 0.50 0.95 0.56 0.51 0.79 0.55 0.51

Reference (Pythia 1B)

Prefix 0.52 0.52 0.51 0.93 0.54 0.49 0.72 0.53 0.50
LoRA 0.50 0.53 0.50 0.98 0.51 0.49 0.74 0.52 0.49
Full Fine-Tune 1.00 0.52 0.50 1.00 0.59 0.51 1.00 0.55 0.51
Head Fine-Tune 0.51 0.56 0.51 0.93 0.61 0.51 0.72 0.59 0.51
Average 0.63 0.53 0.50 0.96 0.56 0.50 0.80 0.55 0.50

Min-K%

Prefix 0.52 0.51 0.51 0.70 0.53 0.50 0.61 0.52 0.51
LoRA 0.50 0.52 0.50 0.79 0.52 0.51 0.65 0.52 0.51
Full Fine-Tune 1.00 0.51 0.51 0.98 0.54 0.52 0.99 0.53 0.51
Head Fine-Tune 0.51 0.53 0.51 0.74 0.55 0.52 0.62 0.54 0.52
Average 0.63 0.52 0.51 0.80 0.53 0.51 0.72 0.53 0.51

Table 8. Membership Inference for IID Adaptations using Pythia 1.4B. We present the AUC scores obtained with reference, and
Min-K% MIAs for the Pythia 1.4B model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Pile Bookcorpus2 Val Pile Bookcorpus2 Train Pile Github Val Pile Enron Val Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 1.00 0.68 0.54 1.00 0.68 0.55 1.00 0.62 0.56 1.00 0.72 0.60 1.00 0.68 0.56
LoRA 0.96 0.99 0.51 0.74 0.98 0.52 1.00 0.97 0.53 1.00 0.99 0.67 0.93 0.98 0.56
Full Fine-Tune 0.98 1.00 0.71 0.99 0.99 0.70 1.00 0.99 0.71 1.00 1.00 0.62 0.99 0.99 0.69
Head Fine-Tune 1.00 1.00 0.72 1.00 1.00 0.69 1.00 1.00 0.71 1.00 1.00 0.64 1.00 1.00 0.69
Average 0.99 0.92 0.62 0.93 0.92 0.62 1.00 0.89 0.63 1.00 0.93 0.63 0.98 0.91 0.62

RMIA (Pythia 1B)

Prefix 0.79 0.52 0.51 0.85 0.52 0.51 0.76 0.51 0.51 0.78 0.51 0.51 0.79 0.52 0.51
LoRA 0.56 0.58 0.51 0.50 0.59 0.51 0.90 0.57 0.52 0.97 0.59 0.51 0.73 0.58 0.51
Full Fine-Tune 0.64 0.59 0.51 0.65 0.58 0.50 0.97 0.55 0.50 0.99 0.57 0.51 0.81 0.57 0.51
Head Fine-Tune 0.79 0.64 0.50 0.54 0.63 0.50 0.91 0.64 0.51 0.99 0.64 0.51 0.81 0.64 0.51
Average 0.69 0.58 0.51 0.64 0.58 0.50 0.88 0.57 0.51 0.93 0.58 0.51 0.79 0.58 0.51

Reference (Pythia 1B)

Prefix 0.80 0.52 0.51 0.86 0.52 0.51 0.76 0.50 0.50 0.77 0.49 0.50 0.80 0.51 0.50
LoRA 0.57 0.58 0.51 0.49 0.59 0.51 0.92 0.55 0.50 0.96 0.60 0.50 0.73 0.58 0.51
Full Fine-Tune 0.64 0.58 0.51 0.65 0.57 0.49 0.98 0.53 0.50 0.99 0.58 0.51 0.81 0.56 0.50
Head Fine-Tune 0.80 0.64 0.51 0.54 0.64 0.50 0.91 0.67 0.51 0.99 0.65 0.50 0.81 0.65 0.50
Average 0.70 0.58 0.51 0.64 0.58 0.50 0.89 0.56 0.50 0.93 0.58 0.50 0.79 0.58 0.50

Min-K%

Prefix 0.61 0.50 0.49 0.58 0.50 0.50 0.57 0.52 0.51 0.57 0.51 0.51 0.58 0.51 0.51
LoRA 0.50 0.51 0.50 0.50 0.51 0.50 0.64 0.53 0.52 0.68 0.52 0.51 0.58 0.52 0.51
Full Fine-Tune 0.52 0.53 0.49 0.52 0.54 0.50 0.73 0.56 0.51 0.83 0.52 0.51 0.65 0.54 0.51
Head Fine-Tune 0.57 0.53 0.49 0.51 0.53 0.50 0.61 0.54 0.51 0.90 0.53 0.51 0.64 0.53 0.51
Average 0.55 0.52 0.50 0.53 0.52 0.50 0.64 0.54 0.52 0.75 0.52 0.51 0.61 0.52 0.51

C.3. Influence of Subset Size and Complexity

We evaluate how subset characteristics, specifically size and complexity (as measured by the perplexity in Table 2 in the
original publication on the Pile (Gao et al., 2020)), affect privacy leakage. Specifically, for this experiment, we use train
subsets and adapt Pythia 1B privately with ε = 8. As shown in Figure 2, the analysis suggests that privacy leakage in
datasets is influenced both by dataset size and the inherent complexity or diversity within the data. For instance, the largest
subset with the CC dataset incurs the highest privacy leakage, likely due to its significant volume and potentially diverse
content (with a perplexity of around 0.7). The other large and complex subsets, like ArXiv (a perplexity of around 0.77),
also have high leakage levels. For ArXiv compared to Freelaw (which is similar in size but less diverse with a perplexity of
around 0.6), ArXiv’s diversity increases leakage, as more unique samples may need to be memorized. Finally, much smaller
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Table 9. Membership Inference for OOD Adaptations using Pythia 410M. We present the AUC scores obtained with reference, and
Min-K% MIAs for the Pythia 410M model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Samsum German Wiki Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.87 0.67 0.51 0.90 0.66 0.50 0.88 0.67 0.51
LoRA 0.93 0.62 0.52 0.71 0.97 0.54 0.82 0.79 0.53
Full Fine-Tune 0.99 0.98 0.52 1.00 1.00 0.53 1.00 0.99 0.52
Head Fine-Tune 1.00 0.76 0.76 0.94 1.00 0.82 0.97 0.88 0.79
Average 0.95 0.76 0.58 0.89 0.91 0.60 0.92 0.83 0.59

RMIA (Pythia 1B)

Prefix 0.54 0.52 0.51 0.58 0.51 0.50 0.56 0.52 0.51
LoRA 0.52 0.50 0.52 0.51 0.56 0.50 0.51 0.53 0.51
Full Fine-Tune 0.80 0.55 0.50 0.93 0.58 0.51 0.86 0.56 0.50
Head Fine-Tune 0.80 0.50 0.50 0.51 0.62 0.51 0.66 0.56 0.51
Average 0.66 0.52 0.51 0.63 0.57 0.50 0.65 0.54 0.51

Reference (Pythia 1B)

Prefix 0.54 0.52 0.51 0.57 0.50 0.48 0.55 0.51 0.49
LoRA 0.52 0.49 0.51 0.50 0.55 0.48 0.51 0.52 0.49
Full Fine-Tune 0.79 0.55 0.50 0.92 0.56 0.49 0.85 0.55 0.49
Head Fine-Tune 0.79 0.49 0.50 0.51 0.62 0.49 0.65 0.56 0.49
Average 0.66 0.51 0.51 0.63 0.56 0.48 0.64 0.54 0.49

Min-K%

Prefix 0.52 0.51 0.51 0.54 0.52 0.51 0.53 0.52 0.51
LoRA 0.51 0.50 0.51 0.52 0.54 0.51 0.51 0.52 0.51
Full Fine-Tune 0.69 0.53 0.50 0.79 0.54 0.52 0.74 0.53 0.51
Head Fine-Tune 0.69 0.50 0.50 0.52 0.56 0.52 0.60 0.53 0.51
Average 0.60 0.51 0.51 0.59 0.54 0.51 0.60 0.53 0.51

Table 10. Membership Inference for IID Adaptations using Pythia 410M. We present the AUC scores obtained with reference, and
Min-K% MIAs for the Pythia 410M model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Pile Bookcorpus2 Val Pile Bookcorpus2 Train Pile Github Val Pile Enron Val Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.83 0.65 0.55 0.86 0.67 0.52 0.65 0.69 0.51 0.89 0.65 0.53 0.81 0.67 0.53
LoRA 0.72 0.91 0.58 0.73 0.89 0.57 0.74 0.92 0.51 0.74 0.98 0.57 0.73 0.92 0.56
Full Fine-Tune 1.00 1.00 0.60 1.00 1.00 0.57 1.00 0.98 0.51 0.99 0.98 0.66 1.00 0.99 0.58
Head Fine-Tune 0.96 1.00 0.74 0.96 1.00 0.69 1.00 1.00 0.62 1.00 1.00 0.72 0.98 1.00 0.69
Average 0.87 0.89 0.62 0.89 0.89 0.59 0.85 0.90 0.54 0.91 0.90 0.62 0.88 0.90 0.59

RMIA (Pythia 1B)

Prefix 0.56 0.51 0.51 0.56 0.52 0.52 0.53 0.52 0.51 0.53 0.51 0.51 0.54 0.52 0.51
LoRA 0.50 0.55 0.51 0.50 0.55 0.51 0.51 0.54 0.50 0.50 0.54 0.51 0.50 0.54 0.51
Full Fine-Tune 0.91 0.58 0.50 0.93 0.59 0.51 0.91 0.55 0.52 0.83 0.54 0.50 0.90 0.57 0.51
Head Fine-Tune 0.51 0.62 0.50 0.51 0.62 0.52 0.90 0.59 0.52 0.91 0.58 0.49 0.71 0.60 0.51
Average 0.62 0.57 0.50 0.63 0.57 0.51 0.71 0.55 0.51 0.69 0.54 0.50 0.66 0.56 0.51

Reference (Pythia 1B)

Prefix 0.56 0.51 0.51 0.55 0.52 0.51 0.51 0.50 0.49 0.52 0.50 0.49 0.54 0.51 0.50
LoRA 0.51 0.55 0.51 0.51 0.54 0.51 0.50 0.52 0.49 0.47 0.52 0.50 0.50 0.53 0.50
Full Fine-Tune 0.91 0.57 0.50 0.93 0.58 0.51 0.88 0.53 0.49 0.80 0.52 0.49 0.88 0.55 0.50
Head Fine-Tune 0.51 0.62 0.51 0.51 0.62 0.52 0.87 0.59 0.50 0.88 0.58 0.49 0.70 0.60 0.51
Average 0.62 0.56 0.51 0.63 0.57 0.51 0.69 0.53 0.49 0.67 0.53 0.49 0.65 0.55 0.50

Min-K%

Prefix 0.51 0.50 0.50 0.52 0.51 0.51 0.53 0.52 0.50 0.52 0.51 0.52 0.52 0.51 0.51
LoRA 0.50 0.51 0.50 0.50 0.52 0.50 0.51 0.54 0.51 0.50 0.52 0.51 0.50 0.52 0.51
Full Fine-Tune 0.82 0.52 0.50 0.80 0.53 0.50 0.74 0.56 0.52 0.75 0.54 0.49 0.78 0.54 0.50
Head Fine-Tune 0.50 0.53 0.49 0.50 0.53 0.51 0.62 0.53 0.51 0.68 0.52 0.50 0.57 0.53 0.50
Average 0.58 0.52 0.50 0.58 0.52 0.51 0.60 0.54 0.51 0.61 0.52 0.51 0.59 0.52 0.51

Table 11. Membership Inference for OOD Adaptations using Pythia 160M. We present the AUC scores obtained with reference, and
Min-K% MIAs for the Pythia 160M model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Samsum German Wiki Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.55 0.53 0.52 0.56 0.62 0.53 0.56 0.57 0.53
LoRA 0.78 0.61 0.55 0.62 0.57 0.59 0.70 0.59 0.57
Full Fine-Tune 1.00 0.74 0.61 0.90 0.99 0.65 0.95 0.86 0.63
Head Fine-Tune 1.00 0.89 0.73 0.96 0.75 0.77 0.98 0.82 0.75
Average 0.83 0.69 0.60 0.76 0.73 0.64 0.80 0.71 0.62

RMIA (Pythia 1B)

Prefix 0.51 0.51 0.50 0.51 0.51 0.51 0.51 0.51 0.50
LoRA 0.51 0.50 0.50 0.51 0.51 0.50 0.51 0.50 0.50
Full Fine-Tune 0.81 0.52 0.50 0.52 0.55 0.50 0.66 0.53 0.50
Head Fine-Tune 0.69 0.51 0.50 0.52 0.51 0.52 0.60 0.51 0.51
Average 0.63 0.51 0.50 0.51 0.52 0.51 0.57 0.51 0.50

Reference (Pythia 1B)

Prefix 0.51 0.51 0.51 0.50 0.49 0.49 0.50 0.50 0.50
LoRA 0.51 0.50 0.51 0.49 0.49 0.49 0.50 0.50 0.50
Full Fine-Tune 0.79 0.52 0.50 0.50 0.53 0.49 0.65 0.52 0.49
Head Fine-Tune 0.69 0.51 0.50 0.50 0.49 0.50 0.60 0.50 0.50
Average 0.63 0.51 0.50 0.50 0.50 0.49 0.56 0.51 0.50

Min-K%

Prefix 0.51 0.51 0.51 0.52 0.52 0.51 0.51 0.51 0.51
LoRA 0.51 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51
Full Fine-Tune 0.71 0.52 0.50 0.52 0.53 0.51 0.61 0.52 0.51
Head Fine-Tune 0.63 0.51 0.50 0.52 0.51 0.52 0.58 0.51 0.51
Average 0.59 0.51 0.50 0.52 0.52 0.51 0.55 0.51 0.51

and more structured subsets like Europarl (with a perplexity of 0.75) and Enron Emails (the smallest subset) exhibit the least
leakage, likely due to limited diversity and lower complexity.
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Table 12. Membership Inference for IID Adaptations using Pythia 160M. We present the AUC scores obtained with reference, and
Min-K% MIAs for the Pythia 160M model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Pile Bookcorpus2 Val Pile Bookcorpus2 Train Pile Github Val Pile Enron Val Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.61 0.72 0.53 0.61 0.71 0.54 0.57 0.67 0.51 0.66 0.75 0.54 0.61 0.71 0.53
LoRA 0.82 0.60 0.54 0.83 0.79 0.55 0.80 0.82 0.53 0.91 0.61 0.53 0.84 0.71 0.54
Full Fine-Tune 1.00 0.89 0.58 0.89 0.93 0.56 1.00 0.95 0.56 1.00 0.97 0.52 0.97 0.94 0.55
Head Fine-Tune 1.00 0.74 0.75 1.00 0.97 0.72 1.00 0.99 0.62 1.00 0.80 0.70 1.00 0.87 0.70
Average 0.86 0.74 0.60 0.83 0.85 0.59 0.84 0.86 0.55 0.89 0.78 0.57 0.86 0.81 0.58

RMIA (Pythia 1B)

Prefix 0.50 0.50 0.50 0.52 0.53 0.52 0.51 0.51 0.51 0.50 0.50 0.50 0.51 0.51 0.51
LoRA 0.50 0.50 0.50 0.51 0.52 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.51 0.51 0.51
Full Fine-Tune 1.00 0.53 0.50 0.52 0.54 0.50 0.85 0.52 0.51 0.99 0.53 0.50 0.84 0.53 0.51
Head Fine-Tune 0.71 0.50 0.50 0.74 0.56 0.51 0.67 0.55 0.51 0.78 0.50 0.50 0.73 0.53 0.51
Average 0.68 0.51 0.50 0.57 0.53 0.51 0.64 0.52 0.51 0.69 0.51 0.50 0.65 0.52 0.51

Reference (Pythia 1B)

Prefix 0.50 0.51 0.50 0.52 0.52 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.50
LoRA 0.51 0.50 0.50 0.52 0.52 0.51 0.50 0.51 0.50 0.49 0.49 0.49 0.50 0.50 0.50
Full Fine-Tune 1.00 0.53 0.50 0.52 0.53 0.51 0.81 0.52 0.50 0.96 0.51 0.50 0.82 0.52 0.50
Head Fine-Tune 0.69 0.50 0.50 0.71 0.55 0.51 0.64 0.54 0.50 0.72 0.49 0.49 0.69 0.52 0.50
Average 0.68 0.51 0.50 0.57 0.53 0.51 0.61 0.52 0.50 0.67 0.50 0.49 0.63 0.51 0.50

Min-K%

Prefix 0.50 0.50 0.50 0.51 0.51 0.51 0.52 0.52 0.51 0.50 0.50 0.50 0.51 0.51 0.51
LoRA 0.50 0.50 0.50 0.51 0.51 0.50 0.52 0.52 0.51 0.50 0.50 0.50 0.51 0.50 0.50
Full Fine-Tune 0.96 0.51 0.50 0.51 0.51 0.50 0.67 0.52 0.52 0.93 0.52 0.51 0.77 0.52 0.50
Head Fine-Tune 0.62 0.50 0.50 0.62 0.52 0.51 0.60 0.53 0.51 0.72 0.50 0.50 0.64 0.51 0.50
Average 0.64 0.50 0.50 0.54 0.51 0.51 0.58 0.52 0.51 0.66 0.50 0.50 0.61 0.51 0.50

Table 13. Membership Inference for OOD Adaptations using Pythia 70M. We present the AUC scores obtained with reference, and
Min-K% MIAs for the Pythia 70M model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Samsum German Wiki Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.53 0.62 0.51 0.60 0.63 0.56 0.57 0.63 0.53
LoRA 0.68 0.58 0.55 0.59 0.61 0.57 0.63 0.59 0.56
Full Fine-Tune 0.98 0.92 0.63 0.98 0.97 0.71 0.98 0.94 0.67
Head Fine-Tune 1.00 0.93 0.73 0.95 0.93 0.77 0.97 0.93 0.75
Average 0.80 0.76 0.61 0.78 0.78 0.65 0.79 0.77 0.63

RMIA (Pythia 1B)

Prefix 0.51 0.51 0.51 0.50 0.51 0.50 0.51 0.51 0.51
LoRA 0.51 0.51 0.52 0.51 0.51 0.51 0.51 0.51 0.51
Full Fine-Tune 0.52 0.53 0.52 0.53 0.55 0.50 0.53 0.54 0.51
Head Fine-Tune 0.67 0.54 0.50 0.52 0.54 0.51 0.59 0.54 0.51
Average 0.55 0.52 0.51 0.51 0.53 0.51 0.53 0.53 0.51

Reference (Pythia 1B)

Prefix 0.51 0.52 0.51 0.49 0.50 0.49 0.50 0.51 0.50
LoRA 0.51 0.51 0.52 0.50 0.50 0.50 0.50 0.51 0.51
Full Fine-Tune 0.52 0.53 0.52 0.51 0.53 0.49 0.52 0.53 0.51
Head Fine-Tune 0.67 0.55 0.51 0.50 0.52 0.50 0.59 0.53 0.50
Average 0.55 0.53 0.51 0.50 0.51 0.49 0.53 0.52 0.50

Min-K%

Prefix 0.51 0.51 0.50 0.51 0.52 0.51 0.51 0.51 0.51
LoRA 0.51 0.50 0.51 0.52 0.52 0.52 0.51 0.51 0.51
Full Fine-Tune 0.51 0.52 0.51 0.53 0.54 0.52 0.52 0.53 0.51
Head Fine-Tune 0.64 0.53 0.50 0.53 0.54 0.52 0.58 0.54 0.51
Average 0.54 0.52 0.50 0.52 0.53 0.52 0.53 0.52 0.51

Table 14. Membership Inference for IID Adaptations using Pythia 70M. We present the AUC scores obtained with reference, and
Min-K% MIAs for the Pythia 70M model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Pile Bookcorpus2 Val Pile Bookcorpus2 Train Pile Github Val Pile Enron Val Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.63 0.66 0.50 0.60 0.68 0.52 0.57 0.73 0.56 0.65 0.72 0.53 0.61 0.70 0.53
LoRA 0.57 0.80 0.54 0.81 0.80 0.55 0.84 0.83 0.55 0.85 0.63 0.50 0.77 0.77 0.54
Full Fine-Tune 0.99 0.92 0.59 0.99 0.92 0.59 1.00 0.97 0.58 0.99 0.97 0.58 0.99 0.95 0.58
Head Fine-Tune 0.97 0.94 0.72 1.00 0.95 0.70 1.00 0.98 0.76 1.00 0.97 0.76 0.99 0.96 0.73
Average 0.79 0.83 0.59 0.85 0.84 0.59 0.85 0.88 0.61 0.87 0.82 0.59 0.84 0.84 0.60

RMIA (Pythia 1B)

Prefix 0.50 0.50 0.50 0.51 0.52 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.51 0.51 0.51
LoRA 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.49 0.51 0.51 0.50
Full Fine-Tune 0.52 0.52 0.50 0.53 0.53 0.51 0.87 0.52 0.51 0.51 0.52 0.50 0.61 0.52 0.51
Head Fine-Tune 0.51 0.52 0.50 0.69 0.54 0.50 0.64 0.55 0.51 0.73 0.52 0.50 0.64 0.53 0.50
Average 0.51 0.51 0.50 0.56 0.52 0.51 0.63 0.52 0.51 0.56 0.51 0.50 0.56 0.52 0.50

Reference (Pythia 1B)

Prefix 0.50 0.50 0.50 0.51 0.51 0.51 0.49 0.50 0.49 0.50 0.50 0.50 0.50 0.50 0.50
LoRA 0.50 0.51 0.50 0.51 0.51 0.51 0.50 0.50 0.50 0.49 0.49 0.49 0.50 0.50 0.50
Full Fine-Tune 0.52 0.52 0.50 0.52 0.53 0.51 0.81 0.51 0.50 0.50 0.51 0.49 0.59 0.52 0.50
Head Fine-Tune 0.51 0.52 0.50 0.66 0.54 0.51 0.60 0.54 0.50 0.67 0.51 0.48 0.61 0.53 0.50
Average 0.51 0.51 0.50 0.55 0.52 0.51 0.60 0.51 0.50 0.54 0.50 0.49 0.55 0.51 0.50

Min-K%

Prefix 0.50 0.50 0.49 0.51 0.51 0.51 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51
LoRA 0.49 0.50 0.50 0.51 0.51 0.51 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51
Full Fine-Tune 0.50 0.51 0.49 0.52 0.52 0.51 0.75 0.53 0.52 0.52 0.52 0.51 0.57 0.52 0.51
Head Fine-Tune 0.50 0.51 0.49 0.64 0.53 0.51 0.62 0.55 0.51 0.76 0.53 0.50 0.63 0.53 0.50
Average 0.50 0.50 0.49 0.54 0.52 0.51 0.60 0.53 0.52 0.58 0.52 0.51 0.55 0.52 0.51

C.4. Per-epoch loss

We compare the development of AUC scores during training on IID and overlap data, as shown in Figure 8. These results
display the AUC score at each epoch during training. To better compare IID and overlap data, we adjust the x-axis to
represent the loss difference at each training step, calculated as the initial pretraining loss minus the adapted loss at the
current training step. This calibration of the x-axis allows us to compare the two dataset types more precisely. With this
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Table 15. Membership Inference for OOD Adaptations using GPT Neo 1.3B. We present the AUC scores obtained with reference, and
Min-K% MIAs for the GPT Neo 1.3B model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Samsum German Wiki Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.50 0.51 0.50 0.98 0.50 0.51 0.74 0.50 0.51
LoRA 0.53 0.85 0.51 0.55 0.89 0.50 0.54 0.87 0.51
Full Fine-Tune 1.00 1.00 0.80 1.00 1.00 0.83 1.00 1.00 0.82
Head Fine-Tune 0.93 1.00 0.81 0.93 1.00 0.85 0.93 1.00 0.83
Average 0.74 0.84 0.66 0.86 0.85 0.68 0.80 0.84 0.67

RMIA (Pythia 1B)

Prefix 0.51 0.51 0.51 0.71 0.50 0.49 0.61 0.51 0.50
LoRA 0.50 0.50 0.50 0.51 0.52 0.51 0.51 0.51 0.51
Full Fine-Tune 0.58 0.56 0.51 0.74 0.63 0.51 0.66 0.60 0.51
Head Fine-Tune 0.50 0.55 0.50 0.51 0.60 0.51 0.51 0.58 0.51
Average 0.53 0.53 0.51 0.61 0.56 0.51 0.57 0.55 0.51

Reference (Pythia 1B)

Prefix 0.50 0.49 0.49 0.62 0.48 0.47 0.56 0.49 0.48
LoRA 0.49 0.51 0.49 0.51 0.52 0.51 0.50 0.52 0.50
Full Fine-Tune 0.59 0.57 0.49 0.74 0.61 0.49 0.66 0.59 0.49
Head Fine-Tune 0.50 0.56 0.49 0.51 0.60 0.50 0.50 0.58 0.50
Average 0.52 0.53 0.49 0.59 0.55 0.49 0.56 0.54 0.49

Min-K%

Prefix 0.52 0.50 0.50 0.65 0.50 0.51 0.58 0.50 0.51
LoRA 0.51 0.51 0.51 0.52 0.53 0.52 0.52 0.52 0.52
Full Fine-Tune 0.55 0.55 0.51 0.59 0.57 0.53 0.57 0.56 0.52
Head Fine-Tune 0.51 0.54 0.51 0.53 0.56 0.52 0.52 0.55 0.52
Average 0.52 0.52 0.51 0.57 0.54 0.52 0.55 0.53 0.51

Table 16. Membership Inference for IID Adaptations using GPT Neo 1.3B. We present the AUC scores obtained with reference, and
Min-K% MIAs for the GPT Neo 1.3B model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Pile Bookcorpus2 Val Pile Bookcorpus2 Train Pile Github Val Pile Enron Val Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.62 0.51 0.52 0.78 0.51 0.50 0.95 0.50 0.51 0.79 0.57 0.55 0.78 0.52 0.52
LoRA 0.53 0.81 0.52 0.54 0.81 0.51 0.55 0.89 0.50 0.57 0.64 0.62 0.55 0.79 0.54
Full Fine-Tune 1.00 1.00 0.65 1.00 1.00 0.64 1.00 0.71 0.75 1.00 1.00 0.62 1.00 0.93 0.67
Head Fine-Tune 0.96 1.00 0.70 1.00 1.00 0.70 1.00 1.00 0.87 1.00 1.00 0.65 0.99 1.00 0.73
Average 0.78 0.83 0.60 0.83 0.83 0.59 0.87 0.78 0.66 0.84 0.80 0.61 0.83 0.81 0.61

RMIA (Pythia 1B)

Prefix 0.51 0.51 0.51 0.76 0.51 0.50 0.68 0.50 0.51 0.80 0.57 0.56 0.69 0.52 0.52
LoRA 0.51 0.53 0.51 0.50 0.50 0.50 0.51 0.54 0.53 0.56 0.56 0.56 0.52 0.53 0.53
Full Fine-Tune 0.72 0.62 0.51 0.71 0.62 0.51 0.91 0.54 0.53 0.70 0.67 0.57 0.76 0.61 0.53
Head Fine-Tune 0.52 0.60 0.50 1.00 0.61 0.51 0.98 0.61 0.53 0.98 0.65 0.57 0.87 0.62 0.53
Average 0.56 0.56 0.51 0.74 0.56 0.51 0.77 0.55 0.52 0.76 0.61 0.57 0.71 0.57 0.53

Reference (Pythia 1B)

Prefix 0.51 0.51 0.52 0.72 0.51 0.50 0.61 0.48 0.48 0.74 0.44 0.43 0.65 0.48 0.48
LoRA 0.51 0.53 0.51 0.48 0.49 0.48 0.51 0.51 0.48 0.58 0.59 0.58 0.52 0.53 0.51
Full Fine-Tune 0.72 0.62 0.52 0.71 0.62 0.51 0.89 0.50 0.50 0.74 0.65 0.56 0.77 0.60 0.52
Head Fine-Tune 0.52 0.61 0.51 1.00 0.62 0.51 0.97 0.61 0.51 0.98 0.66 0.57 0.87 0.63 0.53
Average 0.57 0.57 0.51 0.73 0.56 0.50 0.74 0.53 0.49 0.76 0.58 0.53 0.70 0.56 0.51

Min-K%

Prefix 0.50 0.51 0.51 0.65 0.52 0.50 0.67 0.52 0.53 0.77 0.55 0.55 0.65 0.53 0.52
LoRA 0.50 0.50 0.50 0.50 0.50 0.50 0.52 0.54 0.53 0.57 0.57 0.57 0.52 0.53 0.52
Full Fine-Tune 0.54 0.54 0.50 0.54 0.54 0.50 0.62 0.54 0.53 0.60 0.59 0.56 0.57 0.55 0.52
Head Fine-Tune 0.50 0.52 0.49 0.91 0.53 0.50 0.74 0.54 0.53 0.87 0.59 0.57 0.76 0.55 0.52
Average 0.51 0.52 0.50 0.65 0.52 0.50 0.64 0.54 0.53 0.70 0.58 0.56 0.63 0.54 0.52

Table 17. Membership Inference for OOD Adaptations using GPT Neo 125M. We present the AUC scores obtained with reference,
and Min-K% MIAs for the GPT Neo 125M model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Samsum German Wiki Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.68 0.51 0.50 0.73 0.51 0.52 0.70 0.51 0.51
LoRA 0.84 0.63 0.59 0.51 0.50 0.50 0.67 0.56 0.55
Full Fine-Tune 1.00 0.99 0.72 1.00 0.52 0.79 1.00 0.75 0.75
Head Fine-Tune 1.00 0.94 0.79 1.00 1.00 0.87 1.00 0.97 0.83
Average 0.88 0.77 0.65 0.81 0.63 0.67 0.84 0.70 0.66

RMIA (Pythia 1B)

Prefix 0.52 0.51 0.51 0.55 0.50 0.50 0.54 0.50 0.50
LoRA 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.51 0.51
Full Fine-Tune 1.00 0.53 0.52 1.00 0.50 0.50 1.00 0.52 0.51
Head Fine-Tune 1.00 0.51 0.50 0.54 0.57 0.51 0.77 0.54 0.51
Average 0.76 0.52 0.51 0.65 0.52 0.50 0.70 0.52 0.51

Reference (Pythia 1B)

Prefix 0.52 0.49 0.49 0.51 0.48 0.48 0.51 0.49 0.49
LoRA 0.51 0.51 0.51 0.49 0.49 0.49 0.50 0.50 0.50
Full Fine-Tune 1.00 0.53 0.50 1.00 0.49 0.49 1.00 0.51 0.50
Head Fine-Tune 1.00 0.51 0.50 0.53 0.55 0.49 0.76 0.53 0.50
Average 0.76 0.51 0.50 0.63 0.50 0.49 0.69 0.51 0.49

Min-K%

Prefix 0.54 0.51 0.51 0.55 0.50 0.49 0.54 0.50 0.50
LoRA 0.51 0.51 0.51 0.52 0.52 0.52 0.52 0.52 0.52
Full Fine-Tune 1.00 0.53 0.52 1.00 0.52 0.52 1.00 0.53 0.52
Head Fine-Tune 1.00 0.51 0.51 0.54 0.55 0.52 0.77 0.53 0.52
Average 0.76 0.52 0.51 0.65 0.52 0.51 0.71 0.52 0.51

setup, we evaluate two subsets of the Pile pretraining set: GitHub and BookCorpus2. First, the figures indicate that further
adapting a model on IID data does not significantly improve its performance on that data, with the loss decreasing by only a
maximum of 0.015 (GitHub with Full Fine-Tune). However, the observed increase in AUC score throughout training shows
that the model does learn from the adaptation data.
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Table 18. Membership Inference for IID Adaptations using GPT Neo 125M. We present the AUC scores obtained with reference, and
Min-K% MIAs for the GPT Neo 125M model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset Pile Bookcorpus2 Val Pile Bookcorpus2 Train Pile Github Val Pile Enron Val Average

MIA ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1 ε =∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix 0.68 0.52 0.51 0.52 0.53 0.51 0.77 0.50 0.50 0.76 0.57 0.53 0.68 0.53 0.51
LoRA 0.52 0.51 0.50 1.00 0.51 0.51 1.00 0.50 0.51 1.00 0.50 0.50 0.88 0.51 0.50
Full Fine-Tune 1.00 0.51 0.68 1.00 0.97 0.58 0.98 0.97 0.68 1.00 0.98 0.66 1.00 0.86 0.65
Head Fine-Tune 1.00 1.00 0.70 1.00 1.00 0.66 0.96 1.00 0.87 1.00 1.00 0.70 0.99 1.00 0.74
Average 0.80 0.64 0.60 0.88 0.75 0.57 0.93 0.74 0.64 0.94 0.76 0.60 0.89 0.72 0.60

RMIA (Pythia 1B)

Prefix 0.52 0.50 0.50 0.52 0.51 0.50 0.54 0.53 0.53 0.55 0.54 0.54 0.54 0.52 0.52
LoRA 0.50 0.50 0.50 0.94 0.51 0.51 0.72 0.52 0.52 0.90 0.56 0.56 0.77 0.52 0.52
Full Fine-Tune 1.00 0.50 0.50 1.00 0.54 0.52 0.67 0.54 0.53 1.00 0.58 0.56 0.92 0.54 0.53
Head Fine-Tune 1.00 0.56 0.50 1.00 0.57 0.51 0.95 0.57 0.53 1.00 0.59 0.56 0.99 0.57 0.52
Average 0.75 0.52 0.50 0.87 0.53 0.51 0.72 0.54 0.53 0.86 0.57 0.56 0.80 0.54 0.52

Reference (Pythia 1B)

Prefix 0.52 0.51 0.51 0.52 0.51 0.50 0.50 0.48 0.48 0.55 0.43 0.43 0.52 0.48 0.48
LoRA 0.51 0.51 0.51 0.92 0.51 0.51 0.70 0.50 0.50 0.87 0.53 0.53 0.75 0.51 0.51
Full Fine-Tune 1.00 0.51 0.51 1.00 0.54 0.52 0.58 0.52 0.49 1.00 0.56 0.55 0.89 0.53 0.52
Head Fine-Tune 1.00 0.56 0.51 1.00 0.57 0.51 0.92 0.55 0.51 1.00 0.57 0.53 0.98 0.56 0.51
Average 0.76 0.52 0.51 0.86 0.53 0.51 0.67 0.51 0.50 0.85 0.52 0.51 0.79 0.52 0.51

Min-K%

Prefix 0.53 0.50 0.50 0.52 0.51 0.50 0.55 0.54 0.53 0.56 0.54 0.54 0.54 0.52 0.52
LoRA 0.50 0.50 0.50 0.70 0.50 0.50 0.60 0.52 0.52 0.74 0.56 0.56 0.63 0.52 0.52
Full Fine-Tune 1.00 0.50 0.50 1.00 0.53 0.51 0.80 0.55 0.53 1.00 0.58 0.56 0.95 0.54 0.53
Head Fine-Tune 1.00 0.52 0.50 1.00 0.53 0.50 0.94 0.55 0.53 1.00 0.58 0.56 0.98 0.55 0.52
Average 0.75 0.50 0.50 0.80 0.52 0.51 0.72 0.54 0.53 0.83 0.56 0.55 0.78 0.53 0.52

Table 19. Canary Exposure for OOD datasets. Prefix Tuning and Full Fine-Tuning adaptation methods have a higher exposure on OOD
datasets than the other adaptation approaches like LoRA and Head Fine-Tuning. We audit only the adaptations and assume the same
pretrained LLM is used for all adaptations. We present the exposure scores obtained using the model loss for the Pythia 1B model adapted
to different OOD datasets with ε ∈ {0.1, 8,∞}. The exposure differs between the adaptations only for ε =∞ and approaches random
guessing (values close to 1.44) for ε ∈ {0.1, 8}.

Adaptation
Dataset SAMSum German Wiki Average

Canary Prefix Type ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1

Random

Prefix Tuning 7.35 1.72 1.82 6.07 1.81 1.40 6.71 1.76 1.61
LoRA 1.85 1.76 1.76 3.34 1.43 1.41 2.59 1.60 1.58
Full Fine-Tune 6.91 1.77 1.75 5.76 1.43 1.43 6.33 1.60 1.59
Head Fine-Tune 1.88 1.75 1.77 4.44 1.43 1.42 3.16 1.59 1.59
Average 4.50 1.75 1.77 4.90 1.53 1.42 4.70 1.64 1.59

Rare

Prefix Tuning 6.44 1.41 1.55 5.22 1.82 2.11 5.83 1.61 1.83
LoRA 1.54 1.49 1.52 2.47 1.81 1.79 2.01 1.65 1.66
Full Fine-Tune 4.28 1.51 1.53 4.13 1.81 1.81 4.21 1.66 1.67
Head Fine-Tune 1.54 1.56 1.52 3.65 1.81 1.80 2.60 1.69 1.66
Average 3.45 1.49 1.53 3.87 1.81 1.88 3.66 1.65 1.70

Common

Prefix Tuning 7.54 1.97 1.81 5.02 2.17 2.54 6.28 2.07 2.17
LoRA 1.90 1.92 2.00 2.84 1.75 1.82 2.37 1.83 1.91
Full Fine-Tune 6.34 1.93 1.99 4.63 1.74 1.75 5.49 1.84 1.87
Head Fine-Tune 3.05 1.93 1.98 3.30 1.74 1.76 3.18 1.83 1.87
Average 4.71 1.94 1.94 3.95 1.85 1.97 4.33 1.89 1.96

Invisible

Prefix Tuning 5.16 2.14 2.19 7.17 1.96 1.25 6.16 2.05 1.72
LoRA 3.82 1.74 1.61 2.54 1.44 1.40 3.18 1.59 1.50
Full Fine-Tune 8.00 1.91 1.74 5.62 1.44 1.45 6.81 1.67 1.59
Head Fine-Tune 5.91 1.67 1.59 3.66 1.44 1.45 4.78 1.55 1.52
Average 5.72 1.87 1.78 4.75 1.57 1.39 5.23 1.72 1.58

Table 20. Canary Exposure for IID datasets. We use the same setup as in Table 3 and observe the same trends, with higher privacy
leakage for Prefix tuning and Full Fine-Tuning than for LoRA and Head Fine-Tuning.

Adaptation
Dataset Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val Average

Canary Prefix Type ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1

Random

Prefix Tuning 8.00 2.02 1.24 8.00 1.69 1.59 7.86 1.88 1.22 5.80 0.91 1.58 7.41 1.63 1.41
LoRA 3.65 2.06 2.05 3.19 1.55 1.55 3.22 1.89 1.88 2.04 0.67 0.67 3.03 1.54 1.54
Full Fine-Tune 6.59 2.04 4.00 6.45 1.60 3.88 6.52 1.91 3.07 4.38 0.70 4.00 5.98 1.56 3.74
Head Fine-Tune 2.81 2.03 1.84 2.34 1.58 1.59 2.70 1.89 1.85 1.20 0.69 0.75 2.26 1.55 1.51
Average 5.26 2.04 2.28 5.00 1.61 2.15 5.08 1.89 2.01 3.35 0.74 1.75 4.67 1.57 2.05

Rare

Prefix Tuning 8.00 1.39 0.93 7.94 1.39 2.06 7.79 1.60 1.17 6.13 1.15 1.93 7.47 1.38 1.52
LoRA 3.24 1.54 1.54 2.48 1.30 1.30 2.31 1.67 1.67 2.15 1.24 1.23 2.55 1.44 1.44
Full Fine-Tune 5.40 1.54 3.23 4.87 1.31 2.82 4.73 1.68 4.52 4.05 1.27 1.79 4.76 1.45 3.09
Head Fine-Tune 2.64 1.53 1.46 1.97 1.30 1.45 2.18 1.67 1.54 1.73 1.22 1.10 2.13 1.43 1.39
Average 4.82 1.50 1.79 4.32 1.32 1.91 4.25 1.65 2.23 3.52 1.22 1.51 4.23 1.42 1.86

Common

Prefix Tuning 6.61 1.44 2.29 7.05 1.71 2.09 6.79 1.60 2.50 5.08 0.86 2.36 6.38 1.40 2.31
LoRA 3.83 1.58 1.59 3.56 1.72 1.72 3.81 1.75 1.75 2.15 0.89 0.89 3.33 1.49 1.49
Full Fine-Tune 5.27 1.60 2.91 4.66 1.75 2.80 6.24 1.74 3.08 3.60 0.90 1.98 4.94 1.50 2.69
Head Fine-Tune 1.68 1.57 1.40 1.85 1.74 1.60 2.28 1.74 1.64 1.15 0.92 0.87 1.74 1.49 1.37
Average 4.35 1.55 2.04 4.28 1.73 2.05 4.78 1.71 2.24 2.99 0.89 1.52 4.10 1.47 1.97

Invisible

Prefix 2.45 1.10 1.54 2.22 1.45 1.63 6.41 1.47 1.55 0.88 1.76 2.07 2.99 1.45 1.70
LoRA 3.93 1.30 1.30 4.02 1.41 1.40 3.68 1.27 1.26 0.77 0.80 0.80 3.10 1.19 1.19
Full Fine-Tune 8.00 1.34 1.32 8.00 1.45 1.52 6.30 1.30 1.33 5.21 0.78 0.82 6.88 1.22 1.25
Head Fine-Tune 1.96 1.29 1.29 2.01 1.40 1.41 2.01 1.24 1.27 1.48 0.80 0.80 1.87 1.18 1.19
Average 4.08 1.26 1.36 4.06 1.43 1.49 4.60 1.32 1.35 2.09 1.03 1.12 3.71 1.26 1.33

C.5. Prefix Exposure

To investigate where privacy leakage comes from, we present the exposure observed with canary prefixes of varying lengths,
after adapting Pythia 1B on the Github Val dataset with ε =∞. Figure 9 show the exposure when only considering the first
N tokens. This highlights that the prefix itself is the main source of privacy leakage.

D. Influence of the Attacker’s Knowledge
We can observe how impactful an attacker’s knowledge about the target model and its pertaining data is. Specifically, under
moderate privacy regimes (i.e., ε = 8), RMIA (shadow) consistently achieves best performance among models and datasets,
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Figure 8. Overlap (Train) and IID data (Val) show the same amount of privacy leakage across training. The x-axis shows the
difference between the initial pretrained loss and the evaluation loss. The y-axis represents the AUC score. All adaptations have been
trained with ε = 8.
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Figure 9. The privacy leakage comes mostly from the adversarial prefix and much less from the interaction between the prefix and
the sample. We present the exposure when considering different lengths of canary prefixes after adapting Pythia 1B on Github Val. The
evaluation was done for ε =∞.

as indicated in Table 7 - Table 18. However, the effectiveness of MIAs quickly drops off when we move to more realistic
scenarios, such as using a pretrained model as a shadow model or having no shadow models available at all.

To model attackers with varying levels of background knowledge, we use a range of shadow models, including Pythia 14M,
Pythia 160M, Pythia 1B, Pythia 2.8B (Biderman et al., 2023), GPT-neox (Black et al., 2021), OLMo-1B (Groeneveld et al.,
2024), and GPT-2 (Radford et al., 2019). Therefore, we can simulate various attacker capabilities and assess their impact on
RMIA’s effectiveness. As we can see in Figure 10, the choice of reference model has a small impact when attacking models
fine-tuned on OOD data, even when architectural differences exist, such as between GPT-Neo 1.3B and OLMo-1B. On the
other hand, the MIA achieves higher success rates on IID data when targeting the Pythia 1B model.

Additionally, Figure 11 illustrates the performance of various potential reference models over time. We consistently observe
the significant impact of knowing the target model’s architecture, especially when the target and shadow models share the
same architecture. The only exception to this pattern appears in one of OOD datasets, SAMSum.

E. Loss values
E.1. Initial Loss of the LLM

Table 21 shows the loss at initialization for each dataset for the pretrained model and for a model adapted with an untrained
Prefix Tuning.
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Figure 10. Using at least one shadow model is crucial for RMIA, particularly for differentially private adaptations. We present the
AUC using RMIA with different types of shadow models after adapting Pythia 1B on Bookcorpus2 Val and SAMSum. The evaluation
was done for ε = {8,∞}.

Table 21. Initial Losses for the Pythia 1B model on different datasets. Standard refers to the model with default initialization, whereas
Prefix refers to prepending an untrained Prefix Tuning to the hidden states.

Adaptation
Dataset SAMSum GermanWiki Bookcorpus2 Val Bookcorpus2 Train GitHub Val Enron Val

ε = 0 ε = 0 ε = 0 ε = ∞ ε = 0 ε = 0
Standard 2.747 2.732 3.011 2.997 1.539 2.388
Prefix Tuning 3.161 5.348 3.529 3.534 2.141 3.062

E.2. Final Loss of the LLM

Table 22 show the final loss on the validation set. The hyperparameters are chosen to have similar loss between different
adaptations using the same dataset and ε.

Table 22. Validation loss values for the Pythia 1B model on different adaptation datasets.
Adaptation

Dataset SAMsum German Wiki Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val

ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1
Prefix Tuning 2.311 2.451 2.778 2.573 2.738 2.838 2.968 2.993 3.387 2.997 2.994 3.390 1.599 1.557 2.054 2.412 2.426 3.002
LoRA 2.313 2.462 2.761 2.578 2.737 2.801 2.951 3.007 3.013 2.979 3.002 3.003 1.558 1.572 1.558 2.394 2.402 2.403
Full Fine-Tune 2.251 2.457 2.759 2.511 2.726 2.747 2.934 2.999 3.028 2.960 2.995 3.020 1.598 1.566 1.577 2.375 2.397 2.413
Head Fine-Tune 2.354 2.454 2.761 2.574 2.731 2.756 2.949 3.007 3.339 2.966 3.002 3.332 1.577 1.573 1.750 2.409 2.403 2.536
Average 2.307 2.456 2.764 2.559 2.733 2.785 2.950 3.002 3.192 2.976 2.998 3.186 1.583 1.567 1.734 2.397 2.407 2.589

F. Exposure Estimation
There are two common ways to estimate the exposure (Carlini et al., 2019): (1) by sampling and (2) by distribution modeling.
Figure 12 shows that the two approximations are similar when using 256 non-member samples. To statistically show the
correlation, we use the Pearson correlation test, where the null hypothesis is that the distributions underlying the samples
are uncorrelated and normally distributed. The data gives an extremely small p-value, which indicates a linear correlation
between the two approximation methods.

G. Memorization of the pretrained model
Table 29 shows the number of memorized samples in the pretrained model.
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Figure 11. Further analysis of the effectiveness of RMIA with pretrained models as a reference model. Extension of Figure 3 with
the three additional IID datasets, Bookcorpus2 Train, GitHub Train, and GitHub Val.

26



1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Benchmarking Empirical Privacy Protection for Adaptations of Large Language Models

Table 23. Validation loss values for the Pythia 1.4B model on different adaptation datasets.
Adaptation

Dataset Samsum German Wiki Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val

ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1
Prefix 2.712 2.456 3.451 2.465 2.655 5.246 2.901 3.538 3.857 2.929 3.657 3.918 1.542 2.564 2.909 2.411 2.973 3.791
LoRA 2.677 2.362 2.682 2.456 2.498 4.112 2.895 3.046 3.887 2.923 3.055 3.945 1.492 1.751 2.401 2.296 2.347 2.779
Full fine-tune 2.779 2.262 2.639 2.458 2.493 2.595 2.885 3.815 2.975 2.889 3.872 2.965 1.492 2.739 1.534 2.299 2.283 2.319
Head fine-tune 2.665 2.454 3.038 2.465 2.625 3.151 2.889 3.273 3.594 2.920 3.292 3.584 1.502 1.743 1.877 2.389 2.621 2.543
Average 2.708 2.384 2.952 2.461 2.568 3.776 2.892 3.418 3.578 2.915 3.469 3.603 1.507 2.199 2.180 2.349 2.556 2.858

Table 24. Validation loss values for the Pythia 410M model on different adaptation datasets.
Adaptation

Dataset Samsum German Wiki Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val

ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1
Prefix 2.486 2.966 7.227 2.957 3.345 9.669 3.249 3.583 4.702 3.284 3.665 4.792 2.139 2.760 8.701 2.990 3.835 4.869
LoRA 2.403 2.830 7.176 2.880 3.276 8.365 3.125 3.454 3.219 3.119 3.490 3.333 1.698 2.288 7.484 2.588 2.798 4.170
Full fine-tune 2.415 2.690 7.867 2.892 3.084 10.101 3.104 3.577 3.506 3.133 3.616 3.153 1.851 2.768 8.616 2.845 3.715 5.681
Head fine-tune 2.481 2.813 8.382 2.877 3.122 10.567 3.123 3.428 3.733 3.118 3.460 4.032 1.721 1.952 7.905 2.590 2.753 6.037
Average 2.446 2.825 7.663 2.901 3.207 9.676 3.150 3.511 3.790 3.163 3.558 3.827 1.852 2.442 8.176 2.753 3.275 5.189

Table 25. Validation loss values for the Pythia 160M model on different adaptation datasets.
Adaptation

Dataset Samsum German Wiki Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val

ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1
Prefix 3.011 3.475 3.436 3.715 3.742 4.448 3.608 3.598 3.808 3.641 3.641 3.865 2.571 2.488 3.138 3.407 3.389 3.735
LoRA 2.702 3.038 3.180 3.458 3.459 3.578 3.396 3.420 3.537 3.400 3.423 3.690 2.020 2.050 2.444 3.003 3.023 3.119
Full fine-tune 2.486 6.803 3.062 3.396 3.624 4.284 3.396 3.562 3.422 3.402 3.588 3.739 2.025 2.263 2.855 3.083 3.154 3.382
Head fine-tune 2.862 2.883 3.425 3.418 3.445 4.048 3.402 3.417 3.694 3.432 3.599 3.801 2.111 2.212 2.947 3.091 3.021 3.668
Average 2.765 4.050 3.276 3.497 3.567 4.089 3.450 3.499 3.615 3.469 3.563 3.774 2.182 2.253 2.846 3.146 3.147 3.476

Table 26. Validation loss values for the Pythia 70M model on different adaptation datasets.
Adaptation

Dataset Samsum German Wiki Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val

ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1
Prefix 3.451 3.348 3.956 4.243 4.167 4.761 3.970 3.954 4.144 4.017 3.986 4.191 2.902 2.757 3.064 3.845 3.787 4.121
LoRA 3.071 3.324 3.450 4.024 4.007 4.141 3.737 3.735 3.862 3.717 3.744 3.963 2.322 2.357 2.606 3.424 3.448 3.580
Full fine-tune 3.107 3.059 3.828 3.912 4.138 4.639 3.698 3.906 4.073 3.707 3.940 4.090 2.402 2.651 3.074 3.420 3.587 3.792
Head fine-tune 3.108 3.336 4.488 3.977 4.070 4.148 3.719 3.745 3.891 3.745 3.968 3.862 2.412 2.715 2.940 3.514 3.727 4.307
Average 3.184 3.267 3.930 4.039 4.095 4.422 3.781 3.835 3.993 3.797 3.909 4.027 2.509 2.620 2.921 3.551 3.637 3.950

Table 27. Validation loss values for the Gpt Neo 1.3B model on different adaptation datasets.
Adaptation

Dataset Samsum German Wiki Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val

ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1
Prefix 4.154 11.172 12.590 3.306 12.510 13.110 5.016 11.610 12.862 4.590 12.119 12.848 2.889 11.377 11.868 4.133 12.400 12.231
LoRA 2.723 2.407 2.724 2.450 2.409 2.505 3.062 3.042 3.062 3.050 3.033 3.050 1.247 2.913 11.451 2.156 2.153 2.156
Full fine-tune 2.494 2.630 3.578 2.568 3.101 4.375 3.302 3.509 4.281 3.311 3.560 4.324 2.146 8.471 2.471 2.344 2.475 2.760
Head fine-tune 2.713 2.558 2.999 2.447 2.617 2.877 3.060 6.326 3.568 3.052 3.312 3.569 1.325 1.427 1.546 2.240 2.292 2.367
Average 3.021 4.692 5.473 2.693 5.159 5.717 3.610 6.121 5.943 3.501 5.506 5.948 1.902 6.047 6.834 2.718 4.830 4.878

Table 28. Validation loss values for the Gpt Neo 125M model on different adaptation datasets.
Adaptation

Dataset Samsum German Wiki Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val

ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1
Prefix 4.891 14.114 14.174 5.640 20.577 20.623 6.251 14.268 14.337 7.370 14.299 14.401 5.117 13.307 13.368 6.308 14.242 14.242
LoRA 2.694 3.070 3.073 3.243 3.244 3.244 3.491 3.491 3.491 3.504 3.492 3.492 1.605 1.595 1.595 2.766 2.757 2.757
Full fine-tune 4.716 3.252 5.524 5.195 3.244 4.492 5.551 3.494 4.398 6.623 4.728 6.499 4.133 2.859 5.329 4.854 3.483 4.663
Head fine-tune 3.178 2.867 3.512 3.176 3.500 3.641 3.472 3.773 4.255 4.304 3.908 4.280 3.093 1.928 2.194 4.064 2.955 3.020
Average 3.870 5.826 6.571 4.314 7.641 8.000 4.691 6.256 6.620 5.450 6.607 7.168 3.487 4.922 5.622 4.498 5.859 6.170

Subset GitHub BookCorpus2 Enron ArXiv CC EuroParl FreeLaw USPTO Wikipedia

Memorized Samples 192 3 18 2 8 0 7 4 2

Table 29. Set of memorized samples identified from the subsets of the Pile dataset.

H. RMIA Hyperparameters
We focus on the importance of γ, as α has a much more limited effect, and we set it to 0. Figure 13 shows the importance
and γ and suggests that γ = 1 is often the best choice. We omit it for simplicity, but a similar trend can be observed for the
other settings.

I. Broader impact
Recognizing a potential underestimation of privacy risks in adapted LLMs due to insufficient empirical analysis of the
combined effects of pretraining and adaptation, we conduct a rigorous benchmark. Our work offers impact by providing the
community with clear guidance on privacy-preserving strategies, suitable adaptation techniques, thus contributing in more
privacy-aware adapting LLMs.
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Benchmarking Empirical Privacy Protection for Adaptations of Large Language Models
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Figure 12. The two ways to approximate the exposure are similar. The relation between the model exposure and sampling exposure.
The p-value is related to the Pearson correlation test.
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Figure 13. γ = 1 is a strong baseline. We present the AUC using RMIA with different types of values of γ after adapting Pythia 1B on
SAMSum. The evaluation was done for ε = {8,∞}.

J. Limitations
This work focuses solely on auditing the private adaptations and leakage from pretraining data after adaptations. However, as
we show, for holistic privacy auditing under the pretrain-adapt paradigm, we need ways to audit all process stages (jointly).
We also focus only on a subset of models, particularly leaving out state-of-the-art closed models, such as GPT4, given that
they cannot easily be adapted with DP as of the current API specification.
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